WO2020186671A1 - 一种蒸镀沉积设备及其使用方法 - Google Patents

一种蒸镀沉积设备及其使用方法 Download PDF

Info

Publication number
WO2020186671A1
WO2020186671A1 PCT/CN2019/096803 CN2019096803W WO2020186671A1 WO 2020186671 A1 WO2020186671 A1 WO 2020186671A1 CN 2019096803 W CN2019096803 W CN 2019096803W WO 2020186671 A1 WO2020186671 A1 WO 2020186671A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
deposition
film
evaporation
vapor deposition
Prior art date
Application number
PCT/CN2019/096803
Other languages
English (en)
French (fr)
Inventor
章丰帆
Original Assignee
上海视涯信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海视涯信息科技有限公司 filed Critical 上海视涯信息科技有限公司
Publication of WO2020186671A1 publication Critical patent/WO2020186671A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material

Definitions

  • the present invention relates to an evaporation deposition equipment, and more specifically, to an evaporation deposition equipment that improves the film deposition coverage performance, and also relates to a method for using the evaporation deposition equipment to perform an organic material layer film forming process.
  • the organic light-emitting display device includes an anode, a cathode, and an organic film layer arranged between the anode and the cathode.
  • the organic film layer includes multiple stacked organic material layers, such as an organic light-emitting layer, an electron injection layer, an electron transport layer, and a hole transport Layer, hole injection layer, etc.
  • the organic film layer is usually formed by vapor deposition deposition. In the prior art, vapor deposition deposition equipment is divided into two types, one is point source vapor deposition deposition equipment, and the other is line source vapor deposition deposition equipment.
  • FIG. 1 is a schematic diagram of a point source evaporation deposition equipment in the prior art. As shown in the figure, it includes a deposition chamber 101. A substrate holding device 102 is provided in the deposition chamber 101. The substrate holding device 102 is fixed and held. Substrate 103; a plurality of point evaporation sources are provided in the deposition chamber 101. Two point evaporation sources 105 and 106 are shown in Figure 1.
  • the point evaporation source 105 includes a container 1051 and is arranged on the container 1051
  • the nozzle 1052 of the point evaporation source 105 is also provided with an evaporation rate monitor 107 for monitoring the rate at which the nozzle 1052 sublimates the evaporation material.
  • the point vapor deposition source 106 is also provided with a containing device 1061, a nozzle 1062, and a vapor deposition rate monitor 108 correspondingly. Since the concentration distribution of the sublimation evaporation material sprayed from the nozzles 1052 and 1062 decreases from the center of the nozzle to the positions on both sides, and on the plane perpendicular to the nozzle, the closer the nozzle is, the greater the concentration difference is.
  • the evaporation sources 105 and 106 are arranged offset from the substrate 103, so that the sublimated evaporation material is deposited on the substrate 103 after being uniformly diffused in the deposition chamber 101.
  • the substrate holding device 102 drives the substrate 103 to rotate around its central axis, and the sublimation evaporation materials sprayed from the point evaporation sources 105 and 106 are diffused and deposited on the substrate 103 to form a film.
  • the disadvantages of point source evaporation deposition equipment are that, first, the capacity of the holding device of the point source evaporation deposition equipment is small, generally about 250 cubic centimeters. After each evaporation material is used, material replenishment and evaporation are required.
  • Fig. 2 is a schematic diagram of a line source evaporation deposition equipment in the prior art.
  • the length direction of the substrate 1 and the length direction of the line evaporation source 10 are arranged in parallel. Multiple nozzles are provided on the source 10.
  • the substrate 1 or the linear vapor deposition source 10 moves along the scanning direction, and the sublimation vapor deposition material sprayed from the nozzles of the linear vapor deposition source 10 is diffused and deposited on the substrate 1 to form a film.
  • the disadvantage of line source evaporation deposition equipment is poor film coverage.
  • the organic light-emitting display substrate is provided with a pixel unit area and a pixel unit interval area, and a raised pixel definition layer is provided in the pixel unit interval area.
  • a fine metal mask is used to shield the pixel unit of the substrate 1
  • the spacer area exposes the pixel unit area, allowing the sublimated evaporation material to be deposited in the pixel unit area, but because the corners of the fine metal mask block the corners of the pixel unit area, that is, the "shadow effect", the evaporation material
  • the film formation at the corners of the pixel unit area is thin, and the raised pixel definition layer also has a "shadow effect" on the film formation of the pixel unit area, because the substrate 1 and the linear vapor deposition source 10 move relatively linearly.
  • the multiple nozzles on the linear vapor deposition source 10 are fixed. If the distribution of multiple nozzles is not suitable for the current film forming process and does not meet the process standard requirements, the entire linear vapor deposition source 10 needs to be replaced, and the equipment cost is high. .
  • the present invention provides an evaporation deposition equipment, including: a deposition chamber; a substrate holding device arranged in the deposition chamber for fixing and holding the substrate; a linear evaporation source, the linear evaporation source including a
  • An accommodating device for accommodating an evaporation material the accommodating device includes a accommodating groove and a plurality of cover plates, each of the plurality of cover plates can be assembled or disassembled with the accommodating groove, The groove is assembled with one of the cover plates at a time; each cover plate is provided with a plurality of nozzles, and the nozzle distribution of the multiple cover plates is different; the multiple cover plates After assembly of each cover plate in the accommodating groove, a plurality of nozzles of the cover plate are in communication with the interior of the accommodating groove; a rotating mechanism, the rotating mechanism makes the substrate and the linear vapor deposition The source rotates relatively around the central axis of the substrate.
  • the present invention also provides a method for forming a film of an organic material layer using the above evaporation deposition equipment, which includes:
  • the first evaporation deposition step assembling one of the plurality of cover plates and the containing groove, placing the substrate in the deposition chamber, and the rotating mechanism makes the substrate and the linear
  • the evaporation source relatively rotates around the central axis of the substrate, and performs evaporation deposition on the substrate to form a film;
  • Measuring step measuring the film parameters of the organic film on the substrate
  • Judgment step judge whether the film layer parameters meet the requirements of the process standards, if they meet the requirements, enter normal production; if they do not meet, perform the cover replacement step;
  • Cover plate replacement step select another cover plate according to the film layer parameters in the measurement step, and the film formation distribution corresponding to the other cover plate compensates the film layer parameters in the measurement step.
  • the containing tank assembly
  • Calibration evaporation deposition step Put the substrate into the deposition chamber, and the rotating mechanism makes the substrate and the linear evaporation source relatively rotate around the central axis of the substrate, and are placed on the substrate. Carry out evaporation deposition to form a film;
  • the present invention provides an evaporation deposition equipment and a method for forming an organic material layer using the evaporation deposition equipment.
  • the method has the following advantages: first, one containing groove and corresponding multiple cover plates, each of which can be combined with the containing groove Assembling and disassembling, and the nozzle distribution of multiple cover plates is different, the thickness distribution of the film formed in the organic material layer film forming process is also different, you can choose the appropriate cover plate according to the process requirements, and only need to replace the cover plate That way, cost and time are saved. Second, in the vapor deposition film forming process, the linear vapor deposition source and the substrate are relatively rotating, which can compensate for the shadow effect caused by the mask or the pixel definition layer, and improve the coverage of the film.
  • the multiple nozzles of the cover plate are communicated with the inside of the containing tank, the evaporation rate is the same, and the rate adjustment is performed at the same time, which takes a short test time, and only one film forming rate monitor is required to reduce the equipment cost.
  • FIG. 1 is a schematic diagram of a point source evaporation deposition equipment in the prior art
  • Fig. 2 is a schematic diagram of a line source evaporation deposition equipment in the prior art
  • FIG. 3 is a schematic diagram of an evaporation deposition equipment provided by an embodiment of the present invention.
  • FIGS. 4 and 5 are schematic diagrams of multiple cover plates provided by embodiments of the present invention.
  • 6 and 7 are enlarged schematic diagrams of the evaporation deposition equipment during film formation
  • FIG. 8 is a schematic diagram of an evaporation deposition equipment provided by another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an evaporation deposition equipment provided by still another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a method for forming a film of an organic material layer by using an evaporation deposition device according to an embodiment of the present invention.
  • the evaporation deposition equipment 10 includes a deposition chamber 11, a substrate holding device 12 arranged in the deposition chamber 11, The substrate holding device 12 is used to fix and hold the substrate 13.
  • the substrate 13 may be a glass substrate, a flexible substrate or a semiconductor silicon-based substrate.
  • the substrate 13 may be a rectangular substrate, a silicon circular substrate, or an irregular-shaped substrate Wait. It also includes at least one linear vapor deposition source 14.
  • the linear vapor deposition source 14 includes a containment device for containing vapor deposition materials.
  • the containment device includes a containment tank 16 and a plurality of cover plates.
  • Each cover plate can be assembled or disassembled with the accommodating groove 16, and the accommodating groove 16 can be assembled with only one cover plate of the plurality of cover plates at a time.
  • a cover plate 171 is shown in the figure. It is assembled with the receiving tank 16.
  • Each of the multiple cover plates is provided with multiple nozzles. After each of the multiple cover plates is assembled with the containing groove 16, the multiple nozzles of the cover plate are all communicated with the inside of the containing groove 16. As shown in Figure 3, the cover plate 171 includes a plurality of nozzles a1, a2, and a3. After the cover plate 171 and the containing tank 16 are assembled, the nozzles a1, a2, and a3 communicate with the inside of the containing tank 16. After the material is heated and sublimated, it will be ejected from nozzles a1, a2 and a3 at the same rate.
  • the substrate holding device 12 of the vapor deposition deposition apparatus 10 further includes a first rotating mechanism 151 that drives the substrate 13 to rotate around the central axis 131 of the substrate 13 while the linear vapor deposition source is kept stationary around 14. As the substrate 13 and the linear vapor deposition source rotate relative to each other around 14, the sublimated vapor deposition material is ejected from the nozzles a1, a2, and a3 at the same rate, and then diffused and deposited on the substrate 103.
  • the linear vapor deposition source 14 may also be provided to include a second rotating mechanism 152, which drives the linear vapor deposition source 14 to rotate around the central axis 131 of the substrate 13 while the substrate 13 remains stationary Do not move.
  • the substrate holding device 12 includes a first rotating mechanism 151, which drives the substrate 13 to rotate in a first direction around the central axis 131 of the substrate 13, and the linear vapor deposition source 14 includes The second rotating mechanism 152 drives the linear vapor deposition source 14 to rotate around the central axis 131 of the substrate 13 and the second direction opposite to the first direction. All of the above methods can form the substrate 13 and the linear vapor deposition source 14 to rotate relative to the center axis 131 of the substrate 13.
  • nozzles of the multiple cover plates are distributed differently.
  • 3, 4, and 5 which are schematic diagrams of a plurality of cover plates provided by Embodiment 1 of the present invention.
  • Fig. 4 illustrates the cover plate from a top view
  • Fig. 5 illustrates the cover plate from a direction perpendicular to the receiving groove.
  • the concentration of the sublimated organic material sprayed by the nozzle has a strong linear variability. The closer the nozzle is to the nozzle, the concentration of the organic material shows a high concentration in the center of the nozzle and a low concentration on both sides of the nozzle. The smaller the difference, the more uniform the concentration of organic materials and the better the uniformity of film formation.
  • the nozzle distribution of the cover plate 171 is that the multiple nozzles a1, a2, and a3 have the same shape and size, but the set density is different, from the central axis 1031 close to the substrate 103 to the central axis away from the substrate 103 In the direction of 1031, the arrangement density of the multiple nozzles a1, a2, and a3 increases, and the nozzles a2, a3 are arranged more closely than the nozzles a1, a2.
  • the nozzle distribution of the cover plate 172 is that a plurality of nozzles b with the same nozzle diameter are arranged in two rows with the same density, but the diameter of the nozzle b of the cover plate 172 is smaller than that of the cover plate 171.
  • the nozzle distribution of the cover plate 173 is that the diameters of the nozzles c1, c2, and c3 are the same, the diameter of the nozzle c4 is larger than the diameters of the nozzles c1, c2, and c3, and the nozzle c4 is located away from the central axis 1031 of the substrate 103 Direction.
  • the nozzle distribution of the cover plate 174 is such that the shapes and diameters of the nozzles d1, d2, and d3 are the same circle, and the shape of the nozzle d4 is a semicircle.
  • the nozzle distribution of the cover plate 175 is such that the nozzles e1 and e2 are arranged perpendicular to the cover plate 175, and the nozzle e3 has an inclination angle with respect to the cover plate 175, and the inclination angle can range from 25 degrees to 35 degrees.
  • Different nozzle distributions can be used to form different film layer distributions during evaporation.
  • the storage tank and nozzle of the evaporation material are integrated.
  • the entire linear evaporation source needs to be replaced if adjustments are required.
  • the linear vapor deposition source also includes a heating device and a precision assembly structure. The cost is very expensive. After the linear vapor deposition source is replaced, it needs to be redone and the vapor deposition equipment assembly, precision adjustment, etc., also cost a lot of money. Manpower and time.
  • each cover plate can be assembled and disassembled with the containing tank 16, and the nozzles of the multiple cover plates are distributed differently.
  • the thickness distribution of the film layer formed in the layer film forming process is also different.
  • An appropriate cover plate can be selected according to the requirements of the process, and only the cover plate needs to be replaced, which saves cost and time.
  • FIGS. 6 and 7 are enlarged schematic diagrams of film formation using the vapor deposition deposition equipment provided by the present invention, FIG. 6 is a schematic diagram of a cross-sectional direction, and FIG. 7 is a schematic diagram of a top view.
  • FIG. 6 shows a case where a fine metal mask 18 is used.
  • the substrate 13 includes a plurality of pixel unit 132 areas, and a pixel definition layer 133 surrounding the pixel unit area 132.
  • a fine metal mask 18 is used to shield the pixel definition layer 133 area to expose the pixel unit 132 area, and a linear evaporation source 14 is used. Evaporate organic materials.
  • the linear vapor deposition source 14 is in the AA' direction, due to the "shadow effect" caused by the shielding of the fine metal mask 18, the organic material has poor film coverage in the regions S1 and S2.
  • the substrate and the linear evaporation source move relatively linearly, that is, in the cross-sectional direction shown in Figure 6, the relative position of the substrate and the linear evaporation source is unchanged Therefore, the "shadow effect" of areas S1 and S2 cannot be compensated.
  • the substrate 13 and the linear vapor deposition source 14 are relatively rotated.
  • the linear vapor deposition source 14 rotates to the BB' direction, the linear vapor deposition source 14 vaporizes the sublimated organic
  • the film formation of the regions S1 and S2 by the material will not be blocked by the fine metal mask 18, thereby compensating the film formation of the regions S1 and S2, and improving the covering performance of the film layer.
  • the open mask will still cause the aforementioned "shadow effect" at the pixel unit at the edge of the substrate.
  • the pixel definition layer will also block to form a "shadow effect", the principle is the same.
  • the evaporation deposition equipment provided by the present invention can solve the "shadow effect" caused by the above-mentioned various factors and improve the film-forming coverage.
  • a linear vapor deposition source 14 is equipped with a film formation rate monitor 19.
  • the working principle of the film formation rate monitor 19 is as follows.
  • the film is also formed on the film formation rate monitor 19, and the film thickness on the film formation rate monitor 19 can be measured.
  • the film formation rate of the nozzle is mainly determined by the sublimation rate and concentration of the evaporation material.
  • the sublimation rate and concentration of the material are affected by many factors, such as the evaporation temperature, the thermal conductivity of the holding tank material, and the amount of the evaporation material.
  • the multiple nozzles a1, a2, and a3 of the cover plate 171 are in communication with the inside of the containing tank 16, and are sprayed from different nozzles.
  • the sublimation materials all come from the same holding tank 16, and the factors affecting the rate and concentration of the material sublimation are the same. Therefore, the film forming rate of each nozzle a1, a2, and a3 is the same, and only one film forming rate monitor 19 is required.
  • the accommodating tank of each point evaporation source is independent, a separate film thickness monitoring equipment must be set up, and the equipment cost is high.
  • one linear evaporation source 14 is equipped with only one film formation rate monitor 19, which saves equipment cost.
  • the capacity of the holding tank of the existing point source evaporation deposition equipment is relatively small, while the present invention provides evaporation deposition equipment.
  • the linear evaporation source 14 has a large capacity, generally at 1000 cubic centimeters, saving additional evaporation materials. Time, evaporation rate debugging time, greatly improve the production time.
  • each point evaporation source in the prior art is independent of each other.
  • each point evaporation source must be individually debugged, and the evaporation rate adjustment takes a long time;
  • the present invention provides evaporation deposition equipment, multiple nozzles are communicated with the inside of the containing tank, the evaporation rate is consistent, and the rate adjustment is performed at the same time, and the test time is short.
  • the vapor deposition equipment includes a plurality of linear vapor deposition sources 141, 142, and 143, and the plurality of linear vapor deposition sources 141, 142, and 143
  • the nozzle distribution is completely consistent, and the linear vapor deposition sources 141, 142, and 143 are arranged at the same interval and also rotate relative to the substrate at the same speed.
  • the nozzle distribution, arrangement interval, and relative rotation speed of the multiple linear vapor deposition sources may be different.
  • the central axis of the linear vapor deposition source 14 and the central axis 131 of the substrate are asymmetric, and the plurality of nozzles are located only on one side of the central axis 131 of the substrate.
  • the multiple nozzles of the linear vapor deposition source 144 are symmetrically distributed with respect to the central axis 131 of the substrate.
  • the evaporation deposition equipment of FIG. 9 has more nozzles, and the film formation rate is faster.
  • FIG. 10 is a schematic diagram of a method for forming an organic material layer using the evaporation deposition equipment provided by the present invention. Please refer to FIGS. 3, 4, 5 and 10 , The method of using evaporation deposition equipment to form a film of an organic material layer includes:
  • the film parameters of the organic film deposited on the substrate 13 are measured.
  • the film parameters include, but are not limited to, film thickness, film uniformity, and film coverage.
  • the uniformity of the film refers to the difference in the thickness of the organic film in a plane area. The smaller the thickness difference, the better the uniformity of the film in the area.
  • Film coverage refers to the coverage of the organic film layer on the undulating steps in the undulating area of the film, such as the pixel definition layer and the undulating area of the pixel unit. For example, the closer the film to the step is to the plane area The film thickness is, the better the film-forming coverage of the organic film layer is.
  • Cover plate replacement step select another cover plate according to the film layer parameters in the measurement step, the film formation distribution corresponding to the other cover plate compensates the film layer parameters in the measurement step, and the other cover plate Assembled with the receiving groove.
  • the film layer parameters of the cover plate used in the first vapor deposition deposition step cannot meet the requirements of the process standards, such as film thickness, film uniformity, or film coverage, one or more of the parameters are not When meeting the requirements of the process standard, it is necessary to replace the cover plate. Because the film formation distribution corresponding to each cover plate depends on the nozzle distribution of the cover plate, selecting a cover plate with more suitable nozzle distribution can improve the film formation distribution. When selecting a replacement cover, the replacement cover can be selected according to the film parameters obtained in the measurement step. The nozzle distribution of the replacement cover can correct the previous insufficient film formation.
  • the film parameter of the previous film formation is that the film thickness uniformity meets the standard, but the film thickness exceeds the standard, that is to say, the nozzle distribution of the cover plate used in the previous vapor deposition deposition step satisfies good uniformity but The film formation rate is too slow, so in the cover plate replacement step, a nozzle with a larger nozzle diameter can be selected, and the number of nozzles, nozzle setting density, different nozzle shapes, and nozzle tilt angles are all the same.
  • the selected replacement cover can be the one corresponding to area B Larger nozzle diameter or higher nozzle density, etc.
  • the cover plate replacement step includes first disassembling the cover plate originally assembled with the containing groove, and then assembling the replacement cover plate and the containing groove.
  • Perform calibration evaporation deposition step put the substrate 13 into the evaporation deposition chamber 10, the rotating mechanism makes the substrate and the linear evaporation source relatively rotate around the central axis of the substrate, and Evaporation deposition is performed on the substrate to form a film.
  • the present invention provides an evaporation deposition equipment and a method of use thereof. It has the following advantages: first, one containing tank and corresponding multiple cover plates, each cover plate can be assembled and disassembled with the containing tank, and the multiple cover plates The nozzle distribution is different, and the thickness distribution of the film formed in the organic material layer film forming process is also different. The appropriate cover can be selected according to the requirements of the process, and only the cover can be replaced, which saves cost and time. Second, in the vapor deposition film forming process, the linear vapor deposition source and the substrate are relatively rotating, which can compensate for the shadow effect caused by the mask or the pixel definition layer, and improve the coverage of the film.
  • the multiple nozzles of the cover plate are communicated with the inside of the containing tank, the evaporation rate is the same, and the rate adjustment is performed at the same time, which takes a short test time, and only one film forming rate monitor is required to reduce the equipment cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种蒸镀沉积设备(10),包括:一个沉积腔体(11);设置于沉积腔体(11)内的基板保持装置(12),用于固定保持基板(13);线型蒸镀源(14),线型蒸镀源(14)包括一个容纳装置,用于容纳蒸镀材料,容纳装置包括一个容纳槽(16)和多个盖板(171,172,173,174),多个盖板中的每个盖板可和容纳槽(16)组装或拆分,容纳槽(16)每次和多个盖板中的一个盖板进行组装;每个盖板上设置有多个喷嘴,多个盖板的喷嘴分布各不相同;多个盖板中的每个盖板和容纳槽(16)组装后,盖板的多个喷嘴都和容纳槽(16)的内部相通;旋转机构(151),旋转机构(151)使基板(13)和线型蒸镀源(14)绕基板(13)的中心轴(131)相对转动。还提供使用蒸镀沉积设备(10)进行有机材料层成膜工艺的方法。

Description

一种蒸镀沉积设备及其使用方法 技术领域
本发明涉及一种蒸镀沉积设备,更具体地,涉及一种提高薄膜沉积覆盖性能的蒸镀沉积设备,还涉及使用该蒸镀沉积设备来进行有机材料层成膜工艺的方法。
背景技术
有机发光显示装置包括阳极、阴极和设置于阳极和阴极之间的有机膜层,有机膜层中包括多层堆叠的有机材料层,如有机发光层、电子注入层、电子传输层、空穴传输层、空穴注入层等。有机膜层通常是通过蒸镀沉积成膜的方式形成的,现有技术中蒸镀沉积设备分为两种,一种是点源蒸镀沉积设备,一种是线源蒸镀沉积设备。
图1为现有技术中一种点源蒸镀沉积设备的示意图,如图所示,包括一个沉积腔体101,在沉积腔体101内设置有基板保持装置102,基板保持装置102固定保持一基板103;沉积腔体101内设置有多个点蒸镀源,图1中示出了两个点蒸镀源105和106,点蒸镀源105包括一个容纳装置1051和设置于容纳装置1051上的喷嘴1052,在点蒸镀源105上还设置有一个蒸镀速率监控器107,用于监控喷嘴1052升华蒸镀材料的速率。同样地,点蒸镀源106也对应设置的有容纳装置1061、喷嘴1062、蒸镀速率监控器108。由于从喷嘴1052、1062喷出的升华蒸镀材料的浓度分布是从喷嘴中心位置到两侧位置递减的,并且在垂直于喷嘴的平面上,越靠近喷嘴该浓度差越大,因此要将点 蒸镀源105和106偏离基板103设置,让升华的蒸镀材料在沉积腔体101扩散均匀后在沉积附着在基板103上。在蒸镀沉积过程中,基板保持装置102带动基板103围绕其中心轴转动,点蒸镀源105和106喷出的升华蒸镀材料扩散后在基板103上沉积成膜。点源蒸镀沉积设备的缺点是,第一、点源蒸镀沉积设备的容纳装置的容量较小,一般在250立方厘米左右,每次蒸镀材料使用完后都要进行材料补充、蒸镀速率调试等工作,大大限制了生产时间;第二、因点蒸镀源是相互独立的,要确认每个点蒸镀源对膜层厚度的影响必须对每个点蒸镀源单独进行调试,蒸镀速率调试占用时间长;第三、每个点蒸镀源要单独设立膜厚监控器,设备造价高。
图2为现有技术中一种线源蒸镀沉积设备的示意图,如图所示,在沉积腔体内,基板1的长度方向和线型蒸镀源10的长度方向平行设置,线型蒸镀源10上设置有多个喷嘴。在蒸镀沉积过程中,基板1或者线型蒸镀源10沿着扫描方向移动,线型蒸镀源10各喷嘴喷出的升华蒸镀材料扩散后在基板1上沉积成膜。线源蒸镀沉积设备的缺点是成膜的覆盖性差。在有机发光显示基板上设置有像素单元区域和像素单元间隔区域,在像素单元间隔区域设置有凸起的像素定义层,在蒸镀工艺中,要使用精细金属掩膜板遮挡基板1的像素单元间隔区域暴露出像素单元区域,让升华的蒸镀材料沉积在像素单元区域,但因为精细金属掩膜板的边角对像素单元区域边角的遮挡,即“阴影效应”的影响,蒸镀材料在像素单元区域边角的成膜薄,并且凸起的像素定义层也对像素单元区域成膜具有“阴影效应”,因为基板1和线型蒸镀源10是相对线性运动的,该“阴影效应”造成的影响没有办法进行补偿,所以有机膜层难以覆盖像素单元区域边角以及像素定义层的侧壁进而造成显示不良,对于小尺寸高分辨率的有机发光显示装置来说更为严重。另外,线型蒸 镀源10上的多个喷嘴是固定的,如果多个喷嘴的分布不适用当前成膜工艺不符合工艺标准要求,需要将整个线型蒸镀源10替换掉,设备造价高。
发明内容
本发明提供一种蒸镀沉积设备,包括:一个沉积腔体;设置于所述沉积腔体内的基板保持装置,用于固定保持基板;线型蒸镀源,所述线型蒸镀源包括一个容纳装置,用于容纳蒸镀材料,所述容纳装置包括一个容纳槽和多个盖板,所述多个盖板中的每个盖板可和所述容纳槽组装或拆分,所述容纳槽每次和所述多个盖板中的一个盖板进行组装;所述每个盖板上设置有多个喷嘴,所述多个盖板的喷嘴分布各不相同;所述多个盖板中的每个盖板和所述容纳槽组装后,所述盖板的多个喷嘴都和所述容纳槽的内部相通;旋转机构,所述旋转机构使所述基板和所述线型蒸镀源绕所述基板的中心轴相对转动。
本发明还提供使用上述蒸镀沉积设备进行有机材料层成膜工艺的方法,包括:
首次蒸镀沉积步骤:将所述多个盖板中的一盖板和所述容纳槽组装,将所述基板放入所述沉积腔体内,所述旋转机构使所述基板和所述线型蒸镀源绕所述基板的中心轴相对转动,并在所述基板上进行蒸镀沉积成膜;
测量步骤:测量所述基板上的有机膜层的膜层参数;
判断步骤:判断所述膜层参数是否符合工艺标准要求,如符合则进入正常生产;如不符合则执行盖板替换步骤;
盖板替换步骤:根据测量步骤中的膜层参数选取另一盖板,所述另一盖板对应的成膜分布补正所述测量步骤中的膜层参数,将所述另一盖板和所述 容纳槽组装;
校正蒸镀沉积步骤:将所述基板放入所述沉积腔体内,所述旋转机构使所述基板和所述线型蒸镀源绕所述基板的中心轴相对转动,并在所述基板上进行蒸镀沉积成膜;
重复所述测量步骤、判断步骤、盖板替换步骤、校正蒸镀沉积步骤,直至所述膜层参数符合工艺标准要求。
本发明提供蒸镀沉积设备及使用该蒸镀沉积设备进行有机材料层成膜工艺的方法,具有以下优点:第一、一个容纳槽和对应多个盖板,每个盖板都可以和容纳槽进行组装和拆分,而且多个盖板的喷嘴分布不同,其在有机材料层成膜工艺中形成的膜层厚度分布也不同,可以根据工艺的要求选择适当的盖板,并且只要更换盖板即可,节省了费用和时间。第二、蒸镀成膜工艺中,线型蒸镀源和基板为相对转动的,可补偿掩膜板或者像素定义层造成的阴影效应,提高膜层的覆盖性。第三、盖板多个喷嘴都和容纳槽的内部相通,蒸镀速率一致,同时进行速率调试,占用测试时间短,并且只用设置一个成膜速率监控器,降低设备造价。
附图说明
图1为现有技术中一种点源蒸镀沉积设备的示意图;
图2为现有技术中一种线源蒸镀沉积设备的示意图;
图3为本发明一实施例提供的蒸镀沉积设备的示意图;
图4和图5为本发明实施例提供的多个盖板的示意图;
图6和图7为蒸镀沉积设备成膜时的放大示意图;
图8为本发明另一实施例提供蒸镀沉积设备的示意图;
图9为本发明再一实施例提供蒸镀沉积设备的示意图;
图10为本发明实施例提供的使用蒸镀沉积设备进行有机材料层成膜工艺的方法的示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。贯穿本说明书中,相同或相似的附图标号代表相同或相似的结构、元件或流程。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
图3为本发明一实施例提供的一种蒸镀沉积设备的示意图,如图所示,蒸镀沉积设备10包括:一个沉积腔体11,设置于沉积腔体11内的基板保持装置12,基板保持装置12用于固定保持基板13,该基板13可以是玻璃基板、柔性基板或者半导体硅基基板,该基板13可以是长方形基板,也可以是硅圆圆形基板,或者为不规则形状基板等。还包括至少一个线型蒸镀源14,该线型蒸镀源14包括一个容纳装置用于容纳蒸镀材料,该容纳装置包括一个容纳槽16和多个盖板,该多个盖板中的每个盖板可和容纳槽16组装或拆分,并且容纳槽16每次只和该多个盖板中的一个盖板进行组装,如图3所示,图中示出了一个盖板171和容纳槽16组装在一起。
多个盖板中的每个盖板上都设置有多个喷嘴,多个盖板中的每个盖板和容纳槽16组装后,盖板的多个喷嘴都和容纳槽16的内部相通。如图3所示,盖板171包括多个喷嘴a1、a2和a3,盖板171和容纳槽16组装后,喷嘴a1、 a2和a3和容纳槽16的内部相通,容纳槽16内部的蒸镀材料加热升华后,会以同样的速率从喷嘴a1、a2和a3喷出。
蒸镀沉积设备10的基板保持装置12还包括第一旋转机构151,该第一旋转机构151带动基板13绕着基板13的中心轴131转动,同时线型蒸镀源绕14保持静止不动。随着基板13和线型蒸镀源绕14的相对转动,升华的蒸镀材料从各喷嘴a1、a2和a3中以同一速率喷出,然后扩散并沉积在基板103上。
在其他实施方式中,还可以设置线型蒸镀源14包括第二旋转机构152,该第二旋转机构152带动线型蒸镀源14绕着基板13的中心轴131转动,同时基板13保持静止不动。或者,在其他实施方式中,基板保持装置12包括第一旋转机构151,该第一旋转机构151带动基板13绕着基板13的中心轴131向第一方向转动,同时线型蒸镀源14包括第二旋转机构152,该第二旋转机构152带动线型蒸镀源14绕着基板13的中心轴131和第一方向相反的第二方向转动。以上方式都可以形成基板13和线型蒸镀源14绕基板13的中心轴131相对转动。
本发明实施例提供的蒸镀沉积设备中,多个盖板的喷嘴分布各不相同。参考图3、图4和图5,为本发明实施例一提供的多个盖板的示意图,图4是从俯视方向示意盖板,图5从垂直于容纳槽的方向示意盖板。
在图3中,在垂直于基板13平面的方向,盖板171的多个喷嘴中至少有一个喷嘴a3和基板13不重叠。喷嘴喷出的升华有机材料的浓度线性变化性较强,在越靠近喷嘴的方向,有机材料的浓度呈现在喷嘴中心方向浓度高、在喷嘴两侧方向浓度低,而越远离喷嘴,这种浓度差越小,有机材料的浓度更为均匀,成膜的均一性也更好。在垂直于基板13平面的方向,将至少一个 喷嘴或全部喷嘴设置于和基板13不重叠,也就是拉远喷嘴和基板13距离,让喷嘴喷出的有机材料经过扩散减小浓度差后再到达基板13的表面进行沉积成膜。
在图4(a)中,盖板171的喷嘴分布为,多个喷嘴a1、a2和a3的形状和大小相同,但是设置密度不同,从靠近基板103的中心轴1031到远离基板103的中心轴1031的方向,多个喷嘴a1、a2和a3的设置密度增加,喷嘴a2、a3比喷嘴a1、a2设置的更为紧密。在图4(b)中,盖板172的喷嘴分布为多个喷嘴直径相同的喷嘴b排列为密度相同的两排,但盖板172的喷嘴b的直径小于盖板171的喷嘴直径。在图4(c)中,盖板173的喷嘴分布为,喷嘴c1、c2和c3的直径相同,喷嘴c4的直径大于喷嘴c1、c2和c3的直径,喷嘴c4位于远离基板103的中心轴1031的方向。在图4(d)中,盖板174的喷嘴分布为,喷嘴d1、d2和d3的形状和直径相同为圆形,喷嘴d4的形状为一个半圆形。在图5中,盖板175的喷嘴分布为,喷嘴e1、e2垂直于盖板175设置,而喷嘴e3相对于盖板175具有一个倾角,该倾角的范围可以在25度到35度之间。不同的喷嘴分布可以在蒸镀成膜时形成的不同的膜层分布。
另外,本发明以上实施例及附图只是示意的列举出几种盖板的喷嘴分布,并不是对本发明的全部列举或者限制。
现有技术中的线源蒸镀沉积设备,蒸镀材料的容纳槽和喷嘴是一体化的。在膜厚调试阶段,一般是在制造工厂的设备工艺调试阶段,如果发现成膜的均一性和覆盖性不符合工艺要求,要进行调整的话需要将整个线型蒸镀源替换掉。线型蒸镀源除了容纳槽还包括加热装置、精密组装结构等,造价非常昂贵,并且线型蒸镀源更换后还要重新做和蒸镀沉积设备的组装、精度调整等,也花费大量的人力和时间。本发明提供的蒸镀沉积设备,一个容纳 槽16和对应多个盖板,每个盖板都可以和容纳槽16进行组装和拆分,而且多个盖板的喷嘴分布不同,其在有机材料层成膜工艺中形成的膜层厚度分布也不同,可以根据工艺的要求选择适当的盖板,并且只要更换盖板即可,节省了费用和时间。
另外,现有技术中的线源蒸镀沉积设备因基板和线型蒸镀源是相对线性运动的,造成了“阴影效应”无法补偿的问题,而本发明提供的蒸镀沉积设备,基板和线型蒸镀源是绕着基板的中心轴相对转动的,可以解决“阴影效应”带来的成膜覆盖性差的问题。具体请参考图6和图7,图6和图7为使用本发明提供的蒸镀沉积设备成膜时的放大示意图,图6为截面方向的示意图,图7为俯视方向的示意图。在对基板13进行蒸镀时,一般会使用掩膜板,可以为精细金属掩膜板,也可以为开放式掩膜板,图6所示为使用精细金属掩膜板18的情况。基板13包括多个像素单元132区域,以及围绕像素单元区域132的像素定义层133,使用精细金属掩膜板18遮挡像素定义层133区域,暴露像素单元132区域,同时使用线型蒸镀源14进行有机材料的蒸镀。当线型蒸镀源14在AA'方向时,因为精细金属掩膜板18的遮挡造成的“阴影效应”,有机材料在区域S1和S2成膜覆盖性差。如果是现有技术中的线源蒸镀沉积设备,基板和线型蒸镀源是相对线性运动的,即在图6所示的截面方向,基板和线型蒸镀源的相对位置是不变的,因此区域S1和S2的“阴影效应”无法补偿。而在本发明中,基板13和线型蒸镀源14是相对转动的,当线型蒸镀源14转动到BB'方向时,因角度的变化,线型蒸镀源14蒸镀升华的有机材料对区域S1和S2的成膜不会被精细金属掩膜板18遮挡,从而补偿了区域S1和S2的成膜量,提高了膜层的覆盖性能。
如果使用开放式掩膜板,在基板最边缘的像素单元处,开放式掩膜板仍 然会造成上述“阴影效应”。同时在各个像素单元的区域的边缘,像素定义层也会遮挡形成“阴影效应”,原理都是相同的。本发明提供的蒸镀沉积设备可以解决上述各种因素造成的“阴影效应”,提高成膜覆盖性。
进一步地,请参考图3,一个线型蒸镀源14配置有一个成膜速率监控器19。成膜速率监控器19的工作原理如下,当升华的蒸镀材料在基板13上成膜,也在成膜速率监控器19上成膜,测量成膜速率监控器19上的膜层厚度就可以知道喷嘴的成膜速率。喷嘴的成膜速率主要是蒸镀材料的升华速率和浓度决定的,材料升华的速度和浓度由多方面因素影响,如蒸镀温度、容纳槽材料的热传导率、蒸镀材料的量等。本发明实施例提供的蒸镀沉积设备中,因为当盖板171容纳槽16组装后,盖板171的多个喷嘴a1、a2、a3都和容纳槽16的内部相通,同不同喷嘴喷出的升华材料都出自同一容纳槽16,影响材料升华的速率和浓度的因素都相同,因此各喷嘴a1、a2、a3的成膜速率相同,只需要设置一个成膜速率监控器19即可。
现有技术的点源蒸镀沉积设备,因每个点蒸镀源的容纳槽独立,要单独设立膜厚监控设备,设备造价高。本发明提供的蒸镀沉积设备和现有技术的点源蒸镀沉积设备相比,一个线型蒸镀源14只配置一个成膜速率监控器19,节省设备造价。另外,现有的点源蒸镀沉积设备的容纳槽的容量较小,而本发明提供蒸镀沉积设备,线型蒸镀源14的容量大,一般在1000立方厘米作用,节省蒸镀材料补充时间、蒸镀速率调试时间,大大提高了生产时间。再者,现有技术的点蒸镀源是相互独立的,要确认每个点蒸镀源对膜层厚度的影响必须对每个点蒸镀源单独进行调试,蒸镀速率调试占用时间长;而本发明提供蒸镀沉积设备,多个喷嘴都和容纳槽的内部相通,蒸镀速率一致,同时进行速率调试,占用测试时间短。
可选地,如图8所述,在另一种实施方式中,蒸镀沉积设备包括多个线型蒸镀源141、142和143,该多个线型蒸镀源141、142和143的喷嘴分布完全一致,并且线型蒸镀源141、142和143以同样的间隔设置,也以同样的速率和基板相对转动。当然,在其他实施方式中,多个线型蒸镀源的喷嘴分布、设置间隔、相对转动速度可以不同。
在图3中,线型蒸镀源14的中心轴和基板的中心轴131不对称,多个喷嘴只位于基板的中心轴131的一侧。可选地,如图9所示,在再一种实施方式中,线型蒸镀源144的多个喷嘴相a对于基板的中心轴131的对称分布。相比于图3所示结构,图9的蒸镀沉积设备因具备更多喷嘴,成膜速率更快。
本发明还提供上述蒸镀沉积设备的使用方法,图10为使用本发明提供的蒸镀沉积设备进行有机材料层成膜工艺的方法的示意图,请结合图3、图4、图5和图10,使用蒸镀沉积设备进行有机材料层成膜工艺的方法,包括:
1、执行首次蒸镀沉积步骤:将多个盖板171至175中的一盖板和容纳槽14组装,将基板13放入蒸镀沉积腔体内,旋转机构使基板13和线型蒸镀源14绕基板13的中心轴131相对转动,并在基板13上进行蒸镀沉积成膜。
2、执行测量步骤:测量基板13上的有机膜层的膜层参数。
在首次蒸镀沉积完成后,测量在基板13上有机膜层蒸镀沉积成膜的膜层参数,该膜层参数包括但不限于膜层厚度、膜层均一性、膜层覆盖性等。膜层均一性是指在一个平面区域内,有机膜层厚度的差异,厚度差异越小,则该区域内的膜层均一性越好。膜层覆盖性是指在膜层有起伏的区域内,比如像素定义层和像素单元的起伏区域内,有机膜层对起伏台阶处的覆盖性,如对台阶的膜层越接近平面区域内的膜厚,则有机膜层的成膜覆盖性越好。
3、执行判断步骤:判断膜层参数是否符合工艺标准要求,如符合则进 入正常生产;如不符合则执行盖板替换步骤。
4、盖板替换步骤:根据测量步骤中的膜层参数选取另一盖板,所述另一盖板对应的成膜分布补正所述测量步骤中的膜层参数,将所述另一盖板和所述容纳槽组装。
当首次蒸镀沉积步骤中使用的盖板成膜的膜层参数无法满足工艺标准要求时,比如膜层厚度、膜层均一性或者膜层覆盖性等多项参数中的一项或多项不符合工艺标准要求时,需要替换盖板,因每个盖板对应的成膜分布取决于盖板的喷嘴分布,选取喷嘴分布更为合适的盖板可改善成膜分布情况。选取替换盖板时,可根据在测量步骤获取的膜层参数来选取替换盖板,替换盖板的喷嘴分布可补正前次的成膜不足。比如,前次成膜的膜层参数为,膜层厚度均一性达标,但是膜层厚度超标,也就是说前次蒸镀沉积步骤中使用的盖板的喷嘴分布满足有较好的均一性但是成膜速率太慢,那么在盖板替换步骤中可以选取一个盖板的喷嘴的喷嘴直径较大的,而喷嘴数量、喷嘴设置密度、喷嘴形状不同和喷嘴的倾斜角度都不变。再比如,首次蒸镀沉积后的测量参数显示,A区域内的膜层参数都符合工艺标准要求,而B区域的膜层厚度低于工艺标准,则选取的替换盖板可为对应B区域的喷嘴直径更大或者喷嘴密度较大等。当然在盖板替换步骤中包括先将原先和容纳槽组装的盖板拆分,再将替换盖板和容纳槽组装。
5、执行校正蒸镀沉积步骤:将基板13放入蒸镀沉积腔体10内,旋转机构使所述基板和所述线型蒸镀源绕所述基板的中心轴相对转动,并在所述基板上进行蒸镀沉积成膜。
6、重复所述测量步骤、判断步骤、盖板替换步骤、校正蒸镀沉积步骤,直至膜层参数符合工艺标准要求。
本发明提供蒸镀沉积设备及其使用方法,具有以下优点:第一、一个容纳槽和对应多个盖板,每个盖板都可以和容纳槽进行组装和拆分,而且多个盖板的喷嘴分布不同,其在有机材料层成膜工艺中形成的膜层厚度分布也不同,可以根据工艺的要求选择适当的盖板,并且只要更换盖板即可,节省了费用和时间。第二、蒸镀成膜工艺中,线型蒸镀源和基板为相对转动的,可补偿掩膜板或者像素定义层造成的阴影效应,提高膜层的覆盖性。第三、盖板多个喷嘴都和容纳槽的内部相通,蒸镀速率一致,同时进行速率调试,占用测试时间短,并且只用设置一个成膜速率监控器,降低设备造价。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (13)

  1. 一种蒸镀沉积设备,其特征在于,包括:
    一个沉积腔体;
    设置于所述沉积腔体内的基板保持装置,用于固定保持基板;
    线型蒸镀源,所述线型蒸镀源包括一个容纳装置,用于容纳蒸镀材料,所述容纳装置包括一个容纳槽和多个盖板,所述多个盖板中的每个盖板可和所述容纳槽组装或拆分,所述容纳槽每次和所述多个盖板中的一个盖板进行组装;
    所述每个盖板上设置有多个喷嘴,所述多个盖板的喷嘴分布各不相同;所述多个盖板中的每个盖板和所述容纳槽组装后,所述盖板的多个喷嘴都和所述容纳槽的内部相通;
    旋转机构,所述旋转机构使所述基板和所述线型蒸镀源绕所述基板的中心轴相对转动。
  2. 如权利要求1所述的蒸镀沉积设备,其特征在于,所述每个盖板对应的成膜分布取决于所述盖板的喷嘴分布。
  3. 如权利要求1所述的蒸镀沉积设备,其特征在于,所述喷嘴分布包括的喷嘴数量不同、喷嘴设置密度不同、喷嘴直径不同、喷嘴形状不同或者喷嘴的倾斜角度不同。
  4. 如权利要求3所述的蒸镀沉积设备,其特征在于,从靠近所述基板的中心轴到远离所述基板的中心轴方向,所述多个喷嘴的设置密度增加。
  5. 如权利要求3所述的蒸镀沉积设备,其特征在于,从靠近所述基板的中心轴到远离所述基板的中心轴方向,所述多个喷嘴的喷嘴直径增大。
  6. 如权利要求3所述的蒸镀沉积设备,其特征在于,所述多个喷嘴中至少有一个喷嘴和所述线型蒸镀源的平面之间具有25~35度的夹角。
  7. 如权利要求3所述的蒸镀沉积设备,其特征在于,在垂直于所述基板平面的方向,所述多个喷嘴中至少有一个喷嘴和所述基板不重叠。
  8. 如权利要求1所述的蒸镀沉积设备,其特征在于,所述线型蒸镀源配置一个成膜速率监控器。
  9. 如权利要求1所述的蒸镀沉积设备,其特征在于,所述基板保持装置设置有第一旋转机构,所述第一旋转机构带动所述基板保持装置绕所述基板的中心轴转动。
  10. 如权利要求1所述的蒸镀沉积设备,其特征在于,所述线型蒸镀源设置有第二旋转机构,所述第二旋转机构带动所述线型蒸镀源绕所述基板的中心轴转动。
  11. 如权利要求1所述的蒸镀沉积设备,其特征在于,所述蒸镀沉积设备包括多个所述线型蒸镀源。
  12. 一种使用权利要求1所述的蒸镀沉积设备进行有机材料层成膜工艺的方法,其特征在于,包括:
    首次蒸镀沉积步骤:将所述多个盖板中的一盖板和所述容纳槽组装,将所述基板放入所述沉积腔体内,所述旋转机构使所述基板和所述线型蒸镀源绕所述基板的中心轴相对转动,并在所述基板上进行蒸镀沉积成膜;
    测量步骤:测量所述基板上的有机膜层的膜层参数;
    判断步骤:判断所述膜层参数是否符合工艺标准要求,如符合则进入正常生产;如不符合则执行盖板替换步骤;
    盖板替换步骤:根据测量步骤中的膜层参数选取另一盖板,所述另一盖板对应的成膜分布补正所述测量步骤中的膜层参数,将所述另一盖板和所述容纳槽组装;
    校正蒸镀沉积步骤:将所述基板放入所述沉积腔体内,所述旋转机构使所述基板和所述线型蒸镀源绕所述基板的中心轴相对转动,并在所述基板上进行蒸镀沉积成膜;
    重复所述测量步骤、判断步骤、盖板替换步骤、校正蒸镀沉积步骤,直至所述膜层参数符合工艺标准要求。
  13. 如权利要求12所述的有机材料层成膜工艺的方法,其特征在于,所述膜层参数包括膜层厚度、膜层均一性和膜层覆盖性。
PCT/CN2019/096803 2019-03-15 2019-07-19 一种蒸镀沉积设备及其使用方法 WO2020186671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910200008.5A CN110158036A (zh) 2019-03-15 2019-03-15 一种蒸镀沉积设备及其使用方法
CN201910200008.5 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020186671A1 true WO2020186671A1 (zh) 2020-09-24

Family

ID=67638481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096803 WO2020186671A1 (zh) 2019-03-15 2019-07-19 一种蒸镀沉积设备及其使用方法

Country Status (2)

Country Link
CN (1) CN110158036A (zh)
WO (1) WO2020186671A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110158036A (zh) * 2019-03-15 2019-08-23 上海视涯信息科技有限公司 一种蒸镀沉积设备及其使用方法
CN110865594A (zh) * 2019-11-18 2020-03-06 浙江长兴昊隆电子科技有限公司 一种高性能金属化薄膜的生产监控方法及装置
JP7314209B2 (ja) * 2021-06-30 2023-07-25 キヤノントッキ株式会社 成膜装置、成膜方法及び蒸発源ユニット
JP7434261B2 (ja) 2021-12-02 2024-02-20 長州産業株式会社 蒸着装置及び蒸着方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332433A (ja) * 2006-06-16 2007-12-27 Seiko Epson Corp 真空蒸着装置
CN102703866A (zh) * 2012-01-13 2012-10-03 东莞宏威数码机械有限公司 线性蒸发源装置及具有该装置的蒸发速率精控式蒸发设备
US20130260499A1 (en) * 2010-12-14 2013-10-03 Sharp Kabushiki Kaisha Vapor deposition apparatus, vapor deposition method, and method for manufacturing organic electroluminescent display device
CN107604337A (zh) * 2017-08-28 2018-01-19 武汉华星光电半导体显示技术有限公司 一种线性蒸发源侦测装置及其侦测方法
CN109234682A (zh) * 2017-07-10 2019-01-18 合肥欣奕华智能机器有限公司 一种线性蒸发源及真空蒸镀装置
CN110158036A (zh) * 2019-03-15 2019-08-23 上海视涯信息科技有限公司 一种蒸镀沉积设备及其使用方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101962750B (zh) * 2009-07-24 2013-07-03 株式会社日立高新技术 真空蒸镀方法及其装置
KR20130045432A (ko) * 2011-10-26 2013-05-06 주식회사 탑 엔지니어링 회전식 증착 장치
CN209923420U (zh) * 2019-03-15 2020-01-10 上海视涯信息科技有限公司 一种蒸镀沉积设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332433A (ja) * 2006-06-16 2007-12-27 Seiko Epson Corp 真空蒸着装置
US20130260499A1 (en) * 2010-12-14 2013-10-03 Sharp Kabushiki Kaisha Vapor deposition apparatus, vapor deposition method, and method for manufacturing organic electroluminescent display device
CN102703866A (zh) * 2012-01-13 2012-10-03 东莞宏威数码机械有限公司 线性蒸发源装置及具有该装置的蒸发速率精控式蒸发设备
CN109234682A (zh) * 2017-07-10 2019-01-18 合肥欣奕华智能机器有限公司 一种线性蒸发源及真空蒸镀装置
CN107604337A (zh) * 2017-08-28 2018-01-19 武汉华星光电半导体显示技术有限公司 一种线性蒸发源侦测装置及其侦测方法
CN110158036A (zh) * 2019-03-15 2019-08-23 上海视涯信息科技有限公司 一种蒸镀沉积设备及其使用方法

Also Published As

Publication number Publication date
CN110158036A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2020186671A1 (zh) 一种蒸镀沉积设备及其使用方法
KR101135544B1 (ko) 마스크 조립체, 이의 제조 방법 및 이를 이용한 평판표시장치용 증착 장치
KR101901072B1 (ko) 증발원 장치, 성막 장치, 성막 방법 및 전자 디바이스의 제조 방법
KR100773249B1 (ko) 유기 전계 발광층 형성용 마스크
KR20100094802A (ko) 증착 장치용 마스크 밀착 수단 및 이를 이용한 증착 장치
JP2017509794A (ja) 有機材料用の蒸発源
US10640861B2 (en) Evaporation mask and evaporation device
CN108823545B (zh) 晶振探头结构和蒸镀装置
US8431493B2 (en) Replaceable substrate masking on carrier and method for processing a substrate
KR20220017446A (ko) 증발원 장치 및 증착 장치
US20140127833A1 (en) Deposition amount measuring apparatus, depositing apparatus including the same, and method for manufacturing light emitting display
CN209923420U (zh) 一种蒸镀沉积设备
KR101992337B1 (ko) 대면적 기판 박막코팅장치
KR101605310B1 (ko) 증착기의 마스크 센터링 블록
KR101287652B1 (ko) 박막 형성장치
KR100637180B1 (ko) 증착 방법 및 이를 위한 증착 장치
KR101173603B1 (ko) 유기 전계 발광층의 증착 장치
JP2012241237A (ja) 成膜装置
WO2013042247A1 (ja) 薄膜形成装置
JP7088891B2 (ja) 蒸発源装置及び蒸着装置
KR101219061B1 (ko) 스핀노즐 유닛 사이의 간격을 줄인 가스분사 모듈 및 이를 구비하는 직립방식 증착장치
KR100656818B1 (ko) 유기 전계 발광층 형성용 마스크
TWI816883B (zh) 蒸鍍裝置
TW201814070A (zh) 成膜裝置
JP5256363B2 (ja) 薄膜形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919721

Country of ref document: EP

Kind code of ref document: A1