WO2020186482A1 - 聚合物及其制备方法及应用 - Google Patents

聚合物及其制备方法及应用 Download PDF

Info

Publication number
WO2020186482A1
WO2020186482A1 PCT/CN2019/078893 CN2019078893W WO2020186482A1 WO 2020186482 A1 WO2020186482 A1 WO 2020186482A1 CN 2019078893 W CN2019078893 W CN 2019078893W WO 2020186482 A1 WO2020186482 A1 WO 2020186482A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
preparing
film
peroxide
ultraviolet
Prior art date
Application number
PCT/CN2019/078893
Other languages
English (en)
French (fr)
Inventor
陈少军
陈恒
黄俊贤
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2019/078893 priority Critical patent/WO2020186482A1/zh
Publication of WO2020186482A1 publication Critical patent/WO2020186482A1/zh
Priority to US17/150,831 priority patent/US11407889B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/12Separation of polymers from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/26Treatment of polymers prepared in bulk also solid polymers or polymer melts
    • C08F6/28Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the invention belongs to the field of polymers, and specifically relates to a polymer with ultraviolet absorption function and a preparation method and application thereof.
  • Ultraviolet light is an invisible light with a wavelength in the range of 10-400 nm and a very high energy.
  • Ultraviolet rays can be subdivided into three parts: UVA (320-400 nm), UVB (280-320 nm) and UVC (100-280 nm).
  • UVC can be blocked by the ozone layer, but due to the continuous expansion of the ozone hole in recent years, the intensity of UVC irradiated by the sun on the earth's surface is also increasing.
  • the energy of ultraviolet rays is enough to destroy many chemical bonds in the material, trigger a photochemical reaction, cause the break of the molecular chain in the material and the decomposition of the compound, and affect the mechanical properties and service life of the material.
  • Polymethyl methacrylate is an important class of engineering plastics. It has the advantages of high light transmittance, easy processing, good weather resistance, etc., and is widely used in aviation, construction, agriculture, optical devices and other fields. However, polymethyl methacrylate itself has poor UV shielding performance, which limits its further application in actual production and life. The development of UV shielding materials based on polymethyl methacrylate has become a research hotspot and has attracted the attention of many scientific researchers.
  • the method for improving the ultraviolet shielding performance of polymethyl methacrylate is usually doping with ultraviolet absorbers.
  • ultraviolet absorbers There are two types of ultraviolet absorbers.
  • Inorganic ultraviolet absorbers mainly mica, talc, carbon black and metal oxides such as TiO2, CeO, ZnO, etc. They have a wide absorption in the ultraviolet band and have good stability. .
  • the compatibility of inorganic ultraviolet absorbers with polymethyl methacrylate is poor, and the transparency of the system is easily reduced after film formation. Migration, blooming, etc. will occur during long-term use, which will affect the service life of the material.
  • organic ultraviolet absorbers which mainly include organic compounds such as salicylate, cinnamate, benzophenone, benzotriazole, triazine, and substituted acrylonitrile.
  • Organic ultraviolet absorbers can achieve ultraviolet absorption through light absorption. They usually have special chromophores and auxochromes. These groups can strongly absorb a certain band of ultraviolet rays and convert the absorbed ultraviolet rays into heat, fluorescence or phosphorescence, thereby achieving the goal of absorbing ultraviolet rays.
  • UV absorbers With the widespread use of organic UV absorbers, many researchers have modified the UV absorbers by using aliphatic chains to improve their compatibility with polymethyl methacrylate. However, the traditional physical blending method will reduce the mechanical properties of polymethyl methacrylate, and these small molecular ultraviolet absorbers will easily escape from the substrate during high temperature processing, reducing the UV shielding performance of the finished product and causing raw materials waste.
  • the purpose of the present invention is to provide a polymer and a preparation method thereof, so as to solve the technical problems of poor compatibility, poor stability, short service life and low ultraviolet shielding efficiency of conventional ultraviolet absorbing polymer materials.
  • Another object of the present invention is to provide a polymer film and a preparation method thereof to solve the problems of insufficient mechanical properties of the current polymer film, high processing difficulty, insufficient ultraviolet shielding range, and low efficiency.
  • one aspect of the present invention provides a polymer composed of methyl methacrylate, ethylene glycol pyridone acid methacrylate, 4-methacrylamido methyl benzoate It is polymerized according to the mass ratio 1: (0.01-10): (0.01-10).
  • Another aspect of the present invention provides a polymer film processed from the polymer.
  • Another aspect of the present invention provides a method for preparing the polymer, which includes the following steps:
  • the copolymer is separated and purified.
  • the temperature of the polymerization reaction is 50-100°C.
  • the reaction time of the polymerization reaction is 2-36 h.
  • the initiator includes cyclohexanone peroxide, benzoyl peroxide, lauroyl peroxide, cumene hydroperoxide, dicyclohexyl peroxide dicarbonate, potassium persulfate, ammonium persulfate and Any one or more of azodiisobutyronitrile.
  • the solvent includes any one or more of acetone, ethanol, dichloromethane, ethyl acetate, tetrahydrofuran and toluene.
  • the protective gas includes one or more of carbon dioxide, nitrogen and argon.
  • the separation and purification treatment includes any one or more of concentration, dissolution-precipitation, water washing, centrifugation and suction filtration.
  • Another aspect of the present invention provides a method for preparing the polymer film, which includes the following steps:
  • the obtained solution is poured into a container and dried at 25-60° C. for 8-24 h to obtain the film.
  • the concentration of the solution is 1-30 wt%.
  • the polymer of the present invention has the advantages of more uniform texture performance, higher ultraviolet shielding efficiency, more comprehensive range, and better mechanical properties.
  • the polymer film is made of the polymer material, it has better UV shielding performance.
  • the ultraviolet rays are almost completely shielded in the range of 200-400nm, that is, the efficiency is higher, the shielding range is wider, and the texture is uniform.
  • the mechanical performance is better, and the good performance enables the film to achieve the same shielding effect in the case of a thinner thickness, thus saving raw materials, saving costs, and having a wider application range.
  • the preparation method of the polymer adopts specific monomer polymerization, which saves raw materials and simplifies the preparation steps under the premise of ensuring performance. It is easier to process because of the uniform texture of a single polymer, and the prepared polymerization UV shielding efficiency Higher, wider range, uniform texture, easy processing, better mechanical properties.
  • the same method for preparing the polymer film due to the use of the polymer, can save raw materials while ensuring performance.
  • the prepared polymer film has higher UV shielding efficiency, wider range, easy processing, uniform texture, and mechanical Better performance, easy to process, and wider application range.
  • FIG. 1 is a NMR spectrum diagram of a terpolymer of an embodiment of the present invention
  • Figure 2 is an ultraviolet absorption test diagram of ethylene glycol pyridone acid methacrylate according to an embodiment of the present invention
  • Figure 3 is an ultraviolet absorption test diagram of methyl 4-methacrylamidobenzoate in an embodiment of the present invention.
  • Fig. 4 is a test diagram of ultraviolet transmittance of a polymer film and a polymethyl methacrylate film according to an embodiment of the present invention.
  • Fig. 4 The ultraviolet absorption range of the film covers 200-400nm, and the absorption efficiency is extremely high.
  • embodiments of the present invention provide a polymer.
  • the polymer is polymerized by methyl methacrylate, ethylene glycol pyridone acid methacrylate, and methyl 4-methacrylamidobenzoate in a mass ratio of 1: (0.01-10): (0.01-10) Clearly
  • a single polymer formed by copolymerization makes the polymer uniform in texture, and does not need to take into account the physical and chemical properties of multiple polymers, making the polymer easier to process and higher shielding efficiency, so it only requires less raw materials to achieve the same The performance, indirectly saves raw materials.
  • Another aspect of the present invention provides a method for preparing the polymer, the equation is as follows:
  • the polymer is prepared by copolymerization of three monomers in one step. While the process is simplified, the performance of the polymer prepared is improved, which is more convenient for further processing.
  • the specific preparation method of the polymer includes the following steps :
  • the specific temperature of the polymerization reaction in step S01 is 50-100°C. Selecting this temperature can control the polymerization reaction rate to an appropriate level, and will not cause uncontrollable development of the reaction due to overheating caused by too fast, and will not cause the reaction speed to be too slow due to too low temperature.
  • the specific reaction time of the polymerization reaction in step S01 is 2-36 h. Set the reaction time after monitoring according to different reaction temperatures to make the reaction complete.
  • the initiator in step S01 includes cyclohexanone peroxide, benzoyl peroxide, lauroyl peroxide, cumene hydrogen peroxide, dicyclohexyl peroxide dicarbonate, potassium persulfate, persulfuric acid Any one or more of ammonium and azobisisobutyronitrile. These are all commonly used initiators. With different initiator polymerization degrees, the polymerization method will change. The appropriate initiator can be selected according to specific needs.
  • the solvent in step S01 includes any one or more of acetone, ethanol, methylene chloride, ethyl acetate, tetrahydrofuran and toluene.
  • a suitable solvent is selected according to the solubility of the polymer, so that the polymer can balance the solubility and the convenience of purification and film formation.
  • the protective gas in step S01 includes one or more of carbon dioxide, nitrogen, and argon.
  • Different shielding gases can be selected according to different needs. In most cases, low-priced nitrogen can be selected. In the case of polymers with higher performance requirements, argon can be selected with higher price but better performance.
  • the specific separation and purification treatment in step S02 includes any one or more of concentration, dissolution-precipitation, water washing, centrifugation and suction filtration. More specifically, in one embodiment, the polymer is first concentrated and then added to the solvent to dissolve the terpolymer.
  • an embodiment of the present invention provides a polymer film. Due to the use of the polymer, the polymer film of the embodiment of the present invention has excellent UV shielding performance, and can be processed into a thinner film while maintaining the UV shielding performance, and has higher practicability. Moreover, due to the uniform texture, the polymer film can be processed into a film. The process is also simpler.
  • the thickness of the polymer film of the embodiment of the present invention is generally 10-1000 ⁇ m. Too much thickness wastes raw materials and also reduces the transmittance of other visible light, and too thin thickness cannot achieve the effect of UV shielding.
  • Another aspect of the present invention provides a method for preparing the polymer film, which includes the following steps:
  • A01 Dissolve the polymer in a solvent
  • A02 Pour the obtained solution into a container and dry it at 25-60°C for 8-24 h to obtain the film.
  • the concentration of the solution in step A01 is 1-30 wt%.
  • the solution of this concentration range can make the solution have a certain viscosity after pouring, and it will not be too dilute to form a film, and the concentration will not be too large, resulting in uneven film thickness due to the setting before uniform spreading.
  • the solvent in step A01 includes any one or more of acetone, ethanol, dichloromethane, ethyl acetate, tetrahydrofuran and toluene. According to the dissolution situation in the preparation and the actual market price situation, the selection of the solvent is comprehensively considered.
  • the drying temperature in step A02 can make the organic solvent volatilize as soon as possible, and the polymer film will not be unable to be cured because the temperature is too high.
  • the polymer has good ultraviolet shielding performance and various physical properties, and can be widely used in preparing ultraviolet shielding materials or devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种具备紫外吸收功能的聚合物及其制备方法,具体的采用三种不同紫外吸收波段的单体共聚,达到紫外吸收范围的极大扩展,达到了全波段紫外线屏蔽的效果。获得的聚合物薄膜具有很强的可见光透过性、荧光性、易加工性、优异的稳定性及出色的紫外线屏蔽性能,可广泛应用于航空、建筑、农业及光学器件等领域。

Description

聚合物及其制备方法及应用 技术领域
本发明属于聚合物领域,具体涉及一种具备紫外吸收功能的聚合物及其制备方法及应用。
背景技术
紫外线是一种波长在10-400 nm范围、具有很高能量的不可见光。紫外线可以细分为三部分:UVA(320-400 nm)、UVB(280-320 nm)和UVC(100-280 nm)。UVC可被臭氧层阻隔,但由于近年来臭氧空洞的不断扩大,太阳照射到地球表面的UVC强度也在不断增强。紫外线的能量足够破坏材料中的许多化学键,引发光化学反应,导致材料中分子链的断裂和化合物的分解,影响材料的机械性能与使用寿命。此外,断裂分子链上的活性自由基还会与空气中的氧发生光氧化反应,使材料变黄影响其外观。有大量研究表明,过量的紫外线辐射不仅对各类材料有着一定负面影响,同时还会对生物体造成不同程度的伤害,如导致皮肤被晒黑、晒伤,增加皮肤癌、白内障等疾病的患病率。
聚甲基丙烯酸甲酯是一类重要的工程塑料。它具有透光率高、易加工、耐候性良好等优点,广泛应用于航空、建筑、农业、光学器件等领域。然而,由于聚甲基丙烯酸甲酯本身的紫外线屏蔽性能很差,限制了其在实际生产生活中的进一步应用。开发基于聚甲基丙烯酸甲酯的紫外线屏蔽材料已成为一个研究热点,并受到众多科研人员的关注。
目前,改善聚甲基丙烯酸甲酯的紫外线屏蔽性能的方法通常为掺杂紫外吸收剂。紫外吸收剂分为两类,一类是无机紫外线吸收剂,主要有云母、滑石、炭黑以及金属氧化物如TiO2、CeO,ZnO等,它们在紫外波段有很宽的吸收,并且稳定性良好。但无机紫外线吸收剂与聚甲基丙烯酸甲酯的相容性较差,成膜后容易降低体系的透明度。长期使用时还会产生迁移、喷霜等现象,影响材料的使用寿命。另一类是有机紫外线吸收剂,主要包括水杨酸酯类、肉桂酸酯类、二苯甲酮类、苯并三唑类、三嗪类和取代丙烯腈类等有机化合物。有机紫外线吸收剂可以通过吸光作用来实现紫外线吸收作用。它们通常具有特殊的发色团与助色团,这些基团可以强烈地吸收某一波段的紫外线,并将所吸收的紫外线转化为热能、荧光或者磷光,进而实现吸收紫外线的目。
随着有机紫外线吸收剂的广泛使用,许多研究人员通过使用脂肪族链对紫外吸收剂进行改性,提高其与聚甲基丙烯酸甲酯的相容性。然而,传统的物理共混的方法会降低聚甲基丙烯酸甲酯的机械性能,并且在高温加工过程中这些小分子紫外线吸收剂容易从基底中逸出,降低成品的紫外线屏蔽性能,并造成原料浪费。
如何制备相容性好、稳定性优良、使用寿命长以及紫外线屏蔽效率高的高分子紫外线屏蔽材料成为科研人员致力解决的技术问题之一。
技术问题
本发明的目的在于提供一种聚合物及其制备方法,以解决以往的紫外吸收聚合物材料相容性不好、稳定性差、使用寿命短以及紫外线屏蔽效率低的技术问题。
本发明另一目的在于提供一种聚合物薄膜及其制备方法,以解决目前的聚合物薄膜机械性能不够好,加工难度大,紫外屏蔽范围不够全面、效率较低的问题。
技术解决方案
为了实现上述发明目的,本发明一方面提供了一种聚合物,所述聚合物由甲基丙烯酸甲酯,乙二醇吡啶酮酸甲基丙烯酸酯,4-甲基丙烯酰胺基苯甲酸甲酯按照质量比1:(0.01-10):(0.01-10)聚合而成。
本发明另一方面提供了一种由所述聚合物加工成的聚合物薄膜。
本发明再一方面提供了一种所述聚合物的制备方法,包括如下步骤:
按照质量比1:(0.01-10):(0.01-10)将甲基丙烯酸甲酯,乙二醇吡啶酮酸甲基丙烯酸酯,4-甲基丙烯酰胺基苯甲酸甲酯以及微量引发剂溶于溶剂中进行聚合反应。
分离提纯所述共聚物。
优选地,所述聚合反应的温度为50-100℃。
优选地,所述聚合反应的反应时间为2-36h。
优选地,所述引发剂包括过氧化环己酮、过氧化苯甲酰、过氧化月桂酰、异丙苯过氧化氢、过氧化二碳酸二环己酯、过硫酸钾、过硫酸铵和偶氮二异丁腈其中任意一种或多种。
优选地,所述溶剂包括丙酮、乙醇、二氯甲烷、乙酸乙酯、四氢呋喃和甲苯中的任意一种或多种。
优选地,所述保护气体包括二氧化碳、氮气和氩气中的一种或多种。
优选地,所述分离提纯处理包括浓缩、溶解-沉淀、水洗、离心和抽滤中的任意一种或多种。
本发明还一方面提供了一种所述聚合物薄膜的制备方法,包括如下步骤:
取所述聚合物溶于溶剂中;
将所得溶液浇筑于容器中,在25-60℃条件下干燥8-24 h,得到所述薄膜。
优选地,所述溶液浓度为1-30 wt%。
所述聚合物在制备紫外屏蔽材料或者器件中的应用
有益效果
与现有产品相比,本发明聚合物具有质地性能更均一,紫外屏蔽效率更高,范围更全面,机械性能更好的优点。
所述聚合物薄膜由于采用采用所述聚合物材料制备而成,因此具备紫外屏蔽性能更好,如在200-400nm范围内紫外线几乎被完全屏蔽,即效率更高,屏蔽范围更广,质地均一,机械性能更好,良好的性能使得所述薄膜可以在厚度更薄的情况下达到相同的屏蔽效果,因此更节约原料,节省成本,适用范围更广。
所述聚合物的制备方法,采用特定单体聚合,在保证性能的前提下更节约原料,简化了制备步骤,由于是单一聚合物质地均一加工起来也更加容易,并且制备出的聚合紫外屏蔽效率更高,范围更广,质地均一,易于加工,机械性能更好。
同样的所述聚合物薄膜制备方法,由于采用了所述聚合物,可以在节省原料的同时保证性能,制备出的聚合物薄膜紫外屏蔽效率更高,范围更广,易于加工,质地均一,机械性能更好,易于加工,适用范围更广。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明实施例的三元聚合物核磁共振波谱图;
图2为本发明实施例的乙二醇吡啶酮酸甲基丙烯酸酯的紫外吸收测试图;
图3为本发明实施例的4-甲基丙烯酰胺基苯甲酸甲酯的紫外吸收测试图;
图4为本发明实施例的聚合物薄膜和聚甲基丙烯酸甲酯薄膜的紫外线透过率测试图。
本发明的最佳实施方式
1.聚合物及其制备方法
实施例1 .1
将5克甲基丙烯酸甲酯、0.1克乙二醇吡啶酮酸甲基丙烯酸酯、0.1克4-甲基丙烯酰胺基苯甲酸甲酯、5毫克偶氮二异丁腈、30毫升甲苯在搅拌条件下混合均匀,通氮气20分钟后密封体系,在90℃下反应12小时。将产物进行旋转蒸发、溶解-沉淀处理,得到纯净的三元共聚物。
实施例1.2
将5克甲基丙烯酸甲酯、0.5克乙二醇吡啶酮酸甲基丙烯酸酯、0.5克4-甲基丙烯酰胺基苯甲酸甲酯、10毫克过氧化苯甲酰、30毫升四氢呋喃在搅拌条件下混合均匀,通氩气15分钟,在85 oC下冷凝回流反应12小时。将产物进行旋转蒸发、水洗、抽滤、干燥处理,得到纯净的三元共聚物。
实施例1.3
将5克甲基丙烯酸甲酯、0.5克乙二醇吡啶酮酸甲基丙烯酸酯、0.5克4-甲基丙烯酰胺基苯甲酸甲酯、10毫克过氧化苯甲酰、30毫升甲苯在搅拌条件下混合均匀,通氩气30分钟后密封体系,在85 oC下反应24小时。将产物进行旋转蒸发、真空干燥处理,得到纯净的三元共聚物。
2.聚合物薄膜及其制备方法
实施例2 .1
将5克三元共聚物在60℃搅拌条件下溶解于甲苯中,将溶液浇筑到玻璃槽中,在25℃下干燥18小时,最后将薄膜揭下,得到全波段紫外线屏蔽薄膜。将所述聚合物薄膜进行紫外吸收测试。测试结果如图4:所述薄膜的紫外吸收范围覆盖了200-400nm,并且吸收效率极高。
实施例2.2
将5克三元共聚物在60℃搅拌条件下溶解于甲苯中,将溶液浇筑到玻璃槽中,在40℃下干燥12小时,最后将薄膜揭下,得到全波段紫外线屏蔽薄膜。
实施例2.3
将5克三元共聚物在60℃搅拌条件下溶解于二氯甲烷中,将溶液浇筑到玻璃槽中,在60℃下干燥8小时,最后将薄膜揭下,得到全波段紫外线屏蔽薄膜。
3.紫外吸收剂聚合物单体
对比例1
将10毫摩尔的吡啶酮酸、20毫摩尔1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、1毫摩尔4-二甲氨基吡啶、50毫升二氯甲烷在搅拌条件下混合均匀,2小时后加入15毫摩尔甲基丙烯酸羟乙酯,常温下反应12小时,萃取,得到乙二醇吡啶酮酸甲基丙烯酸酯单体。将所述单体进行紫外吸收测试,测试结果如图2。
对比例2
将10毫摩尔4-氨基苯甲酸甲酯、15毫摩尔甲基丙烯酸酐、1毫摩尔4-二甲氨基吡啶,50毫升二氯甲烷在搅拌条件下混个均匀,常温下反应12小时,萃取,得到4-甲基丙烯酰胺基苯甲酸甲酯单体。将所述单体进行紫外吸收测试,测试结果如图3。
以上所述的实施例仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例与附表,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一方面,本发明实施例提供了一种聚合物。所述聚合物由甲基丙烯酸甲酯,乙二醇吡啶酮酸甲基丙烯酸酯,4-甲基丙烯酰胺基苯甲酸甲酯按照质量比1:(0.01-10):(0.01-10)聚合而成。共聚形成的单一聚合物使得所述聚合物质地均一,不需要兼顾多种聚合物的物理化学性能,使得所述聚合物易于加工,屏蔽效率更高,因此只需要更少的原料就可以达到相同的性能,间接地节约了原料。
本发明另一方面提供了一种所述聚合物的制备方法,方程式如下图:
所述聚合物采用三种单体通过共聚反应,一步制成,工艺得到简化的同时制备出的聚合物性能还得到了提升,更方便进一步加工,具体的所述聚合物的制备方法包括如下步骤:
S01:按照质量比1:(0.01-10):(0.01-10)将甲基丙烯酸甲酯,乙二醇吡啶酮酸甲基丙烯酸酯,4-甲基丙烯酰胺基苯甲酸甲酯以及微量引发剂溶于溶剂中进行聚合反应。
S02:分离提纯所述共聚物。
具体的所述步骤S01中的聚合反应的温度为50-100℃。选取此温度可以控制聚合反应速率在一个适当程度,不会因为太快导致过热使得反应不可控的发展,也不会因为温度太低导致反应速度过慢。
具体的所述步骤S01中的聚合反应的反应时间为2-36h。根据不同的反应温度监控后设置反应时间,使得反应彻底完成。
具体的所述步骤S01中的引发剂包括过氧化环己酮、过氧化苯甲酰、过氧化月桂酰、异丙苯过氧化氢、过氧化二碳酸二环己酯、过硫酸钾、过硫酸铵和偶氮二异丁腈其中任意一种或多种。这些都是常用引发剂,采用不同引发剂聚合度,聚合方式都会发生变化,可根据具体需求选取合适的引发剂。
具体的所述步骤S01中的溶剂包括丙酮、乙醇、二氯甲烷、乙酸乙酯、四氢呋喃和甲苯中的任意一种或多种。根据聚合物的溶解性选取合适的溶剂,使得所述聚合物能兼顾溶解性和提纯制备成膜的便利性。
具体的所述步骤S01中的保护气体包括二氧化碳、氮气和氩气中的一种或多种。根据不同需求可以选取不同保护气体,多数情况下选取价格低廉的氮气,在需要制备性能要求更高的聚合物的情况下可以选取价格较高但性能更佳的氩气。
具体的所述步骤S02中的分离提纯处理包括浓缩、溶解-沉淀、水洗、离心和抽滤中的任意一种或多种。更具体的在一实施例中先将聚合物浓缩再加入溶剂溶解后析出三元共聚物。
基于上述聚合物及其制备方法,本发明实施例提供了一种聚合物薄膜。由于采用所述聚合物,本发明实施例的聚合物薄膜具备优良的紫外屏蔽性能,并可以加工成更薄的薄膜并保持紫外屏蔽性能,实用性更高,而且由于质地均一,加工成膜的工艺也更简单。
本发明实施例的聚合物薄膜的厚度一般在10-1000μm。厚度太大浪费原料的同时也降低了其它可见光的透过率,厚度太薄达不到紫外屏蔽的效果。
本发明还一方面提供了一种所述聚合物薄膜的制备方法,包括如下步骤:
A01:取所述聚合物溶于溶剂中;
A02:将所得溶液浇筑于容器中,在25-60℃条件下干燥8-24 h,得到所述薄膜。
具体的所述步骤A01中所述溶液浓度为1-30 wt%。此浓度范围的溶液可以使得溶液浇筑后具备一定的黏度,不会太稀能成膜,并且不会因为浓度太大,导致均匀铺开之前就定型导致膜厚薄不均匀。
具体的所述步骤A01中所述的溶剂包括丙酮、乙醇、二氯甲烷、乙酸乙酯、四氢呋喃和甲苯中的任意一种或多种。根据制备中的溶解情况和实际的市场价格情况综合考虑溶剂的选取。
具体的所述步骤A02中的干燥温度可以使得有机溶剂尽快挥发,又不会因为温度太高使得聚合物薄膜无法固化。
本聚合物紫外屏蔽性能良好,各种物理特性也十分优益,可以被广泛应用于制备紫外屏蔽材料或者器件。

Claims (10)

  1. 一种聚合物,其特征在于:所述聚合物由甲基丙烯酸甲酯、乙二醇吡啶酮酸甲基丙烯酸酯、4-甲基丙烯酰胺基苯甲酸甲酯按照质量比1:(0.01-10):(0.01-10)聚合而成。
  2. 一种由权利要求1所述聚合物加工成的聚合物薄膜。
  3. 如权利要求1所述聚合物的制备方法,其特征在于,包括如下步骤:
    按照质量比1:(0.01-10):(0.01-10)将甲基丙烯酸甲酯,乙二醇吡啶酮酸甲基丙烯酸酯、4-甲基丙烯酰胺基苯甲酸甲酯以及微量引发剂溶于溶剂中进行聚合反应;
    分离提纯所述共聚物。
  4. 如权利要求3所述的聚合物的制备方法,其特征在于:所述聚合反应的温度为50-100℃。
  5. 如权利要求3所述的聚合物的制备方法,其特征在于:所述聚合反应的反应时间为2-36h。
  6. 如权利要求3所述的聚合物的制备方法,其特征在于:所述引发剂包括过氧化环己酮、过氧化苯甲酰、过氧化月桂酰、异丙苯过氧化氢、过氧化二碳酸二环己酯、过硫酸钾、过硫酸铵和偶氮二异丁腈其中任意一种或多种;和/或
    所述溶剂包括丙酮、乙醇、二氯甲烷、乙酸乙酯、四氢呋喃和甲苯中的任意一种或多种;和/或
    所述保护气体包括二氧化碳、氮气和氩气中的一种或多种。
  7. 如权利要求3所述的聚合物的制备方法,其特征在于:所述分离提纯处理包括浓缩、溶解-沉淀、水洗、离心和抽滤中的任意一种或多种。
  8. 如权利要求2所述聚合物薄膜的制备方法,其特征在于,包括如下步骤:
    取权利要求1所述的聚合物溶于溶剂中;
    将所得溶液涂覆成膜,经干燥处理,聚合物薄膜。
  9. 如权利要求8所述聚合物薄膜的制备方法,其特征在于:所述溶液浓度为1-30 wt%。
  10. 权利要求2所述聚合物在制备紫外屏蔽材料或者器件中的应用。
PCT/CN2019/078893 2019-03-20 2019-03-20 聚合物及其制备方法及应用 WO2020186482A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/078893 WO2020186482A1 (zh) 2019-03-20 2019-03-20 聚合物及其制备方法及应用
US17/150,831 US11407889B2 (en) 2019-03-20 2021-01-15 Polymer and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078893 WO2020186482A1 (zh) 2019-03-20 2019-03-20 聚合物及其制备方法及应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/150,831 Continuation-In-Part US11407889B2 (en) 2019-03-20 2021-01-15 Polymer and preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2020186482A1 true WO2020186482A1 (zh) 2020-09-24

Family

ID=72518913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078893 WO2020186482A1 (zh) 2019-03-20 2019-03-20 聚合物及其制备方法及应用

Country Status (2)

Country Link
US (1) US11407889B2 (zh)
WO (1) WO2020186482A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178303A (en) * 1979-01-26 1979-12-11 Gaf Corporation (2-Cyano-3,3-diphenylacryloxy) alkylene acrylic acid esters
JPH03281685A (ja) * 1990-03-30 1991-12-12 Ipposha Oil Ind Co Ltd プラスチック用紫外線吸収剤
CN101044175A (zh) * 2004-12-16 2007-09-26 罗姆有限公司 用于pmma的uv稳定剂
WO2015003987A1 (en) * 2013-07-08 2015-01-15 Dsm Ip Assets B.V. Uv screening composition comprising a uv filter, an organopolysiloxane functionalized with a uv absorber and porous silica and/or polymethylmethacrylate particles
CN105418642A (zh) * 2015-11-03 2016-03-23 西安交通大学 一种含噻唑吡啶酮结构的甲基丙烯酸酯荧光单体及其制备方法
CN109438479A (zh) * 2018-10-31 2019-03-08 深圳市康勋新材科技有限公司 紫外线吸收剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178303A (en) * 1979-01-26 1979-12-11 Gaf Corporation (2-Cyano-3,3-diphenylacryloxy) alkylene acrylic acid esters
JPH03281685A (ja) * 1990-03-30 1991-12-12 Ipposha Oil Ind Co Ltd プラスチック用紫外線吸収剤
CN101044175A (zh) * 2004-12-16 2007-09-26 罗姆有限公司 用于pmma的uv稳定剂
WO2015003987A1 (en) * 2013-07-08 2015-01-15 Dsm Ip Assets B.V. Uv screening composition comprising a uv filter, an organopolysiloxane functionalized with a uv absorber and porous silica and/or polymethylmethacrylate particles
CN105418642A (zh) * 2015-11-03 2016-03-23 西安交通大学 一种含噻唑吡啶酮结构的甲基丙烯酸酯荧光单体及其制备方法
CN109438479A (zh) * 2018-10-31 2019-03-08 深圳市康勋新材科技有限公司 紫外线吸收剂及其制备方法和应用

Also Published As

Publication number Publication date
US11407889B2 (en) 2022-08-09
US20210230419A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
CN106674852B (zh) 一种防蓝光镜片及其树脂原料
EP0590421B1 (de) Copolymerisate mit nichtlinear optischen Eigenschaften und deren Verwendung
CN106590310B (zh) 一种具备自修复功能的抗紫外线涂料、其制备方法及应用
Cheng et al. Photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization using titanium dioxide
CN110003377B (zh) 聚合物及其制备方法及应用
CN114835840A (zh) 一种抗氧化抗紫外微球、制备方法及应用
CN102167876B (zh) 一种丙烯酸丁酯-苯乙烯-丙烯腈共聚物/二氧化钛复合薄膜及其制备方法
WO2020186482A1 (zh) 聚合物及其制备方法及应用
Rånby Basic reactions in the photodegradation of some important polymers
CN114133877A (zh) 一种含大共轭芳香环丙烯酸化合物单体的光固化组合物胶水及其使用方法和应用
CN110857889A (zh) 一种温感智能复合光学玻璃
CN110343079B (zh) 一种可Diels-Alder加成反应偶氮苯单体的制备方法及应用
CN105170120A (zh) 一种通过表面接枝聚合制备功能化黄土基吸附剂的方法
WO1993023480A1 (en) Substantially pure synthetic melanin particularly useful for low haze optical devices
Andrzejewska et al. Sulfur‐containing polyacrylates. IV. The effect of S and O linkages on the photo‐and thermally induced polymerization of dimethacrylates
CN114213568A (zh) 一种光转换微球、制备方法及应用
CN109020996B (zh) 一种具有光活性的杂多环化合物及其制备方法
Allen et al. Photochemical crosslinking of nylon-6, 6 induced by 2-substituted anthraquinones
CN110437366B (zh) 一种防蓝光压克力浇铸制备方法
CN115724777B (zh) 一种蓝光吸光材料及制备方法和应用
JPH01161036A (ja) 近赤外線吸収メタクリル樹脂材料およびその製造方法
Zhang et al. Properties of the photochromic latexes based on spiropyran by emulsion polymerization
CN114773525B (zh) 一种生物降解型抗蓝光植物油基树脂及其制备方法与应用
Abdel-Razik Photoinduced graft copolymerization of dichlorodimethylsilane onto ethyl cellulose in homogeneous media
CN105418817A (zh) 一种可见光诱导的聚乙烯基吡啶的可控制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19920177

Country of ref document: EP

Kind code of ref document: A1