WO2020184641A1 - 弾性波フィルタ装置およびマルチプレクサ - Google Patents

弾性波フィルタ装置およびマルチプレクサ Download PDF

Info

Publication number
WO2020184641A1
WO2020184641A1 PCT/JP2020/010674 JP2020010674W WO2020184641A1 WO 2020184641 A1 WO2020184641 A1 WO 2020184641A1 JP 2020010674 W JP2020010674 W JP 2020010674W WO 2020184641 A1 WO2020184641 A1 WO 2020184641A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
node
idt electrodes
electrodes
filter device
Prior art date
Application number
PCT/JP2020/010674
Other languages
English (en)
French (fr)
Inventor
陽平 小中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020217027809A priority Critical patent/KR20210123342A/ko
Priority to CN202080018810.3A priority patent/CN113519121A/zh
Priority to JP2021505117A priority patent/JP7188556B2/ja
Publication of WO2020184641A1 publication Critical patent/WO2020184641A1/ja
Priority to US17/412,313 priority patent/US11855605B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6469Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes
    • H03H9/6476Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes the tracks being electrically parallel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0004Impedance-matching networks
    • H03H9/0009Impedance-matching networks using surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6406Filters characterised by a particular frequency characteristic
    • H03H9/6413SAW comb filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to an elastic wave filter device and a multiplexer including the elastic wave filter device.
  • elastic wave filter devices such as vertical coupling type elastic surface wave filters and ladder type elastic surface wave filters have been used in communication devices such as mobile phones.
  • Patent Document 1 discloses a demultiplexer (multiplexer) having a configuration in which a ladder type surface acoustic wave filter and a vertically coupled surface acoustic wave filter are connected to a common terminal.
  • a ladder type surface acoustic wave filter and a vertically coupled surface acoustic wave filter are connected to a common terminal.
  • two double mode surface acoustic wave filters are connected in parallel.
  • Each of the two dual-mode surface acoustic wave filters is composed of three IDT (InterDigital Transducer) electrodes.
  • the insertion loss is reduced by connecting two double mode surface acoustic wave filters in parallel.
  • the number of IDT electrodes (2) connected to the common terminal (input terminal) and the number of IDT electrodes (4) connected to the receiving terminal (output terminal) are different, the input impedance and the output impedance A large gap will occur between the and. Therefore, for example, the degree of freedom of impedance matching with the external connection circuit in the vertically coupled surface acoustic wave filter and impedance adjustment for the ladder type surface acoustic wave filter connected to the common terminal in the multiplexer is limited, and the longitudinal coupling is limited. The pass characteristics of the surface acoustic wave filter and the multiplexer are deteriorated.
  • an object of the present invention is to provide an elastic wave filter device in which a deviation between an input impedance and an output impedance is reduced, and a multiplexer provided with the same. ..
  • the elastic wave filter device has a first longitudinally coupled elastic wave resonance having a plurality of odd numbered first IDT (InterDigital Transducer) electrodes arranged in the elastic wave propagation direction.
  • a first input / output terminal connected to the node and a second input / output terminal connected to the second node are provided, and each of the odd number of first IDT electrodes and the odd number of second IDT electrodes is a bus bar electrode.
  • It has a pair of comb-shaped electrodes composed of a plurality of electrode fingers connected to the bus bar electrode and extending in a direction intersecting the elastic wave propagation direction, and among the odd number of first IDT electrodes, in the elastic wave propagation direction.
  • One of the pair of comb-shaped electrodes of the first IDT electrodes arranged at odd positions is connected to the first node, the other of the pair of comb-shaped electrodes is connected to the ground, and among the odd number of first IDT electrodes.
  • One of the pair of comb-shaped electrodes of the first IDT electrodes arranged evenly in the elastic wave propagation direction is connected to the ground, and the other of the pair of comb-shaped electrodes is connected to the second node.
  • one of the pair of comb-shaped electrodes of the second IDT electrodes arranged at odd positions in the elastic wave propagation direction is connected to the ground, and the other of the pair of comb-shaped electrodes is connected to the second node.
  • one of the pair of comb-shaped electrodes included in the second IDT electrodes arranged evenly in the elastic wave propagation direction is connected to the first node, and the pair of comb-shaped electrodes is connected.
  • the other is the sum of the number of first IDT electrodes connected to the first node and the number of second IDT electrodes connected to the first node, and the first IDT electrode connected to the second node. Is equal to the sum of the number of 2nd IDT electrodes connected to the 2nd node.
  • an elastic wave filter device in which a deviation between an input impedance and an output impedance is reduced, and a multiplexer provided with the same.
  • FIG. 1 is a circuit configuration diagram of the elastic wave filter device according to the first embodiment.
  • FIG. 2A is a plan view and a cross-sectional view schematically showing an example of the surface acoustic wave resonator according to the first embodiment.
  • FIG. 2B is a cross-sectional view schematically showing a modified example of the surface acoustic wave resonator.
  • FIG. 3A is a graph showing the passage characteristics of the elastic wave filter device according to the embodiment.
  • FIG. 3B is a Smith chart showing the impedance characteristics of the elastic wave filter device according to the embodiment.
  • FIG. 4 is a circuit configuration diagram of an elastic wave filter device according to a comparative example.
  • FIG. 5A is a graph showing the passage characteristics of the elastic wave filter device according to the comparative example.
  • FIG. 5B is a Smith chart showing the impedance characteristics of the elastic wave filter device according to the comparative example.
  • FIG. 6A is a Smith chart showing impedance characteristics when a series arm resonator is added to the elastic wave filter device according to the embodiment.
  • FIG. 6B is a Smith chart showing the impedance characteristics when a parallel arm resonator is added to the elastic wave filter device according to the embodiment.
  • FIG. 7A is a Smith chart showing the impedance characteristics when a series arm resonator is added to the elastic wave filter device according to the comparative example.
  • FIG. 7B is a Smith chart showing the impedance characteristics when a parallel arm resonator is added to the elastic wave filter device according to the comparative example.
  • FIG. 6A is a Smith chart showing impedance characteristics when a series arm resonator is added to the elastic wave filter device according to the embodiment.
  • FIG. 7B is a Smith chart showing the impedance characteristics when a parallel arm resonator is added to
  • FIG. 8 is a circuit configuration diagram of an elastic wave filter device according to a modified example of the first embodiment.
  • FIG. 9A is a circuit configuration diagram of the multiplexer according to the second embodiment.
  • FIG. 9B is a circuit configuration diagram of the multiplexer according to the first modification of the second embodiment.
  • FIG. 9C is a circuit configuration diagram of the multiplexer according to the second modification of the second embodiment.
  • the "node” is composed of a wiring through which a high-frequency signal propagates, an electrode directly connected to the wiring, the wiring or a terminal directly connected to the electrode, and the like (DC-like, etc.). It means that it is a point on a continuous transmission line (of potential).
  • FIG. 1 is a circuit configuration diagram of the elastic wave filter device 1 according to the first embodiment.
  • the figure shows the planar layout configuration of the IDT electrodes constituting the elastic wave filter device 1 and the connection state between the IDT electrodes.
  • the elastic wave filter device 1 shown in FIG. 1 is for explaining a typical planar layout configuration of the IDT electrode, and the number, length, and electrode finger pitch of the electrode fingers constituting the IDT electrode. Etc. are not limited to this.
  • the elastic wave filter device 1 includes vertically coupled elastic wave resonators 10 and 20, and input / output terminals 110 and 120.
  • the vertically coupled elastic wave resonator 10 is an example of a first vertically coupled elastic wave resonator, and has five IDT electrodes 11, 12, 13, 14 and 15, and reflectors 19A and 19B. doing.
  • the vertical coupling type elastic wave resonator 20 is an example of a second vertical coupling type elastic wave resonator, and has five IDT electrodes 21, 22, 23, 24 and 25, and reflectors 29A and 29B. doing.
  • the IDT electrodes 11 to 15 are an odd number of first IDT electrodes arranged in the elastic wave propagation direction
  • the IDT electrodes 21 to 25 are an odd number of second IDT electrodes arranged in the elastic wave propagation direction.
  • the number of IDT electrodes constituting the vertically coupled elastic wave resonator 10 does not have to be 5, but may be an odd number. Further, the number of IDT electrodes constituting the vertically coupled elastic wave resonator 20 does not have to be 5, but may be an odd number.
  • the reflectors 19A and 19B are arranged so as to sandwich the IDT electrodes 11 to 15 in the elastic wave propagation direction. Further, the reflectors 29A and 29B are arranged so as to sandwich the IDT electrodes 21 to 25 in the elastic wave propagation direction.
  • the vertically coupled elastic wave resonator 10 does not have to have the reflectors 19A and 19B, and the vertically coupled elastic wave resonator 20 does not have to have the reflectors 29A and 29B.
  • the IDT electrodes 11 to 15, 21 to 25, and the reflectors 19A, 19B, 29A and 29B are formed on a substrate having piezoelectricity.
  • Each of the IDT electrodes 11 to 15 and 21 to 25 and the substrate having piezoelectricity form an elastic surface wave resonator.
  • the structure of the surface acoustic wave resonator will be described.
  • FIG. 2A is a plan view and a cross-sectional view schematically showing an example of the surface acoustic wave resonator according to the first embodiment.
  • FIG. 2A illustrates an elastic surface wave resonator 100 having a basic structure of an elastic surface wave resonator constituting the surface acoustic wave filter device 1.
  • the surface acoustic wave resonator 100 shown in FIG. 2A is for explaining a typical structure of the surface acoustic wave resonator, and the number, length, and electrode fingers of the electrode fingers constituting the electrode are explained.
  • the pitch and the like are not limited to this.
  • the surface acoustic wave resonator 100 is composed of a substrate 50 having piezoelectricity and comb-shaped electrodes 100a and 100b.
  • a pair of comb-shaped electrodes 100a and 100b facing each other are formed on the substrate 50.
  • the comb-shaped electrode 100a is composed of a plurality of electrode fingers 150a parallel to each other and a bus bar electrode 160a connecting the plurality of electrode fingers 150a.
  • the comb-shaped electrode 100b is composed of a plurality of electrode fingers 150b parallel to each other and a bus bar electrode 160b connecting the plurality of electrode fingers 150b.
  • the plurality of electrode fingers 150a and 150b are formed along a direction orthogonal to the elastic wave propagation direction (X-axis direction).
  • the IDT electrode 54 composed of the plurality of electrode fingers 150a and 150b and the bus bar electrodes 160a and 160b has a laminated structure of the adhesion layer 541 and the main electrode layer 542 as shown in FIG. 2A (b). It has become.
  • the adhesion layer 541 is a layer for improving the adhesion between the substrate 50 and the main electrode layer 542, and for example, Ti is used as the material.
  • the film thickness of the adhesion layer 541 is, for example, 12 nm.
  • the material of the main electrode layer 542 for example, Al containing 1% of Cu is used.
  • the film thickness of the main electrode layer 542 is, for example, 162 nm.
  • the protective layer 55 is formed so as to cover the comb-shaped electrodes 100a and 100b.
  • the protective layer 55 is a layer for the purpose of protecting the main electrode layer 542 from the external environment, adjusting the frequency temperature characteristics, and improving the moisture resistance.
  • a dielectric film containing silicon dioxide as a main component. Is.
  • the thickness of the protective layer 55 is, for example, 25 nm.
  • the materials constituting the adhesion layer 541, the main electrode layer 542, and the protective layer 55 are not limited to the above-mentioned materials. Further, the IDT electrode 54 does not have to have the above-mentioned laminated structure.
  • the IDT electrode 54 may be composed of, for example, a metal or alloy such as Ti, Al, Cu, Pt, Au, Ag, or Pd, or may be composed of a plurality of laminates composed of the above metals or alloys. You may. Further, the protective layer 55 may not be formed.
  • the substrate 50 includes a hypersonic support substrate 51, a low sound velocity film 52, and a piezoelectric film 53, and the high sound velocity support substrate 51, the low sound velocity film 52, and the piezoelectric film 53 are provided. It has a structure laminated in this order.
  • the piezoelectric film 53 is a 50 ° Y-cut X-propagation LiTaO 3 piezoelectric single crystal or piezoelectric ceramic (a lithium tantalate single crystal cut along a plane whose normal axis is an axis rotated 50 ° from the Y axis with the X axis as the central axis, or It is made of ceramics (single crystal or ceramics in which surface acoustic waves propagate in the X-axis direction).
  • the piezoelectric film 53 has, for example, a thickness of 600 nm.
  • the material and cut angle of the piezoelectric single crystal used as the piezoelectric film 53 are appropriately selected according to the required specifications of each filter.
  • the hypersonic support substrate 51 is a substrate that supports the hypersonic film 52, the piezoelectric film 53, and the IDT electrode 54.
  • the high sound velocity support substrate 51 is a substrate in which the sound velocity of the bulk wave in the high sound velocity support substrate 51 is higher than that of elastic waves such as surface acoustic waves and boundary waves propagating through the piezoelectric film 53, and the elastic surface waves are generated. It is confined in the portion where the piezoelectric film 53 and the low sound velocity film 52 are laminated, and functions so as not to leak below the interface between the low sound velocity film 52 and the high sound velocity support substrate 51.
  • the hypersonic support substrate 51 is, for example, a silicon substrate and has a thickness of, for example, 200 ⁇ m.
  • the low sound velocity film 52 is a film in which the sound velocity of the bulk wave in the low sound velocity film 52 is lower than that of the bulk wave propagating in the piezoelectric film 53, and is arranged between the piezoelectric film 53 and the high sound velocity support substrate 51. To. Due to this structure and the property that the energy is concentrated in the medium in which the surface acoustic wave is essentially low sound velocity, the leakage of the surface acoustic wave energy to the outside of the IDT electrode is suppressed.
  • the bass sound film 52 is, for example, a film containing silicon dioxide as a main component, and has a thickness of, for example, 670 nm.
  • the laminated structure of the substrate 50 it is possible to significantly increase the Q values at the resonance frequency and the antiresonance frequency as compared with the conventional structure in which the piezoelectric substrate is used as a single layer. That is, since a surface acoustic wave resonator having a high Q value can be constructed, it is possible to construct a filter having a small insertion loss by using the surface acoustic wave resonator.
  • the high sound velocity support substrate 51 has a structure in which a support substrate and a high sound velocity film in which the sound velocity of the bulk wave propagating is higher than that of elastic waves such as surface waves and boundary waves propagating in the piezoelectric film 53 are laminated. May have.
  • the support substrate is a piezoelectric material such as lithium tantalate, lithium niobate, or crystal, sapphire, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cozilite, mulite, steatite, forsterite, etc.
  • Various ceramics, dielectrics such as glass, semiconductors such as silicon and gallium nitride, and resin substrates can be used.
  • the treble velocity film includes various types such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon nitride, DLC film or diamond, a medium containing the above material as a main component, and a medium containing a mixture of the above materials as a main component. High-pitched sound material can be used.
  • FIG. 2B is a cross-sectional view schematically showing a modified example of the surface acoustic wave resonator.
  • the piezoelectric single crystal substrate 57 made of a single layer of the piezoelectric layer may be used.
  • the piezoelectric single crystal substrate 57 is composed of, for example, a piezoelectric single crystal of LiNbO 3 .
  • the surface acoustic wave resonator 100 is composed of a piezoelectric single crystal substrate 57 of LiNbO 3 , an IDT electrode 54, and a protective layer 55 formed on the piezoelectric single crystal substrate 57 and the IDT electrode 54. Has been done.
  • the laminated structure, material, cut angle, and thickness of the piezoelectric film 53 and the piezoelectric single crystal substrate 57 described above may be appropriately changed according to the required passing characteristics of the elastic wave filter device and the like. Even a surface acoustic wave resonator 100 using a LiTaO 3 piezoelectric substrate or the like having a cut angle other than the above-mentioned cut angle has the same effect as the surface acoustic wave resonator 100 using the above-mentioned piezoelectric film 53. Can be done.
  • the substrate on which the IDT electrode 54 is formed may have a structure in which a support substrate, an energy confinement layer, and a piezoelectric film are laminated in this order.
  • the IDT electrode 54 is formed on the piezoelectric film. Piezoelectric film, for example, LiTaO 3 piezoelectric single crystal or piezoelectric ceramics are used.
  • the support substrate is a substrate that supports the piezoelectric film, the energy confinement layer, and the IDT electrode 54.
  • the energy confinement layer is composed of one layer or a plurality of layers, and the sound velocity of the elastic bulk wave propagating in at least one layer is faster than the sound velocity of the elastic wave propagating in the vicinity of the piezoelectric film.
  • it may have a laminated structure of a low sound velocity layer and a high sound velocity layer.
  • the bass layer is a film in which the sound velocity of the bulk wave in the bass layer is lower than the sound velocity of the bulk wave propagating in the piezoelectric film.
  • the hypersonic layer is a film in which the sound velocity of bulk waves in the hypersonic layer is higher than the sound velocity of elastic waves propagating in the piezoelectric film.
  • the support substrate may be a hypersonic layer.
  • the energy confinement layer may be an acoustic impedance layer having a configuration in which a low acoustic impedance layer having a relatively low acoustic impedance and a high acoustic impedance layer having a relatively high acoustic impedance are alternately laminated. ..
  • the wavelength of the surface acoustic wave resonator is defined by the wavelength ⁇ which is the repeating period of the plurality of electrode fingers 150a or 150b constituting the IDT electrode 54 shown in FIG. 2A (b).
  • the electrode pitch is 1/2 of the wavelength ⁇
  • the line width of the electrode fingers 150a and 150b constituting the comb-shaped electrodes 100a and 100b is W
  • the crossing width L of the pair of comb-shaped electrodes 100a and 100b overlaps when viewed from the elastic wave propagation direction (X-axis direction) of the electrode finger 150a and the electrode finger 150b.
  • the electrode duty of each surface acoustic wave resonator is the line width occupancy of the plurality of electrode fingers 150a and 150b, and the line width is the sum of the line width and the space width of the plurality of electrode fingers 150a and 150b. It is a ratio and is defined by W / (W + S). Further, when the adjacent electrode fingers 150a and the electrode fingers 150b are paired, the logarithm N of the IDT electrodes 54 is the average of the number of the plurality of electrode fingers 150a and the number of the plurality of electrode fingers 150b.
  • the heights of the comb-shaped electrodes 100a and 100b are set to h.
  • parameters related to the IDT electrode of the surface acoustic wave resonator such as wavelength ⁇ , cross width L, electrode duty, IDT logarithm, and height h of the IDT electrode 54 will be referred to as electrode parameters.
  • each of the IDT electrodes 11 to 15 and 21 to 25 includes a bus bar electrode extending in the elastic wave propagation direction and a plurality of electrode fingers connected to the bus bar electrode and extending in a direction intersecting the elastic wave propagation direction. It has a pair of comb-shaped electrodes composed of and.
  • one of the pair of comb-shaped electrodes (bus bar electrodes 11a, 13a and 15a) of the IDT electrodes 11, 13 and 15 arranged at odd positions in the elastic wave propagation direction is node N1 (first).
  • the other of the pair of comb electrodes (bus bar electrodes 11b, 13b and 15b) is connected to the ground.
  • one of the pair of comb-shaped electrodes (bus bar electrodes 12a and 14a) of the IDT electrodes 12 and 14 arranged even-numbered in the elastic wave propagation direction is connected to the ground, and the pair is connected to the ground.
  • the other of the comb-shaped electrodes (bus bar electrodes 12b and 14b) is connected to a node N2 (second node) different from the node N1.
  • Node N1 is connected to the input / output terminal 110, and node N2 is connected to the input / output terminal 120.
  • one of the pair of comb-shaped electrodes (bus bar electrodes 21a, 23a and 25a) of the IDT electrodes 21, 23 and 25 arranged at odd numbers in the elastic wave propagation direction is connected to the ground.
  • the other of the pair of comb-shaped electrodes (bus bar electrodes 21b, 23b and 25b) is connected to the node N2.
  • one of the pair of comb-shaped electrodes (bus bar electrodes 22a and 24a) of the IDT electrodes 22 and 24 arranged even-numbered in the elastic wave propagation direction is connected to the node N1.
  • the other of the pair of comb-shaped electrodes (bus bar electrodes 22b and 24b) is connected to the ground.
  • the vertically coupled elastic wave resonator 10 functions as a band-passing filter having a first passband. Further, the vertically coupled elastic wave resonator 20 functions as a band-passing filter having a second passband.
  • the number of the first IDT electrodes connected to the node N1 (three of the IDT electrodes 11, 13 and 15) and the number of the second IDT electrodes connected to the node N1.
  • the number of IDT electrodes connected to the input / output terminals 110 (5) and the number of IDT electrodes connected to the input / output terminals 120 (5) Since they are equal to each other, it is possible to suppress the deviation between the impedance seen from the input / output terminal 110 of the elastic wave filter device 1 and the impedance seen from the input / output terminal 120 of the elastic wave filter device 1. Therefore, the impedance matching with the external circuit connected to the elastic wave filter device 1 can be adjusted in the same manner regardless of whether the external circuit is connected to the input / output terminals 110 or 120. In addition, the degree of freedom of impedance adjustment with respect to other filters connected to the common terminal in the multiplexer is improved.
  • the number of first IDT electrodes of the vertically coupled elastic wave resonator 10 is equal to the number of second IDT electrodes of the vertically coupled elastic wave resonator 20. ..
  • the filter passing characteristics of the vertically coupled elastic wave resonators 10 and 20 connected in parallel to each other can be made substantially equal. Therefore, for example, the elasticity composed of only one of the vertically coupled elastic wave resonators 10 and 20 can be obtained. Insertion loss can be reduced as compared with the wave filter device.
  • the electrode parameters of the IDT electrodes 11 to 15 included in the vertically coupled elastic wave resonator 10 and the electrode parameters of the IDT electrodes 21 to 25 included in the vertically coupled elastic wave resonator 20 may be equal to each other.
  • the filter passing characteristics of the vertically coupled elastic wave resonators 10 and 20 connected in parallel to each other can be made equal to each other with high accuracy. Therefore, for example, only one of the vertically coupled elastic wave resonators 10 and 20 is configured. The insertion loss can be effectively reduced as compared with the elastic wave filter device.
  • the fact that the electrode parameters of the IDT electrodes 11 to 15 and the electrode parameters of the IDT electrodes 21 to 25 are equal does not mean that the electrode parameters of the IDT electrodes 11 to 15 and 21 to 25 are equal, for example.
  • the electrode parameters of the IDT electrode 11 and the IDT electrode 21 are the same, the electrode parameters of the IDT electrode 12 and the IDT electrode 22 are the same, the electrode parameters of the IDT electrode 13 and the IDT electrode 23 are the same, and the IDT This means that the electrode parameters of the electrode 14 and the IDT electrode 24 are equal, and the electrode parameters of the IDT electrode 15 and the IDT electrode 25 are the same. That is, the electrode parameters between the IDT electrodes 11 to 15 may be different, and the electrode parameters between the IDT electrodes 21 to 25 may be different.
  • FIG. 3A is a graph showing the passing characteristics of the elastic wave filter device 1 according to the embodiment.
  • FIG. 3B is a Smith chart showing the impedance characteristics of the elastic wave filter device 1 according to the embodiment.
  • the electrode parameters of the IDT electrodes 11 to 15 included in the vertically coupled elastic wave resonator 10 and the IDT electrodes 21 to 25 included in the vertically coupled elastic wave resonator 20 It has the same configuration as the electrode parameters.
  • the impedance of the elastic wave filter device 1 seen from the input / output terminal 110 and (b) the elastic wave filter device 1 from the input / output terminal 120.
  • the impedance seen is almost the same. That is, the reflection coefficient of the elastic wave filter device 1 at the input / output terminal 110 and the reflection coefficient of the elastic wave filter device 1 at the input / output terminal 120 are substantially the same.
  • FIG. 4 is a circuit configuration diagram of the elastic wave filter device 500 according to the comparative example.
  • FIG. 5A is a graph showing the passing characteristics of the elastic wave filter device 500 according to the comparative example.
  • FIG. 5B is a Smith chart showing the impedance characteristics of the elastic wave filter device 500 according to the comparative example.
  • the elastic wave filter device 500 according to the comparative example includes vertically coupled elastic wave resonators 10 and 20, and input / output terminals 110 and 120.
  • the elastic wave filter device 500 according to the comparative example has a different connection configuration of the IDT electrodes constituting the vertically coupled elastic wave resonators 10 and 20 as compared with the elastic wave filter device 1 according to the embodiment.
  • the configuration of the elastic wave filter device 500 according to the comparative example, which is different from that of the elastic wave filter device 1 according to the embodiment, will be described.
  • one of the pair of comb-shaped electrodes of the IDT electrodes 11, 13 and 15 arranged at odd numbers in the elastic wave propagation direction is connected to the node N1, and the other of the pair of comb-shaped electrodes is grounded. It is connected to the.
  • one of the pair of comb-shaped electrodes of the IDT electrodes 12 and 14 arranged even-numbered in the elastic wave propagation direction is connected to the ground, and the other of the pair of comb-shaped electrodes is node N2. It is connected to the.
  • one of the pair of comb-shaped electrodes of the IDT electrodes 21, 23 and 25 arranged at odd numbers in the elastic wave propagation direction is connected to the node N1 and the other of the pair of comb-shaped electrodes is connected. Is connected to the ground.
  • one of the pair of comb-shaped electrodes of the IDT electrodes 22 and 24 arranged even-numbered in the elastic wave propagation direction is connected to the node N2, and the other of the pair of comb-shaped electrodes is grounded. It is connected to the.
  • the number of the first IDT electrodes connected to the node N1 (three of the IDT electrodes 11, 13 and 15) and the number of the second IDT electrodes connected to the node N1 (3).
  • the electrode parameters of the IDT electrodes 11 to 15 included in the vertically coupled elastic wave resonator 10 and the electrodes of the IDT electrodes 21 to 25 included in the vertically coupled elastic wave resonator 20 It has the same configuration as the parameters.
  • the passing characteristics of the elastic wave filter device 500 according to the comparative example are substantially the same as the passing characteristics of the elastic wave filter device 1 according to the embodiment shown in FIG. 3A.
  • the impedance of the elastic wave filter device 500 seen from the input / output terminal 110 and (b) the elastic wave filter from the input / output terminal 120. It can be seen that the impedance seen in the device 500 is significantly different in both the pass band and the attenuation band. That is, the reflection coefficient of the elastic wave filter device 500 at the input / output terminal 110 and the reflection coefficient of the elastic wave filter device 500 at the input / output terminal 120 are different.
  • the impedance matching circuit it is necessary to make the impedance matching circuit different from the external circuit depending on which of the input / output terminals 110 and 120 the external circuit connected to the elastic wave filter device 500 is connected.
  • the impedance adjustment of the multiplexer with respect to other filters connected to the common terminal is limited.
  • an elastic wave filter device having a circuit configuration in which two vertically coupled elastic wave resonators 10 are inverted and connected in series can be mentioned. According to this configuration, it is possible to make the input impedance and the output impedance the same, but since the two vertically coupled elastic wave resonators 10 are connected in series, there is a drawback that the insertion loss increases. ..
  • the elastic wave filter device 1 since it has a circuit configuration in which two vertically coupled elastic wave resonators 10 and 20 are connected in parallel, the insertion loss is improved. Further, since the number of IDT electrodes connected to the input / output terminal 110 (5) is equal to the number of IDT electrodes connected to the input / output terminal 120 (5), the input / output terminal of the elastic wave filter device 1 It is possible to suppress the deviation between the impedance seen from 110 and the impedance seen from the input / output terminal 120 of the elastic wave filter device 1. Therefore, the impedance matching with the external circuit connected to the elastic wave filter device 1 can be adjusted in the same manner regardless of whether the external circuit is connected to the input / output terminals 110 or 120. In addition, the degree of freedom of impedance adjustment with respect to other filters connected to the common terminal in the multiplexer is improved.
  • the pass band of the elastic wave filter device 1 according to the embodiment is 1905-1990 MHz
  • the attenuation band is 2300-2700 MHz
  • the elastic wave filter device 1 according to the embodiment and the elastic wave filter device 500 according to the comparative example are compared. Then, the appropriateness of impedance adjustment in the pass band and the attenuation band will be described.
  • FIG. 6A is a Smith chart showing the impedance characteristics when the series arm resonator 30s is added to the elastic wave filter device 1 according to the embodiment.
  • FIG. 6A (a) shows the impedance characteristics of the input / output terminals 110 side and 120 side when the series arm resonator 30s is added to the input / output terminal 110 side of the elastic wave filter device 1.
  • FIG. 6A (b) shows the impedance characteristics of the input / output terminals 110 side and 120 side when the series arm resonator 30s is added to the input / output terminal 120 side of the elastic wave filter device 1. .
  • the impedance data shown near the center point of the Smith chart is the data of the pass band (1905-1990 MH), and the impedance data shown near the outer circle of the Smith chart is the attenuation band (2300). -2700MH) data.
  • the impedance (winding) concentration of the pass band is concentrated. The deterioration of the degree is small.
  • FIG. 6B is a Smith chart showing the impedance characteristics when the parallel arm resonator 30p is added to the elastic wave filter device 1 according to the embodiment.
  • FIG. 6B (a) shows the impedance characteristics of the input / output terminals 110 side and 120 side when the parallel arm resonator 30p is added to the input / output terminal 110 side of the elastic wave filter device 1.
  • FIG. 6B (b) shows the impedance characteristics of the input / output terminals 110 side and 120 side when the parallel arm resonator 30p is added to the input / output terminal 120 side of the elastic wave filter device 1.
  • the impedance data shown near the center point of the Smith chart is the data of the pass band (1905-1990 MH), and the impedance data shown near the outer circle of the Smith chart is the attenuation band (2300). -2700MH) data.
  • the impedance (winding) concentration of the pass band is concentrated. The deterioration of the degree is small.
  • FIG. 7A is a Smith chart showing the impedance characteristics when the series arm resonator 30s is added to the elastic wave filter device 500 according to the comparative example.
  • FIG. 7A (a) shows the impedance characteristics of the input / output terminals 110 side and 120 side when the series arm resonator 30s is added to the input / output terminal 110 side of the elastic wave filter device 500.
  • FIG. 7A (b) shows the impedance characteristics of the input / output terminals 110 side and 120 side when the series arm resonator 30s is added to the input / output terminal 120 side of the elastic wave filter device 500.
  • the impedance data shown near the center point of the Smith chart is the data of the pass band (1905-1990 MH), and the impedance data shown near the outer circle of the Smith chart is the attenuation band (2300). -2700MH) data.
  • the impedances of the pass bands on the input / output terminals 110 side and 120 side are different in the state where the series arm resonator 30s is not added (broken line in FIG. 7A).
  • the impedance of the pass band on the input / output terminal 120 side is capacitive.
  • the impedances of the attenuation bands on the input / output terminals 110 side and 120 side are almost the same.
  • FIG. 7A (a) when the series arm resonator 30s is added to the input / output terminal 110 side, the impedance of the attenuation band is not reduced on the input / output terminal 110 side. Is phase-shifted to the open side by about 30 °, and the deterioration of the impedance concentration in the pass band is small on the input / output terminal 120 side.
  • FIG. 7A (b) when the series arm resonator 30s is added to the input / output terminal 120 side, the impedance of the attenuation band is 30 ° on the input / output terminal 120 side without reducing the reflection coefficient.
  • FIG. 7B is a Smith chart showing the impedance characteristics when the parallel arm resonator 30p is added to the elastic wave filter device 500 according to the comparative example.
  • FIG. 7B (a) shows the impedance characteristics of the input / output terminals 110 side and 120 side when the parallel arm resonator 30p is added to the input / output terminal 110 side of the elastic wave filter device 500.
  • FIG. 7B (b) shows the impedance characteristics of the input / output terminals 110 side and 120 side when the parallel arm resonator 30p is added to the input / output terminal 120 side of the elastic wave filter device 500.
  • the impedance data shown near the center point of the Smith chart is the data of the pass band (1905-1990 MH), and the impedance data shown near the outer circle of the Smith chart is the attenuation band (2300). -2700MH) data.
  • the series arm resonator 30s and the parallel arm resonator 30p on the input / output terminal 110 side are the series arm resonators. Only 30s can be applied, and only the parallel arm resonator 30p out of the series arm resonator 30s and the parallel arm resonator 30p can be applied to the input / output terminal 120 side. That is, in the elastic wave filter device 500 according to the comparative example, the degree of freedom of impedance adjustment is limited because the impedance on the input / output terminal 110 side and the impedance on the input / output terminal 120 side are different.
  • the elastic wave filter device 1 in adjusting the impedance without deterioration of characteristics, either the series arm resonator 30s or the parallel arm resonator 30p is placed on both the input / output terminal 110 side and the 120 side. Can also be added. That is, the elastic wave filter device 1 according to the present embodiment is further arranged in series on at least one of the path connecting the input / output terminal 110 and the node N1 and the path connecting the input / output terminal 120 and the node N2. An arm resonator 30s may be provided.
  • the elastic wave filter device 1 further includes a path between the node and the ground on the path connecting the input / output terminal 110 and the node N1 and a path connecting the input / output terminal 120 and the node N2.
  • a parallel arm resonator 30p arranged on at least one of the upper node and the ground may be provided.
  • the impedance on the node N1 side and the impedance on the node N2 side in the circuit in which the vertically coupled elastic wave resonator 10 and the vertically coupled elastic wave resonator 20 are connected in parallel are almost the same.
  • the degree of freedom in impedance adjustment is improved.
  • the elastic wave filter device 2 according to the present embodiment has the number of first IDT electrodes of the first vertically coupled elastic wave resonator and the second IDT of the second vertically coupled elastic wave resonator. It has a configuration different from the number of electrodes.
  • the elastic wave filter device 2 according to the present modification will be described mainly with different configurations, omitting description of the same configuration as the elastic wave filter device 1 according to the first embodiment.
  • FIG. 8 is a circuit configuration diagram of the elastic wave filter device 2 according to the modified example of the first embodiment.
  • the elastic wave filter device 2 according to this modification includes vertically coupled elastic wave resonators 10 and 40, and input / output terminals 110 and 120.
  • the vertically coupled elastic wave resonator 10 is an example of a first vertically coupled elastic wave resonator, and has five IDT electrodes 11, 12, 13, 14 and 15, and reflectors 19A and 19B. doing.
  • the vertical coupling type elastic wave resonator 40 is an example of a second vertical coupling type elastic wave resonator, and has three IDT electrodes 41, 42 and 43, and reflectors 49A and 49B.
  • the IDT electrodes 11 to 15 are an odd number of first IDT electrodes arranged in the elastic wave propagation direction
  • the IDT electrodes 41 to 43 are an odd number of second IDT electrodes arranged in the elastic wave propagation direction.
  • the number of IDT electrodes constituting the vertically coupled elastic wave resonator 10 does not have to be 5, but may be an odd number. Further, the number of IDT electrodes constituting the vertically coupled elastic wave resonator 40 does not have to be three, and may be an odd number.
  • the reflectors 19A and 19B are arranged so as to sandwich the IDT electrodes 11 to 15 in the elastic wave propagation direction. Further, the reflectors 49A and 49B are arranged so as to sandwich the IDT electrodes 41 to 43 in the elastic wave propagation direction.
  • the vertically coupled elastic wave resonator 10 does not have to have the reflectors 19A and 19B, and the vertically coupled elastic wave resonator 40 does not have to have the reflectors 49A and 49B.
  • each of the IDT electrodes 11 to 15 and 41 to 43 includes a bus bar electrode extending in the elastic wave propagation direction and a plurality of electrode fingers connected to the bus bar electrode and extending in a direction intersecting the elastic wave propagation direction. It has a pair of comb-shaped electrodes composed of and.
  • IDT electrodes 11 to 15 a pair of IDT electrodes 11, 13 and 15 arranged at odd positions from the end end (for example, the reflector 19A) of the vertically coupled elastic wave resonator 10 in the elastic wave propagation direction.
  • One of the comb-shaped electrodes (bus bar electrodes 11a, 13a and 15a) is connected to node N1 (first node), and the other of the pair of comb-shaped electrodes (bus bar electrodes 11b, 13b and 15b) is connected to the ground. ..
  • a pair of IDT electrodes 12 and 14 arranged evenly from the end end (for example, the reflector 19A) of the vertically coupled elastic wave resonator 10 in the elastic wave propagation direction.
  • One of the comb-shaped electrodes (bus bar electrodes 12a and 14a) is connected to the ground, and the other of the pair of comb-shaped electrodes (bus bar electrodes 12b and 14b) is connected to a node N2 (second node) different from the node N1. ..
  • a pair of IDT electrodes 41 and 43 arranged at odd positions from the end end (for example, the reflector 49A) of the vertically coupled elastic wave resonator 40 in the elastic wave propagation direction.
  • One of the comb electrodes (bus bar electrodes 41a and 43a) is connected to the ground, and the other of the pair of comb electrodes (bus bar electrodes 41b and 43b) is connected to the node N2.
  • One (bus bar electrode 42a) is connected to the node N1
  • the other (bus bar electrode 42b) of the pair of comb electrodes is connected to the ground.
  • the vertically coupled elastic wave resonator 10 functions as a band-passing filter having a first passband. Further, the vertically coupled elastic wave resonator 40 functions as a band-passing filter having a second passband.
  • the number of the first IDT electrodes connected to the node N1 (three of the IDT electrodes 11, 13 and 15) and the number of the second IDT electrodes connected to the node N1.
  • the number of IDT electrodes connected to the input / output terminals 110 (4) and the number of IDT electrodes connected to the input / output terminals 120 (4). ) are equal, so that the deviation between the impedance seen from the input / output terminal 110 of the elastic wave filter device 2 and the impedance seen from the input / output terminal 120 of the elastic wave filter device 1 can be suppressed. Therefore, the impedance matching with the external circuit connected to the elastic wave filter device 2 can be adjusted in the same manner regardless of whether the external circuit is connected to the input / output terminals 110 or 120. In addition, the degree of freedom of impedance adjustment with respect to other filters connected to the common terminal in the multiplexer is improved.
  • the phase required for impedance in the attenuation band (pass band of the other filter) on the common terminal side of one of the plurality of filters is , Determined according to the combined impedance of the multiplexer. Therefore, no matter which of the two input / output terminals of the above one filter is connected to the common terminal side, the impedance (winding) concentration of the own band (pass band of one filter) is not deteriorated, and , It is required to be able to freely shift the phase of the impedance of the attenuation band (passband of other filters).
  • FIG. 9A is a circuit configuration diagram of the multiplexer 5 according to the second embodiment.
  • the multiplexer 5 according to the present embodiment includes a common terminal 140, input / output terminals 120 and 130, an elastic wave filter device 1, and a filter 3.
  • the elastic wave filter device 1 is the elastic wave filter device 1 according to the first embodiment, and is arranged on the first path connecting the common terminal 140 and the input / output terminal 120 (first terminal). In the elastic wave filter device 1, either of the nodes N1 and N2 may be connected to the common terminal 140.
  • the filter 3 has a pass band different from the pass band of the elastic wave filter device 1, and is arranged on a second path connecting the common terminal 140 and the input / output terminal 130 (second terminal).
  • the filter 3 may be an elastic surface wave filter, an elastic wave filter using BAW, an LC resonance filter, a dielectric filter, an LC filter, or the like, and the filter structure is arbitrary.
  • the impedance seen from the input / output terminal 110 of the elastic wave filter device 1 and the impedance seen from the input / output terminal 120 of the elastic wave filter device 1 are substantially the same. Can be. Therefore, in order to optimize the filter characteristics of the elastic wave filter device 1 and the filter characteristics of the filter 3, it is possible to freely add a series arm resonator and a parallel arm resonator to the common terminal 140 side of the elastic wave filter device 1. , It is possible to provide a multiplexer with an improved degree of freedom in impedance adjustment.
  • FIG. 9B is a circuit configuration diagram of the multiplexer 6 according to the first modification of the second embodiment.
  • a series arm resonator 30s is added to the common terminal 140 side of the elastic wave filter device 1 with respect to the multiplexer 5 according to the second embodiment.
  • the impedance of the attenuation band (pass band of the filter 3) is set to the open side without deteriorating the (winding) concentration of the impedance of the pass band of the elastic wave filter device 1 and without reducing the reflection coefficient. You can shift. Therefore, the filter characteristics of the elastic wave filter device 1 and the filter 3 can be improved, and the pass characteristics of the multiplexer 6 can be improved.
  • a parallel arm resonator may be further added to the common terminal 140 side of the elastic wave filter device 1, and in series with the input / output terminal 120 side of the elastic wave filter device 1. At least one of an arm resonator and a parallel arm resonator may be added.
  • FIG. 9C is a circuit configuration diagram of the multiplexer 7 according to the second modification of the second embodiment.
  • a parallel arm resonator 30p is added to the common terminal 140 side of the elastic wave filter device 1 with respect to the multiplexer 5 according to the second embodiment.
  • the impedance of the attenuation band (pass band of the filter 3) is set to the short side without deteriorating the (winding) concentration of the impedance of the pass band of the elastic wave filter device 1 and without reducing the reflection coefficient. You can shift. Therefore, the filter characteristics of the elastic wave filter device 1 and the filter 3 can be improved, and the pass characteristics of the multiplexer 7 can be improved.
  • a series arm resonator may be further added to the common terminal 140 side of the elastic wave filter device 1 and in series with the input / output terminal 120 side of the elastic wave filter device 1. At least one of an arm resonator and a parallel arm resonator may be added.
  • the number of filters connected to the common terminal 140 is not limited to 2, and may be 3 or more.
  • the elastic wave filter device and the multiplexer according to the present invention have been described with reference to the first and second embodiments and modified examples thereof.
  • the elastic wave filter device and the multiplexer of the present invention are described in the above-described embodiments and modified examples. It is not limited.
  • the present invention also includes various devices incorporating the elastic wave filter device and the multiplexer in the above-described embodiments and modifications.
  • another circuit element and wiring may be provided between each circuit element (and component) disclosed in the drawings and a path connecting the signal path. May be inserted.
  • the present invention can be widely used as a transmission / reception filter and a multiplexer used in the front end of a wireless communication terminal that requires low loss in the pass band and high attenuation outside the pass band.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波フィルタ装置(1)は、弾性波伝搬方向に並ぶ奇数個のIDT電極(11~15)を有する縦結合型弾性波共振器(10)および奇数個のIDT電極(21~25)を有する縦結合型弾性波共振器(20)とを備え、IDT電極(11~15)のうち奇数番目に配置されたIDT電極(11、13および15)はノード(N1)に接続され、偶数番目に配置されたIDT電極(12および14)はノード(N2)に接続され、IDT電極(21~25)のうち奇数番目に配置されたIDT電極(21、23および25)はノード(N2)に接続され、偶数番目に配置されたIDT電極(22および24)はノード(N1)に接続され、ノード(N1)に接続されたIDT電極の数とノード(N2)に接続されたIDT電極の数とは等しい。

Description

弾性波フィルタ装置およびマルチプレクサ
 本発明は、弾性波フィルタ装置およびそれを備えたマルチプレクサに関する。
 従来、携帯電話機などの通信機器には、縦結合型弾性表面波フィルタやラダー型弾性表面波フィルタ等の弾性波フィルタ装置が用いられている。
 特許文献1には、ラダー型弾性表面波フィルタと縦結合型弾性表面波フィルタとが共通端子に接続された構成を有する分波器(マルチプレクサ)が開示されている。上記分波器を構成する縦結合型弾性表面波フィルタは、2つの2重モード弾性表面波フィルタが並列接続されている。2つの2重モード弾性表面波フィルタのそれぞれは、3つのIDT(InterDigital Transducer)電極で構成されている。
特開2003-249842号公報
 特許文献1の縦結合型弾性表面波フィルタにおいては、2つの2重モード弾性表面波フィルタの並列接続により挿入損失は低減される。しかしながら、共通端子(入力端子)に接続されるIDT電極の数(2個)と受信側端子(出力端子)に接続されるIDT電極の数(4個)とが異なるので、入力インピーダンスと出力インピーダンスとの間に大きなずれが生じてしまう。このため、例えば、縦結合型弾性表面波フィルタにおける外部接続回路とのインピーダンス整合、および、マルチプレクサにおける共通端子に接続されたラダー型弾性表面波フィルタに対するインピーダンス調整、の自由度が制限され、縦結合型弾性表面波フィルタおよびマルチプレクサの通過特性が劣化してしまう。
 そこで、本発明は、上記課題を解決するためになされたものであって、入力インピーダンスと出力インピーダンスとのずれが低減された弾性波フィルタ装置およびそれを備えたマルチプレクサを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る弾性波フィルタ装置は、弾性波伝搬方向に並ぶ複数の奇数個の第1IDT(InterDigital Transducer)電極を有する第1の縦結合型弾性波共振器と、前記弾性波伝搬方向に並ぶ複数の奇数個の第2IDT電極を有する第2の縦結合型弾性波共振器と、第1ノードおよび当該第1ノードと異なる第2ノードと、前記第1ノードに接続される第1入出力端子および前記第2ノードに接続される第2入出力端子と、を備え、前記奇数個の第1IDT電極および前記奇数個の第2IDT電極のそれぞれは、バスバー電極と当該バスバー電極に接続され前記弾性波伝搬方向と交差する方向に延びる複数の電極指とで構成された櫛形電極を一対有し、前記奇数個の第1IDT電極のうち、前記弾性波伝搬方向において奇数番目に配置された第1IDT電極が有する前記一対の櫛形電極の一方は前記第1ノードに接続され、前記一対の櫛形電極の他方はグランドに接続され、前記奇数個の第1IDT電極のうち、前記弾性波伝搬方向において偶数番目に配置された第1IDT電極が有する前記一対の櫛形電極の一方はグランドに接続され、前記一対の櫛形電極の他方は前記第2ノードに接続され、前記奇数個の第2IDT電極のうち、前記弾性波伝搬方向において奇数番目に配置された第2IDT電極が有する前記一対の櫛形電極の一方はグランドに接続され、前記一対の櫛形電極の他方は前記第2ノードに接続され、前記奇数個の第2IDT電極のうち、前記弾性波伝搬方向において偶数番目に配置された第2IDT電極が有する前記一対の櫛形電極の一方は前記第1ノードに接続され、前記一対の櫛形電極の他方はグランドに接続され、前記第1ノードに接続された第1IDT電極の数および前記第1ノードに接続された第2IDT電極の数の合計と、前記第2ノードに接続された第1IDT電極の数および前記第2ノードに接続された第2IDT電極の数の合計とは等しい。
 本発明によれば、入力インピーダンスと出力インピーダンスとのずれが低減された弾性波フィルタ装置およびそれを備えたマルチプレクサを提供することが可能となる。
図1は、実施の形態1に係る弾性波フィルタ装置の回路構成図である。 図2Aは、実施の形態1に係る弾性表面波共振子の一例を模式的に表す平面図および断面図である。 図2Bは、弾性表面波共振子の変形例を模式的に表す断面図である。 図3Aは、実施例に係る弾性波フィルタ装置の通過特性を表すグラフである。 図3Bは、実施例に係る弾性波フィルタ装置のインピーダンス特性を表すスミスチャートである。 図4は、比較例に係る弾性波フィルタ装置の回路構成図である。 図5Aは、比較例に係る弾性波フィルタ装置の通過特性を表すグラフである。 図5Bは、比較例に係る弾性波フィルタ装置のインピーダンス特性を表すスミスチャートである。 図6Aは、実施例に係る弾性波フィルタ装置に直列腕共振子を付加した場合のインピーダンス特性を表すスミスチャートである。 図6Bは、実施例に係る弾性波フィルタ装置に並列腕共振子を付加した場合のインピーダンス特性を表すスミスチャートである。 図7Aは、比較例に係る弾性波フィルタ装置に直列腕共振子を付加した場合のインピーダンス特性を表すスミスチャートである。 図7Bは、比較例に係る弾性波フィルタ装置に並列腕共振子を付加した場合のインピーダンス特性を表すスミスチャートである。 図8は、実施の形態1の変形例に係る弾性波フィルタ装置の回路構成図である。 図9Aは、実施の形態2に係るマルチプレクサの回路構成図である。 図9Bは、実施の形態2の変形例1に係るマルチプレクサの回路構成図である。 図9Cは、実施の形態2の変形例2に係るマルチプレクサの回路構成図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 また、以下において、「ノード」とは、高周波信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された、(直流的に等電位の)連続した伝送線路上の一点であることを意味する。
 (実施の形態1)
 [1-1.弾性波フィルタ装置1の構成]
 図1は、実施の形態1に係る弾性波フィルタ装置1の回路構成図である。同図には、弾性波フィルタ装置1を構成するIDT電極の平面レイアウト構成およびIDT電極間の接続状態が示されている。なお、図1に示された弾性波フィルタ装置1は、IDT電極の典型的な平面レイアウト構成を説明するためのものであって、IDT電極を構成する電極指の本数、長さおよび電極指ピッチなどは、これに限定されない。
 図1に示すように、本実施の形態に係る弾性波フィルタ装置1は、縦結合型弾性波共振器10および20と、入出力端子110および120と、を備える。
 縦結合型弾性波共振器10は、第1の縦結合型弾性波共振器の一例であり、5個のIDT電極11、12、13、14および15と、反射器19Aおよび19Bと、を有している。縦結合型弾性波共振器20は、第2の縦結合型弾性波共振器の一例であり、5個のIDT電極21、22、23、24および25と、反射器29Aおよび29Bと、を有している。IDT電極11~15は、弾性波伝搬方向に並ぶ奇数個の第1IDT電極であり、IDT電極21~25は、弾性波伝搬方向に並ぶ奇数個の第2IDT電極である。なお、縦結合型弾性波共振器10を構成するIDT電極の数は5個でなくてもよく、奇数個であればよい。また、縦結合型弾性波共振器20を構成するIDT電極の数は5個でなくてもよく、奇数個であればよい。
 反射器19Aおよび19Bは、IDT電極11~15を弾性波伝搬方向で挟むように配置されている。また、反射器29Aおよび29Bは、IDT電極21~25を弾性波伝搬方向で挟むように配置されている。なお、縦結合型弾性波共振器10は反射器19Aおよび19Bを有さなくてもよく、縦結合型弾性波共振器20は反射器29Aおよび29Bを有さなくてもよい。
 IDT電極11~15、21~25、反射器19A、19B、29Aおよび29Bは、圧電性を有する基板上に形成されている。IDT電極11~15および21~25のそれぞれと圧電性を有する基板とは、弾性表面波共振子を構成する。ここで、弾性表面波共振子の構造について説明する。
 図2Aは、実施の形態1に係る弾性表面波共振子の一例を模式的に表す平面図および断面図である。図2Aには、弾性波フィルタ装置1を構成する弾性表面波共振子の基本構造を有する弾性表面波共振子100が例示されている。なお、図2Aに示された弾性表面波共振子100は、弾性表面波共振子の典型的な構造を説明するためのものであって、電極を構成する電極指の本数、長さおよび電極指ピッチなどは、これに限定されない。
 弾性表面波共振子100は、圧電性を有する基板50と、櫛形電極100aおよび100bとで構成されている。
 図2Aの(a)に示すように、基板50の上には、互いに対向する一対の櫛形電極100aおよび100bが形成されている。櫛形電極100aは、互いに平行な複数の電極指150aと、複数の電極指150aを接続するバスバー電極160aとで構成されている。また、櫛形電極100bは、互いに平行な複数の電極指150bと、複数の電極指150bを接続するバスバー電極160bとで構成されている。複数の電極指150aおよび150bは、弾性波伝搬方向(X軸方向)と直交する方向に沿って形成されている。
 また、複数の電極指150aおよび150b、ならびに、バスバー電極160aおよび160bで構成されるIDT電極54は、図2Aの(b)に示すように、密着層541と主電極層542との積層構造となっている。
 密着層541は、基板50と主電極層542との密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。密着層541の膜厚は、例えば、12nmである。
 主電極層542は、材料として、例えば、Cuを1%含有したAlが用いられる。主電極層542の膜厚は、例えば162nmである。
 保護層55は、櫛形電極100aおよび100bを覆うように形成されている。保護層55は、主電極層542を外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする誘電体膜である。保護層55の厚さは、例えば25nmである。
 なお、密着層541、主電極層542および保護層55を構成する材料は、上述した材料に限定されない。さらに、IDT電極54は、上記積層構造でなくてもよい。IDT電極54は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成されてもよく、また、上記の金属または合金から構成される複数の積層体から構成されてもよい。また、保護層55は、形成されていなくてもよい。
 次に、基板50の積層構造について説明する。
 図2Aの(c)に示すように、基板50は、高音速支持基板51と、低音速膜52と、圧電膜53とを備え、高音速支持基板51、低音速膜52および圧電膜53がこの順で積層された構造を有している。
 圧電膜53は、50°YカットX伝搬LiTaO圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸から50°回転した軸を法線とする面で切断したリチウムタンタレート単結晶、またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。圧電膜53は、例えば、厚みが600nmである。なお、圧電膜53として使用される圧電単結晶の材料およびカット角は、各フィルタの要求仕様により適宜選択される。
 高音速支持基板51は、低音速膜52、圧電膜53ならびにIDT電極54を支持する基板である。高音速支持基板51は、さらに、圧電膜53を伝搬する表面波および境界波などの弾性波よりも、高音速支持基板51中のバルク波の音速が高速となる基板であり、弾性表面波を圧電膜53および低音速膜52が積層されている部分に閉じ込め、低音速膜52と高音速支持基板51の界面より下方に漏れないように機能する。高音速支持基板51は、例えば、シリコン基板であり、厚みは、例えば200μmである。
 低音速膜52は、圧電膜53を伝搬するバルク波よりも、低音速膜52中のバルク波の音速が低速となる膜であり、圧電膜53と高音速支持基板51との間に配置される。この構造と、弾性波が本質的に低音速な媒質にエネルギーが集中するという性質とにより、弾性表面波エネルギーのIDT電極外への漏れが抑制される。低音速膜52は、例えば、二酸化ケイ素を主成分とする膜であり、厚みは、例えば670nmである。
 なお、基板50の上記積層構造によれば、圧電基板を単層で使用している従来の構造と比較して、共振周波数および反共振周波数におけるQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性表面波共振子を構成し得るので、当該弾性表面波共振子を用いて、挿入損失が小さいフィルタを構成することが可能となる。
 なお、高音速支持基板51は、支持基板と、圧電膜53を伝搬する表面波および境界波などの弾性波よりも、伝搬するバルク波の音速が高速となる高音速膜とが積層された構造を有していてもよい。この場合、支持基板は、リチウムタンタレート、リチウムニオベイト、水晶等の圧電体、サファイア、アルミナ、マグネシア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、ガラス等の誘電体またはシリコン、窒化ガリウム等の半導体および樹脂基板等を用いることができる。また、高音速膜は、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜またはダイヤモンド、上記材料を主成分とする媒質、上記材料の混合物を主成分とする媒質等、様々な高音速材料を用いることができる。
 また、図2Bは、弾性表面波共振子の変形例を模式的に表す断面図である。図2Aに示した弾性表面波共振子100では、IDT電極54が、圧電膜53を有する基板50上に形成された例を示したが、当該IDT電極54が形成される基板は、図2Bに示すように、圧電体層の単層からなる圧電単結晶基板57であってもよい。圧電単結晶基板57は、例えば、LiNbOの圧電単結晶で構成されている。本変形例に係る弾性表面波共振子100は、LiNbOの圧電単結晶基板57と、IDT電極54と、圧電単結晶基板57上およびIDT電極54上に形成された保護層55と、で構成されている。
 上述した圧電膜53および圧電単結晶基板57は、弾性波フィルタ装置の要求通過特性などに応じて、適宜、積層構造、材料、カット角、および、厚みを変更してもよい。上述したカット角以外のカット角を有するLiTaO圧電基板などを用いた弾性表面波共振子100であっても、上述した圧電膜53を用いた弾性表面波共振子100と同様の効果を奏することができる。
 また、IDT電極54が形成される基板は、支持基板と、エネルギー閉じ込め層と、圧電膜がこの順で積層された構造を有していてもよい。圧電膜上にIDT電極54が形成される。圧電膜は、例えば、LiTaO圧電単結晶または圧電セラミックスが用いられる。支持基板は、圧電膜、エネルギー閉じ込め層、およびIDT電極54を支持する基板である。
 エネルギー閉じ込め層は1層または複数の層からなり、その少なくとも1つの層を伝搬する弾性バルク波の音速は、圧電膜近傍を伝搬する弾性波の音速よりも高速である。例えば、低音速層と、高音速層との積層構造となっていてもよい。低音速層は、圧電膜を伝搬するバルク波の音速よりも、低音速層中のバルク波の音速が低速となる膜である。高音速層は、圧電膜を伝搬する弾性波の音速よりも、高音速層中のバルク波の音速が高速となる膜である。なお、支持基板を高音速層としてもよい。
 また、エネルギー閉じ込め層は、音響インピーダンスが相対的に低い低音響インピーダンス層と、音響インピーダンスが相対的に高い高音響インピーダンス層とが、交互に積層された構成を有する音響インピーダンス層であってもよい。
 ここで、弾性表面波共振子100を構成するIDT電極の電極パラメータの一例について説明する。
 弾性表面波共振子の波長とは、図2Aの(b)に示すIDT電極54を構成する複数の電極指150aまたは150bの繰り返し周期である波長λで規定される。また、電極ピッチは、波長λの1/2であり、櫛形電極100aおよび100bを構成する電極指150aおよび150bのライン幅をWとし、隣り合う電極指150aと電極指150bとの間のスペース幅をSとした場合、(W+S)で定義される。また、一対の櫛形電極100aおよび100bの交叉幅Lは、図2Aの(a)に示すように、電極指150aと電極指150bとの弾性波伝搬方向(X軸方向)から見た場合の重複する電極指の長さである。また、各弾性表面波共振子の電極デューティーは、複数の電極指150aおよび150bのライン幅占有率であり、複数の電極指150aおよび150bのライン幅とスペース幅との加算値に対する当該ライン幅の割合であり、W/(W+S)で定義される。また、隣り合う電極指150aと電極指150bとを一対とすると、IDT電極54の対数Nは、複数の電極指150aの本数および複数の電極指150bの本数の平均である。
 また、櫛形電極100aおよび100bの高さをhとしている。以降では、波長λ、交叉幅L、電極デューティー、IDT対数、IDT電極54の高さh等、弾性表面波共振子のIDT電極に関するパラメータを、電極パラメータという。
 再び、図1に戻って、実施の形態1に係る弾性波フィルタ装置1の構成について説明する。
 IDT電極11~15、21~25のそれぞれは、図2Aで説明したように、弾性波伝搬方向に延びるバスバー電極と当該バスバー電極に接続され弾性波伝搬方向と交差する方向に延びる複数の電極指とで構成された櫛形電極を一対有している。
 IDT電極11~15のうち、弾性波伝搬方向において奇数番目に配置されたIDT電極11、13および15が有する一対の櫛形電極の一方(のバスバー電極11a、13aおよび15a)はノードN1(第1ノード)に接続され、当該一対の櫛形電極の他方(のバスバー電極11b、13bおよび15b)はグランドに接続されている。
 また、IDT電極11~15のうち、弾性波伝搬方向において偶数番目に配置されたIDT電極12および14が有する一対の櫛形電極の一方(のバスバー電極12aおよび14a)はグランドに接続され、当該一対の櫛形電極の他方(のバスバー電極12bおよび14b)はノードN1と異なるノードN2(第2ノード)に接続されている。
 ノードN1は入出力端子110に接続されており、ノードN2は入出力端子120に接続されている。
 また、IDT電極21~25のうち、弾性波伝搬方向において奇数番目に配置されたIDT電極21、23および25が有する一対の櫛形電極の一方(のバスバー電極21a、23aおよび25a)はグランドに接続され、当該一対の櫛形電極の他方(のバスバー電極21b、23bおよび25b)はノードN2に接続されている。
 また、IDT電極21~25のうち、弾性波伝搬方向において偶数番目に配置されたIDT電極22および24が有する一対の櫛形電極の一方(のバスバー電極22aおよび24a)はノードN1に接続され、当該一対の櫛形電極の他方(のバスバー電極22bおよび24b)はグランドに接続されている。
 上記構成により、縦結合型弾性波共振器10は、第1通過帯域を有する帯域通過型フィルタとして機能する。また、縦結合型弾性波共振器20は、第2通過帯域を有する帯域通過型フィルタとして機能する。
 ここで、本実施の形態に係る弾性波フィルタ装置1において、ノードN1に接続された第1IDT電極の数(IDT電極11、13および15の3個)およびノードN1に接続された第2IDT電極の数(IDT電極22および24の2個)の合計(5個)と、ノードN2に接続された第1IDT電極の数(IDT電極12および14の2個)およびノードN2に接続された第2IDT電極の数(IDT電極21、23および25の3個)の合計(5個)とは等しい。
 これによれば、本実施の形態に係る弾性波フィルタ装置1において、入出力端子110に接続されるIDT電極の数(5個)と、入出力端子120に接続されるIDT電極の数(5個)とが等しいので、弾性波フィルタ装置1の入出力端子110から見たインピーダンスと、弾性波フィルタ装置1の入出力端子120から見たインピーダンスとのずれを抑制できる。よって、弾性波フィルタ装置1に接続される外部回路とのインピーダンス整合を、当該外部回路が入出力端子110および120のいずれに接続される場合であっても同様に調整できる。また、マルチプレクサにおける、共通端子に接続された他のフィルタに対するインピーダンス調整の自由度が向上する。
 なお、本実施の形態に係る弾性波フィルタ装置1では、縦結合型弾性波共振器10が有する第1IDT電極の数と、縦結合型弾性波共振器20が有する第2IDT電極の数とは等しい。これにより、互いに並列接続された縦結合型弾性波共振器10および20のフィルタ通過特性を略等しくできるので、例えば、縦結合型弾性波共振器10および20のいずれか一方のみで構成された弾性波フィルタ装置と比較して、挿入損失を低減できる。
 さらに、縦結合型弾性波共振器10が有するIDT電極11~15の電極パラメータと、縦結合型弾性波共振器20が有するIDT電極21~25の電極パラメータとは等しくてもよい。これにより、互いに並列接続された縦結合型弾性波共振器10および20のフィルタ通過特性を高精度に等しくできるので、例えば、縦結合型弾性波共振器10および20のいずれか一方のみで構成された弾性波フィルタ装置と比較して、挿入損失を効果的に低減できる。
 なお、IDT電極11~15の電極パラメータとIDT電極21~25の電極パラメータとが等しいとは、IDT電極11~15および21~25のそれぞれの電極パラメータが等しいことを意味するのではなく、例えば、IDT電極11とIDT電極21との電極パラメータが等しく、かつ、IDT電極12とIDT電極22との電極パラメータが等しく、かつ、IDT電極13とIDT電極23との電極パラメータが等しく、かつ、IDT電極14とIDT電極24との電極パラメータが等しく、かつ、IDT電極15とIDT電極25との電極パラメータが等しい、ことを意味する。つまり、IDT電極11~15の間での電極パラメータは異なり、IDT電極21~25の間での電極パラメータは異なっていてもよい。
 図3Aは、実施例に係る弾性波フィルタ装置1の通過特性を表すグラフである。また、図3Bは、実施例に係る弾性波フィルタ装置1のインピーダンス特性を表すスミスチャートである。なお、本実施例に係る弾性波フィルタ装置1は、縦結合型弾性波共振器10が有するIDT電極11~15の電極パラメータと、縦結合型弾性波共振器20が有するIDT電極21~25の電極パラメータとが等しい構成を有している。
 図3Bに示すように、実施例に係る弾性波フィルタ装置1において、(a)入出力端子110から弾性波フィルタ装置1を見たインピーダンスと、(b)入出力端子120から弾性波フィルタ装置1を見たインピーダンスとは、ほぼ同一である。つまり、入出力端子110における弾性波フィルタ装置1の反射係数と、入出力端子120における弾性波フィルタ装置1の反射係数とが、ほぼ同一となっている。
 図4は、比較例に係る弾性波フィルタ装置500の回路構成図である。また、図5Aは、比較例に係る弾性波フィルタ装置500の通過特性を表すグラフである。また、図5Bは、比較例に係る弾性波フィルタ装置500のインピーダンス特性を表すスミスチャートである。
 図4に示すように、比較例に係る弾性波フィルタ装置500は、縦結合型弾性波共振器10および20と、入出力端子110および120と、を備える。比較例に係る弾性波フィルタ装置500は、実施例に係る弾性波フィルタ装置1と比較して、縦結合型弾性波共振器10および20を構成するIDT電極の接続構成が異なる。以下、比較例に係る弾性波フィルタ装置500について、実施例に係る弾性波フィルタ装置1と異なる構成について説明する。
 IDT電極11~15のうち、弾性波伝搬方向において奇数番目に配置されたIDT電極11、13および15が有する一対の櫛形電極の一方はノードN1に接続され、当該一対の櫛形電極の他方はグランドに接続されている。
 また、IDT電極11~15のうち、弾性波伝搬方向において偶数番目に配置されたIDT電極12および14が有する一対の櫛形電極の一方はグランドに接続され、当該一対の櫛形電極の他方はノードN2に接続されている。
 また、IDT電極21~25のうち、弾性波伝搬方向において奇数番目に配置されたIDT電極21、23および25が有する一対の櫛形電極の一方はノードN1に接続され、当該一対の櫛形電極の他方はグランドに接続されている。
 また、IDT電極21~25のうち、弾性波伝搬方向において偶数番目に配置されたIDT電極22および24が有する一対の櫛形電極の一方はノードN2に接続され、当該一対の櫛形電極の他方はグランドに接続されている。
 ここで、比較例に係る弾性波フィルタ装置500において、ノードN1に接続された第1IDT電極の数(IDT電極11、13および15の3個)およびノードN1に接続された第2IDT電極の数(IDT電極21、23および25の3個)の合計(6個)と、ノードN2に接続された第1IDT電極の数(IDT電極12および14の2個)およびノードN2に接続された第2IDT電極の数(IDT電極22および24の2個)の合計(4個)とは異なる。
 なお、比較例に係る弾性波フィルタ装置500は、縦結合型弾性波共振器10が有するIDT電極11~15の電極パラメータと、縦結合型弾性波共振器20が有するIDT電極21~25の電極パラメータとが等しい構成を有している。
 図5Aに示すように、比較例に係る弾性波フィルタ装置500の通過特性は、図3Aに示された実施例に係る弾性波フィルタ装置1の通過特性と、ほぼ同等である。しかしながら、図5Bに示すように、比較例に係る弾性波フィルタ装置500において、(a)入出力端子110から弾性波フィルタ装置500を見たインピーダンスと、(b)入出力端子120から弾性波フィルタ装置500を見たインピーダンスとは、通過帯域および減衰帯域の双方において、大きく異なっていることが解る。つまり、入出力端子110における弾性波フィルタ装置500の反射係数と、入出力端子120における弾性波フィルタ装置500の反射係数とは、異なっている。この場合、弾性波フィルタ装置500に接続される外部回路が入出力端子110および120のいずれに接続されるかにより、当該外部回路とのインピーダンス整合回路を異ならせる必要がある。また、マルチプレクサにおける、共通端子に接続された他のフィルタに対するインピーダンス調整が制限されてしまう。
 なお、その他の比較例として、例えば、2つの縦結合型弾性波共振器10を反転させて直列接続した回路構成を有する弾性波フィルタ装置が挙げられる。この構成によれば、入力インピーダンスと出力インピーダンスとを同一にすることは可能であるが、2つの縦結合型弾性波共振器10を直列接続させているため、挿入損失が増大するという欠点を有する。
 これに対して、本実施例に係る弾性波フィルタ装置1によれば、2つの縦結合型弾性波共振器10および20を並列接続した回路構成を有するため、挿入損失が改善される。さらに、入出力端子110に接続されるIDT電極の数(5個)と、入出力端子120に接続されるIDT電極の数(5個)とが等しいので、弾性波フィルタ装置1の入出力端子110から見たインピーダンスと、弾性波フィルタ装置1の入出力端子120から見たインピーダンスとのずれを抑制できる。よって、弾性波フィルタ装置1に接続される外部回路とのインピーダンス整合を、当該外部回路が入出力端子110および120のいずれに接続される場合であっても同様に調整できる。また、マルチプレクサにおける、共通端子に接続された他のフィルタに対するインピーダンス調整の自由度が向上する。
 [1-2.弾性波フィルタ装置1のインピーダンス調整]
 ここでは、実施の形態に係る弾性波フィルタ装置1により、インピーダンス調整の自由度を向上できることを説明する。なお、実施例に係る弾性波フィルタ装置1の通過帯域を1905-1990MHzとし、減衰帯域を2300-2700MHzとし、実施例に係る弾性波フィルタ装置1と比較例に係る弾性波フィルタ装置500とを比較して、通過帯域および減衰帯域におけるインピーダンス調整の適否を説明する。
 図6Aは、実施例に係る弾性波フィルタ装置1に直列腕共振子30sを付加した場合のインピーダンス特性を表すスミスチャートである。図6Aの(a)には、弾性波フィルタ装置1の入出力端子110側に直列腕共振子30sを付加した場合の、入出力端子110側および120側のインピーダンス特性が示されている。また、図6Aの(b)には、弾性波フィルタ装置1の入出力端子120側に直列腕共振子30sを付加した場合の、入出力端子110側および120側のインピーダンス特性が示されている。なお、図6Aにおいて、スミスチャートの中心点付近に示されたインピーダンスデータは、通過帯域(1905-1990MH)のデータであり、スミスチャートの外周円付近に示されたインピーダンスデータは、減衰帯域(2300-2700MH)のデータである。
 図6Aの(a)および(b)に示すように、直列腕共振子30sが付加されていない状態(図6Aの破線)では、入出力端子110側および120側のインピーダンスは、ほぼ等しい。これに対して、直列腕共振子30sを付加した場合、直列腕共振子30sを付加した側(図6Aの(a)では入出力端子110側、図6Aの(b)では入出力端子120側)において、反射係数を小さくすることなく減衰帯域のインピーダンスが30°程度オープン側に位相シフトする。一方、直列腕共振子30sを付加しない側(図6Aの(a)では入出力端子120側、図6Aの(b)では入出力端子110側)において、通過帯域のインピーダンスの(巻きの)集中度の悪化は小さい。
 図6Aの結果より、弾性波フィルタ装置1の入出力端子110および120のいずれの側に直列腕共振子30sを付与しても、通過帯域のインピーダンスを悪化させることなく、減衰帯域のインピーダンスをオープン側に位相シフトできる。
 図6Bは、実施例に係る弾性波フィルタ装置1に並列腕共振子30pを付加した場合のインピーダンス特性を表すスミスチャートである。図6Bの(a)には、弾性波フィルタ装置1の入出力端子110側に並列腕共振子30pを付加した場合の、入出力端子110側および120側のインピーダンス特性が示されている。また、図6Bの(b)には、弾性波フィルタ装置1の入出力端子120側に並列腕共振子30pを付加した場合の、入出力端子110側および120側のインピーダンス特性が示されている。なお、図6Bにおいて、スミスチャートの中心点付近に示されたインピーダンスデータは、通過帯域(1905-1990MH)のデータであり、スミスチャートの外周円付近に示されたインピーダンスデータは、減衰帯域(2300-2700MH)のデータである。
 まず図6Bの(a)および(b)に示すように、並列腕共振子30pが付加されていない状態(図6Bの破線)では、入出力端子110側および120側のインピーダンスは、ほぼ等しい。これに対して、並列腕共振子30pを付加した場合、並列腕共振子30pを付加した側(図6Bの(a)では入出力端子110側、図6Bの(b)では入出力端子120側)において、反射係数を小さくすることなく減衰帯域のインピーダンスが10°程度ショート側に位相シフトする。一方、並列腕共振子30pを付加しない側(図6Bの(a)では入出力端子120側、図6Bの(b)では入出力端子110側)において、通過帯域のインピーダンスの(巻きの)集中度の悪化は小さい。
 図6Bの結果より、弾性波フィルタ装置1の入出力端子110および120のいずれの側に並列腕共振子30pを付与しても、通過帯域のインピーダンスを悪化させることなく、減衰帯域のインピーダンスをショート側に位相シフトできる。
 図7Aは、比較例に係る弾性波フィルタ装置500に直列腕共振子30sを付加した場合のインピーダンス特性を表すスミスチャートである。図7Aの(a)には、弾性波フィルタ装置500の入出力端子110側に直列腕共振子30sを付加した場合の、入出力端子110側および120側のインピーダンス特性が示されている。また、図7Aの(b)には、弾性波フィルタ装置500の入出力端子120側に直列腕共振子30sを付加した場合の、入出力端子110側および120側のインピーダンス特性が示されている。なお、図7Aにおいて、スミスチャートの中心点付近に示されたインピーダンスデータは、通過帯域(1905-1990MH)のデータであり、スミスチャートの外周円付近に示されたインピーダンスデータは、減衰帯域(2300-2700MH)のデータである。
 まず図7Aの(a)および(b)に示すように、直列腕共振子30sが付加されていない状態(図7Aの破線)では、入出力端子110側および120側の通過帯域のインピーダンスは異なり、特に入出力端子120側の通過帯域のインピーダンスは容量性となっている。一方、入出力端子110側および120側の減衰帯域のインピーダンスはほぼ等しい。
 これに対して、図7Aの(a)に示すように、直列腕共振子30sを入出力端子110側に付加した場合、入出力端子110側では、反射係数を小さくすることなく減衰帯域のインピーダンスが30°程度オープン側に位相シフトし、入出力端子120側では、通過帯域のインピーダンスの集中度の悪化は小さい。一方、図7Aの(b)に示すように、直列腕共振子30sを入出力端子120側に付加した場合、入出力端子120側において、反射係数を小さくすることなく減衰帯域のインピーダンスが30°程度オープン側に位相シフトするが、入出力端子120側の通過帯域のインピーダンスが容量性にずれることで、入出力端子110側における通過帯域のインピーダンスの(巻きの)集中度の悪化は大きくなる。
 図7Aの結果より、弾性波フィルタ装置500の入出力端子120側に直列腕共振子30sを付与すると、入出力端子110側の通過帯域におけるインピーダンスが悪化する。
 図7Bは、比較例に係る弾性波フィルタ装置500に並列腕共振子30pを付加した場合のインピーダンス特性を表すスミスチャートである。図7Bの(a)には、弾性波フィルタ装置500の入出力端子110側に並列腕共振子30pを付加した場合の、入出力端子110側および120側のインピーダンス特性が示されている。また、図7Bの(b)には、弾性波フィルタ装置500の入出力端子120側に並列腕共振子30pを付加した場合の、入出力端子110側および120側のインピーダンス特性が示されている。なお、図7Bにおいて、スミスチャートの中心点付近に示されたインピーダンスデータは、通過帯域(1905-1990MH)のデータであり、スミスチャートの外周円付近に示されたインピーダンスデータは、減衰帯域(2300-2700MH)のデータである。
 図7Bの(a)に示すように、並列腕共振子30pを入出力端子110側に付加した場合、入出力端子110側では、反射係数を小さくすることなく減衰帯域のインピーダンスが10°程度ショート側に位相シフトするが、通過帯域のインピーダンスの(巻きの)集中度の悪化が大きくなる。一方、図7Bの(b)に示すように、並列腕共振子30pを入出力端子120側に付加した場合、入出力端子120側において、反射係数を小さくすることなく減衰帯域のインピーダンスが10°程度ショート側に位相シフトし、通過帯域のインピーダンスの(巻きの)集中度の悪化は小さい。
 図7Bの結果より、弾性波フィルタ装置500の入出力端子110側に並列腕共振子30pを付与すると、入出力端子110側の通過帯域におけるインピーダンスが悪化する。
 以上のように、比較例に係る弾性波フィルタ装置500では、特性劣化なくインピーダンスを調整するには、入出力端子110側には直列腕共振子30sおよび並列腕共振子30pのうち直列腕共振子30sしか付与できず、入出力端子120側には直列腕共振子30sおよび並列腕共振子30pのうち並列腕共振子30pしか付与できない。つまり、比較例に係る弾性波フィルタ装置500では、入出力端子110側のインピーダンスと入出力端子120側のインピーダンスとが異なっていることに起因して、インピーダンス調整の自由度が制限される。
 これに対して、実施例に係る弾性波フィルタ装置1では、特性劣化なくインピーダンスを調整するにあたり、入出力端子110側および120側の双方に、直列腕共振子30sおよび並列腕共振子30pのいずれも付加することができる。つまり、本実施の形態に係る弾性波フィルタ装置1は、さらに、入出力端子110とノードN1とを結ぶ経路、および、入出力端子120とノードN2とを結ぶ経路の少なくとも一方に配置された直列腕共振子30sを備えてもよい。また、本実施の形態に係る弾性波フィルタ装置1は、さらに、入出力端子110とノードN1とを結ぶ経路上のノードとグランドとの間、および、入出力端子120とノードN2とを結ぶ経路上のノードとグランドとの間の少なくとも一方に配置された並列腕共振子30pを備えてもよい。
 これによれば、縦結合型弾性波共振器10と縦結合型弾性波共振器20とが並列接続された回路におけるノードN1側のインピーダンスとノードN2側のインピーダンスとが、ほぼ同等であることに起因して、インピーダンス調整の自由度が向上する。
 [1-3.変形例に係る弾性波フィルタ装置2の構成]
 本実施の形態に係る弾性波フィルタ装置1では、第1の縦結合型弾性波共振器が有する第1IDT電極の数と、第2の縦結合型弾性波共振器が有する第2IDT電極の数とは等しい構成であった。これに対して、本変形例に係る弾性波フィルタ装置2は、第1の縦結合型弾性波共振器が有する第1IDT電極の数と、第2の縦結合型弾性波共振器が有する第2IDT電極の数とが異なる構成を有する。以下、本変形例に係る弾性波フィルタ装置2について、実施の形態1に係る弾性波フィルタ装置1と同じ構成については説明を省略し、異なる構成を中心に説明する。
 図8は、実施の形態1の変形例に係る弾性波フィルタ装置2の回路構成図である。本変形例に係る弾性波フィルタ装置2は、縦結合型弾性波共振器10および40と、入出力端子110および120と、を備える。
 縦結合型弾性波共振器10は、第1の縦結合型弾性波共振器の一例であり、5個のIDT電極11、12、13、14および15と、反射器19Aおよび19Bと、を有している。縦結合型弾性波共振器40は、第2の縦結合型弾性波共振器の一例であり、3個のIDT電極41、42および43と、反射器49Aおよび49Bと、を有している。IDT電極11~15は、弾性波伝搬方向に並ぶ奇数個の第1IDT電極であり、IDT電極41~43は、弾性波伝搬方向に並ぶ奇数個の第2IDT電極である。なお、縦結合型弾性波共振器10を構成するIDT電極の数は5個でなくてもよく、奇数個であればよい。また、縦結合型弾性波共振器40を構成するIDT電極の数は3個でなくてもよく、奇数個であればよい。
 反射器19Aおよび19Bは、IDT電極11~15を弾性波伝搬方向で挟むように配置されている。また、反射器49Aおよび49Bは、IDT電極41~43を弾性波伝搬方向で挟むように配置されている。なお、縦結合型弾性波共振器10は反射器19Aおよび19Bを有さなくてもよく、縦結合型弾性波共振器40は反射器49Aおよび49Bを有さなくてもよい。
 IDT電極11~15、41~43、反射器19A、19B、49Aおよび49Bは、圧電性を有する基板上に形成されている。IDT電極11~15、41~43のそれぞれは、図2Aで説明したように、弾性波伝搬方向に延びるバスバー電極と当該バスバー電極に接続され弾性波伝搬方向と交差する方向に延びる複数の電極指とで構成された櫛形電極を一対有している。
 IDT電極11~15のうち、弾性波伝搬方向における縦結合型弾性波共振器10の最端部(例えば、反射器19A)から奇数番目に配置されたIDT電極11、13および15が有する一対の櫛形電極の一方(のバスバー電極11a、13aおよび15a)はノードN1(第1ノード)に接続され、当該一対の櫛形電極の他方(のバスバー電極11b、13bおよび15b)はグランドに接続されている。
 また、IDT電極11~15のうち、弾性波伝搬方向における縦結合型弾性波共振器10の最端部(例えば、反射器19A)から偶数番目に配置されたIDT電極12および14が有する一対の櫛形電極の一方(のバスバー電極12aおよび14a)はグランドに接続され、当該一対の櫛形電極の他方(のバスバー電極12bおよび14b)はノードN1と異なるノードN2(第2ノード)に接続されている。
 また、IDT電極41~43のうち、弾性波伝搬方向における縦結合型弾性波共振器40の最端部(例えば、反射器49A)から奇数番目に配置されたIDT電極41および43が有する一対の櫛形電極の一方(のバスバー電極41aおよび43a)はグランドに接続され、当該一対の櫛形電極の他方(のバスバー電極41bおよび43b)はノードN2に接続されている。
 また、IDT電極41~43のうち、弾性波伝搬方向における縦結合型弾性波共振器40の最端部(例えば、反射器49A)から偶数番目に配置されたIDT電極42が有する一対の櫛形電極の一方(のバスバー電極42a)はノードN1に接続され、当該一対の櫛形電極の他方(のバスバー電極42b)はグランドに接続されている。
 上記構成により、縦結合型弾性波共振器10は、第1通過帯域を有する帯域通過型フィルタとして機能する。また、縦結合型弾性波共振器40は、第2通過帯域を有する帯域通過型フィルタとして機能する。
 ここで、本変形例に係る弾性波フィルタ装置2において、ノードN1に接続された第1IDT電極の数(IDT電極11、13および15の3個)およびノードN1に接続された第2IDT電極の数(IDT電極42の1個)の合計(4個)と、ノードN2に接続された第1IDT電極の数(IDT電極12および14の2個)およびノードN2に接続された第2IDT電極の数(IDT電極41および43の2個)の合計(4個)とは等しい。
 これによれば、本変形例に係る弾性波フィルタ装置2において、入出力端子110に接続されるIDT電極の数(4個)と、入出力端子120に接続されるIDT電極の数(4個)とが等しいので、弾性波フィルタ装置2の入出力端子110から見たインピーダンスと、弾性波フィルタ装置1の入出力端子120から見たインピーダンスとのずれを抑制できる。よって、弾性波フィルタ装置2に接続される外部回路とのインピーダンス整合を、当該外部回路が入出力端子110および120のいずれに接続される場合であっても同様に調整できる。また、マルチプレクサにおける、共通端子に接続された他のフィルタに対するインピーダンス調整の自由度が向上する。
 (実施の形態2)
 本実施の形態では、実施の形態1に係る弾性波フィルタ装置1を含むマルチプレクサの構成について説明する。
 複数のフィルタが共通端子に接続された構成を有するマルチプレクサの場合、当該複数のフィルタのうちの一のフィルタの共通端子側の減衰帯域(他のフィルタの通過帯域)におけるインピーダンスに要求される位相は、マルチプレクサの合成インピーダンスに応じて決定される。このため、上記一のフィルタの2つの入出力端子のいずれを共通端子側に接続させても、自帯域(一のフィルタの通過帯域)のインピーダンスの(巻きの)集中度を悪化させず、かつ、減衰帯域(他のフィルタの通過帯域)のインピーダンスの位相シフトを自由にできることが要求される。
 図9Aは、実施の形態2に係るマルチプレクサ5の回路構成図である。同図に示すように、本実施の形態に係るマルチプレクサ5は、共通端子140、入出力端子120および130と、弾性波フィルタ装置1と、フィルタ3と、を備える。
 弾性波フィルタ装置1は、実施の形態1に係る弾性波フィルタ装置1であり、共通端子140と入出力端子120(第1端子)とを結ぶ第1経路上に配置されている。なお、弾性波フィルタ装置1は、ノードN1およびN2のいずれが共通端子140に接続されていてもよい。
 フィルタ3は、弾性波フィルタ装置1の通過帯域と異なる通過帯域を有し、共通端子140と入出力端子130(第2端子)とを結ぶ第2経路上に配置されている。フィルタ3は、弾性表面波フィルタ、BAWを用いた弾性波フィルタ、LC共振フィルタ、および誘電体フィルタの他、LCフィルタなどであってもよく、フィルタ構造は任意である。
 本実施の形態に係るマルチプレクサ5の上記構成によれば、弾性波フィルタ装置1の入出力端子110から見たインピーダンスと、弾性波フィルタ装置1の入出力端子120から見たインピーダンスとを、ほぼ同じにすることができる。よって、弾性波フィルタ装置1のフィルタ特性およびフィルタ3のフィルタ特性を最適化すべく、弾性波フィルタ装置1の共通端子140側に直列腕共振子および並列腕共振子を自由に付加することが可能となり、インピーダンス調整の自由度が向上したマルチプレクサを提供できる。
 図9Bは、実施の形態2の変形例1に係るマルチプレクサ6の回路構成図である。同図に示すように、本変形例に係るマルチプレクサ6は、実施の形態2に係るマルチプレクサ5に対して、さらに、弾性波フィルタ装置1の共通端子140側に、直列腕共振子30sが付加されている。これによれば、弾性波フィルタ装置1の通過帯域のインピーダンスの(巻きの)集中度を悪化させることなく、反射係数を小さくすることなく減衰帯域(フィルタ3の通過帯域)のインピーダンスをオープン側にシフトできる。よって、弾性波フィルタ装置1およびフィルタ3のフィルタ特性を改善でき、マルチプレクサ6の通過特性を向上できる。
 なお、本変形例に係るマルチプレクサ6において、さらに、弾性波フィルタ装置1の共通端子140側に並列腕共振子が付加されてもよく、また、弾性波フィルタ装置1の入出力端子120側に直列腕共振子および並列腕共振子の少なくとも1つが付加されていてもよい。
 図9Cは、実施の形態2の変形例2に係るマルチプレクサ7の回路構成図である。同図に示すように、本変形例に係るマルチプレクサ7は、実施の形態2に係るマルチプレクサ5に対して、さらに、弾性波フィルタ装置1の共通端子140側に、並列腕共振子30pが付加されている。これによれば、弾性波フィルタ装置1の通過帯域のインピーダンスの(巻きの)集中度を悪化させることなく、反射係数を小さくすることなく減衰帯域(フィルタ3の通過帯域)のインピーダンスをショート側にシフトできる。よって、弾性波フィルタ装置1およびフィルタ3のフィルタ特性を改善でき、マルチプレクサ7の通過特性を向上できる。
 なお、本変形例に係るマルチプレクサ7において、さらに、弾性波フィルタ装置1の共通端子140側に直列腕共振子が付加されてもよく、また、弾性波フィルタ装置1の入出力端子120側に直列腕共振子および並列腕共振子の少なくとも1つが付加されていてもよい。
 また、上記のマルチプレクサ5、6および7において、共通端子140に接続されたフィルタの数は2であることに限定されず、3以上であってもよい。
 (その他の実施の形態など)
 以上、本発明に係る弾性波フィルタ装置およびマルチプレクサについて、実施の形態1、2およびその変形例を挙げて説明したが、本発明の弾性波フィルタ装置およびマルチプレクサは、上記実施の形態および変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記実施の形態および変形例における弾性波フィルタ装置およびマルチプレクサを内蔵した各種機器も本発明に含まれる。
 例えば、上記実施の形態およびその変形例に係る弾性波フィルタ装置およびマルチプレクサにおいて、図面に開示された各回路素子(および部品)および信号経路を接続する経路の間に、別の回路素子および配線などが挿入されていてもよい。
 本発明は、通過帯域内の低損失および通過帯域外の高減衰が要求される無線通信端末のフロントエンドに使用される送受信フィルタおよびマルチプレクサとして広く利用できる。
 1、2、500  弾性波フィルタ装置
 3  フィルタ
 5、6、7  マルチプレクサ
 10、20、40  縦結合型弾性波共振器
 11、12、13、14、15、21、22、23、24、25、41、42、43、54  IDT電極
 11a、11b、12a、12b、13a、13b、14a、14b、15a、15b、21a、21b、22a、22b、23a、23b、24a、24b、25a、25b、41a、41b、42a、42b、43a、43b、160a、160b  バスバー電極
 19A、19B、29A、29B、49A、49B  反射器
 30p  並列腕共振子
 30s  直列腕共振子
 50  基板
 51  高音速支持基板
 52  低音速膜
 53  圧電膜
 55  保護層
 57  圧電単結晶基板
 100  弾性表面波共振子
 100a、100b  櫛形電極
 110、120、130  入出力端子
 140  共通端子
 150a、150b  電極指
 541  密着層
 542  主電極層
 N1、N2  ノード

Claims (6)

  1.  弾性波伝搬方向に並ぶ複数の奇数個の第1IDT(InterDigital Transducer)電極を有する第1の縦結合型弾性波共振器と、
     前記弾性波伝搬方向に並ぶ複数の奇数個の第2IDT電極を有する第2の縦結合型弾性波共振器と、
     第1ノードおよび当該第1ノードと異なる第2ノードと、
     前記第1ノードに接続される第1入出力端子および前記第2ノードに接続される第2入出力端子と、を備え、
     前記奇数個の第1IDT電極および前記奇数個の第2IDT電極のそれぞれは、バスバー電極と当該バスバー電極に接続され前記弾性波伝搬方向と交差する方向に延びる複数の電極指とで構成された櫛形電極を一対有し、
     前記奇数個の第1IDT電極のうち、前記弾性波伝搬方向において奇数番目に配置された第1IDT電極が有する前記一対の櫛形電極の一方は前記第1ノードに接続され、前記一対の櫛形電極の他方はグランドに接続され、
     前記奇数個の第1IDT電極のうち、前記弾性波伝搬方向において偶数番目に配置された第1IDT電極が有する前記一対の櫛形電極の一方はグランドに接続され、前記一対の櫛形電極の他方は前記第2ノードに接続され、
     前記奇数個の第2IDT電極のうち、前記弾性波伝搬方向において奇数番目に配置された第2IDT電極が有する前記一対の櫛形電極の一方はグランドに接続され、前記一対の櫛形電極の他方は前記第2ノードに接続され、
     前記奇数個の第2IDT電極のうち、前記弾性波伝搬方向において偶数番目に配置された第2IDT電極が有する前記一対の櫛形電極の一方は前記第1ノードに接続され、前記一対の櫛形電極の他方はグランドに接続され、
     前記第1ノードに接続された第1IDT電極の数および前記第1ノードに接続された第2IDT電極の数の合計と、前記第2ノードに接続された第1IDT電極の数および前記第2ノードに接続された第2IDT電極の数の合計とは等しい、
     弾性波フィルタ装置。
  2.  前記奇数個の第1IDT電極の数と、前記奇数個の第2IDT電極の数とは等しい、
     請求項1に記載の弾性波フィルタ装置。
  3.  前記奇数個の第1IDT電極のうち弾性波伝搬方向においてn番目に配置された第1IDT電極の電極パラメータと、前記奇数個の第2IDT電極のうち弾性波伝搬方向においてn番目に配置された第2IDT電極の電極パラメータとは等しい、
     請求項2に記載の弾性波フィルタ装置。
  4.  さらに、
     前記第1入出力端子と前記第1ノードとを結ぶ経路、および、前記第2入出力端子と前記第2ノードとを結ぶ経路の少なくとも一方に配置された直列腕共振子を備える、
     請求項1~3のいずれか1項に記載の弾性波フィルタ装置。
  5.  さらに、
     前記第1入出力端子と前記第1ノードとを結ぶ経路上のノードとグランドとの間、および、前記第2入出力端子と前記第2ノードとを結ぶ経路上のノードとグランドとの間の少なくとも一方に配置された並列腕共振子を備える、
     請求項1~4のいずれか1項に記載の弾性波フィルタ装置。
  6.  共通端子、第1端子及び第2端子と、
     前記共通端子と前記第1端子とを結ぶ第1経路上に配置された、請求項1~5のいずれか1項に記載の弾性波フィルタ装置と、
     前記共通端子と前記第2端子とを結ぶ第2経路上に配置され、前記弾性波フィルタ装置の通過帯域と異なる通過帯域を有するフィルタと、を備えた、
     マルチプレクサ。
PCT/JP2020/010674 2019-03-13 2020-03-11 弾性波フィルタ装置およびマルチプレクサ WO2020184641A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217027809A KR20210123342A (ko) 2019-03-13 2020-03-11 탄성파 필터 장치 및 멀티플렉서
CN202080018810.3A CN113519121A (zh) 2019-03-13 2020-03-11 弹性波滤波器装置以及多工器
JP2021505117A JP7188556B2 (ja) 2019-03-13 2020-03-11 弾性波フィルタ装置およびマルチプレクサ
US17/412,313 US11855605B2 (en) 2019-03-13 2021-08-26 Acoustic wave filter device and multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019046196 2019-03-13
JP2019-046196 2019-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/412,313 Continuation US11855605B2 (en) 2019-03-13 2021-08-26 Acoustic wave filter device and multiplexer

Publications (1)

Publication Number Publication Date
WO2020184641A1 true WO2020184641A1 (ja) 2020-09-17

Family

ID=72426981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010674 WO2020184641A1 (ja) 2019-03-13 2020-03-11 弾性波フィルタ装置およびマルチプレクサ

Country Status (5)

Country Link
US (1) US11855605B2 (ja)
JP (1) JP7188556B2 (ja)
KR (1) KR20210123342A (ja)
CN (1) CN113519121A (ja)
WO (1) WO2020184641A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6940085B1 (ja) * 2020-12-30 2021-09-22 三安ジャパンテクノロジー株式会社 弾性波デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172543A (ja) * 2007-01-11 2008-07-24 Fujitsu Media Device Kk フィルタ
JP2017118587A (ja) * 2013-02-27 2017-06-29 京セラ株式会社 弾性波素子、分波器および通信モジュール
JP2018074539A (ja) * 2016-11-04 2018-05-10 株式会社村田製作所 マルチプレクサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833569B2 (ja) 2001-12-21 2006-10-11 富士通メディアデバイス株式会社 分波器及びこれを用いた電子装置
CN102217193B (zh) 2008-11-04 2014-11-05 株式会社村田制作所 弹性波滤波器装置以及具备其的滤波器模块
JP6585621B2 (ja) * 2014-12-02 2019-10-02 京セラ株式会社 弾性波素子、分波器および通信モジュール
JP2017195580A (ja) * 2016-04-22 2017-10-26 株式会社村田製作所 弾性波フィルタ装置
WO2018061783A1 (ja) * 2016-09-30 2018-04-05 株式会社村田製作所 弾性波フィルタ装置、高周波フロントエンド回路及び通信装置
JP7057636B2 (ja) * 2017-08-16 2022-04-20 株式会社村田製作所 マルチプレクサ
JP7136026B2 (ja) * 2019-07-16 2022-09-13 株式会社村田製作所 マルチプレクサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172543A (ja) * 2007-01-11 2008-07-24 Fujitsu Media Device Kk フィルタ
JP2017118587A (ja) * 2013-02-27 2017-06-29 京セラ株式会社 弾性波素子、分波器および通信モジュール
JP2018074539A (ja) * 2016-11-04 2018-05-10 株式会社村田製作所 マルチプレクサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6940085B1 (ja) * 2020-12-30 2021-09-22 三安ジャパンテクノロジー株式会社 弾性波デバイス
JP2022104846A (ja) * 2020-12-30 2022-07-12 三安ジャパンテクノロジー株式会社 弾性波デバイス

Also Published As

Publication number Publication date
JP7188556B2 (ja) 2022-12-13
JPWO2020184641A1 (ja) 2020-09-17
CN113519121A (zh) 2021-10-19
US20210384886A1 (en) 2021-12-09
KR20210123342A (ko) 2021-10-13
US11855605B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
JP6590069B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
JP7057636B2 (ja) マルチプレクサ
WO2018168836A1 (ja) 弾性波素子、弾性波フィルタ装置およびマルチプレクサ
JP6690608B2 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
WO2019138812A1 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置
JP6870684B2 (ja) マルチプレクサ
JP6773238B2 (ja) 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
JP6801797B2 (ja) 弾性波フィルタ
WO2021002321A1 (ja) 弾性波フィルタおよびマルチプレクサ
WO2019111902A1 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
US11863159B2 (en) Acoustic wave filter
WO2020179906A1 (ja) フィルタ、マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2018235605A1 (ja) 弾性波装置、高周波フロントエンド回路および通信装置
JP6822613B2 (ja) フィルタ装置およびマルチプレクサ
WO2017115870A1 (ja) 弾性波フィルタ装置およびデュプレクサ
KR102454560B1 (ko) 필터 장치 및 멀티플렉서
WO2020184641A1 (ja) 弾性波フィルタ装置およびマルチプレクサ
WO2018051597A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
JP7103420B2 (ja) フィルタ装置およびマルチプレクサ
JPWO2020036100A1 (ja) 弾性波フィルタ
JP6702278B2 (ja) マルチプレクサ
WO2019009271A1 (ja) マルチプレクサ
WO2022181578A1 (ja) 弾性波フィルタ
WO2023074373A1 (ja) 弾性波共振子、弾性波フィルタ装置およびマルチプレクサ
WO2023054301A1 (ja) 弾性波フィルタ装置およびマルチプレクサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217027809

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021505117

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769053

Country of ref document: EP

Kind code of ref document: A1