WO2020184881A1 - 고굴절 편광렌즈의 제조방법 - Google Patents

고굴절 편광렌즈의 제조방법 Download PDF

Info

Publication number
WO2020184881A1
WO2020184881A1 PCT/KR2020/002950 KR2020002950W WO2020184881A1 WO 2020184881 A1 WO2020184881 A1 WO 2020184881A1 KR 2020002950 W KR2020002950 W KR 2020002950W WO 2020184881 A1 WO2020184881 A1 WO 2020184881A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
lens
polarizing
polythiourethane
manufacturing
Prior art date
Application number
PCT/KR2020/002950
Other languages
English (en)
French (fr)
Inventor
김충덕
Original Assignee
주식회사 온빛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 온빛 filed Critical 주식회사 온빛
Priority to US17/431,811 priority Critical patent/US20220155494A1/en
Priority to JP2021544336A priority patent/JP7403856B2/ja
Priority to CN202080011950.8A priority patent/CN113383254A/zh
Publication of WO2020184881A1 publication Critical patent/WO2020184881A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • B29D11/00192Demoulding, e.g. separating lenses from mould halves
    • B29D11/00201Demoulding, e.g. separating lenses from mould halves using cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00365Production of microlenses
    • B29D11/00375Production of microlenses by moulding lenses in holes through a substrate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a method of manufacturing a high-refractive polarizing lens, and more particularly, to form a lens by improving the adhesion between a polythiourethane-based resin and a polarizing film attached to the polythiourethane-based resin constituting the high-refractive polarizing lens.
  • the present invention relates to a method of manufacturing a high-refractive polarizing lens capable of improving product stability and reliability without being peeled off from the urethane resin.
  • Polarization here refers to a wave of light that vibrates only in a specific direction through a polarizing film (polarizer) through which natural light, which is difficult to repeat reflection and refraction, is transmitted in only one direction.
  • polarizing film polarizer
  • Such a polarizing lens can reduce glare by blocking reflected light and refracted light at sunrise or sunset, and increases the viewing distance at which objects can be seen.
  • a polarizing film In general polarizing lenses, a polarizing film (polarizer) is attached to the surface of a plastic or glass lens by heating, or a polarizing film is formed into a lens shape in advance, and then a liquid such as CR-39 (allyl diglycol carbonate) or urethane is formed on both sides of the polarizing film. Monomers and oligomers are poured and cured, or a polarizing sheet laminated with a protective film such as a polycarbonate film on both sides of a polarizing film is molded into a lens shape, and then the molded polarizing sheet is inserted into an injection machine. It is manufactured using a method of reinforcing the thickness through injection.
  • a PVA film is attached to both sides of the polythiourethane, and the PVA film is thin and sensitive to moisture.
  • a TAC (Tri Acetyl Cellulose) film has been laminated to a PVA film, and the laminated film has been used by attaching the laminated film to a polythiourethane.
  • the present invention has been devised to solve the above-described problems, and provides a method of manufacturing a high refractive polarizing lens capable of improving product stability and reliability by improving adhesion between a polarizing film and a polythiourethane resin constituting a polarizing lens. It has its purpose in providing.
  • an object of the present invention is to provide a method of manufacturing a highly reliable high refractive polarizing lens in which the polarizing film is not detached even when processing a high refractive polarizing lens by improving the adhesion of a polarizing film to a polythiourethane-based resin.
  • the present invention in order to achieve the above object, the steps of pre-treating both surfaces of the TAC film; Attaching the pre-treated TAC film to both sides of a PVA film to prepare a pre-treated polarizing film; Molding the prepared pre-treated polarizing film into a lens shape; Seating the molded pre-treated polarizing film on a mold for manufacturing a lens; Injecting a polythiourethane-based resin into a mold for manufacturing a lens on which the pretreatment polarizing film is mounted; And fixing the mold and cooling the polythiourethane-based resin. It provides a method of manufacturing a high refractive polarizing lens, comprising:
  • the pretreatment of the TAC film is characterized in that it is made by immersing the TAC film in an aqueous NaOH solution so that the surface is modified by the following formula.
  • the step of attaching the TAC film to the PVA film is characterized in that the pretreated TAC film is attached after applying an adhesive on both sides of the PVA film.
  • the adhesive is characterized in that it consists of a water-based adhesive formed by mixing PVA powder and water.
  • the step of injecting the polythiourethane resin is characterized in that the polythiourethane resin is injected into the upper and lower portions of the pretreated polarizing film.
  • the polythiourethane resin and the pretreated polarizing film are formed of hydrogen bonds to increase adhesion.
  • the method of manufacturing a high-refractive polarizing lens of the present invention improves the adhesion between the lens and the polarizing film by bonding the polarizing film with a polythiourethane-based resin, thereby preventing the film from detaching from the lens at the edge during lens processing. I can.
  • the present invention increases the adhesion of the polarizing film to the lens, there is an advantage in that it is possible to manufacture a lens having a thin and light thickness while having reliability.
  • the present invention has an effect of improving the reliability and stability of the product because the adhesion between the lens and the polarizing film is excellent.
  • FIG. 1 is a cross-sectional view showing a pretreatment of a TAC film according to the present invention.
  • FIG. 2 is a view showing the angle of incidence of the pretreated TAC particles according to the present invention.
  • Figure 3 is a cross-sectional view showing the attachment of the pretreated TAC film according to the present invention to the PVA film.
  • FIG. 4 is a cross-sectional view showing a state in which a polarizing film according to the present invention is manufactured.
  • FIG. 5 is a cross-sectional view showing a state in which the polarizing film according to the present invention is molded into a lens shape.
  • FIG. 6 is a cross-sectional view showing a state in which a polythiourethane-based resin is injected into a mold for manufacturing a lens according to the present invention.
  • FIG. 7 is a cross-sectional view in a state in which the polarizing lens according to the present invention is molded.
  • FIG. 8 is a flowchart showing a manufacturing process of a polarizing lens according to the present invention.
  • FIG. 9 is a cross-sectional view showing a state in which a polythiourethane-based resin is injected vertically into a mold for manufacturing a lens according to the present invention.
  • FIG. 10 is a cross-sectional view of a polarizing lens formed according to the mold of FIG. 9.
  • the best form for the practice of the present invention is the pretreatment of both surfaces of the AC film; Attaching the pre-treated TAC film to both sides of a PVA film to prepare a pre-treated polarizing film; Molding the prepared pre-treated polarizing film into a lens shape; Seating the molded pre-treated polarizing film on a mold for manufacturing a lens; Injecting a polythiourethane-based resin into a mold for manufacturing a lens on which the pretreatment polarizing film is mounted; And fixing the mold and cooling the polythiourethane-based resin.
  • FIG. 1 is a cross-sectional view showing the pretreatment of the TAC film according to the present invention
  • FIG. 2 is a view showing the incident angle of the pretreated TAC particles according to the present invention
  • FIG. 3 is a pretreated TAC film according to the present invention on a PVA film.
  • FIG. 4 is a cross-sectional view showing a state in which a polarizing film according to the present invention is manufactured
  • Figure 5 is a cross-sectional view showing a state in which the polarizing film according to the present invention is molded into a lens shape
  • Figure 6 Is a cross-sectional view showing a state in which a polythiourethane-based resin is injected into a mold for manufacturing a lens according to the present invention
  • FIG. 7 is a cross-sectional view of a polarizing lens according to the present invention
  • FIG. 8 is a A flow chart showing the manufacturing process
  • FIG. 9 is a cross-sectional view showing a state in which a polythiourethane-based resin is injected up and down into a mold for manufacturing a lens according to the present invention
  • FIG. 10 is a state in which a polarizing lens is molded according to the mold of FIG. It is a cross-sectional view.
  • a step (S1) of pre-treating both sides of a triacetyl cellulose (TAC) film of about 0.1 mm is performed.
  • the reason for pre-treating the TAC film 110 is to allow the TAC film 110 to adhere well to a polythiourethane (also referred to as MR lens)-based resin for making a high refractive lens.
  • the pretreatment of the TAC film 110 is to modify the surface of the TAC film 110 by immersing the TAC film 110 in an aqueous NaOH solution.
  • Formula 1 according to the reforming reaction is as follows.
  • hydroxy group (OH -) are formed on the surface. Since the hydroxy group formed on the surface of the TAC film is bonded to the polythiourethane, it is possible to prevent the TAC film from being separated from the polythiourethane resin. To this end, the surface of the TAC film is modified.
  • 2 is a view showing the incidence angle of the pre-treated TAC film particles compared before and after the pre-treatment. As shown in the figure, since the difference in the angle of incidence before and after the pretreatment is large, the incident angle of the pretreated TAC particles is small, and the surface area that can be contacted can be increased, it becomes easier to contact and bond with other materials.
  • the pre-treated TAC film 120 is adhered to both sides of a polyvinyl acetate (PVA) film 110 having a thickness of about 0.03 to 0.05 mm using a water-based adhesive 140 to form a polarizing film 100.
  • PVA polyvinyl acetate
  • the manufacturing process is shown in Figure 3
  • the manufactured polarizing film 100 is shown in Figure 4.
  • the PVA film 130 is attached to the TAC film 120 after the water-based adhesive 140 is applied to the surface.
  • the aqueous adhesive 140 may be prepared by mixing PVA powder and water.
  • the PVA film 130 may be uniaxially stretched by uniaxially stretching a resin film such as polyvinyl alcohol or stabilized with a formant, and then uniaxially stretched, and iodine or a dichroic dye may be used to increase the degree of polarization. ) Can be processed.
  • a resin film such as polyvinyl alcohol or stabilized with a formant
  • iodine or a dichroic dye may be used to increase the degree of polarization.
  • the polarizing film 100 is molded into a lens shape as shown in FIG. 5 (S3).
  • the polarizing film 200 molded into a lens shape is inserted and fixed into the mold 400 for manufacturing a lens (S4).
  • the mold 400 for manufacturing a lens has rubber packings 410 and 420 on both sides, and an injection hole into which a polyurethane is injected is formed in the rubber packing 410 on one side. Between the rubber packings 410 and 420 on both sides, a lens-shaped blocking film 430 is provided at the top and bottom.
  • the blocking film may be made of a material such as glass.
  • the polarizing film 200 is positioned between the blocking films 430 provided up and down between the rubber packings 410 and 420, and an injection space 440 is formed between each blocking film 430 and the polarizing film 200.
  • the polyurethane is injected through the injection hole 411 provided at one side of the mold 400, and the injected polythiourethane is a polarizing film ( A thermosetting agent is mixed and injected into the injection space 440 formed under the 200).
  • the polythiourethane resin 300 is filled in the lower part of the polarizing film 200, the polythiourethane resin 300 and the polarizing film 200 are attached by cooling for a certain period of time. After cooling is completed, the polarizing lens 500 is Manufacturing is completed (S6).
  • Polythiourethane resin 300 is used to manufacture high refractive lenses, and in particular, MR TM lenses (registered trademark of Mitsui Chemicals Co., Ltd.) are a kind of lenses using polythiourethane, and products are being released in series with high refractive index. .
  • MR TM lenses registered trademark of Mitsui Chemicals Co., Ltd.
  • MR-8 has a refractive index of 1.60
  • MR-7 and MR-10 have a refractive index of 1.67
  • MR-174 has a refractive index of 1.74.
  • the larger the refractive index the more suitable for manufacturing thin lenses.
  • the general formula of the polyurethane resin 300 is as follows.
  • hydroxyl (OH -) of the TAC film of formula (1) coupled end of SH and hydrogen of the polythiourethane resin 300 in the formula (2), by hydrogen bonding TAC film polythiourethane It can be strongly attached to the resin 300. Accordingly, the adhesion of the TAC film to the polythiourethane resin may be increased.
  • polythiourethane resin 300 is manufactured to be attached to the upper and lower portions of the polarizing film 200 in a mold for manufacturing a lens.
  • Polythiourethane resin 300 is injected to the top and bottom of the pre-polarizing film 200, a hydroxy group (OH -) of the upper and lower TAC film of the polarizing film 200, a polythiourethane resin (300 of formula (II) ) Is hydrogen bonded to the terminal portion (SH), and the polythiourethane resin 300 may be strongly attached to the TAC film by hydrogen bonding.
  • the present invention improves the adhesion of the polythiourethane resin constituting the high refractive polarizing lens and the polarizing film attached to the polythiourethane resin, thereby improving the stability and reliability of the product without being peeled off from the urethane resin forming the lens. It relates to a method for manufacturing a high refractive index polarizing lens that can be made, and has high industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 폴리티오우레탄계 수지에 부착되는 편광필름의 접착력을 향상시켜 렌즈를 형성하는 우레탄 수지로부터 박리되지 않고 제품의 안정성과 신뢰성을 향상시킬 수 있는 고굴절 편광렌즈 제조방법에 관한 것으로서, TAC 필름의 양 표면을 전처리하는 단계; 상기 전처리된 TAC 필름을 PVA 필름의 양면에 부착하여 전처리 편광필름을 제조하는 단계; 상기 제조된 전처리 편광필름을 렌즈 형상으로 성형하는 단계; 상기 성형된 전처리 편광필름을 렌즈 제조용 주형에 안착시키는 단계; 상기 전처리 편광필름이 안착된 렌즈 제조용 주형에 폴리티오우레탄계 수지를 주입하는 단계; 및 상기 주형을 고정하고 폴리티오우레탄계 수지를 냉각시키는 단계;로 이루어지는 것을 특징으로 하는 고굴절 편광렌즈의 제조방법을 제공한다.

Description

고굴절 편광렌즈의 제조방법
본 발명은 고굴절 편광렌즈의 제조방법에 관한 것으로서, 더욱 상세하게는 고굴절 편광렌즈를 구성하는 폴리티오우레탄(Polythiourethane)계 수지와, 폴리티오우레탄계 수지에 부착되는 편광필름의 접착력을 향상시켜 렌즈를 형성하는 우레탄 수지로부터 박리되지 않고 제품의 안정성과 신뢰성을 향상시킬 수 있는 고굴절 편광렌즈 제조방법에 관한 것이다.
자연물에 반사되어 난해하게 반사와 굴절을 거듭하는 자연광을 그대로 눈에 받아들이게 되면 눈부심 현상을 일으키게 된다. 이때 편광(偏光)의 원리를 응용한 편광렌즈를 착용하면 눈부심을 줄일 수 있다.
여기서의 편광은 난해하게 반사와 굴절을 거듭하는 자연광이 편광필름(편광자)를 통하여 한 방향으로만 투과되어 특정한 방향으로만 진동하는 빛의 파동을 말한다.
이러한 편광렌즈는 해뜰 무렵이나 해질 무렵에 반사광과 굴절광을 차단하여 눈부심을 감소시킬 수 있으며, 사물을 볼 수 있는 가시거리가 길어지게 한다.
또한 자동차 운전 시 편광렌즈를 착용하게 되면 불필요한 빛이 차단되어 넓은 시야를 확보할 수 있어 안전운전에도 도움을 주게 된다.
일반적인 편광렌즈는, 플라스틱 또는 유리 렌즈의 표면에 편광필름(편광자)을 가열 부착하거나, 편광필름을 미리 렌즈 형태로 성형한 다음 편광필름의 양쪽에 CR-39(allyl diglycol carbonate) 또는 우레탄과 같은 액상의 모노머, 올리고머를 부어서 경화시키는 캐스팅 방법을 사용하거나, 편광필름 양면에 폴리카보네이트 필름 등의 보호필름을 합지(laminating)한 편광시트를 렌즈 형태로 성형한 다음, 성형한 편광시트를 사출기에 넣고 인서트 사출을 통해 두께를 보강하는 방법을 사용하여 제조한다.
폴리티오우레탄을 사용하는 고굴절 편광렌즈('MR 렌즈'라고도 함)의 경우는 폴리티오우레탄의 양면에 PVA(Poly Vinyl Acetate)필름을 부착하는데, PVA 필름은 두께가 얇고 수분에 민감하게 반응하여 작업시 핸들링이 어렵다는 문제점이 있다. 이러한 문제점을 해결하기 위해 PVA필름에 TAC(Tri Acetyl Cellulose)필름을 합지하여 합지된 필름을 폴리티오우레탄에 부착하여 사용하여 왔다.
그러나, PVA 필름에 TAC 필름이 합지된 필름의 경우 폴리티오우레탄 수지와의 접착력이 낮아져 최종 렌즈 가공시 합지된 필름이 렌즈에서 쉽게 탈리되는 문제점이 있었다.
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 편광렌즈를 구성하는 폴리티오우레탄계 수지와 편광필름의 접착력을 향상시켜 제품의 안정성과 신뢰성을 향상시킬 수 있는 고굴절 편광렌즈의 제조방법을 제공함에 그 목적이 있다.
또한, 본 발명은 폴리티오우레탄계 수지에 편광필름의 접착력을 향상시켜 고굴절 편광렌즈의 가공시에도 편광필름이 탈리되지 않는 신뢰성 높은 고굴절 편광렌즈의 제조방법을 제공함에 그 목적이 있다.
상기의 목적을 달성하기 위해 본 발명은, TAC 필름의 양 표면을 전처리하는 단계; 상기 전처리된 TAC 필름을 PVA 필름의 양면에 부착하여 전처리 편광필름을 제조하는 단계; 상기 제조된 전처리 편광필름을 렌즈 형상으로 성형하는 단계; 상기 성형된 전처리 편광필름을 렌즈 제조용 주형에 안착시키는 단계; 상기 전처리 편광필름이 안착된 렌즈 제조용 주형에 폴리티오우레탄계 수지를 주입하는 단계; 및 상기 주형을 고정하고 폴리티오우레탄계 수지를 냉각시키는 단계;로 이루어지는 것을 특징으로 하는 고굴절 편광렌즈의 제조방법을 제공한다.
본 발명에서 TAC 필름의 전처리는, 하기와 같은 화학식으로 표면개질되도록 상기 TAC 필름을 NaOH 수용액에 침지하여 이루어지는 것을 특징으로 한다.
Figure PCTKR2020002950-appb-I000001
본 발명에서 TAC 필름을 PVA 필름에 부착하는 단계는, PVA 필름의 양면에 접착제를 도포한 후 전처리된 TAC 필름을 부착하는 것을 특징으로 한다.
본 발명에서 접착제는, PVA 분말과 물을 혼합하여 형성된 수계접착제로 이루어지는 것을 특징으로 한다.
본 발명에서 폴리티오우레탄 수지를 주입하는 단계는, 전처리된 편광필름의 상부 및 하부로 폴리티오우레탄 수지가 주입되는 것을 특징으로 한다.
본 발명에서 폴리티오우레탄 수지와 전처리된 편광필름은 수소결합으로 이루어져 접착력이 증가되는 것을 특징으로 한다.
상술한 바와 같이 본 발명의 고굴절 편광렌즈의 제조방법은, 편광필름을 폴리티오우레탄계 수지와 접착시킴으로써 렌즈와 편광필름의 접착력을 향상시켜, 렌즈가공시 에지 부분에서 필름이 렌즈로부터 탈리되는 것을 방지할 수 있다.
또한, 본 발명은 렌즈에 편광필름의 부착력을 증가시키기 때문에, 신뢰성이 있으면서 두께가 얇고 가벼운 렌즈를 제조할 수 있는 장점이 있다.
또한, 본 발명은 렌즈와 편광필름의 부착력이 우수하기 때문에 제품의 신뢰성과 안정성을 향상시킬 수 있는 효과를 가진다.
도 1은 본 발명에 따른 TAC 필름의 전처리를 나타내는 단면도.
도 2는 본 발명에 따른 전처리된 TAC 입자의 입사각을 표시한 도면.
도 3은 본 발명에 따른 전처리된 TAC 필름을 PVA 필름에 부착하는 것을 도시한 단면도.
도 4는 본 발명에 따른 편광필름이 제조된 상태를 도시한 단면도.
도 5는 본 발명에 따른 편광필름을 렌즈형상으로 성형한 상태를 나타내는 단면도.
도 6은 본 발명에 따른 렌즈 제조용 주형에 폴리티오우레탄계 수지가 주입되는 상태를 나타내는 단면도.
도 7은 본 발명에 따른 편광렌즈가 성형된 상태에서의 단면도.
도 8은 본 발명에 따른 편광렌즈의 제조과정을 나타내는 흐름도.
도 9는 본 발명에 따른 렌즈 제조용 주형에 폴리티오우레탄계 수지가 상하로 주입되는 상태를 나타내는 단면도.
도 10은 도 9의 주형에 따라 편광렌즈가 성형된 상태에서의 단면도.
본 발명의 실시를 위한 최선의 형태는, AC 필름의 양 표면을 전처리하는 단계; 상기 전처리된 TAC 필름을 PVA 필름의 양면에 부착하여 전처리 편광필름을 제조하는 단계; 상기 제조된 전처리 편광필름을 렌즈 형상으로 성형하는 단계; 상기 성형된 전처리 편광필름을 렌즈 제조용 주형에 안착시키는 단계; 상기 전처리 편광필름이 안착된 렌즈 제조용 주형에 폴리티오우레탄계 수지를 주입하는 단계; 및 상기 주형을 고정하고 폴리티오우레탄계 수지를 냉각시키는 단계;로 이루어진다.
이하 첨부된 도면을 참조하여 본 발명의 일실시예에 따른 고굴절 편광렌즈의 제조방법을 상세히 설명한다.
도 1은 본 발명에 따른 TAC 필름의 전처리를 나타내는 단면도이고, 도 2는 본 발명에 따른 전처리된 TAC 입자의 입사각을 표시한 도면이고, 도 3은 본 발명에 따른 전처리된 TAC 필름을 PVA 필름에 부착하는 것을 도시한 단면도이고, 도 4는 본 발명에 따른 편광필름이 제조된 상태를 도시한 단면도이고, 도 5는 본 발명에 따른 편광필름을 렌즈형상으로 성형한 상태를 나타내는 단면도이고, 도 6은 본 발명에 따른 렌즈 제조용 주형에 폴리티오우레탄계 수지가 주입되는 상태를 나타내는 단면도이고, 도 7은 본 발명에 따른 편광렌즈가 성형된 상태에서의 단면도이고, 도 8은 본 발명에 따른 편광렌즈의 제조과정을 나타내는 흐름도이고, 도 9는 본 발명에 따른 렌즈 제조용 주형에 폴리티오우레탄계 수지가 상하로 주입되는 상태를 나타내는 단면도이고, 도 10은 도 9의 주형에 따라 편광렌즈가 성형된 상태에서의 단면도이다.
도 8을 참조하여 편광렌즈 제조과정을 상세히 설명하면, 먼저 0.1㎜ 정도의 트리아세틸 셀룰로오스(TAC) 필름의 양면을 전처리하는 단계(S1)를 거친다. TAC 필름(110)을 전처리하는 이유는 TAC 필름(110)이 고굴절 렌즈를 만들기 위한 폴리티오우레탄(MR 렌즈라고도 함)계 수지와 잘 접착될 수 있도록 하기 위함이다. TAC 필름(110)의 전처리는 NaOH 수용액에 TAC 필름(110)을 침지시켜 TAC 필름(110)의 표면을 개질한다. 개질반응에 따른 화학식 1은 아래와 같다.
Figure PCTKR2020002950-appb-C000001
상기 화학시 1에 도시된 바와 같이, 표면개질반응이 진행된 후에 TAC 필름의 표면은 히드록시기(OH-)가 표면에 형성된다. TAC 필름의 표면에 형성된 히드록시기가 폴리티오우레탄과 결합하기 때문에 TAC 필름이 폴리티오우레탄 수지로부터 탈리되는 것을 방지할 수 있게 된다. 이를 위해 TAC 필름의 표면을 개질시키는 과정을 거친다. 도 2는 전처리된 TAC 필름 입자의 입사각을 전처리 전과 후를 비교하여 표현한 도면이다. 도면에 도시된 바와 같이 전처리 전후의 입사각의 차이가 크고, 전처리된 TAC 입자의 입사각이 작아져 접촉할 수 있는 표면적이 넓어질 수 있기 때문에 다른 물질과 접촉하여 결합하기 쉬워지게 된다.
다음으로 전처리된 TAC 필름(120)을 두께가 0.03 ~ 0.05mm 정도인 폴리비닐아세테이트(PVA:Poly Vinyl Acetate) 필름(110)의 양측에 수계접착제(140)를 이용하여 접착하여 편광필름(100)을 제조하며(S2), 제조과정은 도 3에 도시되어 있고, 제조된 편광필름(100)은 도 4에 도시되어 있다. 도 3에 도시된 바와 같이, PVA 필름(130)은 표면에 수계접착제(140)를 도포한 후에 TAC 필름(120)을 부착한다. 수계접착제(140)는 PVA 분말과 물을 혼합하여 제조될 수 있다. PVA 필름(130)은 폴리비닐알코올계 등의 수지필름을 일축 연신하거나 포름화체 등으로 안정화 처리한 후 일축 연신한 것을 이용할 수 있으며, 편광도를 높이기 위해 요오드(IODINE) 또는 이색성 염료를 도프(DOPE) 처리할 수 있다.
다음으로 편광필름(100)을 도 5에 나타난 바와 같이 렌즈형상으로 성형한다(S3).
다음으로 렌즈형상으로 성형된 편광필름(200)을 렌즈 제조용 주형(400)의 내부에 삽입고정시킨다(S4).
도 6에 나타낸 바와 같이, 렌즈 제조용 주형(400)은 양측에 고무패킹(410, 420)을 구비하는데, 일측의 고무패킹(410)에는 폴리티오우레탄이 주입되는 주입구구 형성된다. 양측의 각 고무패킹(410, 420) 사이에는 상부 및 하부에 렌즈형상의 차단막(430)이 구비된다. 차단막은 유리 등의 재질로 이루어질 수 있다. 편광필름(200)은 고무패킹(410, 420) 사이에 상하로 구비된 차단막(430) 사이에 위치하게 되고 각 차단막(430)과 편광필름(200) 사이에는 주입공간(440)이 형성된다.
상기 렌즈 제조용 주형(400) 내부에 편광필름(200)을 삽입 고정시킨 후 주형(400)의 일측에 구비된 주입구(411)를 통해 폴리티오우레탄이 주입되며, 주입되는 폴리티오우레탄은 편광필름(200)의 하부에 형성된 주입공간(440)으로 열경화제를 혼합하여 주입된다.
폴리티오우레탄 수지(300)가 편광필름(200)의 하부에 충전된 후에 일정시간 냉각하여 폴리티오우레탄 수지(300)와 편광필름(200)이 부착되고, 냉각이 완료되면 편광렌즈(500)의 제조는 완성된다(S6).
폴리티오우레탄 수지(300)는 고굴절 렌즈를 제조하기 위해 사용되며, 특히 MRTM 렌즈(미쓰이화학 주식회사의 등록상표임)는 폴리티오우레탄을 사용한 렌즈의 일종으로서 고굴절을 가진 시리즈로 제품이 출시되고 있다. MR 렌즈 시리즈를 살펴보면, MR-8은 굴절율이 1.60이고, MR-7과 MR-10은 굴절율이 1.67이며, MR-174는 굴절율이 1.74로서 굴절율이 클수록 얇은 렌즈 제조에 적합하다. 일반적인 폴리티오우레탄 수지(300)의 화학식은 다음과 같다.
Figure PCTKR2020002950-appb-C000002
상기 화학식 2에 도시된 바와 같이, 화학식 1의 TAC 필름의 히드록시기(OH-)가 화학식 2의 폴리티오우레탄 수지(300)의 말단부인 SH와 수소결합되고, 수소결합에 의해 TAC 필름은 폴리티오우레탄 수지(300)에 강하게 부착될 수 있다. 그에 따라 TAC 필름의 폴리티오우레탄 수지에 대한 접착력은 강해질 수 있다.
도 9와 도 10은 렌즈 제조용 주형에서 폴리티오우레탄 수지(300)가 편광필름(200)의 상부 및 하부에 부착되도록 제조되는 것을 도시하고 있다. 폴리티오우레탄 수지(300)가 전처리된 편광필름(200)의 상부 및 하부에 주입되고, 편광필름(200)의 상부 및 하부 TAC 필름의 히드록시기(OH-)가 화학식 2의 폴리티오우레탄 수지(300)의 말단부(SH)와 수소결합되고, 수소결합에 의해 폴리티오우레탄 수지(300)는 TAC 필름에 강하게 부착될 수 있다.
이상에서 본 발명의 바람직한 일실시예를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있고, 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서 상기 기재내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.
본 발명은 고굴절 편광렌즈를 구성하는 폴리티오우레탄(Polythiourethane)계 수지와, 폴리티오우레탄계 수지에 부착되는 편광필름의 접착력을 향상시켜 렌즈를 형성하는 우레탄 수지로부터 박리되지 않고 제품의 안정성과 신뢰성을 향상시킬 수 있는 고굴절 편광렌즈 제조방법에 관한 것으로서 산업상 이용가능성이 높은 발명이다.

Claims (6)

  1. TAC 필름의 양 표면을 전처리하는 단계;
    상기 전처리된 TAC 필름을 PVA 필름의 양면에 부착하여 전처리 편광필름을 제조하는 단계;
    상기 제조된 전처리 편광필름을 렌즈 형상으로 성형하는 단계;
    상기 성형된 전처리 편광필름을 렌즈 제조용 주형에 안착시키는 단계;
    상기 전처리 편광필름이 안착된 렌즈 제조용 주형에 폴리티오우레탄계 수지를 주입하는 단계; 및
    상기 주형을 고정하고 폴리티오우레탄계 수지를 냉각시키는 단계;
    로 이루어지는 것을 특징으로 하는 고굴절 편광렌즈의 제조방법.
  2. 제1항에 있어서,
    상기 TAC 필름의 전처리는, 하기와 같은 화학식으로 표면개질되도록 상기 TAC 필름을 NaOH 수용액에 침지하여 이루어지는 것을 특징으로 하는 고굴절 편광렌즈의 제조방법.
    Figure PCTKR2020002950-appb-I000002
  3. 제1항에 있어서,
    상기 TAC 필름을 PVA 필름에 부착하는 단계는, PVA 필름의 양면에 접착제를 도포한 후 전처리된 TAC 필름을 부착하는 것을 특징으로 하는 고굴절 편광렌즈의 제조방법.
  4. 제3항에 있어서,
    상기 접착제는, PVA 분말과 물을 혼합하여 형성된 수계접착제로 이루어지는 것을 특징으로 하는 고굴절 편광렌즈의 제조방법.
  5. 제1항에 있어서,
    상기 폴리티오우레탄 수지를 주입하는 단계는,
    전처리된 편광필름의 상부 및 하부로 상기 폴리티오우레탄 수지가 주입되는 것을 특징으로 하는 고굴절 편광렌즈의 제조방법.
  6. 제5항에 있어서,
    상기 폴리티오우레탄 수지와 상기 전처리된 편광필름은 수소결합으로 이루어져 접착력이 증가되는 것을 특징으로 하는 고굴절 편광렌즈의 제조방법.
PCT/KR2020/002950 2019-03-12 2020-03-02 고굴절 편광렌즈의 제조방법 WO2020184881A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/431,811 US20220155494A1 (en) 2019-03-12 2020-03-02 The manufacturing method of high-refractive polarized lens
JP2021544336A JP7403856B2 (ja) 2019-03-12 2020-03-02 高屈折偏光レンズの製造方法
CN202080011950.8A CN113383254A (zh) 2019-03-12 2020-03-02 高折射偏光透镜的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190028244A KR102246299B1 (ko) 2019-03-12 2019-03-12 고굴절 편광렌즈의 제조방법
KR10-2019-0028244 2019-03-12

Publications (1)

Publication Number Publication Date
WO2020184881A1 true WO2020184881A1 (ko) 2020-09-17

Family

ID=72428036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002950 WO2020184881A1 (ko) 2019-03-12 2020-03-02 고굴절 편광렌즈의 제조방법

Country Status (5)

Country Link
US (1) US20220155494A1 (ko)
JP (1) JP7403856B2 (ko)
KR (1) KR102246299B1 (ko)
CN (1) CN113383254A (ko)
WO (1) WO2020184881A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4357115A1 (en) * 2022-10-19 2024-04-24 BARBERINI, S.p.A. Method for manufacturing a transparent plastic lens with embedded decorative elements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150026062A (ko) * 2013-08-30 2015-03-11 제일모직주식회사 편광판 및 이를 포함하는 액정표시장치
KR20150099752A (ko) * 2012-12-28 2015-09-01 에씰로아 인터내셔날(콩파니에 제네랄 도프티크) 휠 에징 성능이 개선된 필름 적층 안경 렌즈
KR20150127209A (ko) * 2013-03-20 2015-11-16 에실러에떼르나쇼날(꽁빠니제네랄돕띠끄) 편광성 구조물용 폴리우레탄계 접착제 및 편광 렌즈
KR101640631B1 (ko) * 2012-12-12 2016-07-18 제일모직주식회사 편광판용 접착 필름, 이를 위한 접착제 조성물, 이를 포함하는 편광판 및 이를 포함하는 광학 표시 장치
KR20170016454A (ko) * 2015-04-03 2017-02-13 다이셀에보닉 주식회사 기능성 렌즈 및 그것을 구비한 기능성 안경

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707940B2 (ja) * 2003-08-28 2011-06-22 住友化学株式会社 偏光板及びその製造方法
JP4408384B2 (ja) * 2004-03-30 2010-02-03 Mgcフィルシート株式会社 プラスチックス偏光レンズ体の製造方法、プラスチックス偏光レンズ体、該レンズ体製造に用いる偏光積層体および被覆シート
TWI264597B (en) * 2004-03-12 2006-10-21 Optimax Tech Corp Preprocess method for a plastic film in a polarizing plate
JP4729354B2 (ja) * 2005-07-21 2011-07-20 Mgcフィルシート株式会社 偏光調光特性を有する光制御プラスチックレンズおよびその製造方法
CN100460900C (zh) * 2005-11-30 2009-02-11 达信科技股份有限公司 一种偏光片的制作方法
JP4989623B2 (ja) 2006-02-21 2012-08-01 三井化学株式会社 ポリチオウレタン系光学材料用重合性組成物
CN101226253A (zh) * 2007-01-17 2008-07-23 毛利聪 偏光板保护膜的碱化处理方法
JP5446015B2 (ja) * 2008-04-08 2014-03-19 エルジー・ケム・リミテッド 接着剤組成物及びこれを用いた光学フィルム
KR100993596B1 (ko) 2008-06-11 2010-11-10 주식회사 트리아펙스 편광필름, 편광렌즈 및 이의 제조방법
JP5749568B2 (ja) * 2010-05-28 2015-07-15 富士フイルム株式会社 立体画像印刷用印画紙、立体画像印刷物、立体画像印刷物の製造方法、及び立体画像の提供方法
JP5553362B2 (ja) * 2010-09-20 2014-07-16 エルジー・ケム・リミテッド 光学フィルムおよび偏光板
EP2824504B1 (en) * 2012-03-06 2017-02-08 Mitsui Chemicals, Inc. Plastic polarizing lens and process for producing same
US9315693B2 (en) 2012-08-01 2016-04-19 Essilor International (Compagnie Generale D'optique) Glyoxal adhesive system and process for manufacturing same
WO2014021466A1 (ja) * 2012-08-02 2014-02-06 ホーヤ レンズ マニュファクチャリング フィリピン インク 偏光レンズおよびその製造方法
KR101317260B1 (ko) 2013-02-27 2013-10-14 주식회사 온빛 편광렌즈의 제조방법
JP6235370B2 (ja) * 2014-02-19 2017-11-22 住友化学株式会社 偏光性積層フィルム及び偏光板の製造方法
KR102052168B1 (ko) * 2015-04-29 2019-12-04 주식회사 트리아펙스 편광 필름, 이의 제조 방법, 및 이를 포함하는 편광 렌즈
KR20160146540A (ko) * 2015-06-12 2016-12-21 스미또모 가가꾸 가부시키가이샤 편광 필름 및 그것을 포함하는 편광판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101640631B1 (ko) * 2012-12-12 2016-07-18 제일모직주식회사 편광판용 접착 필름, 이를 위한 접착제 조성물, 이를 포함하는 편광판 및 이를 포함하는 광학 표시 장치
KR20150099752A (ko) * 2012-12-28 2015-09-01 에씰로아 인터내셔날(콩파니에 제네랄 도프티크) 휠 에징 성능이 개선된 필름 적층 안경 렌즈
KR20150127209A (ko) * 2013-03-20 2015-11-16 에실러에떼르나쇼날(꽁빠니제네랄돕띠끄) 편광성 구조물용 폴리우레탄계 접착제 및 편광 렌즈
KR20150026062A (ko) * 2013-08-30 2015-03-11 제일모직주식회사 편광판 및 이를 포함하는 액정표시장치
KR20170016454A (ko) * 2015-04-03 2017-02-13 다이셀에보닉 주식회사 기능성 렌즈 및 그것을 구비한 기능성 안경

Also Published As

Publication number Publication date
US20220155494A1 (en) 2022-05-19
KR20200109124A (ko) 2020-09-22
KR102246299B1 (ko) 2021-04-29
JP2022533289A (ja) 2022-07-22
JP7403856B2 (ja) 2023-12-25
CN113383254A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
KR101872781B1 (ko) 액정 패널 및 이 액정 패널에 이용되는 편광자 적층체
CN105122099B (zh) 偏振片的组及前板一体型液晶显示面板
EP0395019B1 (en) Anti-dazzling polycarbonate polarizing plate
US20060192306A1 (en) Manufacturing methods for embedded optical system
US20110205627A1 (en) Circularly polarizing plate and circularly polarizing lens, and circularly polarizing glasses
CN103091761A (zh) 光学显示组件的制造方法、用于其的片制品、及辊卷料
CN105593724B (zh) 偏光板组及前板一体型液晶显示面板
JP5633228B2 (ja) 偏光板、偏光レンズおよび防眩製品
WO2020184881A1 (ko) 고굴절 편광렌즈의 제조방법
CN108780176A (zh) 带光学补偿层的偏振片以及使用了该偏振片的有机el面板
AU2013229428A1 (en) Method for creating a viewing screen having an injection overmolded insert
JP2007093649A (ja) 偏光レンズ
WO2013074269A1 (en) 3d lenses and methods of making the same
CN101726764A (zh) 一种偏光镜片及其制造方法
KR20090128790A (ko) 편광필름, 편광렌즈 및 이의 제조방법
KR101828213B1 (ko) 편광판 및 그 제조 방법 그리고 화상 표시 장치
CN109416428A (zh) 光学构件及液晶显示装置
KR20110092535A (ko) 편광렌즈 제조방법
CN116457708A (zh) 经过了曲面加工后的偏振片及其制造方法
JP2011053244A (ja) 偏光板、偏光レンズおよび防眩製品
JP2012215866A (ja) 偏光レンズの製造方法、偏光レンズ、防眩製品および防護製品
CN213092024U (zh) 具有空气封装层的光栅立体画
KR102380648B1 (ko) 유리렌즈에 적합한 편광필름을 이용한 유리 편광렌즈의 제조방법
US20230011467A1 (en) Optical sheet and optical component
CN109031499A (zh) 一种超薄带偏光效果的oca及制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20771023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544336

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20771023

Country of ref document: EP

Kind code of ref document: A1