WO2020184712A1 - 伸びフランジ割れ評価方法、金属板の選定方法、プレス金型の設計方法、部品形状の設計方法、及びプレス部品の製造方法 - Google Patents

伸びフランジ割れ評価方法、金属板の選定方法、プレス金型の設計方法、部品形状の設計方法、及びプレス部品の製造方法 Download PDF

Info

Publication number
WO2020184712A1
WO2020184712A1 PCT/JP2020/011189 JP2020011189W WO2020184712A1 WO 2020184712 A1 WO2020184712 A1 WO 2020184712A1 JP 2020011189 W JP2020011189 W JP 2020011189W WO 2020184712 A1 WO2020184712 A1 WO 2020184712A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
strain
evaluation
molding
hole
Prior art date
Application number
PCT/JP2020/011189
Other languages
English (en)
French (fr)
Inventor
健斗 藤井
新宮 豊久
雄司 山▲崎▼
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US17/438,302 priority Critical patent/US11971390B2/en
Priority to JP2020535001A priority patent/JP6819832B1/ja
Priority to KR1020217028922A priority patent/KR102526833B1/ko
Priority to CN202080020881.7A priority patent/CN113573823B/zh
Priority to EP20770837.1A priority patent/EP3939713B1/en
Priority to MX2021011063A priority patent/MX2021011063A/es
Publication of WO2020184712A1 publication Critical patent/WO2020184712A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0214Calculations a priori without experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/027Specimens with holes or notches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/22Moulding

Definitions

  • the present invention relates to a method for evaluating stretch flange cracks at a shear end face of a metal plate in press forming, a method for selecting a metal plate, a method for designing a press die, a method for designing a part shape, and a method for manufacturing a pressed part.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a technique capable of more easily evaluating stretch flange cracks on a sheared end face of a metal plate and determining press forming conditions. ..
  • the press forming conditions include selection of a metal plate to be used for press forming, determination of the shape of pressed parts, and the like.
  • the material condition (plate condition) of the metal plate to be evaluated is the "relationship between the strain at the hole edge and the strain gradient in the direction along the radial direction from the hole edge", which was obtained as the strain at the hole edge converted to true strain. ), It was found that it can be used as analytical data when evaluating strain gradients.
  • the inventors have converted the hole expansion rate during molding in the above hole expansion molding analysis into true strain, and the strain at the hole edge and the strain gradient in the direction along the radial direction from the hole edge during the hole expansion molding. It was found that the relationship with is determined by the initial hole diameter of the metal plate and the shape of the forming tool for which the hole expansion test is performed, and is not affected by mechanical properties such as material strength, plate thickness, and r value. Therefore, the inventors performed a hole expansion molding analysis on a metal plate having a certain mechanical property, and the hole edge strain obtained by converting the hole expansion ratio during molding in the above hole expansion molding analysis into true strain.
  • At least two of the two or more reference strain gradient information are subjected to hole expansion molding on the evaluation metal plate under the same molding conditions as the molding conditions corresponding to the reference strain gradient information.
  • At least two limit hole expansion rates at the hole expansion limit of the evaluation metal plate are obtained, and the above evaluation is performed from the at least two reference strain gradient information and the limit hole expansion rate at the at least two hole expansion limits obtained.
  • the gist is to determine the formable region of the metal plate for use, and to evaluate the stretch flange crack at the sheared end face of the metal plate for evaluation based on the obtained formable region.
  • another embodiment of the present invention is a method for selecting a metal plate to be molded into a pressed part, and the elongation at the sheared end face when the pressed part is molded by the stretch flange crack evaluation method of the above aspect.
  • the gist is to evaluate the flange cracks and select a metal plate that does not cause stretch flange cracks on the sheared end face based on the evaluation.
  • another aspect of the present invention is a method for designing a part shape of a pressed part obtained by press-molding a metal plate, and when the metal plate is press-molded by the stretch flange crack evaluation method of the above-mentioned one aspect.
  • the gist is to evaluate the stretch flange cracks on the sheared end face and, based on the evaluation, obtain the component shape in which the stretch flange cracks on the shear end face are suppressed.
  • another aspect of the present invention is a method for manufacturing a pressed part for manufacturing a pressed part by press-molding a metal plate, and the press-molding condition is determined by the stretch flange crack evaluation method of the above-mentioned one aspect. It is a summary.
  • the aspect of the present invention it is possible to stably manufacture the pressed parts by press molding, and it is possible to greatly contribute to the reduction of the defective rate of the press molded products.
  • the shape of the press die can be predicted accurately at the design stage, which can contribute to shortening the manufacturing period of the press die.
  • a second metal plate having the same or different plate conditions as the evaluation metal plate specifically, a second metal having an arbitrarily selected plate condition regardless of the evaluation metal plate. Perform processing on the board.
  • the molding analysis of the hole expansion test is carried out on the second metal plate arbitrarily selected under the set molding conditions (hereinafter, also referred to as hole expansion test conditions).
  • the plate condition is usually a characteristic condition of a metal plate set when analyzing a metal plate. Plate conditions include, for example, material strength, plate mechanical properties, plate thickness, and the like.
  • the plate conditions of the second metal plate to be formed and analyzed are not particularly limited, but for example, plate conditions arbitrarily selected from a plurality of types of metal plate conditions assumed as evaluation metal plates can be selected. It should be adopted. That is, the plate conditions of the second metal plate to be molded and analyzed can be arbitrarily selected and used regardless of the plate conditions (mechanical characteristics, plate thickness, etc.) of the evaluation metal plate. Therefore, the plate conditions of the second metal plate to be molded and analyzed are usually different from the plate conditions of the evaluation metal plate.
  • the relationship between the hole expansion ratio and the strain gradient along the radial direction from the hole edge is obtained. Further, in the preliminary information acquisition step 1, the hole expansion rate during the molding analysis is converted into true strain to obtain the strain at the edge of the hole. In the preliminary information acquisition step 1, the process of obtaining the reference strain gradient information, which comprises the relationship between the strain at the edge of the hole and the strain gradient, corresponding to the molding conditions set in the hole expansion test is executed by the above processing. The process in the preliminary information acquisition step 1 is performed twice or more by changing the hole expansion test conditions.
  • the plate conditions of the second metal plate to be formed and analyzed may be different or the same for each hole expansion test condition. As the plate conditions of the second metal plate, plate conditions that facilitate molding analysis may be appropriately set.
  • molding conditions hole expansion test conditions
  • reference strain gradient information data of two or more preliminary information 10 including molding conditions (hole expansion test conditions) and reference strain gradient information are acquired, and the acquired data of the two or more preliminary information 10 are stored in a database.
  • the molding conditions are expressed by two types of variables: the initial hole diameter formed on the metal plate and the shape of the molding tool (punch shape) for performing the hole expansion test. Two or more molding conditions in which at least one of the initial hole diameter and the shape of the molding tool is changed are set as the hole expansion test conditions.
  • the data of the preliminary information 10 stored in the database 2 is in the data format as shown in FIG. 2, for example.
  • the data of the preliminary information 10 includes the data number 10a, the molding condition 10b for specifying the hole expansion test condition, and the reference strain gradient information 10c corresponding to the molding condition.
  • the reference strain gradient information 10c is information of "relationship between the hole expansion ratio and the strain gradient along the radial direction from the hole edge" represented by the graph 11 as shown in FIGS. 3 and 4.
  • the reference strain gradient information 10c is composed of, for example, a conversion formula expressing the above relationship, two or more table information including each data (hole expansion ratio, strain gradient along the radial direction from the hole edge), and the like. ..
  • the strain gradient described above affects the stretch flange deformation limit
  • the initial hole diameter of the metal plate in the case of forming a hole expansion test using a molding tool (punch) having the same shape
  • the smaller the initial hole diameter of the metal plate the more the same hole expansion rate in the various hole expansion tests.
  • the strain gradient in the radial direction of the hole from the edge of the hole during molding becomes large.
  • the shape of the forming tool also affects the strain gradient. If the shape of the forming tool is conical (see FIG. 5A) with respect to the initial hole diameter of the same metal plate, the strain gradient is large, and the forming tool If the shape is cylindrical (see FIG. 5B), the strain gradient tends to be small.
  • the shape of the forming tool may be conical, cylindrical, spherical, or the like.
  • the shape of the molding tool may be any shape as long as the molding states of various strain gradients can be reproduced by molding analysis and the actual test can be carried out under the same molding conditions.
  • As the shape of the forming tool it is preferable to use a conical forming tool having a punch tip angle of 60 °, which is described in Japanese Industrial Standards JISZ2256.
  • JISZ2256 Japanese Industrial Standards JISZ2256.
  • an analysis that reproduces the molding conditions determined in consideration of the above is performed.
  • a molding analysis method it is preferable to use the widely adopted finite element method.
  • any molding analysis method may be adopted as long as the molding conditions can be reproduced in the analysis and the strain of the metal plate during molding can be obtained. In the following, a case where finite element analysis is used will be described as an example.
  • the strain of the hole edge converted into true strain from the hole expansion rate during molding in the hole expansion molding analysis and the radial direction from the hole edge during the hole expansion molding.
  • the relationship with the strain gradient in the along direction is determined by the initial hole diameter of the metal plate and the shape of the forming tool for which the hole expansion test is performed, and is not affected by the mechanical properties of the material such as material strength, plate thickness, and r value.
  • a hole expansion molding analysis is performed on a metal plate having a certain mechanical property, and the hole expansion rate during molding in the hole expansion molding analysis is converted into true strain.
  • FIG. 11 of the reference strain gradient information 10c An example of Graph 11 of the reference strain gradient information 10c is shown in FIG.
  • the initial hole diameter applied in this example and the punch shape as the forming tool shape 21 are shown in Tables 1, 2, and 5.
  • reference numeral 20 indicates a metal plate.
  • the graph of the reference strain gradient information 10c is also referred to as a master curve.
  • FIG. 4A is a graph of reference strain gradient information 10c when the initial hole diameter is 10 mm ⁇ and the forming tool shape 21 is analyzed under the conical hole widening test condition.
  • FIG. 4B is a graph of reference strain gradient information 10c when the initial hole diameter is 25 mm ⁇ and the forming tool shape 21 is analyzed under the conical hole expansion test condition.
  • FIG. 4C is a graph of reference strain gradient information 10c when the initial hole diameter is 50 mm ⁇ and the forming tool shape 21 is analyzed under the conical hole expansion test condition.
  • FIG. 4D is a graph of reference strain gradient information 10c when the initial hole diameter is 25 mm ⁇ and the forming tool shape 21 is analyzed under the cylindrical hole widening test condition.
  • FIG. 4A is a graph of reference strain gradient information 10c when the initial hole diameter is 10 mm ⁇ and the forming tool shape 21 is analyzed under the conical hole widening test condition.
  • FIG. 4B is a graph of reference strain gradient information 10c when the initial hole
  • the inventor uses four types of steel having tensile strengths of 270 MPa, 590 MPa, 980 MPa, and 1470 MPa as the metal plate, and for each metal plate, the initial hole diameter is 10 mm ⁇ and the forming tool shape is conical.
  • the reference strain gradient information 10c when analyzed under the test conditions was obtained. In this case, it was confirmed that the reference strain gradient information 10c has the same curve at least when the strain gradient is 0.1 mm -1 or less. Further, it was confirmed that the reference strain gradient information 10c has almost the same curve (master curve) when the strain gradient is 0.1 mm -1 or less even when the analysis is performed with only the r value different. Furthermore, even when the plate thickness was changed between 0.5 mm and 4.0 mm and confirmed, it was confirmed that the reference strain gradient information 10c had almost the same curve when the strain gradient was 0.1 mm -1 or less. ..
  • the limit strain gradient calculation step 4 the first reference strain gradient information stored in the database 2 and the limit strain at the hole edge at the hole expansion limit corresponding to the limit hole expansion rate obtained in the actual test step 3 Based on the strain, the strain gradient along the radial direction is calculated from the hole edge corresponding to the critical strain. That is, in the limit strain gradient calculation step 4, the limit hole widening obtained in the actual test step 3 is performed with reference to the reference strain gradient information 10c corresponding to the hole expansion test conditions adopted in the actual test step 3. Obtain the strain gradient corresponding to the strain at the hole edge converted by the rate, and acquire the data at the critical strain (strain at the hole edge, strain gradient).
  • the hole expansion ratio of 79% at the critical strain is changed to the hole edge strain of 0.58, and the corresponding reference strain gradient information 10c, Graph 11, corresponds to the hole edge strain of 0.58.
  • the above-mentioned processing of the actual test step 3 and the limit strain gradient calculation step 4 are carried out twice or more by changing the hole expansion test conditions stored in the database 2. As a result, two or more data corresponding to the critical strain (strain at the edge of the hole, strain gradient) are acquired.
  • ⁇ Possible area setting process 5> In the possible region setting step 5, (strain and strain at the edge of the hole) with two or more sets of critical strains obtained by changing the data (hole expansion test conditions, reference strain gradient information 10c) and performing the test twice or more. From the set of data (see FIG. 6) of (gradient), the formable region ARA as shown in FIG. 7 is obtained. The strain at the edge of the hole corresponds to the critical strain data. For example, the positions of two or more sets (strain of the hole edge, strain gradient) obtained in the critical strain gradient calculation step 4 are set as the boundary value of the moldable region ARA, and the two or more sets (strain and strain of the hole edge) are used as the boundary value.
  • the line passing through the gradient) is defined as the molding limit line L, and the region below it is defined as the moldable region ARA.
  • the stretch flange crack at the shear end face of the metal plate to be evaluated is evaluated by the formable region ARA obtained by the possible region setting step 5.
  • the evaluation determination step 6 for example, a molding analysis simulating the press molding to be evaluated is performed, and the strain of the edge of the metal plate to be evaluated in the press molding analysis and the direction of the inside of the metal plate to be evaluated from the edge The relationship with the strain gradient is evaluated by whether or not it exists in the moldable region ARA. In the case of the data in the formable region ARA, it is predicted that no stretch flange cracking will occur at the shear end face.
  • the deformation limit in stretch flange molding is affected by the strain gradient near the edge. This is because when the strain gradient becomes large, even if the edge reaches the strain localization condition, the condition is not reached inside the condition, so that the strain localization suppression effect works and the constriction growth in the region with less strain. This is because the suppressing effect becomes large. That is, the larger the strain gradient, the larger the deformation limit of the stretch flange molding for the two reasons of increasing the deformation limit of the material and increasing the uniformity of the strain distribution at the hole edge.
  • hole expansion molding analysis is performed on one type of metal plate arbitrarily selected, and the strain of the hole edge and the hole expansion thereof converted from the hole expansion rate during molding into true strain in the molding analysis.
  • the relationship of the strain gradient in the direction along the radial direction from the hole edge in the rate is acquired in advance.
  • the limit hole expansion rate at the hole expansion limit is obtained by performing an actual hole expansion test using the same initial hole diameter and the same molding tool as in the molding analysis, and during molding.
  • the value of the strain gradient at the hole expansion limit is calculated from the relationship between the strain at the hole edge and the strain gradient in the direction along the radial direction from the hole edge at the time of molding.
  • stretch flange molding is performed.
  • the moldable region ARA is determined.
  • the obtained formable region ARA of the stretch flange molding and the molding analysis simulating the press forming are carried out, and the strain of the edge of the evaluation metal plate in the press forming analysis and the inward direction from the edge of the evaluation metal plate.
  • the strain at the hole edge and the strain gradient in the direction along the radial direction from the hole edge are used by using the strain at the hole edge which is converted into the true strain from the hole expansion ratio.
  • the relationship is determined by the initial hole diameter of the metal plate and the shape of the forming tool for which the hole expansion test is performed, and is not affected by mechanical properties such as material strength, plate thickness, and r value.
  • the strain at the hole edge and the hole widening limit at the hole widening limit necessary for predicting the expansion flange cracking can be more easily performed without performing the molding analysis of different materials for each evaluation metal plate each time.
  • the relationship of the strain gradient in the radial direction from the hole edge in is obtained.
  • the present embodiment it is possible to easily acquire the data for predicting the elongation flange crack of the sheared end face.
  • press molding can be stably performed, and it is possible to greatly contribute to the reduction of the defective rate of the press molded product.
  • the shape of the press die can be predicted accurately at the design stage, which can contribute to shortening the manufacturing period of the press die.
  • the stretch flange crack is easily evaluated by the stretch flange crack evaluation method described in the first embodiment, and the press forming conditions are selected and the design is changed based on the evaluation.
  • the press forming conditions include, for example, selection of a metal plate used for press forming, selection of a forming surface of a die used for press forming, determination of a press part to be manufactured, and the like.
  • the metal plate is pressed by the stretch flange crack evaluation method described in the first embodiment.
  • the stretch flange crack evaluation method described in the first embodiment.
  • the press-molding condition is determined by the stretch flange crack evaluation method described in the first embodiment.
  • the present embodiment for example, is it appropriate to select press forming conditions such as a metal plate, a press die, and a part shape used for press forming various parts such as automobile panel parts, structural / frame parts, etc. It becomes possible to predict whether or not it is quick and accurate. As a result, according to the aspect of the present invention, it is possible to stably manufacture the pressed parts by press molding, and it is possible to greatly contribute to the reduction of the defective rate of the press molded products. In addition, the shape of the press die can be predicted accurately at the design stage, which can contribute to shortening the manufacturing period of the press die.
  • the molding limit line L and the moldable region ARA were obtained from the strain and strain gradient of the hole edge shown in Table 4, and the results were as shown in FIG.
  • a molding analysis simulating press molding was performed for each part shape in which the radius of curvature of the curvature along the longitudinal direction of the pressed part R was changed.
  • the strain of the edge of the metal plate to be evaluated in the press forming analysis and the strain gradient from the edge to the inside of the metal plate to be evaluated are obtained, and whether the strain is located in the moldable region ARA shown in FIG. I confirmed whether or not. From the confirmed results, it was predicted from the molding analysis that the stretch flange cracks did not occur when the radius of curvature was 300 mm and 400 mm, and the stretch flange cracks occurred when the radius of curvature was 200 mm or less.
  • Preliminary information acquisition process 2 Database 3 Actual test process 4 Limit strain gradient calculation process 5 Possible area setting process 6 Evaluation judgment process 10

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

評価用金属板のせん断端面の伸びフランジ割れをより簡便に評価する技術を提供する。任意に選択した第2の金属板に所定の成形条件で穴広げ試験の成形解析を実施し穴広げ率を真ひずみからなる穴端縁のひずみに換算してなる、穴端縁のひずみと半径方向に沿ったひずみ勾配との関係である基準ひずみ勾配情報(10c)を、成形条件を変えて2以上有す。少なくとも2つの基準ひずみ勾配情報(10c)に対応する各成形条件と同じ成形条件で評価用金属板に穴広げ成形を行って、評価用金属板の穴広げ限界における限界穴広げ率を少なくとも2つ求め、少なくとも2つの基準ひずみ勾配情報(10c)と、求めた少なくとも2つの穴広げ限界における限界穴広げ率とから評価用金属板の成形可能領域(ARA)を求める。求めた成形可能領域(ARA)によって、評価用金属板におけるせん断端面での伸びフランジ割れを評価する。

Description

伸びフランジ割れ評価方法、金属板の選定方法、プレス金型の設計方法、部品形状の設計方法、及びプレス部品の製造方法
 本発明は、プレス成形における金属板のせん断端面での伸びフランジ割れを評価する方法、金属板の選定方法、プレス金型の設計方法、部品形状の設計方法、及びプレス部品の製造方法に関する。
 自動車部品に使用される鋼板の高強度化が進んでおり、その鋼板のプレス成形における課題の一つに伸びフランジ割れがある。しかし、せん断端面での伸びフランジ割れは、FLDなどの割れ予測手法では予測が困難であった。
 ここで、非特許文献1に記載のように、伸びフランジ割れの破断限界には、破断部近傍のひずみ勾配が大きく影響していることが分かっている。このことから、例えば特許文献1~3に記載の方法では、種々の材料の穴広げ試験に代表される、せん断端面の伸びフランジ変形限界を評価するための実際の試験と、その成形解析とにより、伸びフランジ割れ限界とひずみ勾配の関係を求める。そして、その求めた伸びフランジ割れ限界とひずみ勾配の関係と、プレス成形解析結果とに基づき伸びフランジ割れを予測する。
特開2009-204427号公報 特開2017-140653号公報 国際公開第2016/002880号
飯塚栄治他: 塑性と加工、51-594(2007)、700-705
 高強度鋼板のプレス成形時における伸びフランジ成形におけるせん断端面の割れが顕在化している。このため、伸びフランジ割れの発生を防ぐために、金属板、特に高強度鋼板のせん断端面の伸びフランジ割れを評価することは重要である。
 しかし、特許文献1~3に記載の方法では、評価する金属板が変わる度に、実試験に応じた成形解析を実施する必要があるため、伸びフランジ割れ限界の解析データ取得に時間が掛かる。
 特許文献3に記載のように、材料試験から直接、ひずみ勾配を計算する方法もある。しかし、この方法は、材料試験におけるひずみ分布を測定する特別な装置が必要となる。また、円錐穴広げ成形の際に金属板が反るために、ひずみの測定が困難あり実用的ではない。
 以上のように、従来の評価方法では、加工に使用する金属板を選定する際に、伸びフランジ割れ予測に必要なひずみ勾配を計算する成形解析の工程を、評価する金属板毎に行う必要がある。したがって、伸びフランジ割れの成形限界を評価する指標(評価する金属板に対応したひずみ勾配の情報)の決定に時間が掛かるといった課題がある。
 本発明は、上記課題を解決すべく考案したものであり、金属板のせん断端面の伸びフランジ割れをより簡便に評価して、プレス成形条件を決定可能とする技術を提供することを目的とする。
 なお、プレス成形条件としては、プレス成形に使用する金属板の選定の他、プレス部品形状の決定などがある。
 発明者らは、せん断端面の伸びフランジ割れについて種々の検討を重ねた結果、任意に選定した1種類の金属板についての2種類以上の穴広げ成形解析を実施して解析した穴広げ率を、真ひずみに換算した穴端縁のひずみとして求めた、「穴端縁のひずみと穴端縁から半径方向に沿った方向のひずみ勾配との関係」が、評価する金属板の材料条件(板条件)に関係なく、ひずみ勾配を評価する際の解析データとして使用できるとの知見を得た。
 すなわち、発明者らは、上記穴広げ成形解析における成形中の穴広げ率を真ひずみ換算した、穴端縁のひずみとその穴広げ成形中の穴端縁から半径方向に沿った方向のひずみ勾配との関係は、金属板の初期穴径と穴広げ試験を実施する成形工具形状により決まり、材料強度や板厚、r値といった機械的特性に影響されないとの知見を得た。このため、発明者らは、ある一つの機械的特性を有した金属板について穴広げ成形解析を実施し、上記穴広げ成形解析における成形中の穴広げ率を真ひずみ換算した穴端縁のひずみとその穴広げ成形中の穴端縁から半径方向に沿った方向のひずみ勾配の関係を取得すれば、異なる材料からなる金属板毎に成形解析をその都度実施しなくても、簡便に伸びフランジ割れ予測に必要な穴広げ限界における穴端縁のひずみと、穴広げ限界における穴端縁から半径方向に沿った方向のひずみ勾配との関係を取得できることを見出した。
 そして、課題を解決するため、本発明の一態様は、せん断端面を有する金属板からなる評価用金属板の伸びフランジ割れを評価する伸びフランジ割れ評価方法であって、上記評価用金属板とは関係無く選定した金属板であって、任意に選定した板条件を有する第2の金属板に対し、設定した成形条件での穴広げ試験の成形解析を実施すると共に穴広げ率を真ひずみからなる穴端縁のひずみに換算して取得した、穴端縁のひずみと、穴端縁から半径方向に沿ったひずみ勾配との関係で表される基準ひずみ勾配情報を、上記成形条件を変えて2以上有し、上記2以上の基準ひずみ勾配情報のうちの少なくとも2つの上記基準ひずみ勾配情報に対応する各成形条件と同じ成形条件でそれぞれ、上記評価用金属板に対し穴広げ成形を行って、上記評価用金属板の穴広げ限界における限界穴広げ率を少なくとも2つ求め、上記少なくとも2つの上記基準ひずみ勾配情報と、上記求めた少なくとも2つの穴広げ限界における限界穴広げ率とから、上記評価用金属板の成形可能領域を求め、求めた上記成形可能領域によって、上記評価用金属板におけるせん断端面での伸びフランジ割れを評価することを要旨とする。
 また、本発明の他の実施形態は、プレス部品に成形する金属板の選定方法であって、上記一態様の伸びフランジ割れ評価方法によって、上記プレス部品に成形した際における、せん断端面での伸びフランジ割れを評価し、その評価に基づき、せん断端面での伸びフランジ割れが発生しない金属板を選定する、ことを要旨とする。
 また、本発明の他の態様は、金属板をプレス成形するプレス金型の設計方法であって、上記一態様の伸びフランジ割れ評価方法によって、上記金属板をプレス成形した際における、せん断端面での伸びフランジ割れを評価し、その評価に基づき、せん断端面での伸びフランジ割れを抑えることが可能なプレス金型を求める、ことを要旨とする。
 また、本発明の他の態様は、金属板をプレス成形して得られるプレス部品の部品形状の設計方法であって、上記一態様の伸びフランジ割れ評価方法によって、上記金属板をプレス成形した際における、せん断端面での伸びフランジ割れを評価し、その評価に基づき、せん断端面での伸びフランジ割れを抑えた部品形状を求める、ことを要旨とする。
 また、本発明の他の態様は、金属板をプレス成形してプレス部品を製造するプレス部品の製造方法であって、上記一態様の伸びフランジ割れ評価方法によって、上記金属板を上記プレス部品にプレス成形した際における、せん断端面での伸びフランジ割れを評価する、ことを要旨とする。
 また、本発明の他の態様は、金属板をプレス成形してプレス部品を製造するプレス部品の製造方法であって、上記一態様の伸びフランジ割れ評価方法によってプレス成形条件を決定する、ことを要旨とする。
 本発明の態様によれば、より簡便にせん断端面の伸びフランジ割れ評価(予測)のためのデータを取得可能となる。
 すなわち、本発明の態様によれば、例えば金属板のせん断端面の伸びフランジ割れ予測のためのデータを簡便に取得することが可能となる。したがって、例えば、自動車のパネル部品、構造・骨格部品等の各種部品をプレス成形する際に用いる金属板やプレス金型、部品形状などのプレス成形条件の選定が適切であるか否かを迅速かつ精度良く予測できるようになる。
 この結果、本発明の態様によれば、プレス成形によるプレス部品の製造を安定して行うことができると共に、プレス成形品の不良率の低減にも大きく寄与することができる。また、プレス金型の形状を設計段階で精度良く予測できるようになり、プレス金型の製造期間の短縮に貢献できる。
本発明に基づく実施形態に係る伸びフランジ割れ評価方法の処理を説明する図である。 予備情報のデータ例を示す図である。 伸びフランジ割れ評価方法の処理を説明する図である。 基準ひずみ勾配情報の例を示す図である。 成形工具の例を説明する図である。 可能領域設定工程の処理を説明する図である。 可能領域設定工程の処理を説明する図である。 実施例におけるプレス部品Rの形状を示す図である。 実施例による評価を説明する図である。
 次に、本発明の実施形態について図面を参照して説明する。
 (第1実施形態)
 本実施形態の伸びフランジ割れ評価方法は、プレス成形による、せん断端面を有する金属板からなる評価用金属板の伸びフランジ割れを評価する工程として、図1に示すように、実試験工程3と、限界ひずみ勾配算出工程4と、可能領域設定工程5と、評価判定工程6とを有する。本明細書では、「評価用金属板」を、「評価する金属板」とも記載する。
 また、伸びフランジ割れ評価のための予備情報10が、予めデータベース2(記憶部)に格納されている。上記予備情報10は、予備情報取得工程1の実施にて予め取得され、データベース2に格納される。
 <予備情報取得工程1>
 予備情報取得工程1は、評価用金属板と同一又は異なる板条件を有する第2の金属板、具体的には、評価用金属板とは関係無く任意に選定した板条件を有する第2の金属板に対し、処理を実行する。予備情報取得工程1は、任意に選択した第2の金属板に対し、設定した成形条件(以下、穴広げ試験条件とも呼ぶ)での穴広げ試験の成形解析を実施する。
 板条件とは、通常、金属板を解析する際に設定する金属板の特性条件である。板条件は、例えば、材料強度、板の機械的特性、板厚などである。成形解析される第2の金属板の板条件については、特に限定は無いが、例えば、評価用金属板として想定される複数種類の金属板の板条件のうちから、任意に選定した板条件を採用すればよい。すなわち、上記成形解析される第2の金属板の板条件は、評価用金属板の板条件(機械的特性や板厚等)とは関係無く、任意に選定して用いることが出来る。このため、上記成形解析される第2の金属板の板条件は、通常、評価用金属板の板条件とは異なる条件となる。
 この成形解析にて、穴広げ率と穴端縁から半径方向に沿ったひずみ勾配との関係が求められる。また、予備情報取得工程1は、成形解析中の穴広げ率を真ひずみに換算して穴端縁のひずみとする。予備情報取得工程1は、上記の処理によって、上記穴広げ試験に設定した成形条件に対応する、穴端縁のひずみとひずみ勾配との関係からなる、基準ひずみ勾配情報を求める処理を実行する。予備情報取得工程1での処理を、穴広げ試験条件を変更して2回以上実施する。成形解析される第2の金属板の板条件は、穴広げ試験条件毎に異なっていても良いし、同じであって良い。第2の金属板の板条件として、成形解析しやすい板条件を適宜、設定すればよい。
 これによって、成形条件(穴広げ試験条件)と、基準ひずみ勾配情報とからなる、2つ以上の予備情報10のデータが取得され、その取得された2つ以上の予備情報10のデータを、データベース2に格納しておく。
 なお、成形条件は、金属板に形成する初期穴径と、穴広げ試験を実施する成形工具形状(パンチ形状)との、2種類の変数で表現される。初期穴径及び成形工具形状の少なくとも一方を変更した2以上の成形条件を、穴広げ試験条件とする。
 データベース2に格納されている予備情報10のデータは、例えば、図2のようなデータ形式となっている。図2に示す例では、予備情報10のデータは、データ番号10a、穴広げ試験条件を特定する成形条件10b、その成形条件に対応する基準ひずみ勾配情報10cからなる。基準ひずみ勾配情報10cは、図3や図4に示すようなグラフ11で表される、「穴広げ率と穴端縁から半径方向に沿ったひずみ勾配との関係」の情報である。基準ひずみ勾配情報10cは、例えば、上記関係を表現する換算式や、(穴広げ率、穴端縁から半径方向に沿ったひずみ勾配)の各データからなる2以上の表情報などから構成される。
 ここで、伸びフランジ変形限界には前述のひずみ勾配が影響しているため、幅広いひずみ勾配における伸びフランジ変形限界を取得することが好ましい。このためには、金属板に対する初期穴径と成形工具の寸法を種々変更して、基準ひずみ勾配情報10cを求める方が良い。通常、種々の穴広げ試験では、同一形状の成形工具(パンチ)を使用した穴広げ試験の成形の場合、金属板の初期穴径が小さいほど、種々の穴広げ試験の同一の穴広げ率における成形時の穴端縁から穴の半径方向へのひずみ勾配が大きくなる。また、成形工具形状もひずみ勾配に影響しており、同一の金属板の初期穴径に対し、成形工具の形状が円錐形状(図5(a)参照)だとひずみ勾配が大きく、成形工具の形状が円筒形状(図5(b)参照)だとひずみ勾配が小さくなる傾向にある。
 本実施形態における、せん断端面の伸びフランジ割れ予測の精度を上げるためには、なるべく多くの種類の成形条件で成形解析及び成形試験を実施することが好ましい。ただし、実試験で用いる金属板を考慮すると、金属板に形成する初期穴径は、5mm以上200mm以下が好ましい。初期穴径が5mm未満だと、後述の金属板の打ち抜き加工の際に、打ち抜き成形工具が容易に変形するため均一なせん断加工状態の穴端縁が得られなくなり、実験精度が落ちる。また、初期穴径が100mmより大きいと、穴径が打ち抜き用の通常の成形工具も大きくなり、これに応じて打ち抜き成形工具を使用する設備も大きくなるため実用的でない。より好ましくは、金属板の初期穴径は10mm以上50mm以下が良い。
 成形工具の形状には、円錐形状、円筒形状、球頭形状などが考えられる。もっとも、成形工具の形状は、種々のひずみ勾配の成形状態が成形解析上で再現でき、かつ同一成形条件での実試験が実施できればどのような形状でも構わない。成形工具の形状は、好ましくは、日本工業規格JISZ2256で記載されている、パンチ先端の角度が60°の円錐形状の成形工具を用いるのがよい。
 予備情報取得工程1での穴広げの成形解析は、上記を考慮して決定した成形条件を再現した解析を実施する。
 成形解析の手法としては、広く採用されている有限要素法を用いるのが好ましい。ただし、成形解析の手法は、成形条件を解析上で再現でき、かつ成形中の金属板のひずみを取得できればどのような成形解析方法を採用しても構わない。以下では有限要素解析を用いた場合を例に説明する。
 穴広げ試験の成形解析によって、任意の成形状態において、穴端縁で最も大きく、穴端縁から半径方向に離れるにつれて小さくなるようなひずみ分布が取得される。そして、このひずみ分布からひずみ勾配を計算する。このひずみについては様々な定義があるが、使用するひずみとして、穴の周方向ひずみを強く反映するひずみが良い。そのようなひずみとしては、例えば最大主ひずみや相当塑性ひずみがあるが、好ましくは最大主ひずみが良い。
 穴広げ率を真ひずみ換算した穴端縁のひずみに変換して用いることで、穴端縁のひずみとひずみ勾配との関係からなる基準ひずみ勾配情報10cは、金属板の材料特性の依存性が抑制されている。
 すなわち、本発明者が得た知見によれば、穴広げ成形解析における成形中の穴広げ率から真ひずみ換算される穴端縁のひずみと、その穴広げ成形中の穴端縁から半径方向に沿った方向のひずみ勾配との関係は、金属板の初期穴径と穴広げ試験を実施する成形工具形状によって決まり、材料強度や板厚、r値といった材料の機械的特性に影響されない。そして、本発明者が得た知見によれば、ある一つの機械的特性を有した金属板について穴広げ成形解析を実施し、その穴広げ成形解析における、成形中の穴広げ率から真ひずみ換算される穴端縁のひずみと、その穴広げ成形中の穴端縁から半径方向に沿った方向のひずみ勾配の関係を取得することで、異なる材料の成形解析を都度実施しなくても、簡便に伸びフランジ割れ予測に必要な穴広げ限界における穴端縁のひずみと穴広げ限界における穴端縁から半径方向に沿った方向のひずみ勾配の関係を取得できる。
 基準ひずみ勾配情報10cのグラフ11の例を、図4に示す。この例で適用した初期穴径と、成形工具形状21としてのパンチ形状を表1、表2、及び図5に示す。図5中、符号20は金属板を示す。なお、基準ひずみ勾配情報10cのグラフを、マスターカーブとも記載する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図4(a)は、初期穴径10mmΦで、成形工具形状21が円錐形状の穴広げ試験条件で解析した場合の基準ひずみ勾配情報10cのグラフである。図4(b)は、初期穴径25mmΦで、成形工具形状21が円錐形状の穴広げ試験条件で解析した場合の基準ひずみ勾配情報10cのグラフである。図4(c)は、初期穴径50mmΦで、成形工具形状21が円錐形状の穴広げ試験条件で解析した場合の基準ひずみ勾配情報10cのグラフである。図4(d)は、初期穴径25mmΦで、成形工具形状21が円筒形状の穴広げ試験条件で解析した場合の基準ひずみ勾配情報10cのグラフである。図4(e)は、初期穴径50mmΦで、成形工具形状21が円筒形状の穴広げ試験条件で解析した場合の基準ひずみ勾配情報10cのグラフである。
 このように、初期穴径や成形工具形状の少なくとも一方の成形条件を変更することで、異なるグラフ11で表現される、基準ひずみ勾配情報10cが得られる。
 ここで、発明者は、金属板として引張強度が270MPa、590MPa、980MPa、1470MPaの4種類の鋼種を使用し、各金属板に対し、初期穴径10mmΦで、成形工具形状が円錐形状の穴広げ試験条件で解析した場合の基準ひずみ勾配情報10cを求めてみた。この場合、少なくとも、ひずみ勾配が0.1mm-1以下では、基準ひずみ勾配情報10cが同一のカーブになることを確認した。また、r値だけを異ならせて解析した場合でも、ひずみ勾配が0.1mm-1以下では、基準ひずみ勾配情報10cがほぼ同一のカーブ(マスターカーブ)になることを確認した。更に、板厚を0.5mm~4.0mmの間で変更して確認した場合も、ひずみ勾配が0.1mm-1以下では、基準ひずみ勾配情報10cがほぼ同一のカーブになることを確認した。
 ここで、有限要素解析の際に、有限要素の一部分に過大変形がないようにして基準ひずみ勾配情報10cを求めることが好ましい。
 このような観点から、基準ひずみ勾配情報10cを求める際に、穴広げ試験の成形解析に使用する第2の金属板の相当応力-相当塑性ひずみ関係は、均一伸びが7.5%以上の金属板の単軸引張試験より得られるものなど、材料特性が軟らかい条件で解析することが好ましい。そして、第2の金属板の単軸引張試験より得られた相当応力-相当塑性ひずみ又はその近似式を成形解析に使用することが好ましい。
 <実試験工程3>
 実試験工程3では、データベース2に格納されている複数の基準ひずみ勾配情報10cから選択した第1の基準ひずみ勾配情報に対応する成形条件(穴広げ試験条件)と同じ成形条件で、実際に、評価用金属板と同じ材料からなる金属板に対し穴広げ成形を行って、評価用金属板の穴広げ限界における限界穴広げ率を求める。
 <限界ひずみ勾配算出工程4>
 限界ひずみ勾配算出工程4では、データベース2に格納されている第1の基準ひずみ勾配情報と、実試験工程3で求めた限界穴広げ率に対応する穴広げ限界における穴端縁のひずみである限界ひずみとに基づき、限界ひずみに対応する穴端縁から半径方向に沿ったひずみ勾配を算出する。すなわち、限界ひずみ勾配算出工程4では、実試験工程3で採用した穴広げ試験条件に対応する基準ひずみ勾配情報10cを参照して、図3のように、実試験工程3で求めた限界穴広げ率を換算した穴端縁のひずみに対応するひずみ勾配を求め、限界ひずみでの(穴端縁のひずみ、ひずみ勾配)のデータを取得する。図3の例では、限界ひずみでの穴広げ率79%を穴端縁のひずみ0.58に変更し、対応する基準ひずみ勾配情報10cのグラフ11から、穴端縁のひずみ0.58に対応するひずみ勾配として0.095を求めた例である。
 以上の実試験工程3の処理と限界ひずみ勾配算出工程4とを、データベース2に格納されている穴広げ試験条件を変えて2回以上実施する。これによって、限界ひずみに対応する(穴端縁のひずみ、ひずみ勾配)のデータを2以上取得する。
 <可能領域設定工程5>
 可能領域設定工程5では、(穴広げ試験条件、基準ひずみ勾配情報10c)のデータを変えて2度以上実施して得られた、2組以上の限界ひずみでの(穴端縁のひずみ、ひずみ勾配)のデータの組(図6参照)から、図7のような成形可能領域ARAを求める。穴端縁のひずみが限界ひずみのデータに対応する。
 例えば、限界ひずみ勾配算出工程4で求めた2組以上の(穴端縁のひずみ、ひずみ勾配)の位置を成形可能領域ARAの境界値として、その2組以上の(穴端縁のひずみ、ひずみ勾配)を通過するラインを成形限界線Lとし、その下側の領域を成形可能領域ARAとする。
 <評価判定工程6>
 評価判定工程6では、可能領域設定工程5が求めた成形可能領域ARAによって、評価する金属板におけるせん断端面での伸びフランジ割れを評価する。評価判定工程6では、例えば、評価すべきプレス成形を模擬した成形解析を実施し、そのプレス成形解析における評価する金属板での端縁のひずみと、端縁より評価する金属板内側の方向のひずみ勾配との関係が、上記成形可能領域ARA内に存在するか否かによって評価する。成形可能領域ARA内のデータの場合には、せん断端面での伸びフランジ割れは発生しないと予測する。
 <作用その他>
 非特許文献1にあるように、伸びフランジ成形における変形限界は、端縁近傍のひずみ勾配の影響を受ける。これは、ひずみ勾配が大きくなると、端縁がひずみ局所化条件に達してもその内部ではその条件に達していないことにより、ひずみの局所化抑制効果が働くことや、ひずみの少ない領域のくびれ成長抑制効果が大きくなるためである。すなわち、素材の変形限界が拡大することと穴端縁のひずみ分布の均一性が高まることの2つの理由から、ひずみ勾配が大きくなると、伸びフランジ成形の変形限界が大きくなる。
 本実施形態によれば、任意に選択した1種類の金属板について穴広げ成形解析を実施し、成形解析上で成形中の穴広げ率から真ひずみ換算された穴端縁のひずみとその穴広げ率における穴端縁から半径方向に沿った方向のひずみ勾配の関係をあらかじめ取得しておく。そして、本実施形態では、成形解析と同一の初期穴径、及び同一の成形工具を用いて、実際の穴広げ試験を実施することで穴広げ限界における限界穴広げ率を取得し、成形中の穴端縁のひずみとその成形時の穴端縁から半径方向に沿った方向のひずみ勾配の関係より、穴広げ限界におけるひずみ勾配の値を算出する。同様の方法で、少なくとも2種類以上の穴広げ試験における、穴広げ限界における穴端縁のひずみと穴広げ限界における穴端縁から半径方向に沿った方向のひずみ勾配の関係から、伸びフランジ成形の成形可能領域ARAを決定する。
 そして、求めた伸びフランジ成形の成形可能領域ARAと、プレス成形を模擬した成形解析を実施し、プレス成形解析における評価用金属板の端縁のひずみと、評価用金属板における端縁から内側方向へのひずみ勾配との関係を比較し、プレス成形解析における端縁の変形状態が、上記成形可能領域ARA内であれば、伸びフランジ割れは抑制されると予測する。すなわち、評価用金属板についてプレス成形時の成形可否を判定することができる。
 基準ひずみ勾配情報10cを求める際に、穴広げ率から真ひずみ換算される穴端縁のひずみを使用することで、穴端縁のひずみと穴端縁から半径方向に沿った方向のひずみ勾配の関係は、金属板の初期穴径と穴広げ試験を実施する成形工具形状より決まり、材料強度や板厚、r値といった機械的特性に影響されない。この結果、本実施形態では、評価用金属板毎に異なる材料の成形解析をその都度実施することなく、より簡便に伸びフランジ割れ予測に必要な穴広げ限界における穴端縁のひずみと穴広げ限界における穴端縁から半径方向に沿った方向のひずみ勾配の関係を取得できる。
 以上のことから、本実施形態では、簡便にせん断端面の伸びフランジ割れ予測のためのデータを取得可能となる。
 このように、本実施形態によれば、評価する金属板のせん断端面の伸びフランジ割れ予測のためのデータを簡便に取得することが可能となるので、自動車のパネル部品、構造・骨格部品等の各種部品をプレス成形する際に用いる金属板の選定が適切であるかを迅速かつ精度良く予測できるようになる。この結果、本実施形態によれば、プレス成形を安定して行うことができると共に、プレス成形品の不良率の低減にも大きく寄与することができる。また、プレス金型の形状を設計段階で精度良く予測できるようになり、プレス金型の製造期間の短縮に貢献できる。
 (第2実施形態)
 第2実施形態では、第1実施形態で説明した伸びフランジ割れ評価方法により、伸びフランジ割れを簡便に評価し、その評価に基づき、プレス成形条件の選定や設計変更を実行する。
 プレス成形条件としては、例えば、プレス成形に使用する金属板の選定、プレス成形に使用する金型の成形面の選定、製造するプレス部品の決定などがある。
 例えば、本実施形態では、プレス部品に成形する金属板の選定の際に、第1実施形態で説明した伸びフランジ割れ評価方法によって、上記プレス部品に成形した際における、せん断端面での伸びフランジ割れを評価し、その評価に基づき、せん断端面での伸びフランジ割れが発生しない金属板を選定する、ことを実行する。
 また、本実施形態では、例えば、金属板をプレス成形するプレス金型の設計の際に、第1実施形態で説明した伸びフランジ割れ評価方法によって、上記金属板をプレス成形した際における、せん断端面での伸びフランジ割れを評価し、その評価に基づき、せん断端面での伸びフランジ割れを抑えることが可能なプレス金型を求めることを実行する。
 また、本実施形態では、例えば、金属板をプレス成形して得られるプレス部品の部品形状の設計の際に、第1実施形態で説明した伸びフランジ割れ評価方法によって、上記金属板をプレス成形した際における、せん断端面での伸びフランジ割れを評価し、その評価に基づき、せん断端面での伸びフランジ割れを抑えた部品形状を求める、ことを実行する。
 また、本実施形態では、例えば、金属板をプレス成形してプレス部品を製造するプレス部品の製造の際に、第1実施形態で説明した伸びフランジ割れ評価方法によって、上記金属板を上記プレス部品にプレス成形した際における、せん断端面での伸びフランジ割れを評価する、ことを実行する。
 また、本実施形態では、例えば、金属板をプレス成形してプレス部品を製造するプレス部品の製造の際に、第1実施形態で説明した伸びフランジ割れ評価方法によってプレス成形条件を決定する、ことを実行する。
 本実施形態によれば、例えば、自動車のパネル部品、構造・骨格部品等の各種部品をプレス成形する際に用いる金属板やプレス金型、部品形状などのプレス成形条件の選定が適切であるか否かを迅速かつ精度良く予測できるようになる。
 この結果、本発明の態様によれば、プレス成形によるプレス部品の製造を安定して行うことができると共に、プレス成形品の不良率の低減にも大きく寄与することができる。また、プレス金型の形状を設計段階で精度良く予測できるようになり、プレス金型の製造期間の短縮に貢献できる。
 表3に示す板材料からなる金属板をプレス成形して、図8に示すような湾曲したプレス部品Rを得る場合について、評価してみた。
Figure JPOXMLDOC01-appb-T000003
 表3に示す板材料からなる金属板に対し、表1及び表2に示す初期穴径、プレス工具の条件で穴広げ試験を実施し、表4に示すような限界穴広げ率を取得した。この限界穴広げ率から真ひずみ換算した穴縁のひずみを求め、図4に示すグラフ(マスターカーブ)から本実施形態で説明した方法によってひずみ勾配を取得した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示した穴縁のひずみとひずみ勾配から、成形限界線L及び成形可能領域ARAを求めたところ、図9のようになった。
 プレス部品Rの長手方向に沿った湾曲の曲率半径を変えた部品形状毎に、プレス成形を模擬した成形解析を実施した。そして、プレス成形解析における評価する金属板での端縁のひずみと、評価する金属板における端縁から内側方向へのひずみ勾配とを求め、図9で示される成形可能領域ARA内に位置するか否かを確認した。その確認した結果から、曲率半径が300mm、400mmでは伸びフランジ割れが発生せず、曲率半径が200mm以下では伸びフランジ割れが発生すると、成形解析からは予測された。
 一方、実際に、プレス部品Rの長手方向に沿った湾曲の曲率半径を変えて、プレス成形の試験を実施したところ、曲率半径が300mm、400mmでは伸びフランジ割れが発生せず、曲率半径が200mm以下では伸びフランジ割れが発生していた。
 この実施例の評価結果からは、プレス部品Rの長手方向に沿った湾曲の曲率半径を300mm以上とする必要があると評価できる。
 このように、本発明に基づく伸びフランジ割れの評価が、実際のプレス成形での結果と合致しており、本発明に基づく伸びフランジ割れの評価方法で、伸びフランジ割れの予測を精度良く評価できることを確認できた。
 ここで、本願が優先権を主張する、日本国特許出願2019-047363(2019年 3月14日出願)の全内容は、参照により本開示の一部をなす。ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
1 予備情報取得工程
2 データベース
3 実試験工程
4 限界ひずみ勾配算出工程
5 可能領域設定工程
6 評価判定工程
10 予備情報
10a データ番号
10b 成形条件
10c 基準ひずみ勾配情報
ARA 成形可能領域
L 成形限界線

Claims (10)

  1.  せん断端面を有する金属板からなる評価用金属板の伸びフランジ割れを評価する伸びフランジ割れ評価方法であって、
     上記評価用金属板とは関係無く選定した金属板であって、任意に選定した板条件を有する第2の金属板に対し、設定した成形条件での穴広げ試験の成形解析を実施すると共に穴広げ率を真ひずみからなる穴端縁のひずみに換算して取得した、穴端縁のひずみと、穴端縁から半径方向に沿ったひずみ勾配との関係で表される基準ひずみ勾配情報を、上記成形条件を変えて2以上有し、
     上記2以上の基準ひずみ勾配情報のうちの少なくとも2つの上記基準ひずみ勾配情報に対応する各成形条件と同じ成形条件でそれぞれ、上記評価用金属板に対し穴広げ成形を行って、上記評価用金属板の穴広げ限界における限界穴広げ率を少なくとも2つ求め、
     上記少なくとも2つの上記基準ひずみ勾配情報と、上記求めた少なくとも2つの穴広げ限界における限界穴広げ率とから、上記評価用金属板の成形可能領域を求め、
     求めた上記成形可能領域によって、上記評価用金属板におけるせん断端面での伸びフランジ割れを評価することを特徴とする伸びフランジ割れ評価方法。
  2.  せん断端面を有する金属板からなる評価用金属板の伸びフランジ割れを評価する伸びフランジ割れ評価方法であって、
     上記評価用金属板とは関係無く選定した金属板であって、任意に選定した板条件を有する第2の金属板に対し、設定した成形条件での穴広げ試験の成形解析を実施すると共に穴広げ率を真ひずみからなる穴端縁のひずみに換算して取得した、穴端縁のひずみと穴端縁から半径方向に沿ったひずみ勾配との関係で表される基準ひずみ勾配情報を上記成形条件に紐付けて格納した記憶部を有し、
     上記記憶部には、上記成形条件が異なる2以上の上記基準ひずみ勾配情報が格納され、
     上記評価用金属板の伸びフランジ割れを評価する工程として、
     上記記憶部に格納されている複数の上記基準ひずみ勾配情報から選択した第1の基準ひずみ勾配情報に対応する成形条件と同じ成形条件で、上記評価用金属板に対し穴広げ成形を行って、上記評価用金属板の穴広げ限界における限界穴広げ率を求める実試験工程と、
     上記第1の基準ひずみ勾配情報と、上記実試験工程で求めた限界穴広げ率に対応する穴広げ限界における穴端縁のひずみである限界ひずみとに基づき、上記限界ひずみに対応する穴端縁から半径方向に沿ったひずみ勾配を算出する限界ひずみ勾配算出工程と、
     上記実試験工程及び上記限界ひずみ勾配算出工程を、上記基準ひずみ勾配情報を変えて2度以上実施して得られた、2組以上の(上記限界ひずみと上記ひずみ勾配)のデータの組から成形可能領域を求める可能領域設定工程と、
     を備え、
     上記可能領域設定工程が求めた成形可能領域によって、上記評価用金属板におけるせん断端面での伸びフランジ割れを評価することを特徴とする伸びフランジ割れ評価方法。
  3.  上記板条件とは、第2の金属板の機械的特性及び板厚の少なくとも一方であることを特徴とする請求項1又は請求項2に記載した伸びフランジ割れ評価方法。
  4.  上記成形可能領域による評価は、プレス成形を模擬した成形解析を実施し、その成形解析における上記評価用金属板の端縁のひずみと、上記評価用金属板における端縁から内側方向へのひずみ勾配との関係が、上記成形可能領域内に存在するか否かによって判定することを特徴とする請求項1~請求項3のいずれか1項に記載した伸びフランジ割れ評価方法。
  5.  上記基準ひずみ勾配情報を求める際に、上記穴広げ試験の成形解析に使用する上記第2の金属板の相当応力-相当塑性ひずみ関係は、均一伸びが7.5%以上の金属板の単軸引張試験から得られるものであって、上記第2の金属板の単軸引張試験から得られた相当応力-相当塑性ひずみ又はその近似式を成形解析に使用することを特徴とする請求項1~請求項4のいずれか1項に記載した伸びフランジ割れ評価方法。
  6.  プレス部品に成形する金属板の選定方法であって、
     請求項1~請求項5のいずれか1項に記載の伸びフランジ割れ評価方法によって、上記プレス部品に成形した際における、せん断端面での伸びフランジ割れを評価し、その評価に基づき、せん断端面での伸びフランジ割れが発生しない金属板を選定する、ことを特徴とする金属板の選定方法。
  7.  金属板をプレス成形するプレス金型の設計方法であって、
     請求項1~請求項5のいずれか1項に記載の伸びフランジ割れ評価方法によって、上記金属板をプレス成形した際における、せん断端面での伸びフランジ割れを評価し、その評価に基づき、せん断端面での伸びフランジ割れを抑えることが可能なプレス金型を求める、ことを特徴とするプレス金型の設計方法。
  8.  金属板をプレス成形して得られるプレス部品の部品形状の設計方法であって、
     請求項1~請求項5のいずれか1項に記載の伸びフランジ割れ評価方法によって、上記金属板をプレス成形した際における、せん断端面での伸びフランジ割れを評価し、その評価に基づき、せん断端面での伸びフランジ割れを抑えた部品形状を求める、ことを特徴とする部品形状の設計方法。
  9.  金属板をプレス成形してプレス部品を製造するプレス部品の製造方法であって、
     請求項1~請求項5のいずれか1項に記載の伸びフランジ割れ評価方法によって、上記金属板を上記プレス部品にプレス成形した際における、せん断端面での伸びフランジ割れを評価する、ことを特徴とするプレス部品の製造方法。
  10.  金属板をプレス成形してプレス部品を製造するプレス部品の製造方法であって、
     請求項1~請求項5のいずれか1項に記載の伸びフランジ割れ評価方法によってプレス成形条件を決定する、ことを特徴とするプレス部品の製造方法。
PCT/JP2020/011189 2019-03-14 2020-03-13 伸びフランジ割れ評価方法、金属板の選定方法、プレス金型の設計方法、部品形状の設計方法、及びプレス部品の製造方法 WO2020184712A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/438,302 US11971390B2 (en) 2019-03-14 2020-03-13 Stretch flange crack evaluation method, metal sheet selection method, press die design method, component shape design method, and pressed component manufacturing method
JP2020535001A JP6819832B1 (ja) 2019-03-14 2020-03-13 伸びフランジ割れ評価方法、金属板の選定方法、プレス金型の設計方法、部品形状の設計方法、及びプレス部品の製造方法
KR1020217028922A KR102526833B1 (ko) 2019-03-14 2020-03-13 신장 플랜지 균열 평가 방법, 금속판의 선정 방법, 프레스 금형의 설계 방법, 부품 형상의 설계 방법, 및 프레스 부품의 제조 방법
CN202080020881.7A CN113573823B (zh) 2019-03-14 2020-03-13 拉伸翻边裂纹评价方法及金属板的选定方法
EP20770837.1A EP3939713B1 (en) 2019-03-14 2020-03-13 Stretch flange crack evaluation method, metal sheet selection method, press die design method, component shape design method, and pressed component manufacturing method
MX2021011063A MX2021011063A (es) 2019-03-14 2020-03-13 Metodo de evaluacion del agrietamiento de rebordes por estiramiento, metodo de seleccion de laminas metalicas, metodo de dise?o de troqueles de prensado, metodo de dise?o de las formas de componentes y metodo de fabricacion de componentes por prensado.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-047363 2019-03-14
JP2019047363 2019-03-14

Publications (1)

Publication Number Publication Date
WO2020184712A1 true WO2020184712A1 (ja) 2020-09-17

Family

ID=72426038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011189 WO2020184712A1 (ja) 2019-03-14 2020-03-13 伸びフランジ割れ評価方法、金属板の選定方法、プレス金型の設計方法、部品形状の設計方法、及びプレス部品の製造方法

Country Status (6)

Country Link
US (1) US11971390B2 (ja)
EP (1) EP3939713B1 (ja)
JP (1) JP6819832B1 (ja)
KR (1) KR102526833B1 (ja)
MX (1) MX2021011063A (ja)
WO (1) WO2020184712A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552003A (zh) * 2021-06-17 2021-10-26 首钢集团有限公司 一种高强钢板冲压零件边部成形极限预测方法
CN114692318A (zh) * 2022-06-01 2022-07-01 中国飞机强度研究所 飞机冲击动力学测试用格栅式燃油箱结构抗毁伤评估方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6897413B2 (ja) * 2017-08-10 2021-06-30 日本製鉄株式会社 成形性評価方法、プログラム及び記録媒体
CN115326504B (zh) * 2022-07-26 2024-06-04 燕山大学 用于薄钢板边缘拉伸开裂极限的评价方法及其评价装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069533A (ja) * 2008-08-20 2010-04-02 Nippon Steel Corp 歪勾配を考慮した伸びフランジ割れの推定方法およびプレス成形シミュレーションの伸びフランジ割れ判定システム
JP2011140046A (ja) * 2010-01-08 2011-07-21 Nippon Steel Corp 板状材料の破断ひずみ特定方法
JP2012170993A (ja) * 2011-02-23 2012-09-10 Jfe Steel Corp 伸びフランジ割れ判定方法
JP2019034312A (ja) * 2017-08-10 2019-03-07 新日鐵住金株式会社 成形性評価方法、プログラム及び記録媒体
JP2019047363A (ja) 2017-09-04 2019-03-22 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2008009816A (es) 2006-02-01 2008-09-11 Nippon Steel Corp Metodo de prediccion de fractura.
JP4935713B2 (ja) 2008-02-27 2012-05-23 Jfeスチール株式会社 プレス品のせん断縁における成形可否判別方法
JP5472518B1 (ja) * 2012-11-19 2014-04-16 Jfeスチール株式会社 伸びフランジの限界ひずみ特定方法およびプレス成形可否判定方法
JP5967321B2 (ja) 2014-07-02 2016-08-10 新日鐵住金株式会社 伸びフランジ割れ予測方法、伸びフランジ割れ予測装置、コンピュータープログラム、及び記録媒体
JP6852426B2 (ja) 2016-02-05 2021-03-31 日本製鉄株式会社 成形性評価方法、プログラム及び記録媒体
KR101925717B1 (ko) * 2017-05-11 2018-12-05 포항공과대학교 산학협력단 축소 크기의 시편으로 시편 크기 효과가 없는 신장플랜지성을 측정하는 방법
WO2019064922A1 (ja) * 2017-09-26 2019-04-04 Jfeスチール株式会社 変形限界の評価方法、割れ予測方法及びプレス金型の設計方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069533A (ja) * 2008-08-20 2010-04-02 Nippon Steel Corp 歪勾配を考慮した伸びフランジ割れの推定方法およびプレス成形シミュレーションの伸びフランジ割れ判定システム
JP2011140046A (ja) * 2010-01-08 2011-07-21 Nippon Steel Corp 板状材料の破断ひずみ特定方法
JP2012170993A (ja) * 2011-02-23 2012-09-10 Jfe Steel Corp 伸びフランジ割れ判定方法
JP2019034312A (ja) * 2017-08-10 2019-03-07 新日鐵住金株式会社 成形性評価方法、プログラム及び記録媒体
JP2019047363A (ja) 2017-09-04 2019-03-22 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EIJI IIZUKA ET AL., PLASTICITY AND MACHINING, vol. 51-594, 2007, pages 700 - 705

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552003A (zh) * 2021-06-17 2021-10-26 首钢集团有限公司 一种高强钢板冲压零件边部成形极限预测方法
CN113552003B (zh) * 2021-06-17 2023-12-12 首钢集团有限公司 一种高强钢板冲压零件边部成形极限预测方法
CN114692318A (zh) * 2022-06-01 2022-07-01 中国飞机强度研究所 飞机冲击动力学测试用格栅式燃油箱结构抗毁伤评估方法
CN114692318B (zh) * 2022-06-01 2022-08-26 中国飞机强度研究所 飞机冲击动力学测试用格栅式燃油箱结构抗毁伤评估方法

Also Published As

Publication number Publication date
KR20210125537A (ko) 2021-10-18
US11971390B2 (en) 2024-04-30
EP3939713A1 (en) 2022-01-19
JPWO2020184712A1 (ja) 2021-03-18
EP3939713B1 (en) 2023-11-08
CN113573823A (zh) 2021-10-29
US20220187175A1 (en) 2022-06-16
JP6819832B1 (ja) 2021-01-27
KR102526833B1 (ko) 2023-04-27
EP3939713A4 (en) 2022-05-04
MX2021011063A (es) 2021-12-15

Similar Documents

Publication Publication Date Title
WO2020184712A1 (ja) 伸びフランジ割れ評価方法、金属板の選定方法、プレス金型の設計方法、部品形状の設計方法、及びプレス部品の製造方法
JP6769561B2 (ja) 変形限界の評価方法、割れ予測方法及びプレス金型の設計方法
JP5146395B2 (ja) 歪勾配を考慮した伸びフランジ割れの推定方法およびプレス成形シミュレーションの伸びフランジ割れ判定システム
US9953115B2 (en) Method for specifying stretch flange limit strain and method for determining feasibility of press forming
JP4935713B2 (ja) プレス品のせん断縁における成形可否判別方法
JP6958521B2 (ja) 応力−ひずみ関係推定方法
KR102334109B1 (ko) 금속판의 전단 가공면에서의 변형 한계의 평가 방법, 균열 예측 방법 및 프레스 금형의 설계 방법
JP2007229724A (ja) プレス成形解析方法
CN107532980B (zh) 剪切边缘能否成型的评价方法
KR102271009B1 (ko) 금속판의 전단 가공면에서의 변형 한계의 평가 방법, 깨짐 예측 방법 및 프레스 금형의 설계 방법
JP2020040111A (ja) 変形限界の評価方法、割れの予測方法及びプレス金型の設計方法
JP7031640B2 (ja) 金属板の成形可否評価方法
JP6773255B1 (ja) 曲げ割れ評価方法、曲げ割れ評価システム、及びプレス成形部品の製造方法
JP5900751B2 (ja) 曲げ内側割れの評価方法および予測方法
CN113573823B (zh) 拉伸翻边裂纹评价方法及金属板的选定方法
WO2021205693A1 (ja) 金属板のくびれ限界ひずみ特定方法
JP7092107B2 (ja) 伸びフランジ性評価方法、プレス金型設計方法、及びプレス部品の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020535001

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217028922

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020770837

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020770837

Country of ref document: EP

Effective date: 20211014