WO2020187298A1 - 鹅去氧胆酸衍生物的制备方法 - Google Patents

鹅去氧胆酸衍生物的制备方法 Download PDF

Info

Publication number
WO2020187298A1
WO2020187298A1 PCT/CN2020/080244 CN2020080244W WO2020187298A1 WO 2020187298 A1 WO2020187298 A1 WO 2020187298A1 CN 2020080244 W CN2020080244 W CN 2020080244W WO 2020187298 A1 WO2020187298 A1 WO 2020187298A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
group
methanol
acid
Prior art date
Application number
PCT/CN2020/080244
Other languages
English (en)
French (fr)
Inventor
吕彬华
李成伟
郭超
Original Assignee
苏州泽璟生物制药股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州泽璟生物制药股份有限公司 filed Critical 苏州泽璟生物制药股份有限公司
Priority to KR1020217033693A priority Critical patent/KR20210141616A/ko
Priority to JP2021559466A priority patent/JP7344983B2/ja
Priority to US17/440,947 priority patent/US20220162256A1/en
Priority to EP20773082.1A priority patent/EP3943502A4/en
Publication of WO2020187298A1 publication Critical patent/WO2020187298A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
    • C07J9/005Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane containing a carboxylic function directly attached or attached by a chain containing only carbon atoms to the cyclopenta[a]hydrophenanthrene skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0055Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives
    • C07J41/0061Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives one of the carbon atoms being part of an amide group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J51/00Normal steroids with unmodified cyclopenta(a)hydrophenanthrene skeleton not provided for in groups C07J1/00 - C07J43/00

Definitions

  • the invention belongs to the field of medicine. Specifically, the present invention relates to a novel preparation and purification method of chenodeoxycholate.
  • Farnesoid X Receptor is a member of the nuclear receptor (Nuclear Receptor) family. It is mainly expressed in the liver, small intestine and other intestinal systems, and is involved in bile acid metabolism and cholesterol metabolism. Bile acids have a variety of physiological functions and play an important role in the process of fat absorption, transport, distribution and cholesterol homeostasis.
  • the farnesoid X receptor acts as a receptor for bile acids such as chenodeoxycholic acid and maintains the balance of bile acids in the body by regulating the expression of genes involved in bile acid metabolism.
  • the farnesol X receptor also plays an important role in the dynamic balance of glucose and insulin resistance in the body.
  • farnesol X receptor agonists are expected to be developed to treat non-alcoholic steatohepatitis, non-alcoholic fatty liver disease, gallstones, primary biliary cirrhosis, liver cirrhosis, liver fibrosis, diabetes, and hypercholesterolemia , Atherosclerosis, obesity, hypertriglyceridemia and other drugs.
  • the compound obeticholic acid is a selective farnesoid X receptor agonist, and its chemical name is 3 ⁇ ,7 ⁇ -dihydroxy-6 ⁇ -ethyl-5 ⁇ -cholic-24-acid (3 ⁇ ,7 ⁇ -dihydroxy-6 ⁇ -ethyl-5 ⁇ -cholan-24-oic acid), which is useful for treating primary biliary cirrhosis (PBC), non-alcoholic steatohepatitis (NASH) and non-alcoholic fatty liver related diseases.
  • PBC primary biliary cirrhosis
  • NASH non-alcoholic steatohepatitis
  • obeticholic acid has been approved for marketing as an indication for primary biliary cirrhosis, and it is in phase III clinical research in the field of NASH.
  • Patent WO02072598 discloses a method for synthesizing chenodeoxycholic acid derivatives with 3 ⁇ -dihydroxy-7-keto-5 ⁇ -cholin-24-acid as a starting material and undergoing 6-position alkylation and other steps.
  • this patent There are many shortcomings in the synthetic method in, such as all intermediates and products need chromatographic column purification, the total yield of the reaction is very low (only 3.5%), the reaction step uses carcinogenic reagents, etc.
  • the patent WO2006122977 discloses a method for synthesizing obeticholic acid by using 3 ⁇ -dihydroxy-7-keto-5 ⁇ -cholin-24-acid as the starting material through Aldol condensation and other steps.
  • the intermediates are difficult to separate, the reaction steps are long, the yield of the configuration conversion step is low, and the impurities in the final product are difficult to remove.
  • n 1 or 2
  • M is NH 4 + , alkali metal ion, alkaline earth metal ion or transition metal ion;
  • the method includes the following steps:
  • the compound of formula (VI) is catalytically hydrogenated by the "one-pot method" and reduced with a metal hydride reducing agent
  • R 1 and R 2 are selected from hydrogen, hydroxy, methyl, ethyl, methoxy, or R 1 and R 2 and the N atom to which they are connected together form a substituted or unsubstituted 5-7 membered heterocyclic ring, wherein, The heterocyclic ring includes 1-3 heteroatoms selected from the group consisting of N, O or S. In another preferred example, said R 1 and R 2 together form a structure selected from the group consisting of -CH 2 CH 2 CH 2 CH 2 -, -CH 2 CH 2 OCH 2 CH 2 -.
  • the intermediate product is not separated and purified.
  • step (a) includes: in anhydrous methanol, a compound of formula (VI) is used for catalytic hydrogenation, and then water and a metal hydride are added to react to obtain a compound of formula (V).
  • the compound represented by formula (VI) is the following compound:
  • the compound represented by formula (VI) is the following compound:
  • the compound represented by formula (VI) is the following compound:
  • the compound represented by formula (A) is selected from:
  • the obtained compounds of formula I to IV have high purity, preferably with a purity of greater than 99.0%, further preferably with a purity of greater than 99.5%, and particularly preferably with a purity of greater than 99.7%.
  • the obtained compound of formula I to IV contains dimer related substance formula (B) less than 0.1%, particularly preferably less than 0.05%.
  • the obtained compound of formula I to IV contains isomer related substances of formula (C) less than 0.1%, more preferably less than 0.05%, and particularly preferably not detected.
  • the inert solvent is selected from the following group: C1-C4 alcohol, water, or a combination thereof.
  • the alcohol is selected from the group consisting of methanol, ethanol, isopropanol, tert-butanol, or a combination thereof.
  • step (a) the catalytic hydrogenation is carried out in the presence of a palladium/carbon catalyst under hydrogen gas.
  • step (a) includes: in anhydrous methanol, a compound of formula (VI) is used for catalytic hydrogenation, and then water and a metal hydride are added to react to obtain a compound of formula (V).
  • reaction temperature in step (a) is 5 to 150°C, preferably in the range of 30 to 120°C, particularly preferably 50 to 100°C.
  • the pressure of catalytic hydrogenation in step (a) is 1-20 atm, preferably in the range of 2-10 atm.
  • the metal hydride reducing agent includes borohydride, lithium tri-tert-butoxyaluminum hydride, among which, borohydride is preferred, and more preferably is sodium borohydride and boron. Potassium hydride is particularly preferably sodium borohydride.
  • step (a) the molar ratio of the metal hydride to the compound of formula (VI) is 5:1 to 1:1, more preferably 3:1 to 1:1, particularly preferably 2:1.
  • step (a) the reduction of the metal hydride is carried out under alkaline conditions.
  • the alkaline condition is in the presence of sodium hydroxide or potassium hydroxide.
  • the molar ratio of the sodium hydroxide or potassium hydroxide to the compound of formula (VI) is 50:1 to 1:5, more preferably 30:1 to 10:1.
  • the method further comprises: preparing the compound of formula (VI) by the following method:
  • the compound Or its hydrochloride is selected from the following group: ammonium chloride, hydroxylamine hydrochloride, methylamine hydrochloride, N,O-dimethylhydroxylamine hydrochloride, or a combination thereof; preferably ammonium chloride.
  • step a) the compound The molar ratio of the added amount to the compound of formula (VII) is 10:1 to 1:1, more preferably 5:1 to 1:1, particularly preferably 2:1 to 1:1.
  • the condensing agent in step a) is selected from the group consisting of N,N'-carbonyldiimidazole (CDI), EDC1, DIC, DCC, HATU, HBTU, TBTU and PyBOP; preferably HATU , HBTU and PyBOP; PyBOP is particularly preferred.
  • CDI N,N'-carbonyldiimidazole
  • EDC1 EDC1
  • DIC DIC
  • DCC HATU
  • HBTU HBTU
  • TBTU and PyBOP preferably HATU , HBTU and PyBOP
  • PyBOP is particularly preferred.
  • the molar ratio of the added amount of the condensing agent to the compound of formula (VII) is 10:1 to 1:5, more preferably 5:1 to 1:1, particularly preferably It is 2:1.
  • the step a) also includes the step of adding an activator, and the activator is selected from the group consisting of DMAP, HOBt, 4-PPY, DIPEA and Et 3 N; preferably DIPEA.
  • the step a) is carried out in an aprotic solvent; preferably, the aprotic solvent is selected from the group consisting of dichloromethane, acetonitrile, N,N-dimethyl Formamide, dimethyl sulfoxide, or a combination thereof; preferably N,N-dimethylformamide.
  • the aprotic solvent is selected from the group consisting of dichloromethane, acetonitrile, N,N-dimethyl Formamide, dimethyl sulfoxide, or a combination thereof; preferably N,N-dimethylformamide.
  • the step b) is carried out in a solvent, and the solvent is selected from the group consisting of dichloromethane, acetonitrile, dimethyl sulfoxide, tetrahydrofuran, 1,4-dioxane, Or a combination thereof; dichloromethane is preferred.
  • the Lewis acid in step b) is selected from the group consisting of hydrochloric acid, acetic acid, p-toluenesulfonic acid, boron trifluoride ether solution, boron trifluoride acetonitrile solution, or a combination thereof; preferably It is a solution of boron trifluoride in ether.
  • step b) the molar ratio of the added Lewis acid to the compound of formula (VIII) is 10:1 to 1:3, more preferably 4:1 to 2:1.
  • the method further includes the step of preparing the compound of formula (VIII) by the following method:
  • the condensing agent is selected from the group consisting of N,N'-carbonyldiimidazole (CDI), EDCl, DIC, DCC, HATU, HBTU, TBTU, PyBOP , Or a combination thereof; preferably HATU, HBTU, PyBOP, or a combination thereof; more preferably PyBOP.
  • CDI N,N'-carbonyldiimidazole
  • EDCl EDCl
  • DIC DIC
  • DCC HATU, HBTU, TBTU, PyBOP , Or a combination thereof; preferably HATU, HBTU, PyBOP, or a combination thereof; more preferably PyBOP.
  • step c) the compound The molar ratio of the added amount to the compound of formula (IX) is 10:1 to 1:1, more preferably 5:1 to 1:1, and particularly preferably 2:1 to 1:1.
  • the molar ratio of the added amount of the condensing agent to the compound of formula (IX) is 10:1 to 1:5, more preferably 5:1 to 1:1, particularly preferably It is 2:1.
  • the step c) also includes the step of adding an activator, the activator is selected from the group consisting of DMAP, HOBt, 4-PPY, DIPEA and Et 3 N; preferably DIPEA.
  • the step c) is carried out in an aprotic solvent; preferably, the aprotic solvent is selected from the group consisting of dichloromethane, acetonitrile, N,N-dimethyl Formamide, dimethyl sulfoxide, or a combination thereof; preferably N,N-dimethylformamide.
  • the aprotic solvent is selected from the group consisting of dichloromethane, acetonitrile, N,N-dimethyl Formamide, dimethyl sulfoxide, or a combination thereof; preferably N,N-dimethylformamide.
  • the base in step d) is selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium hydride, lithium diisopropylamide ( LDA), or a combination thereof; preferably lithium diisopropylamide.
  • the molar ratio of the added amount of trimethylchlorosilane to the compound of formula (X) is 20:1 to 1:1, more preferably 15:1 to 1:1 , Especially preferably 10:1.
  • the molar ratio of the added amount of the base to the compound of formula (X) is 20:1 to 1:1, more preferably 15:1 to 1:1, particularly preferably 10:1.
  • the step d) is carried out in a solvent selected from the group consisting of: dichloromethane, tetrahydrofuran, diethyl ether, toluene, 1,4-dioxane, acetonitrile, N,N-dimethyl Methyl formamide, dimethyl sulfoxide, or a mixed solvent thereof, more preferably tetrahydrofuran.
  • a solvent selected from the group consisting of: dichloromethane, tetrahydrofuran, diethyl ether, toluene, 1,4-dioxane, acetonitrile, N,N-dimethyl Methyl formamide, dimethyl sulfoxide, or a mixed solvent thereof, more preferably tetrahydrofuran.
  • the salt-forming crystals include:
  • step (b1) Mix the 3 ⁇ ,7 ⁇ -dihydroxy-6 ⁇ -ethyl-5 ⁇ -cholin-24-acid obtained in step (a) with pure water, add an aqueous sodium hydroxide solution, and stir until it is substantially dissolved to obtain a clear solution;
  • the weight ratio of the 3 ⁇ ,7 ⁇ -dihydroxy-6 ⁇ -ethyl-5 ⁇ -cholin-24-acid to pure water is 40:1 to 1:5, more preferably 10:1 ⁇ 1:3, particularly preferably 5:1.
  • the weight ratio of the 3 ⁇ ,7 ⁇ -dihydroxy-6 ⁇ -ethyl-5 ⁇ -cholin-24-acid to the aqueous sodium hydroxide solution is 10:1 to 1:10, more preferably 3 : 1 to 1:5, particularly preferably 1:0.97 to 1:3.
  • the concentration of the sodium hydroxide aqueous solution is 0.5-5 mol.L -1 , more preferably 2-3 mol.L -1 , particularly preferably 2.52 mol.L -1 .
  • the concentration of the aqueous solution containing metal ions Mg 2+ is 0.1-10, more preferably 0.3-5, particularly preferably 0.5-2 mol ⁇ L -1 .
  • the concentration of the aqueous solution containing metal ions Ca 2+ is 0.1-20, more preferably 0.5-10, and particularly preferably 2-5 mol ⁇ L -1 .
  • the salt-forming crystals include:
  • step (b4) Dissolve the 3 ⁇ ,7 ⁇ -dihydroxy-6 ⁇ -ethyl-5 ⁇ -cholin-24-acid obtained in step (a) in methanol, slowly drip into the methanol solution of sodium hydroxide, and stir until it is almost dissolved to obtain Clear solution
  • the inventors After long-term and in-depth research, the inventors have obtained a method for preparing 3 ⁇ ,7 ⁇ -dihydroxy-6 ⁇ -ethyl-5 ⁇ -cholin-24-acid or its salt.
  • the method has the characteristics of short synthetic route, easy purification of intermediates and mild reaction conditions, and the obtained corresponding cholic acid or bile acid salt has higher purity and better product quality, and is suitable for pharmaceutical production. Based on the above findings, the inventor completed the present invention.
  • the compound of the formula (A) structure of the present invention can be prepared by the following general routes one and two:
  • the reaction is carried out in the presence of a condensing agent and/or an activator in an aprotic solvent at a temperature of -20 to 60°C.
  • the condensing agent is selected from N,N'-carbonyldiimidazole (CDI), EDCl, DIC, DCC, HATU, HBTU, TBTU and PyBOP, more preferably PyBOP.
  • the activating agent is selected from DMAP, HOBt, 4-PPY, DIPEA and Et 3 N, more preferably DIPEA;
  • the aprotic solvent is dichloromethane, acetonitrile, N,N-dimethylformamide, Dimethyl sulfoxide or its mixed solvent is more preferably N,N-dimethylformamide;
  • the reaction temperature is preferably -5 to 50°C, more preferably 0 to 30°C.
  • the reaction in this step is carried out in a protic solvent, an alkaline aqueous solution and a temperature of 5 to 150°C.
  • the hydrogenation reaction is under 1-20 atmospheres of hydrogen, using palladium/carbon as a catalyst;
  • the metal hydride reducing agent can be sodium borohydride or potassium borohydride, more preferably sodium borohydride;
  • the protic solvent is selected from methanol, ethanol, isopropanol, tert-butanol, water or a mixed solvent thereof, preferably a mixed solvent of methanol and water;
  • the alkaline aqueous solution is selected from sodium hydroxide aqueous solution and potassium hydroxide aqueous solution.
  • the reaction temperature is 5 to 150°C, more preferably 50 to 100°C.
  • the compound of formula (A) is prepared by the following method:
  • a condensing agent In the presence of a condensing agent and/or an activator, it is carried out at a neutralization temperature of an aprotic solvent from -20 to 60°C.
  • the condensing agent is N,N'-carbonyl diimidazole (CDI), EDC1, DIC, DCC, HATU, HBTU, TBTU and PyBOP, more preferably PyBOP;
  • the activating agent is DMAP, HOBt, 4- PPY, DIPEA and Et 3 N, more preferably DIPEA;
  • the aprotic solvent is dichloromethane, acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, or a mixed solvent thereof, more preferably It is N,N-dimethylformamide.
  • the reaction temperature is preferably -5 to 40°C, more preferably 0 to 30°C.
  • This reaction can be carried out in an aprotic solvent.
  • the base is selected from sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium hydride or lithium diisopropylamide (LDA), more preferably Is lithium diisopropylamide (LDA);
  • the aprotic solvent is selected from dichloromethane, tetrahydrofuran, ether, toluene, 1,4-dioxane, acetonitrile, N,N-dimethylformamide , Dimethyl sulfoxide or its mixed solvent, more preferably tetrahydrofuran.
  • the reaction temperature is preferably -100 to 40°C, more preferably -70 to 30°C.
  • the compound of formula (VIII) can be directly used in the next reaction without further purification.
  • the Lewis acid is preferably boron trifluoride etherate;
  • the solvent is selected from methylene chloride, acetonitrile, dimethyl sulfoxide, tetrahydrofuran, 1,4-dioxane, or Mixed solvent; more preferably dichloromethane.
  • the reaction temperature is preferably -100 to 70°C, more preferably -70 to 40°C.
  • the reaction in this step is carried out in a protic solvent, an alkaline aqueous solution and a temperature of 0 to 150°C.
  • the hydrogenation reaction uses palladium/carbon as a catalyst under 1-20 atmospheres of hydrogen; the borohydride is sodium borohydride or potassium borohydride, more preferably sodium borohydride.
  • the protic solvent is selected from the following group: methanol, ethanol, isopropanol, tert-butanol, water, or a mixed solvent thereof, preferably a mixed solvent of methanol and water.
  • the alkaline aqueous solution is selected from sodium hydroxide aqueous solution and potassium hydroxide aqueous solution.
  • the reaction temperature is 5 to 150°C, more preferably 50 to 100°C.
  • the preparation method of the present invention has a series of advantages. Its main advantages include:
  • the present invention adopts the "one-pot method" process, which has stronger production continuity and is more suitable for large-scale production.
  • the corresponding cholate obtained by the present invention has higher purity and better product quality, especially the magnesium, calcium, sodium and potassium salts of obeticholic acid prepared by the method of the present application Less impurities, suitable for pharmaceutical production.
  • reaction mixture was slowly poured into 5% sodium bicarbonate aqueous solution (5L), solids separated out, stirred evenly for 2h, filtered, washed with pure water (500ml ⁇ 8), and dried in vacuum to obtain a crude product.
  • the crude product was transferred to a flask, added with tetrahydrofuran (400ml), refluxed and beaten, cooled down, filtered, washed with tetrahydrofuran (50ml ⁇ 3) and the filter cake was dried under vacuum to obtain the target compound (83.5g, 86%).
  • Infrared spectra (IR) absorption characteristic 3401 ⁇ 5cm -1, 2935 ⁇ 5cm -1, 2871 ⁇ 5cm -1, 1555 ⁇ 5cm -1, 1449 ⁇ 5cm -1, 1414 ⁇ 5cm -1, 1377 ⁇ 5cm - 1. 1159 ⁇ 5cm -1 , 1064 ⁇ 5cm -1 and 603 ⁇ 5cm -1 .
  • Infrared spectra (IR) absorption characteristic 3423 ⁇ 5cm -1, 2958 ⁇ 5cm -1, 2935 ⁇ 5cm -1, 2871 ⁇ 5cm -1, 2122 ⁇ 5cm -1, 1640 ⁇ 5cm -1, 1559 ⁇ 5cm - 1. 1451 ⁇ 5cm -1 , 1406 ⁇ 5cm -1 , 1378 ⁇ 5cm -1 , 1160 ⁇ 5cm -1 , 1065 ⁇ 5cm -1 and 603 ⁇ 5cm -1 .
  • Infrared spectra (IR) absorption characteristic 3409 ⁇ 5cm -1, 2935 ⁇ 5cm -1, 2871 ⁇ 5cm -1, 1643 ⁇ 5cm -1, 1555 ⁇ 5cm -1, 1465 ⁇ 5cm -1, 1451 ⁇ 5cm - 1.
  • Infrared spectra (IR) absorption characteristic 3407 ⁇ 5cm -1, 2935 ⁇ 5cm -1, 2871 ⁇ 5cm - 1,1553 ⁇ 5cm -1, 1447 ⁇ 5cm -1, 1417 ⁇ 5cm -1, 1377 ⁇ 5cm - 1. 1159 ⁇ 5cm -1 , 1064 ⁇ 5cm -1 and 603 ⁇ 5cm -1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及鹅去氧胆酸衍生物的制备方法。具体地,本发明公开了式(Ⅵ)所示化合物3α-羟基-亚乙基-7-酮-5β-胆-24-烷酰胺经一锅法还原制备得到式(Ⅴ)所示化合物3α,7α-二羟基-6α-乙基-5β-胆烷酸,再经成盐结晶得到高纯度奥贝胆酸钠盐、钾盐、镁盐和钙盐的方法。

Description

鹅去氧胆酸衍生物的制备方法 技术领域
本发明属于医药领域。具体地,本发明涉及新型的鹅去氧胆酸盐的制备和纯化方法。
背景技术
法尼醇X受体(Farnesoid X Receptor,FXR)是核受体(Nuclear Receptor)家族的一员,它主要表达在肝脏、小肠等肠道系统之中,参与胆汁酸代谢与胆固醇代谢等环节。胆汁酸具有多种生理功能,在脂肪的吸收、转运、分配及胆固醇的动态平衡等过程中发挥重要作用。法尼醇X受体作为鹅去氧胆酸等胆汁酸的受体,通过调控参与胆汁酸代谢的基因表达来维持胆汁酸在体内的平衡。另外,法尼醇X受体在体内葡萄糖的动态平衡和胰岛素抵抗等方面也发挥着重要功能。因此,法尼醇X受体激动剂有望开发成治疗非酒精性脂肪肝炎、非酒精性脂肪肝病、胆结石、原发性胆汁性肝硬化、肝硬化、肝纤维化、糖尿病、高胆固醇血症、动脉粥样硬化、肥胖、高甘油三酯血症等的药物。其中,化合物奥贝胆酸(Obeticholic acid)是选择性的法尼醇X受体激动剂,化学名为3α,7α-二羟基-6α-乙基-5β-胆-24-酸(3α,7α-dihydroxy-6α-ethyl-5β-cholan-24-oic acid),具有治疗原发性胆汁性肝硬化(PBC)、非酒精性脂肪肝炎(NASH)以及非酒精性脂肪肝相关疾病中的用途。目前奥贝胆酸用于原发性胆汁性肝硬化的适应症已被批准上市,在NASH领域处于III期临床研究中。
专利WO02072598中公开了以3α-二羟基-7-酮基-5β-胆-24-酸为起始原料,经6位烷基化等步骤合成鹅去氧胆酸衍生物的方法,但是该专利中的合成方法存在很多不足,如所有中间体和产品需要色谱柱纯化、反应总收率极低(只有3.5%)、反应步骤使用了致癌试剂等。
另外,专利WO2006122977公开了以3α-二羟基-7-酮基-5β-胆-24-酸为起始原料,经Aldol缩合等步骤合成得到奥贝胆酸的方法,但是,该合成方法中存在中间体不易分离、反应步骤长、构型转化步骤收率低,以及终产品杂质不易除去等缺点。
因此,本领域仍需要开发合成鹅去氧胆酸盐的更佳方法。
发明内容
在本发明的第一方面中,提供了一种式(A)所示化合物的合成方法:
Figure PCTCN2020080244-appb-000001
其中,n为1或2,M为NH 4 +、碱金属离子、碱土金属离子或过渡金属离子;
所述的方法包括下述步骤:
(a)在惰性溶剂中,式(Ⅵ)化合物通过“一锅法”进行催化氢化,并用金属氢化物还原剂还原
Figure PCTCN2020080244-appb-000002
得到式(Ⅴ)化合物;
Figure PCTCN2020080244-appb-000003
(b)用式(Ⅴ)化合物在溶剂中成盐结晶,得到式(A)化合物;
其中R 1和R 2分别选自氢、羟基、甲基、乙基、甲氧基,或R 1和R 2与其相连的N原子共同构成取代或未取代的5-7元杂环,其中,所述的杂环中包括1-3个选自下组的杂原子:N、O或S。在另一优选例中,所述的R 1和R 2共同形成选自下组的结构:-CH 2CH 2CH 2CH 2-、-CH 2CH 2OCH 2CH 2-。
在另一优选例中,所述的催化氢化与金属氢化物还原剂还原“一锅法”过程中,中间产物不经分离纯化。
在另一优选例中,步骤(a)包括:在无水甲醇中,用式(Ⅵ)化合物进行催化氢化反应,然后加入水和金属氢化物进行反应,得到式(Ⅴ)化合物。
在另一优选例中,式(Ⅵ)所示化合物为如下化合物:
Figure PCTCN2020080244-appb-000004
在另一优选例中,式(Ⅵ)所示化合物为如下化合物:
Figure PCTCN2020080244-appb-000005
在另一优选例中,式(Ⅵ)所示化合物为如下化合物:
Figure PCTCN2020080244-appb-000006
在另一优选例中,式(A)所示的化合物选自:
Figure PCTCN2020080244-appb-000007
在另一优选例中,得到的式I~IV化合物具有很高的纯度,优选纯度大于99.0%,进一步优选纯度大于99.5%,特别优选纯度大于99.7%。
在另一优选例中,得到的式I~IV化合物含有的二聚体有关物质式(B)低于0.1%,特别优选低于0.05%。
Figure PCTCN2020080244-appb-000008
在另一优选例中,得到的式I~IV化合物含有的异构体有关物质式(C)低于0.1%,较优选低于0.05%,特别优选未检出。
Figure PCTCN2020080244-appb-000009
在另一优选例中,所述的步骤(a)中,所述的惰性溶剂选自下组:C1-C4的醇、水,或其组合。
在另一优选例中,所述的步骤(a)中,所述的醇选自下组:甲醇、乙醇、异 丙醇、叔丁醇,或其组合。
在另一优选例中,所述的步骤(a)中,所述的惰性溶剂选自下组:无水甲醇,或甲醇:水(v/v)=1:100~100:1的混合溶剂,优选为甲醇:水(v/v)=0.5:1~5:1。
在另一优选例中,步骤(a)中,所述的催化氢化在钯/碳催化剂存在下,在通氢气条件下进行。
在另一优选例中,步骤(a)包括:在无水甲醇中,用式(Ⅵ)化合物进行催化氢化反应,然后加入水和金属氢化物进行反应,得到式(Ⅴ)化合物。
在另一优选例中,步骤(a)的反应温度是5~150℃,优选范围30~120℃,特别优选50~100℃。
在另一优选例中,步骤(a)中催化加氢的压力是1~20atm,优选范围2~10atm。
在另一优选例中,步骤(a)中,所述的金属氢化物还原剂包括硼氢化物、三叔丁氧基氢化铝锂,其中,优选硼氢化物,进一步优选自硼氢化钠和硼氢化钾,特别优选硼氢化钠。
在另一优选例中,步骤(a)中,所述的金属氢化物与式(Ⅵ)化合物的摩尔比为5:1~1:1,进一步优选3:1~1:1,特别优选为2:1。
在另一优选例中,步骤(a)中,所述的金属氢化物还原在碱性条件下进行。优选地,所述的碱性条件是在氢氧化钠或氢氧化钾存在下。
在另一优选例中,所述的氢氧化钠或氢氧化钾的加入量与式(Ⅵ)化合物的摩尔比为50:1~1:5,进一步优选30:1~10:1。
在另一优选例中,所述的方法还包括:通过以下方法制备式(Ⅵ)化合物:
a)用式(Ⅶ)化合物与
Figure PCTCN2020080244-appb-000010
或其盐酸盐进行缩合,得到式(Ⅵ)化合物;
Figure PCTCN2020080244-appb-000011
b)在路易酸存在下,式(Ⅷ)化合物与乙醛进行Aldol缩合,得到式(Ⅵ)化合物;
Figure PCTCN2020080244-appb-000012
其中,各基团的定义如本发明第一方面中所述。
在另一优选例中,所述的化合物
Figure PCTCN2020080244-appb-000013
或其盐酸盐选自下组:氯化铵、羟胺盐酸盐、甲胺盐酸盐、N,O-二甲基羟胺盐酸盐,或其组合;较佳地为氯化铵。
在另一优选例中,步骤a)中,所述的化合物
Figure PCTCN2020080244-appb-000014
的加入量与式(Ⅶ)化合物的摩尔比为10:1~1:1,进一步优选5:1~1:1,特别优选为2:1~1:1。
在另一优选例中,所述的步骤a)中的缩合剂选自下组:N,N'-羰基二咪唑(CDI)、EDCl、DIC、DCC、HATU、HBTU、TBTU和PyBOP;优选HATU、HBTU和PyBOP;特别优选PyBOP。
在另一优选例中,步骤a)中,所述的缩合剂的加入量与式(Ⅶ)化合物的摩尔比为10:1~1:5,进一步优选5:1~1:1,特别优选为2:1。
在另一优选例中,所述的步骤a)中还包括加入活化剂的步骤,所述的活化剂选自下组:DMAP、HOBt、4-PPY、DIPEA和Et 3N;优选DIPEA。
在另一优选例中,所述的步骤a)在非质子性溶剂中进行;较佳地,所述的非质子性溶剂选自下组:二氯甲烷、乙腈、N,N-二甲基甲酰胺、二甲亚砜,或其组合;优选N,N-二甲基甲酰胺。
在另一优选例中,所述的步骤b)在溶剂中进行,且所述的溶剂选自下组:二氯甲烷、乙腈、二甲亚砜、四氢呋喃、1,4-二氧六环,或其组合;优选二氯甲烷。
在另一优选例中,所述的步骤b)中的路易斯酸选自下组:盐酸、乙酸、对甲苯磺酸、三氟化硼乙醚溶液,三氟化硼乙腈溶液,或其组合;优选为三氟化硼乙醚溶液。
在另一优选例中,步骤b)中,所述的路易斯酸的加入量与式(Ⅷ)化合物的摩尔比为10:1~1:3,进一步优选4:1~2:1。
在另一优选例中,所述方法还包括步骤:通过以下方法制备所述的式(Ⅷ)化合物:
c)用式(Ⅸ)化合物和化合物
Figure PCTCN2020080244-appb-000015
或其盐酸盐进行缩合反应
Figure PCTCN2020080244-appb-000016
得到式(Ⅹ)化合物;
Figure PCTCN2020080244-appb-000017
d)在碱存在下,用式(Ⅹ)化合物和三甲基氯硅烷反应,得到式(Ⅷ)化合物;
其中,各基团的定义如本发明第一方面中所述。
在另一优选例中,所述的步骤c)中,所述的缩合剂选自下组:N,N'-羰基二咪唑(CDI)、EDCl、DIC、DCC、HATU、HBTU、TBTU、PyBOP,或其组合;优选HATU、HBTU、PyBOP,或其组合;更优选为PyBOP。
在另一优选例中,步骤c)中,所述的化合物
Figure PCTCN2020080244-appb-000018
的加入量与式(Ⅸ)化合物的摩尔比为10:1~1:1,进一步优选5:1~1:1,特别优选为2:1~1:1。
在另一优选例中,步骤c)中,所述的缩合剂的加入量与式(Ⅸ)化合物的摩尔比为10:1~1:5,进一步优选5:1~1:1,特别优选为2:1。
在另一优选例中,所述的步骤c)中还包括加入活化剂的步骤,所述的活化剂选自下组:DMAP、HOBt、4-PPY、DIPEA和Et 3N;优选DIPEA。
在另一优选例中,所述的步骤c)在非质子性溶剂中进行;较佳地,所述的非 质子性溶剂选自下组:二氯甲烷、乙腈、N,N-二甲基甲酰胺、二甲亚砜,或其组合;优选N,N-二甲基甲酰胺。
在另一优选例中,所述的步骤d)中的碱选自下组:氢氧化钠、氢氧化钾、甲醇钠、乙醇钠、叔丁醇钾、氢化钠、二异丙基氨基锂(LDA),或其组合;优选二异丙基氨基锂。
在另一优选例中,步骤d)中,所述的三甲基氯硅烷的加入量与式(Ⅹ)化合物的摩尔比为20:1~1:1,进一步优选15:1~1:1,特别优选为10:1。
在另一优选例中,步骤d)中,所述的碱的加入量与式(Ⅹ)化合物的摩尔比为20:1~1:1,进一步优选15:1~1:1,特别优选为10:1。
在另一优选例中,所述的步骤d)在选自下组的溶剂中进行;二氯甲烷、四氢呋喃、乙醚、甲苯、1,4-二氧六环、乙腈、N,N-二甲基甲酰胺、二甲亚砜或其混合溶剂,更优选地为四氢呋喃。
在另一优选例中,所述的成盐结晶包括:
(b1)将步骤(a)得到的3α,7α-二羟基-6α-乙基-5β-胆-24-酸和纯水混合,加入氢氧化钠水溶液,搅拌至基本溶清,得到澄清溶液;
(b2)向所述的澄清溶液中缓缓滴加含Mg 2+或Ca 2+的水溶液,继续搅拌直至产生沉淀;
(b3)对所述的沉淀进行过滤,洗涤,真空干燥,得到式(A)化合物。
在另一优选例中,所述的3α,7α-二羟基-6α-乙基-5β-胆-24-酸和纯水的重量比为40:1~1:5,进一步优选为10:1~1:3,特别优选为5:1。
在另一优选例中,所述的3α,7α-二羟基-6α-乙基-5β-胆-24-酸和氢氧化钠水溶液的重量比为10:1~1:10,进一步优选为3:1~1:5,特别优选为1:0.97~1:3。
在另一优选例中,所述的氢氧化钠水溶液的浓度为0.5~5mol.L -1,进一步优选为2~3mol.L -1,特别优选为2.52mol.L -1
在另一优选例中,所述的含金属离子Mg 2+的水溶液的浓度为0.1~10,进一步优选为0.3~5,特别优选为0.5~2mol.L -1
在另一优选例中,所述的含金属离子Ca 2+的水溶液的浓度为0.1~20,进一步优选为0.5~10,特别优选为2~5mol.L -1
在另一优选例中,所述的成盐结晶包括:
(b4)将步骤(a)得到的3α,7α-二羟基-6α-乙基-5β-胆-24-酸溶于甲醇中,缓慢滴入氢氧化钠甲醇溶液,搅拌至基本溶清,得到澄清溶液;
(b5)对所述的澄清溶液进行浓缩至干,然后加入丙酮浓缩带干,得到固体残留物;
(b6)向所述的残留物中加入丙酮打浆,过滤并真空干燥,得到式(A)化合物。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一赘述。
具体实施方式
本发明人经过长期而深入的研究,得到了一种3α,7α-二羟基-6α-乙基-5β-胆-24-酸或其盐的制备方法。所述的方法具有合成路线短,中间体易纯化,反应条件温和的特征,且得到的相应胆酸或胆酸盐纯度更高,产品质量更优,适合用于药物生产。基于上述发现,发明人完成了本发明。
3α,7α-二羟基-6α-乙基-5β-胆-24-酸盐的制备
本发明式(A)结构的化合物可通过下面的通用路线一和二制备:
Figure PCTCN2020080244-appb-000019
合成路线一
如合成路线一所示:
(1)式(Ⅶ)化合物和化合物
Figure PCTCN2020080244-appb-000020
或其盐酸盐的缩合反应
反应在缩合剂和/或活化剂存在下,在非质子溶剂中,温度-20~60℃下进行。所述的缩合剂选自N,N'-羰基二咪唑(CDI)、EDCl、DIC、DCC、HATU、HBTU、TBTU和PyBOP,更优选的是PyBOP。所述的活化剂选自DMAP、HOBt、4-PPY、DIPEA和Et 3N,更优选的是DIPEA;所述的非质子溶剂是二氯甲烷、乙腈、N,N-二甲基甲酰胺、二甲亚砜、或其混合溶剂,更优选的是N,N-二甲基甲酰胺;所述的反应温度优选为-5~50℃,更优选的是0~30℃。
(2)式(Ⅵ)化合物“一锅法”进行加氢和金属氢化物还原剂还原,得到式(Ⅴ)化合物
该步反应在质子溶剂、碱性水溶液和温度5~150℃下进行。所述的加氢反应在1~20个大气压氢气下,使用钯/碳作为催化剂;所述的金属氢化物还原剂可以是硼氢化钠或硼氢化钾,更优选的是硼氢化钠;所述的质子溶剂选自甲醇、乙醇、异丙醇、叔丁醇、水或其混合溶剂,优选的是甲醇和水的混合溶剂;所述碱性水溶液选自氢氧化钠水溶液和氢氧化钾水溶液。所述的反应温度是5~150℃,更优选的是50~100℃。
在一个优选的实施方式中,式(A)化合物通过以下方法制备:
Figure PCTCN2020080244-appb-000021
合成路线二
如合成路线二所示:
(1)式(Ⅸ)化合物和化合物
Figure PCTCN2020080244-appb-000022
或其盐酸盐的缩合反应
在缩合剂和/或活化剂存在下,在非质子溶剂中和温度-20~60℃下进行。所述的缩合剂为N,N'-羰基二咪唑(CDI)、EDCl、DIC、DCC、HATU、HBTU、TBTU和PyBOP,更优选的是PyBOP;所述的活化剂是DMAP、HOBt、4-PPY、DIPEA和Et 3N,更优选的是DIPEA;所述的非质子溶剂是二氯甲烷、乙腈、N,N-二甲基甲酰胺、二甲亚砜,或其混合溶剂,更优选地为N,N-二甲基甲酰胺。所述的反应温度优选为-5~40℃,更优选的是0~30℃。
(2)式(Ⅹ)化合物在碱和三甲基氯硅烷反应得到式(Ⅷ)化合物
该反应可以在非质子溶剂中进行,所述的碱选自氢氧化钠、氢氧化钾、甲醇钠、乙醇钠、叔丁醇钾、氢化钠或二异丙基氨基锂(LDA),更优选的是二异丙基氨基锂(LDA);所述的非质子溶剂选自二氯甲烷、四氢呋喃、乙醚、甲苯、1,4-二氧六环、乙腈、N,N-二甲基甲酰胺、二甲亚砜或其混合溶剂,更优选地为四氢呋喃。所述的反应温度优选为-100~40℃,更优选地为-70~30℃。式(Ⅷ)化合物可以不经进一步纯化直接用于下一步反应。
(3)式(Ⅷ)化合物和乙醛在路易斯酸条件下反应得到式(Ⅵ)化合物
该步反应中,所述的路易斯酸优选为三氟化硼乙醚合物;所述的溶剂选自二氯甲烷、乙腈、二甲亚砜、四氢呋喃、1,4-二氧六环,或其混合溶剂;更优选地为二氯甲烷。所述的反应温度优选为-100~70℃,更优选地为-70~40℃。
(4)式(Ⅵ)化合物“一锅法”进行加氢和金属氢化物还原剂还原,得到式(Ⅴ)化合物
该步反应在质子溶剂、碱性水溶液和温度0~150℃下进行。所述的加氢反应在1~20个大气压氢气下,使用钯/碳作为催化剂;所述的硼氢化物是硼氢化钠或硼氢化钾,更优选地为硼氢化钠。所述的质子溶剂选自下组:甲醇、乙醇、异丙醇、叔丁醇、水,或其混合溶剂,优选的是甲醇和水的混合溶剂。所述碱性水溶液选自氢氧化钠水溶液和氢氧化钾水溶液。所述的反应温度是5~150℃,更优选的是50~100℃。
Figure PCTCN2020080244-appb-000023
本发明的制备方法与现有技术相比,具有一系列优点。其主要优点包括:
(1)本发明经酰胺缩合所得中间体都是固体形式,易纯化、分装和储存;
(2)相对于公开制备技术,本发明路线更短;
(3)相对于公开制备技术,本发明采用“一锅法”工艺,生产连续性更强,更适合规模化生产。
(4)相对于公开制备技术,本发明得到的相应胆酸盐,纯度更高,产品质量更优,尤其是本申请方法制备得到的奥贝胆酸镁盐、钙盐、钠盐和钾盐杂质更少,适合用于药物生产。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。
实施例1制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸(化合物1,式(Ⅴ)化合物)
Figure PCTCN2020080244-appb-000024
1、制备3α-羟基-6-亚乙基-7-酮-5β-胆-24-酰胺(化合物2)
向烧瓶中依次加入3α-羟基-6-亚乙基-7-酮-5β-胆-24-酸(式(Ⅶ),60.0g,0.144mol)、PyBOP(90.0g,0.173mol)和N,N-二甲基甲酰胺(400ml);冰浴下搅拌,温度降至0℃,加入DIPEA(74.4g,0.576mol),控温0℃继续搅拌30min。氮气保护下,加入氯化铵(12.3g,0.230mol)和N,N-二甲基甲酰胺(100ml)。升温至室温,搅拌过夜。搅拌下,将反应混合液缓缓倒入4L的5%小苏打水溶液中,固体析出,搅拌2h,过滤,纯水洗涤(500ml),真空干燥得粗品。向粗品加入乙酸乙酯(360ml),回流打浆搅拌1.0h,缓慢冷却至40℃左右,过滤,乙酸乙酯洗涤(50ml)滤饼,真空干燥后得标题化合物(54.8g,收率91%),HPLC纯度 98.4%。 1H NMR(400MHz,DMSO-d 6)δ:7.23(s,1H),6.66(s,1H),5.98(q,J=7.2Hz,14Hz,1H),4.55(d,J=4.8Hz,1H),3.47-3.44(m,1H),2.61-2.57(dd,J=4.0Hz,13.2Hz,1H),2.32-2.17(m,2H),2.11-2.04(m,1H),1.98-1.79(m,5H),1.70-1.57(m,5H),1.44-1.05(m,13H),0.95(s,3H),0.90(d,J=6.4Hz,3H),0.60(s,3H)。LC-MS:416(M+H) +
2、制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸(化合物1)
向烧瓶中加入3α-羟基-6-亚乙基-7-酮-5β-胆-24-酰胺(化合物2,24.0g,57.7mmol)和无水甲醇(130ml),搅拌下加入10%钯碳催化剂(2.5g),氢气充分置换,氢气球加压,50℃反应16h。反应液转至另一个烧瓶,搅拌下加入纯化水(300ml)和氢氧化钠(58g),100℃搅拌约2h;过滤,母液转至另一反应瓶,分批缓慢加入硼氢化钠(5.5g),加完后混合物100℃油浴搅拌4h左右,减压浓缩除尽有机溶剂。冰浴冷却,搅拌下缓缓滴加6N盐酸调pH至3左右,乙酸乙酯(450ml×2)萃取,有机相分别用水(600ml)和饱和食盐水(600ml)洗涤,干燥,浓缩得固体粗品。经乙酸丁酯/正庚烷(75ml:30ml)混合溶剂重结晶得到标题化合物(21.1g,收率85%),HPLC纯度99.5%。 1H NMR(400MHz,DMSO-d6)δ:11.97(brs,1H),4.31(s,1H),4.06(d,J=5.2Hz,1H),3.50(s,1H),3.17-3.06(m,1H),2.28-2.20(m,1H),2.15-2.07(m,1H),1.93-1.90(m,1H),1.83-1.67(m,6H),1.54-1.0(m,18H),0.90-0.82(m,9H),0.61(s,3H)。LC-MS:419(M-H) -,839(2M-H) -
实施例2制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸(化合物1)
Figure PCTCN2020080244-appb-000025
1、制备3α-羟基-6-亚乙基-7-酮-5β-胆-24-(N-甲基-N-甲氧基)酰胺(化合物3)
向烧瓶中依次加入3α-羟基-6-亚乙基-7-酮-5β-胆-24-酸(式(Ⅶ),60.0g,0.144mol)、PyBOP(90.0g,0.173mol)和N,N-二甲基甲酰胺(400ml);冰浴下搅拌,温度降至0℃,加入DIPEA(74.4g,0.576mol),控温0℃继续搅拌30min。氮气保护下,加入N,O-二甲基羟胺盐酸盐(128.4g,0.288mol)和N,N-二甲基甲酰 胺(100ml)。升温至室温,搅拌过夜。搅拌下,将反应混合液缓缓倒入水(4L)中,乙酸乙酯(1L×3)萃取,有机相再用饱和碳酸氢钠溶液(2L×3)、水(2L)和食盐水(2L)洗涤,无水硫酸钠干燥,浓缩得稠状粗品。向粗品加入乙酸乙酯/石油醚(220ml:700ml)重结晶,回流,缓慢冷却至0℃左右,过滤,乙酸乙酯/石油醚(50ml×3,EA/PE=1:4)洗涤滤饼,真空干燥后得标题化合物(51.3g,收率78%),HPLC纯度98%。 1H NMR(400MHz,DMSO-d 6)δ:5.98(q,J=7.2Hz,14Hz,1H),4.56(d,J=4.8Hz,1H),3.66(s,3H),3.48-3.43(m,1H),3.08(s,3H),2.61-2.57(dd,J=4.0Hz,12.8Hz,1H),2.42-2.17(m,4H),1.98-1.79(m,4H),1.67-1.07(m,18H),0.95(s,3H),0.91(d,J=6.4Hz,3H),0.61(s,3H);LC-MS:460(M+H) +
2、制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸(化合物1)
向烧瓶中加入3α-羟基-6-亚乙基-7-酮-5β-胆-24-(N-甲基-N-甲氧基)酰胺(化合物3,5g,10.88mmol)和无水甲醇(50ml),搅拌下加入10%钯碳催化剂(0.5g),氢气充分置换,氢气球加压,50℃反应16h。过滤,母液转至另一个烧瓶,搅拌下加入纯化水(60ml)和氢氧化钠(13.1g),100℃搅拌约至混合物溶清。分批缓慢加入硼氢化钠(1.2g),加完后混合物100℃油浴搅拌4h左右,减压浓缩除尽有机溶剂。冰浴冷却,搅拌下缓缓滴加6N盐酸调pH至3左右,乙酸乙酯(100ml×2)萃取,有机相分别用水(150ml)和饱和食盐水(150ml)洗涤,干燥,浓缩得固体粗品。经乙酸丁酯(13ml)结晶得到标题化合物(2.6g,收率56%),HPLC纯度大于99.0%。
实施例3制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸(化合物1)
Figure PCTCN2020080244-appb-000026
1、制备3α-羟基-6-亚乙基-7-酮-5β-胆-24-羟酰胺(化合物4)
向烧瓶中依次加入3α-羟基-6-亚乙基-7-酮-5β-胆-24-酸(式(Ⅶ),300mg,0.72mmol)、PyBOP(452mg,0.86mmol)和N,N-二甲基甲酰胺(6ml);冰浴下搅拌,温度降至0℃,加入DIPEA(372mg,2.88mmol),控温0℃继续搅拌30min。 氮气保护下,加入羟胺盐酸盐(77mg,1.08mmol)。升温至室温,搅拌3h。搅拌下,将反应混合液缓缓倒入水(60ml)中,搅拌30分钟,过滤,滤饼用水洗涤(10ml×4),真空干燥得标题化合物(275mg,收率95%)。HPLC纯度98.5%。 1H NMR(400MHz,DMSO-d 6)δ:10.33(d,J=1.2Hz,1H),8.66(d,J=1.6Hz,1H),5.98(q,J=7.2Hz,14Hz,1H),4.54(d,J=8.8Hz,1H),3.48-3.42(m,1H),2.59(dd,J=4.0Hz,12.8Hz,1H),2.32-2.18(m,2H),2.0-1.79(m,6H),1.67-1.57(m,5H),1.43-1.31(m,5H),1.23-1.04(m,8H),0.95(s,3H),0.90(d,J=6.4Hz,3H),0.60(s,3H);LC-MS:432(M+H) +
2、制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸(化合物1)
向烧瓶中加入3α-羟基-6-亚乙基-7-酮-5β-胆-24-羟酰胺(化合物4,0.2g,0.46mmol)和无水甲醇(10ml),搅拌下加入10%钯碳催化剂(20mg),氢气充分置换,氢气球加压,50℃反应16h。过滤,母液转至另一个烧瓶,搅拌下加入纯化水(10ml)和氢氧化钠(0.55g),100℃搅拌约至混合物溶清。分批缓慢加入硼氢化钠(0.07g),加完后混合物100℃油浴搅拌4h左右,减压浓缩除尽有机溶剂。冰浴冷却,搅拌下缓缓滴加6N盐酸调pH至3左右,乙酸乙酯(15ml×3)萃取,有机相分别用水(30ml)和饱和食盐水(30ml)洗涤,干燥,浓缩得固体粗品。经乙酸丁酯(5ml)结晶得到标题化合物(0.17g,收率87%),HPLC纯度大于99.5%。
实施例4制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸(化合物1)
Figure PCTCN2020080244-appb-000027
1、制备3α-羟基-6-亚乙基-7-酮-5β-胆-24-甲酰胺(化合物5)
向烧瓶中依次加入3α-羟基-6-亚乙基-7-酮-5β-胆-24-酸(式(Ⅶ),6.0g,14.4mmol)、PyBOP(9.0g,17.3mol)和N,N-二甲基甲酰胺(40ml);冰浴下搅拌,温度降至0℃,加入DIPEA(7.5g,57.6mol),控温0℃继续搅拌30min。氮气保护下,加入甲胺盐酸盐(1.6g,23.0mol)和N,N-二甲基甲酰胺(10ml)。升温至室温,搅拌3h。搅拌下,将反应混合液缓缓倒入5%小苏打水(400ml)中,搅拌,过 滤,滤饼用水洗涤(50ml×4),真空干燥得标题化合物(5.8g,收率93%)。HPLC纯度98.4%。 1H NMR(400MHz,DMSO-d 6)δ:7.81(d,J=4.4Hz,1H),5.88(q,J=7.2Hz,14Hz,1H),4.61(d,J=4.8Hz,1H),3.47-3.42(m,1H),2.60-2.56(dd,J=4.0Hz,13.2Hz,1H),2.54(d,J=4.4Hz,3H),2.29-1.78(m,8H),1.66-1.04(m,18H),0.95(s,3H),0.89(d,J=6.4Hz,3H),0.60(s,3H);LC-MS:430(M+H) +
2、制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸(化合物1)
向烧瓶中加入3α-羟基-6-亚乙基-7-酮-5β-胆-24-甲酰胺(化合物5,1.0g,2.32mmol)和无水甲醇(10ml),搅拌下加入10%钯碳催化剂(100mg),氢气充分置换,氢气球加压,50℃反应16h。过滤,母液转至另一个烧瓶,搅拌下加入纯化水(120ml)和氢氧化钠(2.8g),100℃搅拌约至混合物溶清。分批缓慢加入硼氢化钠(0.27g),加完后混合物100℃油浴搅拌4h左右,减压浓缩除尽有机溶剂。冰浴冷却,搅拌下缓缓滴加6N盐酸调pH至3左右,乙酸乙酯(30ml×3)萃取,有机相分别用水(40ml)和饱和食盐水(40ml)洗涤,干燥,浓缩得固体粗品。经乙酸丁酯(10ml)结晶得到标题化合物(0.78g,收率80%),HPLC纯度大于99.0%。
实施例5制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸(化合物1)
Figure PCTCN2020080244-appb-000028
1、制备3α-羟基-7-酮-5β-胆-24-酰胺(化合物6)
向反应瓶中依次加入3α-羟基-7-酮-5β-胆-24-烷酸(式(IX),100.0g,0.26mol)、PyBOP(160.0g,0.31mol)和N,N-二甲基甲酰胺(700ml);冰浴搅拌至0℃左右,加入DIPEA(116g,0.91mol),控温0℃左右继续搅拌30min。氮气保护下,加入氯化铵(27.4g,0.52mol)和N,N-二甲基甲酰胺(100ml),混合液升温至室温搅拌 16h。混合物在100℃下搅拌16小时。搅拌下,将反应混合液缓缓倒入5%小苏打水溶液(5L)中,固体析出,均匀搅拌2h,过滤,纯水洗涤(500ml×8),真空干燥得粗品。粗品转入烧瓶,加入四氢呋喃(400ml),回流打浆,降温冷却,过滤,四氢呋喃洗涤(50ml×3)滤饼,真空干燥得目标化合物(83.5g,86%)。 1H NMR(400MHz,DMSO-d 6)δ:7.23(s,1H),6.66(s,1H),4.50(d,J=5.2Hz,1H),3.36-3.34(m,1H),2.94-2.89(m,1H),2.45(t,J=11.2Hz,1H),2.11-2.04(m,2H),1.98-1.92(m,2H),1.85-1.66(m,6H),1.51-0.92(m,17H),0.89(d,J=6.4Hz,3H),0.62(s,3H);ESI-MS(m/z):390(M+H) +
2、制备3α,7-二(三甲基硅氧基)-5β-胆-6-烯-24-酰胺(化合物7)
向烧瓶中依次加入干燥四氢呋喃(200ml)和二异丙基胺基锂(193ml,2M的庚烷/四氢呋喃/乙苯溶液),氮气下降温至-70℃,搅拌20分钟,缓慢滴入三甲基氯硅烷(42g,0.385mol),控温-70℃继续搅拌30min。向混合液滴入3α-羟基-7-酮-5β-胆-24-酰胺(化合物6)的四氢呋喃混悬液(15.0g固体均匀分散在50ml干燥四氢呋喃中),约10分钟滴完,控温-70℃左右继续搅拌1h。冰浴降温,将反应混合液缓缓加入到饱和小苏打水溶液中淬灭,乙酸乙酯萃取(150ml x 2),有机相用饱和小苏打溶液多次洗涤(200ml x 3),最后经食盐水洗涤,干燥,浓缩得粗品,不经纯化直接用于下一步反应。 1H NMR(400MHz,CD 3OD)δ:4.75(q,J=1.6,4.4Hz,1H),3.65-3.58(m,1H),2.32-2.25(m,1H),2.18-2.09(m,2H),1.99-1.73(m,7H),1.66-1.43(m,5H),1.37-1.09(m,9H),1.01(d,J=6.8Hz,3H),0.88(s,3H),0.75(s,3H),0.18(s,9H),0.13(s,9H);ESI-MS(m/z):534(M+H) +
3、制备3α-羟基-6-亚乙基-7-酮-5β-胆-24-酰胺(化合物2)
向烧瓶中依次加入3α,7-二(三甲基硅氧基)-5β-胆-6-烯-24-酰胺(化合物7,1.0g,1.9mmol),干燥二氯甲烷(10ml),氮气下冷却至-60℃,搅拌10min。.向混合液中快速加入乙醛(230ul,3.8mmol),控温-60℃左右继续搅拌15分钟。向混合液中滴入三氟化硼乙醚的二氯甲烷溶液(1.0ml的48%三氟化硼乙醚溶于5ml干燥二氯甲烷中),控温-50℃继续搅拌20min,升温至50℃搅拌1h。冰浴冷却,搅拌下将反应混合液缓缓倒入饱和小苏打水溶液中淬灭,二氯甲烷萃取(20ml x 2),合并有机相,用水和食盐水洗涤,干燥。浓缩得粗品。经乙酸乙酯和乙醇混合体系结晶得到目标产物(420mg,收率54%)。
4、制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸(化合物1)
与实施例1化合物1制备步骤2类似,得到标题化合物1,收率82%,HPLC纯度99.6%。
实施例7制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸镁盐(化合物8)
Figure PCTCN2020080244-appb-000029
向10L反应釜中加入3α,7α-二羟基-6α-乙基-5β-胆-24-酸(化合物1,450g)和纯水(2.25kg),搅拌下加入氢氧化钠水溶液(42.3g氢氧化钠溶于420g水中),35℃左右搅拌至基本溶清,过滤,少许水洗涤,母液转至反应釜中,缓缓滴加氯化镁水溶液(130.5g六水合氯化镁溶于969g水中),204g纯水洗涤一并转入,继续搅拌1.5h。过滤,纯水洗涤近中性,65℃真空干燥得到标题化合物(460g,收率99%),纯度99.8%,式(B)杂质0.02%,式(C)杂质未检出。
Figure PCTCN2020080244-appb-000030
1H NMR(400MHz,DMSO-d6)δ:4.32(s,1H),4.03(d,J=4.0Hz,1H),3.50(s,1H),3.13(s,1H),1.93-0.81(m,36H),0.61(s,3H).
红外光谱图(IR)特征吸收峰:3401±5cm -1、2935±5cm -1、2871±5cm -1、1555±5cm -1、1449±5cm -1、1414±5cm -1、1377±5cm -1、1159±5cm -1、1064±5cm -1和603±5cm -1
原子吸收(Mg 2+):2.82%(理论值:2.81%)。
实施例8制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸钠盐(化合物9)
Figure PCTCN2020080244-appb-000031
5.0g化合物1,加10ml无水甲醇搅拌溶清后缓慢滴到氢氧化钠甲醇溶液(1.0eq NaOH溶于2.0ml甲醇)中,室温搅拌2h。40℃水浴浓缩,加入丙酮(15ml x 3)浓缩带干,残留物最后加入30ml丙酮打浆2h,过滤,室温真空干燥8h,得标题化合物4.6g;收率:87%,纯度99.7%,式(B)杂质0.03%,式(C)杂质未检出。
1H NMR(400MHz,DMSO-d 6)δ:4.38(s,1H),4.08(s,1H),3.50(s,1H),3.17-3.13(m,1H),1.93-0.81(m,36H),0.61(s,3H)
红外光谱图(IR)特征吸收峰:3423±5cm -1、2958±5cm -1、2935±5cm -1、2871±5cm -1、2122±5cm -1、1640±5cm -1、1559±5cm -1、1451±5cm -1、1406±5cm -1、1378±5cm -1、1160±5cm -1、1065±5cm -1和603±5cm -1
离子色谱IC(Na +):5.19%(理论值:5.19%)。
实施例9制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸钾盐(化合物10)
Figure PCTCN2020080244-appb-000032
5.0g化合物1,加10ml甲醇搅拌溶清后缓慢滴到氢氧化钾甲醇溶液(0.65g KOH溶于2.0ml甲醇)中,室温搅拌2h;40℃水浴浓缩干,加入丙酮(10ml x 3)浓缩带干,残留物加30ml丙酮打浆1.5h,过滤,室温真空干燥8h,得标题化合物10,称重4.9g;收率:90%,纯度99.8%,式(B)杂质0.03%,式(C)杂质未检出。
1H NMR(400MHz,DMSO-d 6)δ:4.51(s,1H),4.18(s,1H),3.50(s,1H),3.15-3.10(m,1H),1.93-0.81(m,36H),0.60(s,3H)。
红外光谱图(IR)特征吸收峰:3409±5cm -1、2935±5cm -1、2871±5cm -1、1643±5cm -1、1555±5cm -1、1465±5cm -1、1451±5cm -1、1404±5cm -1、1378±5cm -1、1338±5cm -1、1159±5cm -1、1065±5cm -1和603±5cm -1
离子色谱IC(K +):8.50%(理论值:8.52%)。
实施例10制备3α,7α-二羟基-6α-乙基-5β-胆-24-酸钙盐(化合物11)
Figure PCTCN2020080244-appb-000033
取840mg化合物1,加3.0ml水和氢氧化钠水溶液(85mg固体溶于2.0ml水),搅拌溶清;滴入氯化钙水溶液(888mg氯化钙固体溶于2.5ml水),室温搅拌16h,过滤,纯水洗涤抽干,室温真空干燥8h,得标题化合物735mg;收率:84%,纯度99.9%,式(B)杂质0.01%,式(C)杂质未检出。
1H NMR(400MHz,DMSO-d 6)δ:4.32(s,1H),4.02(s,1H),3.50(s,1H),3.14(m,1H),2.09-0.81(m,36H),0.61(s,3H).
红外光谱图(IR)特征吸收峰:3407±5cm -1、2935±5cm -1、2871±5cm -1、1553±5cm -1、1447±5cm -1、1417±5cm -1、1377±5cm -1、1159±5cm -1、1064±5cm -1和603±5cm -1
原子吸收(Ca 2+):4.58%(理论值:4.56%)。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种制备具有通式(A)所示化合物的方法:
    Figure PCTCN2020080244-appb-100001
    其中,n为1或2,M为NH 4 +、碱金属离子、碱土金属离子或过渡金属离子;
    所述的方法包括下述步骤:
    (a)在惰性溶剂中,式(Ⅵ)化合物通过“一锅法”进行催化氢化,并用金属氢化物还原剂还原
    Figure PCTCN2020080244-appb-100002
    得到式(Ⅴ)化合物;
    Figure PCTCN2020080244-appb-100003
    (b)用式(Ⅴ)化合物在溶剂中成盐结晶,得到式(A)化合物;
    其中R 1和R 2分别选自氢、羟基、甲基、乙基、甲氧基,或R 1和R 2与其相连的N原子共同构成取代或未取代的5-7元杂环,其中,所述的杂环中包括1-3个选自下组的杂原子:N、O或S。
  2. 如权利要求1所述的方法,其特征在于,式(A)所示的化合物选自:
    Figure PCTCN2020080244-appb-100004
  3. 如权利要求1中所述的方法,其特征在于,所述的步骤(a)中,所述的惰性溶剂选自下组:C1-C4的醇、水,或其组合。
  4. 如权利要求1中所述的方法,其特征在于,所述的步骤(a)中,所述的醇选自下组:甲醇、乙醇、异丙醇、叔丁醇,或其组合。
  5. 如权利要求1中所述的方法,其特征在于,所述的步骤(a)中,所述的惰性溶剂选自下组:无水甲醇,或甲醇:水(v/v)=1:100~100:1的混合溶剂,优选为甲醇:水(v/v)=0.5:1~5:1。
  6. 如权利要求1中所述的方法,其特征在于,所述的方法还包括:通过以下方法制备式(Ⅵ)化合物:
    a)用式(Ⅶ)化合物与
    Figure PCTCN2020080244-appb-100005
    或其盐酸盐进行缩合,得到式(Ⅵ)化合物;
    Figure PCTCN2020080244-appb-100006
    b)在路易酸存在下,式(Ⅷ)化合物与乙醛进行Aldol缩合,得到式(Ⅵ)化合 物;
    Figure PCTCN2020080244-appb-100007
    其中,各基团的定义如权利要求1中所述。
  7. 如权利要求6中所述的方法,其特征在于,所述的步骤a)中的缩合剂选自下组:N,N'-羰基二咪唑(CDI)、EDCl、DIC、DCC、HATU、HBTU、TBTU和PyBOP;优选HATU、HBTU和PyBOP;特别优选PyBOP。
  8. 如权利要求6所述的方法,其特征在于,所述方法还包括步骤:通过以下方法制备所述的式(Ⅷ)化合物:
    c)用式(Ⅸ)化合物和化合物
    Figure PCTCN2020080244-appb-100008
    或其盐酸盐进行缩合反应
    Figure PCTCN2020080244-appb-100009
    得到式(Ⅹ)化合物;
    Figure PCTCN2020080244-appb-100010
    d)在碱存在下,用式(Ⅹ)化合物和三甲基氯硅烷反应,得到式(Ⅷ)化合物;
    其中,各基团的定义如权利要求1中所述。
  9. 如权利要求1所述的方法,其特征在于,所述的成盐结晶包括:
    (b1)将步骤(a)得到的3α,7α-二羟基-6α-乙基-5β-胆-24-酸和纯水混合,加入氢氧化钠水溶液,搅拌至基本溶清,得到澄清溶液;
    (b2)向所述的澄清溶液中缓缓滴加含Mg 2+或Ca 2+的水溶液,继续搅拌直至产生沉淀;
    (b3)对所述的沉淀进行过滤,洗涤,真空干燥,得到式(A)化合物。
  10. 如权利要求1所述的方法,其特征在于,所述的成盐结晶包括:
    (b4)将步骤(a)得到的3α,7α-二羟基-6α-乙基-5β-胆-24-酸溶于甲醇中,缓慢滴入氢氧化钠甲醇溶液,搅拌至基本溶清,得到澄清溶液;
    (b5)对所述的澄清溶液进行浓缩至干,然后加入丙酮浓缩带干,得到固体残留物;
    (b6)向所述的残留物中加入丙酮打浆,过滤并真空干燥,得到式(A)化合物。
PCT/CN2020/080244 2019-03-19 2020-03-19 鹅去氧胆酸衍生物的制备方法 WO2020187298A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217033693A KR20210141616A (ko) 2019-03-19 2020-03-19 케노데옥시콜산 유도체의 제조 방법
JP2021559466A JP7344983B2 (ja) 2019-03-19 2020-03-19 ケノデオキシコール酸誘導体の調製方法
US17/440,947 US20220162256A1 (en) 2019-03-19 2020-03-19 Method for preparing chenodeoxycholic acid derivative
EP20773082.1A EP3943502A4 (en) 2019-03-19 2020-03-19 METHOD FOR PREPARING A CHENODESOXYCHOLIC ACID DERIVATIVE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910210103.3A CN111718388A (zh) 2019-03-19 2019-03-19 鹅去氧胆酸衍生物的制备方法
CN201910210103.3 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020187298A1 true WO2020187298A1 (zh) 2020-09-24

Family

ID=72519634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080244 WO2020187298A1 (zh) 2019-03-19 2020-03-19 鹅去氧胆酸衍生物的制备方法

Country Status (6)

Country Link
US (1) US20220162256A1 (zh)
EP (1) EP3943502A4 (zh)
JP (1) JP7344983B2 (zh)
KR (1) KR20210141616A (zh)
CN (1) CN111718388A (zh)
WO (1) WO2020187298A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072598A1 (en) 2001-03-12 2002-09-19 Roberto Pellicciari Steroids as agonists for fxr
WO2006122977A2 (en) 2005-05-19 2006-11-23 Erregierre S.P.A. PROCESS FOR PREPARING 3α(β)-7α(β)-DIHYDROXY-6α(β)-ALKYL-5β-CHOLANIC ACID
CN105669811A (zh) * 2014-11-17 2016-06-15 正大天晴药业集团股份有限公司 新的7-酮-6β-烷基胆烷酸衍生物在制备奥贝胆酸以及其在医药领域的用途
CN106632564A (zh) * 2015-10-30 2017-05-10 苏州泽璟生物制药有限公司 奥贝胆酸盐及其无定形物和药物组合物
US20180099991A1 (en) * 2016-10-07 2018-04-12 Lupin Limited Salts of obeticholic acid
CN108456238A (zh) * 2017-02-20 2018-08-28 浙江京新药业股份有限公司 奥贝胆酸衍生物及奥贝胆酸的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279328A (zh) * 2015-05-20 2017-01-04 重庆药友制药有限责任公司 一种制备6α-烷基鹅去氧胆酸的方法
CN106749466B (zh) * 2015-11-23 2019-05-21 南京济群医药科技股份有限公司 一种高纯度奥贝胆酸的制备方法
CN106046095B (zh) * 2016-06-06 2017-02-22 南京理工大学 奥贝胆酸的合成方法
CN108676049A (zh) * 2017-11-02 2018-10-19 华东师范大学 一种奥贝胆酸,熊去氧胆酸及7-酮基石胆酸的制备方法
WO2019170521A1 (en) * 2018-03-07 2019-09-12 Moehs Iberica, S.L. Synthesis of obeticholic acid and synthesis intermediate
WO2020039449A1 (en) * 2018-08-24 2020-02-27 Solara Active Pharma Sciences Limited An improved process for the preparation of obeticholic acid and intermediates used in the process thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072598A1 (en) 2001-03-12 2002-09-19 Roberto Pellicciari Steroids as agonists for fxr
WO2006122977A2 (en) 2005-05-19 2006-11-23 Erregierre S.P.A. PROCESS FOR PREPARING 3α(β)-7α(β)-DIHYDROXY-6α(β)-ALKYL-5β-CHOLANIC ACID
CN105669811A (zh) * 2014-11-17 2016-06-15 正大天晴药业集团股份有限公司 新的7-酮-6β-烷基胆烷酸衍生物在制备奥贝胆酸以及其在医药领域的用途
CN106632564A (zh) * 2015-10-30 2017-05-10 苏州泽璟生物制药有限公司 奥贝胆酸盐及其无定形物和药物组合物
US20180099991A1 (en) * 2016-10-07 2018-04-12 Lupin Limited Salts of obeticholic acid
CN108456238A (zh) * 2017-02-20 2018-08-28 浙江京新药业股份有限公司 奥贝胆酸衍生物及奥贝胆酸的制备方法

Also Published As

Publication number Publication date
JP2022527990A (ja) 2022-06-07
EP3943502A1 (en) 2022-01-26
EP3943502A4 (en) 2022-11-23
CN111718388A (zh) 2020-09-29
JP7344983B2 (ja) 2023-09-14
US20220162256A1 (en) 2022-05-26
KR20210141616A (ko) 2021-11-23

Similar Documents

Publication Publication Date Title
EP2102224B2 (en) CRYSTALLINE FORM OF 1- (ß-D-GLUCOPYRANOSYL) -4 -METHYL- 3- [5- (4 -FLUOROPHENYL) -2-THIENYLMETHYL]BENZENE HEMIHYDRATE
CN101787069A (zh) 薯蓣皂苷元哌嗪类衍生物及其制备方法
CN115884978A (zh) 制备胆酸衍生物的方法及其原料
WO2009094847A1 (fr) Dérivé hydroxyle de capécitabine, procédés de préparation et d' utilisation de la capécitabine
WO2020187298A1 (zh) 鹅去氧胆酸衍生物的制备方法
CN105753733A (zh) Ahu377的晶型及其制备方法与用途
AU2020406455B2 (en) Efficient process for making 6-carboxy benzoxazole derivatives
CN110563795B (zh) 含有1,3,4噁二唑或1,3,4噻二唑片段的薯蓣皂苷元衍生物的制备方法及应用
CN109641934A (zh) 胆酸衍生物游离碱,晶型及其制备方法和应用
CN102659638A (zh) 一种益母草碱的合成方法
JP7308811B2 (ja) ステロイド系誘導体fxrアゴニストの製造方法
CN111285914B (zh) 一种奥贝胆酸的制备方法
CN109134577B (zh) 一种3α-羟基-5α-胆烷酸的合成方法
CN111454315A (zh) 一种雄甾-16-烯-3β-醇的合成方法
CN113072514A (zh) 轮环藤宁及其中间体的制备方法
WO1995016699A1 (fr) Derive de steroide
JPH0495049A (ja) ビフェニル‐5,5’‐ビス‐アルカン酸誘導体、その製造法およびその用途
JPS6054960B2 (ja) 抗しゆよう性セプタシジン類似体
WO2023131017A1 (zh) 一种稠环衍生物的晶型、其制备方法及其应用
CN114133421B (zh) 一种β-鼠胆酸的制备方法
WO2024087782A1 (zh) 一种gpr139受体激动剂、其制备方法及其应用
CN106397312B (zh) 一种制备glyt-1抑制剂的方法
CN112409432A (zh) 一种依西美坦的合成方法
CN116284018A (zh) 一种呋喃并[2,3-b]喹啉衍生物的制备方法及其应用
WO2013055244A1 (en) Preparation of protoescigenin from escin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021559466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033693

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020773082

Country of ref document: EP

Effective date: 20211019