WO2020187151A1 - 显示基板及其制造方法、显示装置 - Google Patents

显示基板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2020187151A1
WO2020187151A1 PCT/CN2020/079206 CN2020079206W WO2020187151A1 WO 2020187151 A1 WO2020187151 A1 WO 2020187151A1 CN 2020079206 W CN2020079206 W CN 2020079206W WO 2020187151 A1 WO2020187151 A1 WO 2020187151A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base substrate
flexible base
insulating layer
adhesion enhancement
Prior art date
Application number
PCT/CN2020/079206
Other languages
English (en)
French (fr)
Inventor
刘陆
刘运进
周伟峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/048,146 priority Critical patent/US11552263B2/en
Publication of WO2020187151A1 publication Critical patent/WO2020187151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of display technology, and in particular to a display substrate, a manufacturing method thereof, and a display device.
  • the display device includes a display substrate, the display substrate may have a bending area, and the bending area of the display substrate may be bent to achieve various purposes.
  • the embodiments of the present application provide a display substrate, a manufacturing method thereof, and a display device.
  • the technical solutions are as follows:
  • a display substrate in one aspect, includes a flexible base substrate, and a wiring layer, a first adhesion enhancement layer, and a first insulating layer stacked on the flexible base substrate;
  • the first adhesion enhancement layer is located between the first insulation layer and the wiring layer, and the first adhesion enhancement layer is respectively adhered to the first insulation layer and the wiring layer Connect
  • the flexible base substrate has a bending area, and the area where the orthographic projection of the first adhesion enhancement layer on the flexible base substrate is located and the bending area have an overlapping area;
  • the wiring layer has signal wiring, and an area where the orthographic projection of the signal wiring on the flexible base substrate is located and the bending area have an overlap area.
  • the material of the first adhesion enhancement layer is one or more of acrylic resin, epoxy resin and polyimide.
  • the thickness of the first adhesion enhancement layer ranges from 1 micrometer to 3 micrometers.
  • the display substrate includes a second adhesion enhancement layer and a second insulation layer laminated on the flexible base substrate;
  • the second insulating layer is located on a side of the wiring layer away from the first insulating layer, the second adhesion enhancing layer is located between the second insulating layer and the wiring layer, and The second adhesion enhancement layer is respectively bonded to the second insulating layer and the wiring layer, and the area where the orthographic projection of the second adhesion enhancement layer on the flexible substrate is located is with the There are overlapping areas in the bending area.
  • the material of the second adhesion enhancement layer is one or more of acrylic resin, epoxy resin and polyimide.
  • the thickness of the second adhesion enhancement layer ranges from 1 micrometer to 3 micrometers.
  • the second insulating layer is located on a side of the wiring layer away from the flexible base substrate;
  • the display substrate includes a stress balance layer located on a side of the second insulating layer away from the flexible base substrate, an area where the orthographic projection of the stress balance layer on the flexible base substrate is located and the bending area There are overlapping areas.
  • the wiring layer includes source wiring and drain wiring.
  • the first insulating layer is an organic layer.
  • the second insulating layer is an organic layer.
  • the display substrate includes: a second adhesion enhancement layer and a second insulation layer laminated on the flexible base substrate;
  • the second insulating layer is located on a side of the wiring layer away from the first insulating layer, the second adhesion enhancing layer is located between the second insulating layer and the wiring layer, and The second adhesion enhancement layer is respectively bonded to the second insulating layer and the wiring layer, and the area where the orthographic projection of the second adhesion enhancement layer on the flexible substrate is located is with the There are overlapping areas in the bending area;
  • the material of the first adhesion enhancement layer and the material of the second adhesion enhancement layer are one or more of acrylic resin, epoxy resin and polyimide;
  • the range of the thickness of the first adhesion enhancement layer and the thickness of the second adhesion enhancement layer is in the range of 1 micrometer to 3 micrometers.
  • a method for manufacturing a display substrate includes:
  • a stacked wiring layer, a first adhesion enhancement layer, and a first insulating layer are formed on the flexible base substrate, and the first adhesion enhancement layer is respectively connected to the first insulating layer and the wiring Layer bonding, the area where the orthographic projection of the first adhesion enhancement layer on the flexible base substrate is located overlaps the bending area, and the signal wiring in the wiring layer is in the flexible substrate There is an overlap area between the area where the orthographic projection on the base substrate is located and the bending area.
  • the method further includes:
  • a laminated second adhesion enhancement layer and a second insulating layer are formed on the flexible base substrate on which the wiring layer is formed, and the second adhesion enhancement layer is connected to the second insulating layer and the The wiring layer is adhered, and the area where the orthographic projection of the second adhesion enhancement layer on the flexible base substrate is located and the bending area are overlapped.
  • the forming a stacked wiring layer, a first adhesion enhancement layer, and a first insulating layer on the flexible base substrate includes:
  • the first insulating layer, the first adhesion enhancement layer and the wiring layer are sequentially formed on the flexible base substrate.
  • the step of sequentially forming the first insulating layer, the first adhesion enhancement layer and the wiring layer on the flexible base substrate includes:
  • the acrylic resin layer is processed through a patterning process to obtain the first adhesion enhancement layer.
  • the metal material layer is processed by a patterning process to obtain the wiring layer.
  • the method further includes:
  • a stress balance layer is formed on the flexible base substrate on which the second insulating layer is formed, and the area where the orthographic projection of the stress balance layer on the flexible base substrate is located overlaps with the bending area.
  • the obtaining a flexible base substrate, the flexible base substrate having a bending area includes:
  • the flexible base substrate is formed on the rigid base substrate, and the flexible base substrate has the bending area.
  • a display device in another aspect, includes any of the above-mentioned display substrates.
  • FIG. 1 is a front view of a display substrate provided by an embodiment of the present application
  • FIG. 2 is a schematic cross-sectional view of the C-D part of the display substrate provided by an embodiment of the present application
  • FIG. 3 is a method flowchart of a method for manufacturing a display substrate provided by an embodiment of the present application
  • FIG. 4 is a method flowchart of another method for manufacturing a display substrate provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram after forming a third insulating layer on a flexible substrate according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first insulating layer, a first adhesion enhancement layer, and a wiring layer are sequentially formed on a flexible substrate according to an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a second adhesion enhancement layer and a second insulating layer formed in sequence on a flexible substrate with a wiring layer provided by an embodiment of the present application;
  • FIG. 8 is a schematic diagram of an anode, a pixel defining layer, a light-emitting layer, and a cathode after sequentially forming an anode, a pixel defining layer, a light-emitting layer, and a cathode on a flexible base substrate formed with a second insulating layer according to an embodiment of the present application.
  • the display substrate is famous for its thin thickness and bendable performance.
  • the display substrate has a display surface and a non-display surface.
  • the display surface has a display area and a non-display area.
  • the non-display area usually includes a binding area.
  • the binding area can be bent to the side where the non-display surface is located to achieve a narrow or no border of the display device.
  • the display substrate usually includes a plurality of film layers arranged in a stack, the plurality of film layers include a wiring layer, and the plurality of film layers are partially located in the bending area, and the binding area is bent to the side where the non-display surface is located.
  • the part of the multiple film layers in the bending area is prone to film layer separation, and as the bending process progresses, the separation will gradually spread, and finally lead to cracks in the film layer (the crack can be observed under a microscope To).
  • the crack usually expands and extends to the wiring layer, causing the signal wiring of the wiring layer to break; in addition, the signal wiring in the bending area is prone to fatigue, which also It will cause the signal trace to be broken, which will lead to poor process of the display substrate.
  • the signal wiring of the wiring layer can usually include source wiring and drain wiring (referred to as source and drain wiring, also known as SD line or data line).
  • source and drain wiring also known as SD line or data line.
  • the reliability test may be a high temperature and high humidity test, and the test specification may be 69° C. (degrees Celsius), 90% (percent) relative humidity (English: Relative Humidity; abbreviation: RH), 500 hrs (hour).
  • the display substrate can be placed in an environment with a temperature of 69° C. and a relative humidity of 90% for 500 hrs, and in the process, it is tested whether the display substrate will be defective.
  • the embodiments of the present application provide a display substrate, a method of manufacturing the same, and a display device.
  • an adhesion enhancement layer is provided between the wiring layer and the insulating layer to adhere to the wiring layer and the insulating layer, respectively.
  • the adhesion enhancement layer overlaps with the bending area of the display substrate.
  • the adhesion enhancement layer can enhance the adhesion between the wiring layer and the insulating layer, and reduce the film separation between the wiring layer and the insulating layer.
  • the signal traces of the wire layer may be broken, thereby reducing the probability of poor process of the display substrate.
  • the adhesion enhancement layer can reduce the stress of the signal trace and reduce the possibility of the signal trace being broken due to excessive stress.
  • FIG. 1 is a front view of a display substrate 01 provided by an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of the CD portion of the display substrate 01 shown in FIG. 1.
  • the display substrate 01 includes: The base substrate 011 and the wiring layer 012 (not shown in FIG. 1) stacked on the flexible base substrate 011, the first adhesion enhancement layer 013 (not shown in FIG. 1), and the first insulating layer 014 (Not shown in FIG.
  • the first insulating layer 014 is located on one side of the wiring layer 012
  • the first adhesion enhancement layer 013 is located between the first insulating layer 014 and the wiring layer 012
  • the first adhesion The force enhancement layer 013 is bonded to the first insulating layer 014 and the wiring layer 012 respectively.
  • the flexible base substrate 011 has a bending area A1, the orthographic projection of the first adhesion enhancement layer 013 on the flexible base substrate 011 is at least in the bending area A1, and the signal wiring 0121 in the wiring layer 012 ( Figure 2 (Not shown in) there is an overlap area in the area where the orthographic projection on the flexible base substrate 011 and the bending area A1 are (that is, the orthographic projection of the signal trace on the flexible base substrate includes the area in the bending area Part, may also include a part outside the bending area), the first adhesion enhancement layer 013 is used to enhance the adhesion between the wiring layer 012 and the first insulating layer 014.
  • the display substrate in the flexible base substrate, there is a first adhesion enhancement layer between the wiring layer and the first insulating layer, and the first adhesion enhancement layer is separately connected to the routing layer.
  • the wire layer and the first insulating layer are bonded together, and the area where the orthographic projection of the first adhesion enhancement layer on the flexible base substrate is located and the bending area overlap.
  • the first adhesion enhancement layer can enhance the adhesion between the wiring layer and the first insulating layer, thereby reducing the film separation between the wiring layer and the first insulating layer, causing the signal wiring of the wiring layer to break Probability, thereby reducing the probability of poor process of the display substrate.
  • the flexible base substrate 011 has a display area A2 and a non-display area A3.
  • the non-display area A3 includes a bending area A1 and a binding area A4.
  • the bending area A1 is located in the display area A2 and Between the binding area A4.
  • the display substrate 01 includes: a second adhesion enhancement layer 015 and a second insulating layer 016 laminated on a flexible base substrate 011, and the second insulating layer 016 is located
  • the wiring layer 012 is away from the side of the first insulating layer 014.
  • the second adhesion enhancement layer 015 is located between the second insulation layer 016 and the wiring layer 012, and the second adhesion enhancement layer 015 is bonded to the second insulation layer 016 and the wiring layer 012, respectively.
  • the second adhesion enhancement layer 015 is used to enhance the adhesion between the wiring layer 012 and the second insulating layer 016, and reduce the film separation between the wiring layer 012 and the second insulating layer 016, resulting in the signal of the wiring layer 012 The possibility of wire breakage, thereby reducing the probability of poor process of the display substrate 011.
  • the material of the first adhesion enhancement layer 013 and the material of the second adhesion enhancement layer 015 may be acrylic resin, epoxy resin, and polyimide (English: Polyimide ; Abbreviation: PI) one or more, these materials have greater adhesion to the wiring layer 012 and the insulating layer.
  • the thickness range of the first adhesion enhancement layer 013 and the thickness of the second adhesion enhancement layer 015 are both in the range of 1 ⁇ m to 3 ⁇ m.
  • the first adhesion enhancement layer 013 can be better with The first insulating layer 014 adheres to the wiring layer 012, and the second adhesion enhancing layer 015 can better adhere to the second insulating layer 016 and the wiring layer 012 to enhance the adhesion of the enhanced adhesion layer to the wiring layer 012 Adhesion to the insulating layer.
  • the thickness of the first adhesion enhancement layer 013 can be 1 micron, 1.5 microns or 3 microns
  • the thickness of the second adhesion enhancement layer 015 can be 1 micron, 2 microns or 3 microns, etc., in the embodiment of the present application There is no restriction on this.
  • the first insulating layer 014 is located on the side of the wiring layer 012 close to the flexible base substrate 011
  • the second insulating layer 016 is located on the side of the wiring layer 012 away from the flexible base substrate 011.
  • the display substrate 01 further includes: a stress balance layer 017 disposed on a side of the second insulating layer 016 away from the flexible base substrate 011.
  • the stress-balancing layer 017 has an overlapping area with the bending area A1 in the area where the orthographic projection on the flexible substrate 011 is located, and the stress-balancing layer 017 can balance the orthogonal projection on the flexible substrate with the bending area A1.
  • the stress between the film layers in the bending area A1 balances the forces on the film layers.
  • the signal traces located in the bending area of the display substrate 01 have less stress, which can reduce the possibility of the signal traces being broken.
  • the display substrate 01 further includes: a third insulating layer 018 located between the flexible base substrate 011 and the first insulating layer 014, and the third insulating layer 018 has a bending hole (Figure 2), the orthographic projection of the bending hole on the flexible substrate 011 covers the bending area A1 of the flexible substrate 011, and the first insulating layer 014 is located in the bending hole.
  • the orthographic projection of the bending hole on the flexible base substrate 011 coincides with the bending area A1 of the flexible base substrate 011
  • the first insulating layer 014 may be an organic filling layer
  • the third insulating layer 018 may be an inorganic layer .
  • a bending hole is provided on the third insulating layer 018, and the orthographic projection of the bending hole on the flexible base substrate 011 covers the bending area A1 of the flexible base substrate 011.
  • the thickness of the inorganic layer in the folding area is small, which is beneficial for bending the display substrate 01.
  • the bending area of the display substrate 01 is also the corresponding area of the bending area A1 of the flexible base substrate 011 in the display substrate 01.
  • the third insulating layer 018 may be a composite film layer including a plurality of insulating film layers, and the plurality of insulating film layers may all be inorganic layers.
  • the material of the plurality of insulating film layers may be at least one of SiOx (silicon oxide) and SiNx (silicon nitride).
  • the plurality of insulating film layers may include a buffer layer (not shown in FIG. 2), a gate insulating layer (not shown in FIG. 2), and an interlayer dielectric layer (not shown in FIG. 2); accordingly ,
  • the display substrate 01 further includes: an active layer (not shown in FIG.
  • the source and drain layers include source and drain electrodes.
  • the third insulating layer 018 may be composed of a buffer layer, a gate insulating layer and an interlayer The three film layers of the dielectric layer extend to the non-display area of the display substrate 01.
  • the wiring layer 012 may include source-drain wiring, and the source-drain wiring may be connected to the source.
  • the arrangement of the first adhesion enhancement layer 013 and the second adhesion enhancement layer 015 can reduce the possibility of the source and drain traces being broken, thereby reducing the occurrence of source and drain traces on the display substrate.
  • the bright line in the extending direction of the line affects the probability of the display effect.
  • the display substrate 01 provided in the embodiment of the present application may be an organic light-emitting diode (English: Organic Light-Emitting Diode; OLED for short) display substrate
  • the second insulating layer 016 may be a flat layer
  • the flat layer may be used In order to improve the flatness of the flexible base substrate, it is convenient for subsequent film layer setting.
  • the display substrate 01 further includes: an anode (not shown in FIG. 2) and a pixel definition layer (English: Pixel Definition Layer) arranged on the side of the second insulating layer 016 away from the flexible base substrate 011 in sequence.
  • Abbreviation: PDL)019 a light-emitting layer (not shown in FIG.
  • the light-emitting layer may be an organic light-emitting layer, and the anode, the light-emitting layer and the cathode constitute an OLED unit.
  • the material of the second insulating layer 016 and the pixel defining layer 019 can be organic resin
  • the anode and cathode can be formed of indium tin oxide (English: Indium Tin Oxide; abbreviated as: ITO)
  • the material for forming the light-emitting layer can be It is an organic light-emitting material, which is not repeated in the embodiments of the present application.
  • the flexible base substrate 011 may be composed of alternately superimposed inorganic layers and flexible base layers, and the inorganic layer may be an inorganic layer made of silicon nitride, silicon oxide, silicon oxynitride, etc.
  • the flexible base layer may be a flexible base layer made of polyimide.
  • the flexible base substrate 011 includes a first inorganic layer 0111, a first flexible base layer 0112, a second inorganic layer 0113, and a second flexible base layer 0114 that are sequentially stacked and arranged.
  • FIG. 1 and FIG. 2 only describe the structure related to the present application in the display substrate 01. Those skilled in the art can easily understand that the display substrate also includes other structures such as an encapsulation layer. The embodiments of the present application will not be repeated here.
  • the display substrate in the flexible base substrate, there is a first adhesion enhancement layer between the wiring layer and the first insulating layer, and the first adhesion enhancement layer is separately connected to the routing layer.
  • the wire layer and the first insulating layer are bonded, and the area where the orthographic projection of the first adhesion enhancement layer on the flexible base substrate is located and the bending area overlap, the first adhesion enhancement layer can enhance the wiring layer
  • the adhesion between the first insulating layer and the first insulating layer reduces the probability that the signal wiring of the wiring layer will be broken due to film separation between the wiring layer and the first insulating layer, thereby reducing the probability of poor process of the display substrate.
  • a second adhesion enhancement layer is provided between the wiring layer and the second insulating layer, and the second adhesion enhancement layer is respectively bonded to the wiring layer and the second insulating layer, and the second adhesion
  • the second adhesion enhancement layer can enhance the adhesion between the wiring layer and the second insulating layer, thereby reducing wiring
  • the separation of the layer and the second insulating layer causes the possibility of breakage of the signal wiring of the wiring layer, thereby reducing the probability of poor process of the display substrate.
  • the wiring layer may include source and drain wirings.
  • the solution provided in the embodiments of the present application can reduce the possibility of breakage of the source and drain wirings, thereby reducing the extension of the source and drain wirings in the display substrate during display. The probability of bright lines in the direction improves the display effect of the display substrate.
  • the display substrate provided by the embodiment of the present application can be applied to the following method, and the manufacturing method and manufacturing principle of the display substrate in the embodiment of the present application can be referred to the description in the following embodiment.
  • FIG. 3 shows a method flowchart of a method for manufacturing a display substrate provided by an embodiment of the present application, and the method may be used for manufacturing the display substrate 01 provided by the foregoing embodiment.
  • the method includes the following steps:
  • Step 301 A flexible base substrate is formed, and the flexible base substrate has a bending area.
  • Step 302 forming a laminated wiring layer, a first adhesion enhancing layer and a first insulating layer on the flexible base substrate, the first adhesion enhancing layer is respectively bonded to the first insulating layer and the wiring layer, and The area where the orthographic projection of an adhesion-enhancing layer on the flexible substrate is located overlaps with the bending area, and the area where the orthographic projection of the signal traces in the wiring layer on the flexible substrate overlaps with the bending area area.
  • the first adhesion enhancement layer is used to enhance the adhesion between the wiring layer and the insulating layer.
  • a first adhesion enhancement layer is provided between the wiring layer and the first insulating layer, and the first adhesion enhancement The layers are respectively bonded to the wiring layer and the first insulating layer, and the area where the orthographic projection of the first adhesion enhancement layer on the flexible substrate is located overlaps with the bending area, the first adhesion enhancement layer may Enhancing the adhesion between the wiring layer and the first insulating layer, thereby reducing the probability that the wiring layer and the first insulating layer are separated and the signal wiring of the wiring layer will be broken, thereby reducing the display substrate's poor process The probability.
  • the method further includes: forming a laminated second adhesion enhancement layer and a second insulating layer on the flexible base substrate with the wiring layer formed, the second adhesion enhancement layer and The second insulating layer is bonded to the wiring layer, the orthographic projection of the second adhesion enhancement layer on the flexible base substrate is at least in the bending area, and the second adhesion enhancement layer is used to strengthen the wiring layer and the second Adhesion between insulating layers.
  • the second adhesion enhancement layer can be formed first and then the second insulating layer, or the second insulating layer can be formed first and then the second adhesion enhancement layer.
  • the material of the first adhesion enhancement layer and the material of the second adhesion enhancement layer are one or more of acrylic resin, epoxy resin, and polyimide.
  • the range of the thickness of the first adhesion enhancement layer and the range of the thickness of the second adhesion enhancement layer are both 1 micrometer to 3 micrometers.
  • the method further includes: on the flexible base substrate with the second insulating layer A stress balance layer is formed on the upper surface, and the area where the orthographic projection of the stress balance layer on the flexible substrate is located overlaps the bending area.
  • the wiring layer includes source and drain wiring, and both the first insulating layer and the second insulating layer are organic layers.
  • the first insulating layer is an organic filling layer.
  • the method further includes: forming a third insulating layer on the flexible base substrate, the third insulating layer has a bending hole, and the bending hole is The orthographic projection on the base substrate covers the bending area, and the first insulating layer is located in the bending hole.
  • the second insulating layer is a flat layer
  • the method further includes: sequentially forming anodes on the flexible substrate with the flat layer. , Pixel defining layer, light emitting layer and cathode.
  • forming a stress balance layer on the flexible base substrate on which the second insulating layer is formed includes: forming a stress balance layer on the flexible base substrate on which the cathode is formed.
  • FIG. 4 shows a method flow chart of another method for manufacturing a display substrate provided by an embodiment of the present application, and the method can be used to manufacture the display substrate 01 provided by the foregoing embodiment.
  • the method includes the following steps:
  • Step 401 Obtain a flexible base substrate, where the flexible base substrate has a bending area.
  • the flexible base substrate can be directly obtained, or the flexible base substrate can be manufactured.
  • the process of manufacturing the flexible base substrate may include: first providing a rigid base substrate, and then forming the flexible base substrate on the rigid base substrate.
  • the rigid base substrate may be a substrate made of a material with certain sturdiness such as glass, quartz or transparent resin, for example, the rigid base substrate is a glass substrate.
  • the flexible base substrate may include alternately superimposed inorganic layers and flexible base layers. Therefore, forming the flexible base substrate on the rigid base substrate means forming alternately superimposed inorganic layers and layers on the rigid base substrate.
  • the material of the flexible base layer may be PI, and the material of the inorganic layer may be SiOx.
  • the flexible base substrate 011 includes a first inorganic layer 0111, a first flexible base layer 0112, a second inorganic layer 013, and a second flexible base layer 0114 that are sequentially superimposed.
  • the formation of the flexible base substrate 011 on the substrate may include the following 4 steps:
  • Step (1) forming a layer of SiOx as the first inorganic layer 0111 on the rigid base substrate by means of a deposition process, a coating process or a sputtering process.
  • Step (2) coating a layer of PI solution on the first inorganic layer 0111, and drying the PI solution to remove the solvent of the PI solution, so that the solute of the PI solution remains as the first flexible base layer 0112.
  • Step (3) forming a layer of SiOx as the second inorganic layer 0113 on the side of the first flexible base layer 0112 away from the first inorganic layer 0111 by means of a deposition process, a coating process or a sputtering process.
  • Step (4) Coating a layer of PI solution on the second inorganic layer 0113, and drying the PI solution to remove the solvent of the PI solution, so that the solute of the PI solution remains as the second flexible base layer 0114.
  • Step 402 A third insulating layer is formed on the flexible base substrate.
  • the third insulating layer has a bending hole.
  • the orthographic projection of the bending hole on the flexible base substrate overlaps the bending area of the flexible base substrate.
  • the insulating layer is located in the bending hole.
  • FIG. 5 shows a schematic diagram of a third insulating layer 018 formed on a flexible base substrate 011 according to an embodiment of the present application.
  • the third insulating layer 018 has a bending hole K and a bending hole K.
  • the orthographic projection on the flexible base substrate 011 covers the bending area of the flexible base substrate 011 (not marked in FIG. 5).
  • the third insulating layer 018 includes a plurality of insulating film layers, and the plurality of insulating film layers may be inorganic layers.
  • the material of the plurality of insulating film layers may be at least one of SiOx and SiNx.
  • the plurality of insulating film layers in the third insulating layer may include a buffer layer, a gate insulating layer, and an interlayer dielectric layer.
  • the display substrate further includes an active layer located between the buffer layer and the gate insulating layer, a gate located between the gate insulating layer and the interlayer dielectric layer, and a side of the interlayer dielectric layer away from the gate insulating layer.
  • the source-drain layer, the source-drain layer includes a source electrode and a drain electrode, and the third insulating layer 018 can be considered to extend from the three layers of the buffer layer, the gate insulating layer and the interlayer dielectric layer to the non-display area of the display substrate Partial composition.
  • forming the third insulating layer 018 on the flexible base substrate 011 may include: sequentially forming a buffer layer, an active layer, a gate insulating layer, a gate electrode, an interlayer dielectric layer, and a source and drain layer on the flexible base substrate 011.
  • the process of forming any one of the buffer layer, the gate insulating layer, and the interlayer dielectric layer may include: forming a SiOx material layer through a deposition process, a coating process, or a sputtering process, and transforming the SiOx material through a patterning process. Layer for processing.
  • Step 403 sequentially forming a first insulating layer, a first adhesion enhancing layer and a wiring layer on the flexible base substrate on which the third insulating layer is formed.
  • FIG. 6 shows a first insulating layer 014, a first adhesion enhancement layer 013, and a first insulating layer 014 are sequentially formed on a flexible base substrate 011 formed with a third insulating layer 018 according to an embodiment of the present application.
  • the first adhesion enhancement layer 013 is respectively bonded to the first insulating layer 014 and the wiring layer 012, and the orthographic projection of the first adhesion enhancement layer 013 on the flexible base substrate 011 is at least in the flexible In the bending area of the base substrate 011 (not marked in FIG. 6).
  • the orthographic projection of the signal traces in the wiring layer 012 on the flexible substrate 011 is located in the bending area of the flexible substrate 011.
  • the first adhesion enhancement layer 013 is used to increase the trace layer 012 and the first Adhesion between an insulating layer 014.
  • the orthographic projection of the bending hole K on the flexible substrate 011 covers the bending area of the flexible substrate 011, because the orthographic projection of the first adhesion enhancement layer 013 on the flexible substrate 011 is There is an overlap area between the area and the bending area of the flexible base substrate 011, and the area where the orthographic projection of the signal traces in the wiring layer 012 on the flexible base substrate 011 is located and the bending area of the flexible base substrate 011 exist. Therefore, the first adhesion enhancement layer 013 is located at least in the bending hole K, and the signal wiring in the wiring layer 012 is partially located in the bending hole K.
  • the wiring layer 012 may include source and drain wiring.
  • the material of the wiring layer 012 can be a conductive material such as metal or ITO, and the material of the first adhesion enhancement layer 013 can be one or more of acrylic resin, epoxy resin and PI.
  • the thickness of the adhesion enhancement layer 013 can range from 1 micrometer to 3 micrometers, and the material of the first insulating layer 014 can be PI.
  • the material of the wiring layer 012 is acrylic resin
  • the material of the first insulating layer 014 is PI as an example
  • the flexible lining formed with the third insulating layer 018 The process of sequentially forming the first insulating layer 014, the first adhesion enhancing layer 013 and the wiring layer 012 on the base substrate 011 may include the following steps:
  • Step (1) coating a layer of PI solution on the flexible base substrate 011 on which the third insulating layer 018 is formed, and drying the PI solution to remove the solvent of the PI solution, so that the solute of the PI solution remains as the first An insulating layer 014.
  • Step (2) forming a layer of acrylic resin with a thickness of 1 ⁇ m to 3 ⁇ m on the flexible base substrate 011 with the first insulating layer 014 formed by a deposition process, a coating process or a sputtering process to obtain an acrylic resin layer ,
  • the acrylic resin layer is processed through a patterning process to obtain the first adhesion enhancement layer 013.
  • Step (3) forming a layer of metal on the flexible base substrate 011 with the first adhesion enhancement layer 013 formed by a deposition process, a coating process or a sputtering process to obtain a metal material layer, and perform a patterning process
  • the metal material layer is processed to obtain the wiring layer 012.
  • Step 404 sequentially forming a second adhesion enhancement layer and a second insulating layer on the flexible base substrate with the wiring layer formed.
  • FIG. 7 shows a schematic diagram of a second adhesion enhancement layer 015 and a second insulating layer 016 formed on a flexible base substrate 011 formed with a wiring layer 012 according to an embodiment of the present application.
  • the second insulating layer 016 may be a flat layer, the second adhesion enhancement layer 015 is respectively bonded to the second insulating layer 016 and the wiring layer 012, and the second adhesion enhancement layer 015 is on the flexible base substrate 011.
  • step 402 the orthographic projection of the bending hole K on the flexible substrate 011 covers the bending area of the flexible substrate 011, and the orthographic projection of the second adhesion enhancement layer 015 on the flexible substrate 011 is at least Located in the bending area of the flexible base substrate 011, therefore, the second adhesion enhancement layer 015 is located at least in the bending hole K.
  • the material of the second adhesion enhancement layer 015 may be one or more of acrylic resin, epoxy resin and PI.
  • the thickness of the second adhesion enhancement layer 015 may range from 1 ⁇ m to 3 ⁇ m, and the material of the second insulating layer 016 may be an organic resin.
  • the second adhesive is sequentially formed on the flexible base substrate 011 on which the wiring layer 012 is formed.
  • the adhesion enhancement layer 015 and the second insulating layer 016 may include the following steps:
  • Step (1) forming a layer of epoxy resin with a thickness of 1 ⁇ m to 3 ⁇ m on the flexible base substrate 011 on which the wiring layer 012 is formed by a deposition process, a coating process or a sputtering process, etc., to obtain an epoxy resin Layer
  • the epoxy resin layer is processed through a patterning process to obtain the second adhesion enhancement layer 015.
  • Step (2) forming a layer of organic resin on the flexible base substrate 011 on which the second adhesion enhancement layer 015 is formed by a deposition process, a coating process, or a sputtering process to obtain an organic resin layer, through a patterning process
  • the organic resin layer is processed to obtain the second insulating layer 016.
  • Step 405 sequentially forming an anode, a pixel defining layer, a light-emitting layer, and a cathode on the flexible base substrate on which the second insulating layer is formed.
  • FIG. 8 shows an embodiment of the present application provides an anode (not shown in FIG. 8 ), a pixel defining layer 019, and a light emitting device are sequentially formed on a flexible substrate 011 formed with a second insulating layer 016.
  • the material of the pixel defining layer 019 can be organic resin
  • the material of the anode and the cathode can be ITO
  • the material for forming the light-emitting layer can be For organic light-emitting materials.
  • sequentially forming an anode, a pixel defining layer 019, a light-emitting layer, and a cathode on the flexible base substrate 011 on which the wiring layer 016 is formed may include the following steps:
  • Step (1) A layer of ITO is formed on the flexible base substrate 011 with the second insulating layer 016 formed by a deposition process, a coating process or a sputtering process to obtain an ITO material layer, and a patterning process is performed on the ITO material layer. The treatment is performed to obtain the anode.
  • Step (2) forming a layer of organic resin on the flexible substrate 011 with the anode formed by a deposition process, coating process or sputtering process to obtain an organic resin layer, and processing the organic resin layer through a patterning process Pixel defining layer 019.
  • Step (3) forming a layer of organic light-emitting material on the flexible base substrate 011 on which the pixel defining layer 019 is formed through a deposition process, a coating process or a sputtering process, etc., to obtain an organic light-emitting material layer.
  • the organic light-emitting material layer is processed to obtain the light-emitting layer.
  • Step (4) forming a layer of ITO as a cathode on the flexible base substrate 011 with the anode formed by a deposition process, a coating process or a sputtering process.
  • This step (4) takes the cathode as a planar electrode (that is, the entire display substrate 01 has a cathode) as an example. If the cathode is a bulk electrode, the deposited ITO material can be changed by patterning after ITO is deposited. The layer is processed to obtain a cathode.
  • Step 406 A stress balance layer is formed on the flexible base substrate with the cathode formed, and the orthographic projection portion of the stress balance layer on the flexible base substrate is located in the bending area.
  • the stress balance layer 017 can be formed on the flexible base substrate 011 with the cathode formed by a deposition process, a coating process, or a sputtering process.
  • FIG. 5 to 8 do not show a rigid base substrate. Those skilled in the art can easily understand that in practical applications, the above steps 401 to 406 are usually completed on a rigid base substrate. After step 406 is performed, The flexible base substrate can be separated from the rigid base substrate to obtain the display substrate 01 as shown in FIG. 2.
  • the one patterning process involved includes photoresist coating, exposure, development, etching and photoresist stripping, and the material layer is processed through one patterning process.
  • the corresponding structure (for example, processing the metal material layer to obtain the wiring layer) may include: coating a layer of photoresist on the material layer (for example, the metal material layer) to form a photoresist layer, and applying a mask to the photoresist The layer is exposed to make the photoresist layer form a fully exposed area and a non-exposed area, and then a development process is used to completely remove the photoresist in the fully exposed area, and all the photoresist in the non-exposed area is retained, using an etching process The area corresponding to the fully exposed area on the material layer (for example, a metal material layer) is etched, and finally the photoresist in the non-exposed area is stripped to obtain a corresponding structure (for example, a wiring
  • the photoresist is a positive photoresist as an example.
  • the process of one patterning process can refer to the description in this paragraph, and the embodiments of this application will not be omitted here. Repeat.
  • the first adhesion enhancement layer is formed between the wiring layer in the flexible base substrate and the first insulating layer, and the first adhesion enhancement layer Adhere to the wiring layer and the first insulating layer respectively, and the orthographic projection of the first adhesion enhancement layer on the flexible base substrate is at least in the bending area, the first adhesion enhancement layer can enhance the wiring layer
  • the adhesion between the first insulating layer and the first insulating layer reduces the probability that the signal wiring of the wiring layer will be broken due to film separation between the wiring layer and the first insulating layer, thereby reducing the probability of poor process of the display substrate.
  • the wiring layer may include source and drain wirings.
  • the solution provided by the embodiment of the present application can prevent the source and drain wiring from breaking, thereby reducing the brightness of the source and drain wiring in the extension direction of the display substrate during display. Line probability improves the display effect of the display substrate.
  • the embodiment of the present application also provides a display device.
  • the display device includes the display substrate 01 provided in the above embodiment.
  • the display substrate 01 provided in the above embodiment has a relatively set display surface (none of which is shown in the figure) and a non-display
  • the display surface has a binding area.
  • the binding area of the display substrate 01 is bent to the side of the non-display surface of the display substrate 01.
  • the display device may be a narrow border display device, a borderless display device, or a full-screen display device.
  • the display device may be a display panel, a wearable device such as a watch and a bracelet, a mobile terminal such as a mobile phone or a tablet computer, or , TVs, monitors, notebook computers, digital photo frames, navigators and other products or components with display functions.

Abstract

一种显示基板及其制造方法、显示装置,用于防止柔性显示基板(011)的走线层(012)的信号走线(0121)断裂。显示基板(01)包括:柔性衬底基板(011)以及层叠设置在柔性衬底基板(011)上的走线层(012)、第一粘附力增强层(013)和第一绝缘层(014),第一粘附力增强层(013)位于第一绝缘层(014)与走线层(012)之间,且第一粘附力增强层(013)分别与第一绝缘层(014)和走线层(012)粘接。柔性衬底基板(011)具有弯折区域(A1),第一粘附力增强层(013)在柔性衬底基板(011)上的正投影所在区域与弯折区域(A1)存在重叠区域,走线层(012)中的信号走线(0121)在柔性衬底基板(011)上的正投影部分位于弯折区域(A1)中。

Description

显示基板及其制造方法、显示装置
本申请要求于2019年3月15日提交的申请号为201910196423.8、申请名称为“柔性显示基板及其制造方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别涉及一种显示基板及其制造方法、显示装置。
背景技术
随着显示技术的发展,显示装置逐渐向柔性显示装置的方向发展。
显示装置包括显示基板,显示基板可以具有弯折区域,可以弯折显示基板的弯折区域以实现各种目的。
发明内容
本申请实施例提供了一种显示基板及其制造方法、显示装置,所述技术方案如下:
一方面,提供一种显示基板,所述显示基板包括柔性衬底基板以及层叠设置在所述柔性衬底基板上的走线层、第一粘附力增强层和第一绝缘层;
所述第一粘附力增强层位于所述第一绝缘层与所述走线层之间,且所述第一粘附力增强层分别与所述第一绝缘层和所述走线层粘接;
所述柔性衬底基板具有弯折区域,所述第一粘附力增强层在所述柔性衬底基板上的正投影所在区域与所述弯折区域存在重叠区域;
所述走线层中具有信号走线,所述信号走线在所述柔性衬底基板上的正投影所在区域与所述弯折区域存在重叠区域。
可选地,所述第一粘附力增强层的材料为亚克力树脂、环氧树脂和聚酰亚胺中的一种或多种。
可选地,所述第一粘附力增强层的厚度的范围为1微米~3微米。
可选地,所述显示基板包括层叠设置在所述柔性衬底基板上的第二粘附力 增强层和第二绝缘层;
所述第二绝缘层位于所述走线层远离所述第一绝缘层的一侧,所述第二粘附力增强层位于所述第二绝缘层与所述走线层之间,且所述第二粘附力增强层分别与所述第二绝缘层和所述走线层粘接,所述第二粘附力增强层在所述柔性衬底基板上的正投影所在区域与所述弯折区域存在重叠区域。
可选地,所述第二粘附力增强层的材料为亚克力树脂、环氧树脂和聚酰亚胺中的一种或多种。
可选地,所述第二粘附力增强层的厚度的范围为1微米~3微米。
可选地,所述第二绝缘层位于所述走线层远离所述柔性衬底基板的一侧;
所述显示基板包括位于所述第二绝缘层远离所述柔性衬底基板一侧的应力平衡层,所述应力平衡层在所述柔性衬底基板上的正投影所在区域与所述弯折区域存在重叠区域。
可选地,所述走线层包括源极走线和漏极走线。
可选地,所述第一绝缘层为有机层。
可选地,所述第二绝缘层为有机层。
可选地,所述显示基板包括:层叠设置在所述柔性衬底基板上的第二粘附力增强层和第二绝缘层;
所述第二绝缘层位于所述走线层远离所述第一绝缘层的一侧,所述第二粘附力增强层位于所述第二绝缘层与所述走线层之间,且所述第二粘附力增强层分别与所述第二绝缘层和所述走线层粘接,所述第二粘附力增强层在所述柔性衬底基板上的正投影所在区域与所述弯折区域存在重叠区域;
所述第一粘附力增强层的材料和所述第二粘附力增强层的材料均为亚克力树脂、环氧树脂和聚酰亚胺中的一种或多种;
所述第一粘附力增强层的厚度的范围和所述第二粘附力增强层的厚度的范围为1微米~3微米。
另一方面,提供一种显示基板的制造方法,所述方法包括:
获取柔性衬底基板,所述柔性衬底基板具有弯折区域;
在所述柔性衬底基板上形成层叠的走线层、第一粘附力增强层和第一绝缘层,所述第一粘附力增强层分别与所述第一绝缘层和所述走线层粘接,所述第一粘附力增强层在所述柔性衬底基板上的正投影所在区域与所述弯折区域存在重叠区域,所述走线层中的信号走线在所述柔性衬底基板上的正投影所在区域 与所述弯折区域存在重叠区域。
可选地,在所述柔性衬底基板上形成层叠的走线层、第一粘附力增强层和第一绝缘层之后,所述方法还包括:
在形成有所述走线层的柔性衬底基板上形成层叠的第二粘附力增强层和第二绝缘层,所述第二粘附力增强层分别与所述第二绝缘层和所述走线层粘接,所述第二粘附力增强层在所述柔性衬底基板上的正投影所在区域与所述弯折区域存在重叠区域。
可选地,所述在所述柔性衬底基板上形成层叠的走线层、第一粘附力增强层和第一绝缘层,包括:
在所述柔性衬底基板上依次形成所述第一绝缘层,所述第一粘附力增强层和所述走线层。
可选地,所述在所述柔性衬底基板上依次形成所述第一绝缘层,所述第一粘附力增强层和所述走线层,包括:
在所述柔性衬底基板上涂覆聚酰亚胺溶液,并对所述聚酰亚胺溶液进行干燥处理以形成所述第一绝缘层;
通过沉积工艺、涂覆工艺或者溅射工艺在形成有所述第一绝缘层的柔性衬底基板上形成亚克力树脂层;
通过构图工艺对所述亚克力树脂层进行处理得到所述第一粘附力增强层。
通过沉积工艺、涂覆工艺或者溅射工艺在形成有所述第一粘附力增强层的柔性衬底基板上形成金属材质层;
通过构图工艺对所述金属材质层进行处理得到所述走线层。
可选地,在形成有所述走线层的所述柔性衬底基板上形成层叠的第二粘附力增强层和第二绝缘层之后,所述方法还包括:
在形成有所述第二绝缘层的所述柔性衬底基板上形成应力平衡层,所述应力平衡层在所述柔性衬底基板上的正投影所在区域与所述弯折区域存在重叠区域。
可选地,所述获取柔性衬底基板,所述柔性衬底基板具有弯折区域,包括:
提供刚性衬底基板;
在所述刚性衬底基板上形成所述柔性衬底基板,所述柔性衬底基板具有所述弯折区域。
另一方面,提供一种显示装置,所述显示装置包括上述任一显示基板。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请的实施例,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种显示基板的正视图;
图2是本申请实施例提供的显示基板的C-D部分的剖面示意图;
图3是本申请实施例提供的一种显示基板的制造方法的方法流程图;
图4是本申请实施例提供的另一种显示基板的制造方法的方法流程图;
图5是本申请实施例提供的一种在柔性衬底基板上形成第三绝缘层后的示意图;
图6是本申请实施例提供的一种在柔性衬底基板上依次形成第一绝缘层,第一粘附力增强层和走线层后的示意图;
图7是本申请实施例提供的一种在形成有走线层的柔性衬底基板上依次形成第二粘附力增强层和第二绝缘层后的示意图;
图8是本申请实施例提供的一种在形成有第二绝缘层的柔性衬底基板上依次形成阳极、像素界定层、发光层和阴极后的示意图。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
下面将结合附图对本申请进行描述,显然,所描述的实施例仅仅是本申请一部份实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
显示基板以其厚度薄、可弯折性能而闻名,显示基板具有相对的显示面和非显示面,显示面具有显示区域和非显示区域,非显示区通常包括绑定区域,该绑定区域用于将集成电路(英文:Integrated Circuit;简称:IC)与显示基板 绑定,通常可以将绑定区域弯折至非显示面所在侧来实现显示装置的窄边框甚至无边框。
然而,显示基板通常包括层叠设置的多个膜层,该多个膜层包括走线层,且该多个膜层部分位于弯折区域中,在将绑定区域弯折至非显示面所在侧的过程中,多个膜层中位于弯折区域中的部分容易发生膜层分离,并且随着折弯过程的进行,分离会逐渐扩散,最终导致膜层出现裂纹(该裂纹可在显微镜下观察到)。在对显示基板进行信赖性测试的过程中,该裂纹通常会扩大并延伸至走线层,导致走线层的信号走线发生断裂;此外,位于弯折区域的信号走线容易疲劳,这也会导致信号走线发生断裂,进而导致显示基板出现工艺不良。其中,走线层的信号走线通常可以包括源极走线和漏极走线(简称源漏极走线,又称为SD线或数据线),当该源漏极走线发生断裂时,该显示基板在显示时容易出现源漏极走线的延伸方向的亮线,造成显示不良,影响显示效果。
其中,上述信赖性测试可以是高温高湿测试,其测试规格可以为69℃(摄氏度),90%(百分之)相对湿度(英文:Relative Humidity;简称:RH),500hrs(小时)。示例地,可以将显示基板放置在温度为69℃,相对湿度为90%的环境中500hrs,并在该过程中测试显示基板是否会出现不良。
本申请实施例提供了一种显示基板及其制造方法、显示装置,在显示基板中,走线层与绝缘层之间设置有分别与走线层和绝缘层粘接的粘附力增强层,该粘附力增强层与显示基板的弯折区域存在重叠,该粘附力增强层可以增强走线层与绝缘层之间的粘附力,降低走线层与绝缘层发生膜层分离导致走线层的信号走线发生断裂的可能性,进而降低显示基板出现工艺不良的概率。同时,该粘附力增强层可以降低信号走线的应力,降低因应力过大引起信号走线断裂的可能性,本申请的详细方案请参考下述实施例的描述。
图1是本申请实施例提供的一种显示基板01的正视图,图2是图1所示的显示基板01的C-D部分的剖面示意图,参见图1和图2,该显示基板01包括:柔性衬底基板011以及层叠设置在柔性衬底基板011上的走线层012(图1中未示出)、第一粘附力增强层013(图1中未示出)和第一绝缘层014(图1中未示出),第一绝缘层014位于走线层012的一侧,第一粘附力增强层013位于第一绝缘层014与走线层012之间,且第一粘附力增强层013分别与第一绝缘层014和走线层012粘接。
柔性衬底基板011具有弯折区域A1,第一粘附力增强层013在柔性衬底基板011上的正投影至少位于弯折区域A1中,走线层012中的信号走线0121(图2中未示出)在柔性衬底基板011上的正投影所在区域与弯折区域A1中存在重叠区域(也即是信号走线在柔性衬底基板在上的正投影包括位于弯折区域中的部分,也可以包括位于弯折区域外的部分),第一粘附力增强层013用于增强走线层012与第一绝缘层014之间的粘附力。
综上所述,本申请实施例提供的显示基板,在柔性衬底基板中,走线层与第一绝缘层之间具有第一粘附力增强层,第一粘附力增强层分别与走线层和第一绝缘层粘接,且第一粘附力增强层在柔性衬底基板上的正投影所在区域与弯折区域存在重叠区域。该第一粘附力增强层可以增强走线层与第一绝缘层之间的粘附力,从而降低走线层与第一绝缘层发生膜层分离导致走线层的信号走线发生断裂的概率,进而降低显示基板出现工艺不良的概率。
可选地,如图1所示,柔性衬底基板011具有显示区域A2和非显示区域A3,该非显示区域A3包括弯折区域A1和绑定区域A4,折弯区域A1位于显示区域A2和绑定区域A4之间。
可选地,请继续参考图1和图2,该显示基板01包括:层叠设置在柔性衬底基板011上的第二粘附力增强层015和第二绝缘层016,第二绝缘层016位于走线层012远离第一绝缘层014的一侧。第二粘附力增强层015位于第二绝缘层016与走线层012之间,且第二粘附力增强层015分别与第二绝缘层016和走线层012粘接。第二粘附力增强层015在柔性衬底基板011上的正投影所在区域与弯折区域A1存在重叠区域。第二粘附力增强层015用于增强走线层012与第二绝缘层016之间的粘附力,降低走线层012与第二绝缘层016发生膜层分离导致走线层012的信号走线发生断裂的可能性,进而降低显示基板011出现工艺不良的概率。
可选地,在本申请实施例中,第一粘附力增强层013的材料和第二粘附力增强层015的材料均可以为亚克力树脂、环氧树脂和聚酰亚胺(英文:Polyimide;简称:PI)中的一种或多种,这些材料对走线层012与绝缘层均具有较大的粘附力。第一粘附力增强层013的厚度的范围和第二粘附力增强层015的厚度的范围均为1微米~3微米,这样一来,第一粘附力增强层013可以较好的与第一绝缘层014和走线层012粘附,第二粘附力增强层015可以较好的与第二绝缘层016和走线层012粘附,增强粘附力增强层对走线层012与绝缘层的粘附力。示 例地,第一粘附力增强层013的厚度可以为1微米、1.5微米或3微米,第二粘附力增强层015的厚度可以为1微米、2微米或3微米等,本申请实施例对此不做限定。
可选地,如图2所示,第一绝缘层014位于走线层012靠近柔性衬底基板011的一侧,第二绝缘层016位于走线层012远离柔性衬底基板011的一侧。
该显示基板01还包括:设置在第二绝缘层016远离柔性衬底基板011的一侧的应力平衡层017。该应力平衡层017在柔性衬底基板011上的正投影所在区域与弯折区域A1存在重叠区域,该应力平衡层017可以平衡在柔性衬底基板上的正投影与弯折区域A1存在重叠区域的各膜层之间的应力,使弯折区域A1中各膜层受力均衡。在对显示基板01弯折的过程中,位于显示基板01的弯折区域中的信号走线的应力较小,可以降低信号走线发生断裂的可能性。
可选地,请继续参考图2,该显示基板01还包括:位于柔性衬底基板011与第一绝缘层014之间的第三绝缘层018,第三绝缘层018上具有折弯孔(图2中未标出),折弯孔在柔性衬底基板011上的正投影覆盖柔性衬底基板011的弯折区域A1,第一绝缘层014位于折弯孔中。
可选地,折弯孔在柔性衬底基板011上的正投影与柔性衬底基板011的弯折区域A1重合,第一绝缘层014可以为有机填充层,第三绝缘层018可以为无机层。其中,在第三绝缘层018上设置折弯孔,且折弯孔在柔性衬底基板011上的正投影覆盖柔性衬底基板011的弯折区域A1,这样一来,该显示基板01的弯折区域的无机层的厚度较小,有利于对该显示基板01进行折弯。显示基板01的弯折区域也即是柔性衬底基板011的弯折区域A1在显示基板01中的对应区域。
可选地,在本申请实施例中,第三绝缘层018可以为包括多个绝缘膜层的复合膜层,该多个绝缘膜层均可以是无机层。示例地,该多个绝缘膜层的材料可以是SiOx(氧化硅)和SiNx(氮化硅)中的至少一种。可选地,该多个绝缘膜层可以包括缓冲层(图2中未示出)、栅绝缘层(图2中未示出)和层间介质层(图2中未示出);相应地,该显示基板01还包括:位于缓冲层与栅绝缘层之间的有源层(图2中未示出),位于栅绝缘层与层间介质层之间的栅极(图2中未示出),以及位于层间介质层远离栅绝缘层的一侧的源漏极层,源漏极层包括源极和漏极,第三绝缘层018可以是由缓冲层、栅绝缘层和层间介质层这三个膜层延伸至显示基板01的非显示区域的部分构成。其中,走线层012可以包 括源漏极走线,源漏极走线可以与源极连接。在本申请实施例中,第一粘附力增强层013和第二粘附力增强层015的设置,可以降低源漏极走线发生断裂的可能性,进而降低了显示基板出现源漏极走线的延伸方向的亮线而影响显示效果的概率。
可选地,本申请实施例提供的显示基板01可以为有机发光二级光(英文:Organic Light-Emitting Diode;简称:OLED)显示基板,第二绝缘层016可以为平坦层,平坦层可以用于提高柔性衬底基板的平整度,便于后续膜层的设置。如图2所示,该显示基板01还包括:依次设置在第二绝缘层016远离柔性衬底基板011的一侧的阳极(图2中未示出)、像素界定层(英文:Pixel Definition Layer;简称:PDL)019、发光层(图2中未示出)和阴极(图2中未示出),该发光层可以是有机发光层,阳极、发光层和阴极构成OLED单元。其中,第二绝缘层016和像素界定层019的材料均可以为有机树脂,阳极和阴极的形成材料均可以为氧化铟锡(英文:Indium Tin Oxide;简称:ITO),发光层的形成材料可以为有机发光材料,本申请实施例在此不再赘述。
可选地,在本申请实施例中,柔性衬底基板011可以由交替叠加的无机层和柔性基底层构成,无机层可以为采用氮化硅、氧化硅、氮氧化硅等制成的无机层,柔性基底层可以为采用聚酰亚胺制成的柔性基底层。示例地,如图2所示,柔性衬底基板011包括依次叠加设置的第一无机层0111、第一柔性基底层0112、第二无机层0113和第二柔性基底层0114。
图1和图2中仅仅描述了显示基板01中,与本申请相关的结构,本领域技术人员容易理解,显示基板还包括封装层等其他结构,本申请实施例在此不再赘述。
综上所述,本申请实施例提供的显示基板,在柔性衬底基板中,走线层与第一绝缘层之间具有第一粘附力增强层,第一粘附力增强层分别与走线层和第一绝缘层粘接,且第一粘附力增强层在柔性衬底基板上的正投影所在区域与弯折区域存在重叠区域,该第一粘附力增强层可以增强走线层与第一绝缘层之间的粘附力,从而降低走线层与第一绝缘层发生膜层分离导致走线层的信号走线发生断裂的概率,进而降低显示基板出现工艺不良的概率。
可选地,走线层与第二绝缘层之间设置有第二粘附力增强层,第二粘附力增强层分别与走线层和第二绝缘层粘接,且第二粘附力增强层在柔性衬底基板上的正投影所在区域与弯折区域存在重叠区域,该第二粘附力增强层可以增强 走线层与第二绝缘层之间的粘附力,从而降低走线层与第二绝缘层发生膜层分离导致走线层的信号走线发生断裂的可能性,进而降低显示基板出现工艺不良的概率。
其中,走线层可以包括源漏极走线,本申请实施例提供的方案可以降低源漏极走线发生断裂的可能性,进而降低了显示基板在进行显示时出现源漏极走线的延伸方向的亮线的概率,改善了显示基板的显示效果。
本申请实施例提供的显示基板可以应用于下文的方法,本申请实施例中显示基板的制造方法和制造原理可以参见下文实施例中的描述。
请参考图3,其示出了本申请实施例提供的一种显示基板的制造方法的方法流程图,该方法可以用于制造上述实施例提供的显示基板01。请参见图3,该方法包括如下步骤:
步骤301、形成柔性衬底基板,柔性衬底基板具有弯折区域。
步骤302、在柔性衬底基板上形成层叠的走线层、第一粘附力增强层和第一绝缘层,第一粘附力增强层分别与第一绝缘层和走线层粘接,第一粘附力增强层在柔性衬底基板上的正投影所在区域与弯折区域存在重叠区域,走线层中的信号走线在柔性衬底基板上的正投影所在区域与弯折区域存在重叠区域。
其中,第一粘附力增强层用于增强走线层与绝缘层之间的粘附力。
综上所述,本申请实施例提供的显示基板的制造方法,在柔性衬底基板中,走线层与第一绝缘层之间设置有第一粘附力增强层,第一粘附力增强层分别与走线层和第一绝缘层粘接,且第一粘附力增强层在柔性衬底基板上的正投影所在区域与弯折区域存在重叠区域,该第一粘附力增强层可以增强走线层与第一绝缘层之间的粘附力,从而降低走线层与第一绝缘层发生膜层分离导致走线层的信号走线发生断裂的概率,进而降低显示基板出现工艺不良的概率。
可选地,在步骤302之后,该方法还包括:形成有走线层的柔性衬底基板上形成层叠的第二粘附力增强层和第二绝缘层,第二粘附力增强层分别与第二绝缘层和走线层粘接,第二粘附力增强层在柔性衬底基板上的正投影至少位于弯折区域中,第二粘附力增强层用于增强走线层与第二绝缘层之间的粘附力。其中,可以先形成第二粘附力增强层再形成第二绝缘层,或者先形成第二绝缘层再形成第二粘附力增强层。
可选地,第一粘附力增强层的材料和第二粘附力增强层的材料均为亚克力 树脂、环氧树脂和聚酰亚胺中的一种或多种。
可选地,第一粘附力增强层的厚度的范围和第二粘附力增强层的厚度的范围均为1微米~3微米。
可选地,在形成有走线层的柔性衬底基板上形成层叠的第二粘附力增强层和第二绝缘层之后,该方法还包括:在形成有第二绝缘层的柔性衬底基板上形成应力平衡层,应力平衡层在柔性衬底基板上的正投影所在区域与弯折区域存在重叠区域。
可选地,走线层包括源漏极走线,第一绝缘层和第二绝缘层均为有机层。
可选地,第一绝缘层为有机充填层,在步骤301之后,该方法还包括:在柔性衬底基板上形成第三绝缘层,第三绝缘层上具有折弯孔,折弯孔在柔性衬底基板上的正投影覆盖弯折区域,第一绝缘层位于折弯孔中。
可选地,第二绝缘层为平坦层,在形成有第二绝缘层的柔性衬底基板上形成应力平衡层之前,该方法还包括:在形成有平坦层的柔性衬底基板上依次形成阳极、像素界定层、发光层和阴极。
相应地,在形成有第二绝缘层的柔性衬底基板上形成应力平衡层,包括:在形成有阴极的柔性衬底基板上形成应力平衡层。
上述可选技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。
请参考图4,其示出了本申请实施例提供的另一种显示基板的制造方法的方法流程图,该方法可以用于制造上述实施例提供的显示基板01。参见图4,该方法包括如下步骤:
步骤401、获取柔性衬底基板,柔性衬底基板具有弯折区域。
本申请实施例中,可以直接获取柔性衬底基板,也可以制造柔性衬底基板。可选地,制造柔性衬底基板的过程可以包括:先提供一刚性衬底基板,然后在刚性衬底基板上形成柔性衬底基板。其中,刚性衬底基板可以为采用玻璃、石英或透明树脂等具有一定坚固性的材料制成的基板,例如刚性衬底基板为玻璃基板。
可选地,该柔性衬底基板可以包括交替叠加的无机层和柔性基底层,因此,在刚性衬底基板上形成柔性衬底基板也即是在刚性衬底基板上形成交替叠加的无机层和柔性基底层,柔性基底层的材料可以为PI,无机层的材料可以为SiOx。 示例地,如图2所示,柔性衬底基板011包括依次叠加设置的第一无机层0111、第一柔性基底层0112、第二无机层013和第二柔性基底层0114,因此在刚性衬底基板上形成柔性衬底基板011可以包括如下4个步骤:
步骤(1)、通过沉积工艺、涂覆工艺或者溅射工艺等方式在刚性衬底基板上形成一层SiOx作为第一无机层0111。
步骤(2)、在第一无机层0111上涂覆一层PI溶液,并对PI溶液进行干燥处理,以去除PI溶液的溶剂,使PI溶液的溶质保留作为第一柔性基底层0112。
步骤(3)、通过沉积工艺、涂覆工艺或者溅射工艺等方式在第一柔性基底层0112远离第一无机层0111的一侧形成一层SiOx作为第二无机层0113。
步骤(4)、在第二无机层0113上涂覆一层PI溶液,并对PI溶液进行干燥处理,以去除PI溶液的溶剂,使PI溶液的溶质保留作为第二柔性基底层0114。
步骤402、在柔性衬底基板上形成第三绝缘层,第三绝缘层上具有折弯孔,折弯孔在柔性衬底基板上的正投影与柔性衬底基板的弯折区域重叠,第一绝缘层位于折弯孔中。
请参考图5,其示出了本申请实施例提供的一种在柔性衬底基板011上形成第三绝缘层018后的示意图,第三绝缘层018上具有折弯孔K,折弯孔K在柔性衬底基板011上的正投影覆盖柔性衬底基板011的弯折区域(图5中未标出)。其中,该第三绝缘层018包括多个绝缘膜层,该多个绝缘膜层均可以是无机层,示例地,该多个绝缘膜层的材料可以是SiOx和SiNx中的至少一种。
可选地,第三绝缘层中的多个绝缘膜层可以包括缓冲层、栅绝缘层和层间介质层。另外,该显示基板还包括位于缓冲层与栅绝缘层之间的有源层,位于栅绝缘层与层间介质层之间的栅极,以及位于层间介质层远离栅绝缘层的一侧的源漏极层,源漏极层包括源极和漏极,第三绝缘层018可以认为是由缓冲层、栅绝缘层和层间介质层这三个膜层延伸至显示基板的非显示区域的部分构成。因此,在柔性衬底基板011上形成第三绝缘层018可以包括:在柔性衬底基板011上依次形成缓冲层、有源层、栅绝缘层、栅极、层间介质层和源漏极层。其中,形成缓冲层、栅绝缘层和层间介质层中的任一膜层的过程可以包括:通过沉积工艺、涂覆工艺或者溅射工艺等方式形成SiOx材质层,通过一次构图工艺对SiOx材质层进行处理。
步骤403、在形成有第三绝缘层的柔性衬底基板上依次形成第一绝缘层,第一粘附力增强层和走线层。
请参考图6,其示出了本申请实施例提供的一种在形成有第三绝缘层018的柔性衬底基板011上,依次形成第一绝缘层014,第一粘附力增强层013和走线层012后的示意图。结合图5和图6,第三绝缘层018具有弯折孔K,第一绝缘层014位于弯折孔K中,该第一绝缘层014可以为有机充填层。
如图6所示,第一粘附力增强层013分别与第一绝缘层014和走线层012粘接,第一粘附力增强层013在柔性衬底基板011上的正投影至少位于柔性衬底基板011的弯折区域(图6中未标出)中。走线层012中的信号走线在柔性衬底基板011上的正投影部分位于柔性衬底基板011的弯折区域中,该第一粘附力增强层013用于增加走线层012与第一绝缘层014之间的粘附力。
由步骤402可知,折弯孔K在柔性衬底基板011上的正投影覆盖柔性衬底基板011的弯折区域,由于第一粘附力增强层013在柔性衬底基板011上的正投影所在区域与柔性衬底基板011的弯折区域存在重叠区域,走线层012中的信号走线在柔性衬底基板011上的正投影所在区域与柔性衬底基板011的弯折区域存在重叠区域,因此,第一粘附力增强层013至少会位于弯折孔K中,走线层012中的信号走线在部分位于弯折孔K中。其中,走线层012可以包括源漏极走线。
可选地,走线层012的材料可以为金属或ITO等导电材料,第一粘附力增强层013的材料可以为亚克力树脂、环氧树脂和PI中的一种或多种,第一粘附力增强层013的厚度的范围可以为1微米~3微米,第一绝缘层014的材料可以为PI。
示例地,以走线层012的材料为金属,第一粘附力增强层013的材料为亚克力树脂,第一绝缘层014的材料为PI为例,在形成有第三绝缘层018的柔性衬底基板011上依次形成第一绝缘层014,第一粘附力增强层013和走线层012的过程可以包括以下步骤:
步骤(1)、在形成有第三绝缘层018的柔性衬底基板011上涂覆一层PI溶液,并对PI溶液进行干燥处理,以去除PI溶液的溶剂,使PI溶液的溶质保留作为第一绝缘层014。
步骤(2)、通过沉积工艺、涂覆工艺或者溅射工艺等方式在形成有第一绝缘层014的柔性衬底基板011上形成一层厚度为1微米~3微米的亚克力树脂得到亚克力树脂层,通过一次构图工艺对亚克力树脂层进行处理得到第一粘附力增强层013。
步骤(3)、通过沉积工艺、涂覆工艺或者溅射工艺等方式在形成有第一粘附力增强层013的柔性衬底基板011上形成一层金属得到金属材质层,通过一次构图工艺对金属材质层进行处理得到走线层012。
步骤404、在形成有走线层的柔性衬底基板上依次形成第二粘附力增强层和第二绝缘层。
请参考图7,其示出了本申请实施例提供的一种在形成有走线层012的柔性衬底基板011上依次形成第二粘附力增强层015和第二绝缘层016后的示意图,第二绝缘层016可以为平坦层,第二粘附力增强层015分别与第二绝缘层016和走线层012粘接,第二粘附力增强层015在柔性衬底基板011上的正投影所在区域与柔性衬底基板011的弯折区域(图7中未标出)存在重叠区域。由步骤402可知,折弯孔K在柔性衬底基板011上的正投影覆盖柔性衬底基板011的弯折区域,由于第二粘附力增强层015在柔性衬底基板011上的正投影至少位于柔性衬底基板011的弯折区域中,因此,第二粘附力增强层015至少位于弯折孔K中。
可选地,第二粘附力增强层015的材料可以为亚克力树脂、环氧树脂和PI中的一种或多种。第二粘附力增强层015的厚度的范围可以为1微米~3微米,第二绝缘层016的材料可以为有机树脂。
示例地,以第二粘附力增强层015的材料为环氧树脂,第二绝缘层016的材料为SiNx为例,在形成有走线层012的柔性衬底基板011上依次形成第二粘附力增强层015和第二绝缘层016可以包括以下步骤:
步骤(1)、通过沉积工艺、涂覆工艺或者溅射工艺等方式在形成有走线层012的柔性衬底基板011上形成一层厚度为1微米~3微米的环氧树脂得到环氧树脂层,通过一次构图工艺对环氧树脂层进行处理得到第二粘附力增强层015。
步骤(2)、通过沉积工艺、涂覆工艺或者溅射工艺等方式在形成有第二粘附力增强层015的柔性衬底基板011上形成一层有机树脂得到有机树脂层,通过一次构图工艺对有机树脂层进行处理得到第二绝缘层016。
步骤405、在形成有第二绝缘层的柔性衬底基板上依次形成阳极、像素界定层、发光层和阴极。
请参考图8,其示出了本申请实施例提供的一种在形成有第二绝缘层016的柔性衬底基板011上依次形成阳极(图8中未示出)、像素界定层019、发光层(图8中未示出)和阴极(图8中未示出)后的示意图,像素界定层019的材 料可以为有机树脂,阳极和阴极的材料均可以为ITO,发光层的形成材料可以为有机发光材料。
示例地,在形成有走线层016的柔性衬底基板011上依次形成阳极、像素界定层019、发光层和阴极可以包括以下步骤:
步骤(1)、通过沉积工艺、涂覆工艺或者溅射工艺等方式在形成有第二绝缘层016的柔性衬底基板011上形成一层ITO得到ITO材质层,通过一次构图工艺对ITO材质层进行处理得到阳极。
步骤(2)、通过沉积工艺、涂覆工艺或者溅射工艺等方式在形成有阳极的柔性衬底基板011上形成一层有机树脂得到有机树脂层,通过一次构图工艺对有机树脂层进行处理得到像素界定层019。
步骤(3)、通过沉积工艺、涂覆工艺或者溅射工艺等方式在形成有像素界定层019的柔性衬底基板011上形成一层有机发光材料,得到有机发光材质层,通过一次构图工艺对有机发光材质层进行处理得到发光层。
步骤(4)、通过沉积工艺、涂覆工艺或者溅射工艺等方式在形成有阳极的柔性衬底基板011上形成一层ITO作为阴极。该步骤(4)是以阴极为面状电极(也即是整个显示基板01具有一个阴极)为例说明的,若阴极为块状电极,则在沉积ITO后可以通过构图工艺对沉积的ITO材质层进行处理,以得到阴极。
步骤406、在形成有阴极的柔性衬底基板上形成应力平衡层,应力平衡层在柔性衬底基板上的正投影部分位于弯折区域中。
在形成有阴极的柔性衬底基板011上形成应力平衡层017之后的示意图可以参考图2。可选地,可以通过沉积工艺、涂覆工艺或者溅射工艺等方式在形成有阴极的柔性衬底基板011上形成应力平衡层017。
图5至图8中均未示出刚性衬底基板,本领域技术人员容易理解,实际应用中,上述步骤401至步骤406通常是在刚性衬底基板上完成的,在执行完步骤406之后,可以将柔性衬底基板与刚性衬底基板分离,以得到如图2所示的显示基板01。
此外,本申请实施例提供的显示基板的制造方法中,所涉及的一次构图工艺包括光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离,通过一次构图工艺对材质层进行处理得到相应的结构(例如对金属材质层进行处理得到走线层)可以包括:在材质层(例如金属材质层)上涂覆一层光刻胶形成光刻胶层,采用掩膜版对光刻胶层进行曝光,使得光刻胶层形成完全曝光区和非曝光区,之后采 用显影工艺处理,使完全曝光区的光刻胶被完全去除,非曝光区的光刻胶全部保留,采用刻蚀工艺对材质层(例如金属材质层)上完全曝光区对应的区域进行刻蚀,最后剥离非曝光区的光刻胶得到相应的结构(例如走线层)。这里是以光刻胶为正性光刻胶为例进行说明的,当光刻胶为负性光刻胶时,一次构图工艺的过程可以参考本段的描述,本申请实施例在此不再赘述。
另外,本申请实施例提供的显示基板的制造方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
综上所述,本申请实施例提供的显示基板的制造方法,在柔性衬底基板中的走线层与第一绝缘层之间形成第一粘附力增强层,第一粘附力增强层分别与走线层和第一绝缘层粘接,且第一粘附力增强层在柔性衬底基板上的正投影至少位于弯折区域中,该第一粘附力增强层可以增强走线层与第一绝缘层之间的粘附力,从而降低走线层与第一绝缘层发生膜层分离导致走线层的信号走线发生断裂的概率,进而降低显示基板出现工艺不良的概率。其中,走线层可以包括源漏极走线,本申请实施例提供的方案可以避免源漏极走线发生断裂,进而降低了显示基板在进行显示时出现源漏极走线的延伸方向的亮线的概率,改善了显示基板的显示效果。
本申请实施例还提供了一种显示装置,该显示装置包括上述实施例提供的显示基板01,上述实施例提供的显示基板01具有相对设置的显示面(图中均未标出)和非显示面(图中均未标出),且显示面具有绑定区域,在显示装置中,显示基板01的绑定区域被折弯至显示基板01的非显示面所在侧。其中,该显示装置可以为窄边框显示装置、无边框显示装置或全面屏显示装置,例如,该显示装置可以为显示面板,手表、手环等可穿戴设备,手机、平板电脑等移动终端,或者,电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开 的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制

Claims (19)

  1. 一种显示基板,所述显示基板(01)包括柔性衬底基板(011)以及层叠设置在所述柔性衬底基板(011)上的走线层(012)、第一粘附力增强层(013)和第一绝缘层(014);
    所述第一粘附力增强层(013)位于所述第一绝缘层(014)与所述走线层(012)之间,且所述第一粘附力增强层(013)分别与所述第一绝缘层(014)和所述走线层(014)粘接;
    所述柔性衬底基板(011)具有弯折区域(A1),所述第一粘附力增强层(013)在所述柔性衬底基板(011)上的正投影所在区域与所述弯折区域(A1)存在重叠区域;
    所述走线层(014)中具有信号走线(0121),所述信号走线(0121)在所述柔性衬底基板(011)上的正投影所在区域与所述弯折区域(A1)存在重叠区域。
  2. 根据权利要求1所述的显示基板,所述第一粘附力增强层(013)的材料为亚克力树脂、环氧树脂和聚酰亚胺中的一种或多种。
  3. 根据权利要求1所述的显示基板,所述第一粘附力增强层(013)的厚度的范围为1微米~3微米。
  4. 根据权利要求1-3任一所述的显示基板,所述显示基板(01)包括层叠设置在所述柔性衬底基板(011)上的第二粘附力增强层(015)和第二绝缘层(016);
    所述第二绝缘层(016)位于所述走线层(012)远离所述第一绝缘层(014)的一侧,所述第二粘附力增强层(015)位于所述第二绝缘层(016)与所述走线层(012)之间,且所述第二粘附力增强层(015)分别与所述第二绝缘层(016)和所述走线层(012)粘接,所述第二粘附力增强层(015)在所述柔性衬底基板(011)上的正投影所在区域与所述弯折区域(A1)存在重叠区域。
  5. 根据权利要求4所述的显示基板,所述第二粘附力增强层(015)的材 料为亚克力树脂、环氧树脂和聚酰亚胺中的一种或多种。
  6. 根据权利要求4所述的显示基板,所述第二粘附力增强层(015)的厚度的范围为1微米~3微米。
  7. 根据权利要求4-6任一所述的显示基板,所述第二绝缘层(016)位于所述走线层(012)远离所述柔性衬底基板(011)的一侧;
    所述显示基板(01)包括位于所述第二绝缘层(016)远离所述柔性衬底基板(011)一侧的应力平衡层(017),所述应力平衡层(017)在所述柔性衬底基板(011)上的正投影所在区域与所述弯折区域(A1)存在重叠区域。
  8. 根据权利要求1至7任一所述的显示基板,所述走线层(012)包括源极走线和漏极走线。
  9. 根据权利要求1-8任一所述的显示基板,所述第一绝缘层(014)、所述所述第一粘附力增强层(013)和所述走线层(012)沿远离所述柔性衬底基板(011)的方向层叠设置。
  10. 根据权利要求1-3任一所述的显示基板,所述第一绝缘层(014)为有机层。
  11. 根据权利要求4-7任一所述的显示基板,所述第二绝缘层(016)为有机层。
  12. 根据权利要求1所述的显示基板,所述显示基板包括:层叠设置在所述柔性衬底基板上的第二粘附力增强层和第二绝缘层;
    所述第二绝缘层位于所述走线层远离所述第一绝缘层的一侧,所述第二粘附力增强层位于所述第二绝缘层与所述走线层之间,且所述第二粘附力增强层分别与所述第二绝缘层和所述走线层粘接,所述第二粘附力增强层在所述柔性衬底基板上的正投影所在区域与所述弯折区域存在重叠区域;
    所述第一粘附力增强层的材料和所述第二粘附力增强层的材料均为亚克力树脂、环氧树脂和聚酰亚胺中的一种或多种;
    所述第一粘附力增强层的厚度的范围和所述第二粘附力增强层的厚度的范围为1微米~3微米。
  13. 一种显示基板的制造方法,所述方法包括:
    获取柔性衬底基板(011),所述柔性衬底基板(011)具有弯折区域(A1);
    在所述柔性衬底基板(011)上形成层叠的走线层(012)、第一粘附力增强层(013)和第一绝缘层(014),所述第一粘附力增强层(013)分别与所述第一绝缘层(014)和所述走线层(012)粘接,所述第一粘附力增强层(013)在所述柔性衬底基板(011)上的正投影所在区域与所述弯折区域(A1)存在重叠区域,所述走线层(012)中的信号走线(0121)在所述柔性衬底基板(011)上的正投影所在区域与所述弯折区域(A1)存在重叠区域。
  14. 根据权利要求13所述的方法,在所述柔性衬底基板(011)上形成层叠的走线层(012)、第一粘附力增强层(013)和第一绝缘层(014)之后,所述方法还包括:
    在形成有所述走线层(012)的柔性衬底基板(011)上形成层叠的第二粘附力增强层(015)和第二绝缘层(016),所述第二粘附力增强层(015)分别与所述第二绝缘层(016)和所述走线层(012)粘接,所述第二粘附力增强层(015)在所述柔性衬底基板(011)上的正投影所在区域与所述弯折区域(A1)存在重叠区域。
  15. 根据权利要求13所述的方法,所述在所述柔性衬底基板(011)上形成层叠的走线层(012)、第一粘附力增强层(013)和第一绝缘层(014),包括:
    在所述柔性衬底基板(011)上依次形成所述第一绝缘层(014),所述第一粘附力增强层(013)和所述走线层(012)。
  16. 根据权利要求15所述的方法,所述在所述柔性衬底基板上依次形成所述第一绝缘层,所述第一粘附力增强层和所述走线层,包括:
    在所述柔性衬底基板(011)上涂覆聚酰亚胺溶液,并对所述聚酰亚胺溶液进行干燥处理以形成所述第一绝缘层(014);
    通过沉积工艺、涂覆工艺或者溅射工艺在形成有所述第一绝缘层(014)的柔性衬底基板(011)上形成亚克力树脂层;
    通过构图工艺对所述亚克力树脂层进行处理得到所述第一粘附力增强层(013);
    通过沉积工艺、涂覆工艺或者溅射工艺在形成有所述第一粘附力增强层(013)的柔性衬底基板(011)上形成金属材质层;
    通过构图工艺对所述金属材质层进行处理得到所述走线层(012)。
  17. 根据权利要求13-16任一所述的方法,在形成有所述走线层(012)的所述柔性衬底基板(011)上形成层叠的第二粘附力增强层(015)和第二绝缘层(016)之后,所述方法还包括:
    在形成有所述第二绝缘层(016)的所述柔性衬底基板(011)上形成应力平衡层(017),所述应力平衡层(017)在所述柔性衬底基板(011)上的正投影所在区域与所述弯折区域(A1)存在重叠区域。
  18. 根据权利要求13-17任一所述的方法,所述获取柔性衬底基板(011),所述柔性衬底基板(011)具有弯折区域(A1),包括:
    提供刚性衬底基板;
    在所述刚性衬底基板上形成所述柔性衬底基板(011),所述柔性衬底基板(011)具有所述弯折区域(A1)。
  19. 一种显示装置,所述显示装置包括权利要求1至12任一所述的显示基板。
PCT/CN2020/079206 2019-03-15 2020-03-13 显示基板及其制造方法、显示装置 WO2020187151A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/048,146 US11552263B2 (en) 2019-03-15 2020-03-13 Display substrate with adhesion-enhancing layers, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910196423.8 2019-03-15
CN201910196423.8A CN109887416B (zh) 2019-03-15 2019-03-15 柔性显示基板及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020187151A1 true WO2020187151A1 (zh) 2020-09-24

Family

ID=66932511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079206 WO2020187151A1 (zh) 2019-03-15 2020-03-13 显示基板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US11552263B2 (zh)
CN (1) CN109887416B (zh)
WO (1) WO2020187151A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109887416B (zh) 2019-03-15 2021-12-10 京东方科技集团股份有限公司 柔性显示基板及其制造方法、显示装置
JP7384335B2 (ja) * 2019-10-24 2023-11-21 京東方科技集團股▲ふん▼有限公司 駆動基板及びその製作方法並びに表示装置
CN110827685B (zh) * 2019-10-28 2021-05-07 武汉华星光电半导体显示技术有限公司 显示面板和电子设备
CN110752295B (zh) * 2019-11-29 2023-04-28 武汉天马微电子有限公司 柔性显示面板及其制作方法和显示装置
CN111769080B (zh) * 2020-06-24 2022-07-12 武汉华星光电半导体显示技术有限公司 显示面板
CN113690250B (zh) * 2021-08-09 2023-10-17 Tcl华星光电技术有限公司 阵列基板及其制作方法
CN114241906A (zh) * 2021-11-30 2022-03-25 武汉天马微电子有限公司 一种显示装置及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137102A1 (en) * 2013-11-21 2015-05-21 Lg Display Co., Ltd. Organic light-emitting display device and method for manufacturing organic light-emitting display device
CN104950535A (zh) * 2015-07-07 2015-09-30 京东方科技集团股份有限公司 一种柔性阵列基板及显示装置
CN105826350A (zh) * 2015-01-28 2016-08-03 三星显示有限公司 显示装置
CN106920829A (zh) * 2017-03-30 2017-07-04 京东方科技集团股份有限公司 一种柔性显示面板、显示装置及柔性显示面板的制作方法
CN106972030A (zh) * 2017-03-30 2017-07-21 京东方科技集团股份有限公司 一种柔性显示面板、显示装置及柔性显示面板的制作方法
CN107818990A (zh) * 2017-10-19 2018-03-20 武汉华星光电半导体显示技术有限公司 一种柔性基板及其制备方法、显示器
CN108470762A (zh) * 2018-05-28 2018-08-31 上海天马微电子有限公司 一种柔性显示面板和显示装置
CN109256400A (zh) * 2018-11-16 2019-01-22 京东方科技集团股份有限公司 柔性显示基板及其制造方法、显示装置
CN109887416A (zh) * 2019-03-15 2019-06-14 京东方科技集团股份有限公司 柔性显示基板及其制造方法、显示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140060776A (ko) 2012-11-12 2014-05-21 삼성디스플레이 주식회사 플렉서블 표시 장치 및 그 제조 방법
KR102023945B1 (ko) * 2012-12-28 2019-11-04 엘지디스플레이 주식회사 플렉서블 유기발광 디스플레이 장치
US10764999B2 (en) * 2014-06-30 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. Flexible substrate
US10074826B2 (en) * 2015-10-06 2018-09-11 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the same
KR102589214B1 (ko) * 2016-06-03 2023-10-13 삼성디스플레이 주식회사 표시 장치
KR20180034780A (ko) * 2016-09-27 2018-04-05 삼성디스플레이 주식회사 디스플레이 장치 및 디스플레이 장치의 제조 방법
KR102631257B1 (ko) * 2016-11-18 2024-01-31 삼성디스플레이 주식회사 디스플레이 장치
CN106530973B (zh) * 2016-12-21 2019-06-11 上海天马微电子有限公司 一种曲面显示装置
KR102333671B1 (ko) * 2017-05-29 2021-12-01 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CN107134538A (zh) * 2017-06-29 2017-09-05 京东方科技集团股份有限公司 一种显示基板、制作方法及显示装置
CN207676908U (zh) * 2017-07-24 2018-07-31 昆山国显光电有限公司 一种柔性显示面板及显示装置
CN108231800B (zh) * 2018-02-02 2019-10-29 京东方科技集团股份有限公司 一种柔性显示面板及其制备方法、显示装置
CN108447403B (zh) * 2018-04-03 2020-07-03 武汉华星光电半导体显示技术有限公司 柔性显示装置及其制造方法
CN108962946B (zh) * 2018-06-29 2020-06-16 武汉华星光电半导体显示技术有限公司 显示面板及其制造方法
CN208422962U (zh) * 2018-08-09 2019-01-22 京东方科技集团股份有限公司 可折叠的柔性显示面板和显示装置
KR102538829B1 (ko) * 2018-09-18 2023-06-02 삼성디스플레이 주식회사 전자 장치
CN109411513B (zh) * 2018-09-28 2021-01-26 广州国显科技有限公司 柔性显示面板和柔性显示装置
CN109411525B (zh) * 2018-12-13 2020-07-31 广州国显科技有限公司 柔性显示面板及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137102A1 (en) * 2013-11-21 2015-05-21 Lg Display Co., Ltd. Organic light-emitting display device and method for manufacturing organic light-emitting display device
CN105826350A (zh) * 2015-01-28 2016-08-03 三星显示有限公司 显示装置
CN104950535A (zh) * 2015-07-07 2015-09-30 京东方科技集团股份有限公司 一种柔性阵列基板及显示装置
CN106920829A (zh) * 2017-03-30 2017-07-04 京东方科技集团股份有限公司 一种柔性显示面板、显示装置及柔性显示面板的制作方法
CN106972030A (zh) * 2017-03-30 2017-07-21 京东方科技集团股份有限公司 一种柔性显示面板、显示装置及柔性显示面板的制作方法
CN107818990A (zh) * 2017-10-19 2018-03-20 武汉华星光电半导体显示技术有限公司 一种柔性基板及其制备方法、显示器
CN108470762A (zh) * 2018-05-28 2018-08-31 上海天马微电子有限公司 一种柔性显示面板和显示装置
CN109256400A (zh) * 2018-11-16 2019-01-22 京东方科技集团股份有限公司 柔性显示基板及其制造方法、显示装置
CN109887416A (zh) * 2019-03-15 2019-06-14 京东方科技集团股份有限公司 柔性显示基板及其制造方法、显示装置

Also Published As

Publication number Publication date
CN109887416B (zh) 2021-12-10
US11552263B2 (en) 2023-01-10
CN109887416A (zh) 2019-06-14
US20210167306A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2020187151A1 (zh) 显示基板及其制造方法、显示装置
US9773853B2 (en) Organic light-emitting diode display with bent substrate
US10573833B2 (en) Flexible display substrate and method for manufacturing the same, and flexible display device
WO2021190162A1 (zh) 显示基板及其制备方法、显示面板
KR102047729B1 (ko) 유기전계발광표시장치 및 그 제조방법
CN103378125B (zh) 有机发光显示设备及其再制方法
WO2020216259A1 (zh) 显示面板、显示装置及制造方法
WO2017105637A1 (en) Organic light-emitting diode displays with reduced border area
US20230040064A1 (en) Display substrate, preparation method therefor, and display device
CN113614816B (zh) 阵列基板及其制造方法、显示面板、显示装置
US11307688B2 (en) Thermal transfer substrate, touch display panel and manufacturing methods therefor, and display device
TW202016616A (zh) 顯示面板及其製造方法
CN109960434B (zh) 触控面板、触控显示装置及制作触控面板的方法
US20200348784A1 (en) Touch display substrate, method of manufacturing the same and display device
WO2016090886A1 (zh) 阵列基板及其制作方法和显示面板
US10790320B2 (en) Manufacturing method of array substrate
CN111489647B (zh) 显示模组及其制造方法、显示装置
US20220278288A1 (en) Display device and method of manufacturing the display device
US20220384488A1 (en) Array substrate and manufacturing method thereof, motherboard and display device
WO2018188656A1 (zh) 阵列基板及显示装置
WO2013131390A1 (zh) Tft阵列基板及其制造方法和显示装置
EP4020578A2 (en) Display device and method of manufacturing the same
US11985863B2 (en) Display device and method of manufacturing the same
US11393852B2 (en) Semiconductor device
KR102159969B1 (ko) 터치스크린 일체형 표시장치 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773062

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20773062

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20773062

Country of ref document: EP

Kind code of ref document: A1