WO2020184596A1 - アミラーゼ組成物 - Google Patents

アミラーゼ組成物 Download PDF

Info

Publication number
WO2020184596A1
WO2020184596A1 PCT/JP2020/010428 JP2020010428W WO2020184596A1 WO 2020184596 A1 WO2020184596 A1 WO 2020184596A1 JP 2020010428 W JP2020010428 W JP 2020010428W WO 2020184596 A1 WO2020184596 A1 WO 2020184596A1
Authority
WO
WIPO (PCT)
Prior art keywords
amylase
composition
polyhydric alcohol
food
glucose
Prior art date
Application number
PCT/JP2020/010428
Other languages
English (en)
French (fr)
Inventor
学 飯島
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2020/006424 external-priority patent/WO2020184098A1/ja
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Priority to US17/436,945 priority Critical patent/US20220170002A1/en
Priority to CN202080000776.7A priority patent/CN111918562A/zh
Priority to JP2020530532A priority patent/JP6952196B2/ja
Publication of WO2020184596A1 publication Critical patent/WO2020184596A1/ja
Priority to DKPA202100956A priority patent/DK181636B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2425Beta-amylase (3.2.1.2)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • A23L29/35Degradation products of starch, e.g. hydrolysates, dextrins; Enzymatically modified starches
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • A23L29/37Sugar alcohols
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01002Beta-amylase (3.2.1.2)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to an amylase composition.
  • Beta-amylase is used in the production of maltose and starch syrup, and is also used as an antiaging preparation for rice cakes and rice cakes.
  • Beta-amylase includes those derived from plants such as soybean, barley, wheat, and sweet potato, and those derived from microorganisms.
  • ⁇ -amylase derived from soybean has higher heat resistance and is active even at a high temperature of about 60 ° C., so it is expected that it can be used under a wider range of conditions than ⁇ -amylase derived from other than soybean.
  • ⁇ -amylase derived from soybean produces the same saccharification effect with an addition amount of 1/2 of ⁇ -amylase derived from barley, it is expected that the amount of enzyme used and the cost can be reduced.
  • a stabilizer is added to a liquid enzyme preparation to maintain enzyme activity and preservative.
  • Chemical substances such as benzoic acid, parabens, and sorbic acid may be added in order to obtain a high antiseptic effect, but these chemical substances correspond to designated additives whose use in food applications is restricted. Due to growing interest in food safety, the market tends to avoid it.
  • the enzyme preparation In order to improve the storage stability of the product, it is possible to suppress the growth of microorganisms in the enzyme preparation by lowering the water activity or increasing the osmotic pressure by adding salts such as sodium chloride to the enzyme preparation.
  • salts such as sodium chloride
  • the salts may have an adverse effect in the decolorization / desalting step among the purification steps using the ion exchange resin.
  • Patent Document 1 discloses that a polyhydric alcohol and a saccharide are added in order to prevent autolysis by protease and prevent precipitation in an aqueous solvent. However, no method is known to improve the long-term storage stability of amylase.
  • An object of the present invention is to provide an amylase composition capable of stably storing amylase for a long period of time without using a chemical substance which may affect the human body for food use.
  • the present inventor has found that the storage stability of amylase for a long period of time can be realized by using a polyhydric alcohol and a saccharide containing glucose as a constituent unit, and completed the present invention.
  • the present invention relates to an amylase composition containing a saccharide containing glucose as a constituent unit, a polyhydric alcohol, and amylase.
  • the total amount of the saccharide containing glucose as a constituent unit and the polyhydric alcohol is 70% by weight or less.
  • the polyhydric alcohol is preferably selected from the group consisting of glycerin, sorbitol, and propylene glycol.
  • the number of saccharides is one or more selected from the group consisting of sucrose, trehalose, dextrin, maltose, and maltitol.
  • amylase is ⁇ -amylase.
  • the present invention also relates to a food additive containing the amylase composition.
  • the present invention also relates to foods containing the food additives.
  • the present invention also relates to a method for stabilizing amylase, which comprises a step of mixing amylase, a polyhydric alcohol, and a saccharide containing a glucose unit.
  • the amylase composition of the present invention does not contain chemical substances that may affect the human body for food use, and improves the storage stability of amylase for a long period of time. Moreover, since the amylase composition of the present invention does not contain salts as an essential element, it does not impose a load on the maltose production process.
  • the relative activity (potency residual rate) of the amylase compositions in Comparative Examples 1 to 4 is shown.
  • the relative activity (potency residual ratio) of the amylase compositions in Examples 1 to 3 and Comparative Examples 5 to 6 is shown.
  • the relative activity (potency residual ratio) of the amylase compositions in Examples 4 to 7 and Comparative Example 7 is shown.
  • the relative activity (potency residual ratio) of the amylase compositions in Examples 8 to 12 and Comparative Examples 7 to 8 is shown.
  • the relative activity (potency residual ratio) of the amylase compositions in Example 13 and Comparative Examples 8 to 13 is shown.
  • the amylase composition of the present invention contains a saccharide containing glucose as a constituent unit, a polyhydric alcohol, and amylase.
  • Amylase is an enzyme that cleaves ⁇ -1,4-bonds such as starch and glycogen to produce maltose. Amylase is further classified into ⁇ -amylase, ⁇ -amylase, glucoamylase, isoamylase, maltogenic amylase and the like.
  • the amylase in the present invention is not particularly limited, but ⁇ -amylase, which can prepare a preparation having high heat resistance, is preferable.
  • amylase in the present invention is not particularly limited, and examples thereof include plants, animals, and microorganisms.
  • amylase produced by microorganisms such as soybean, barley, wheat, amylase derived from sweet potato, Aspergillus, Bacillus, and Streptomyces is preferable because of its eating experience and easy application to food, and ⁇ -amylase derived from soybean. Is more preferable. Since ⁇ -amylase derived from soybean has excellent heat resistance and reactivity, it is expected to be useful in a wide range of applications as compared with ⁇ -amylase derived from barley and other sources other than soybean.
  • amylase any one extracted from the plant, animal or microorganism from which the amylase is derived, or one mass-produced using a genetic recombination technique may be used. Further, wild-type amylase may be used, or mutant amylase may be used.
  • amylase As a method for obtaining amylase, when amylase accumulates in the cells of the organism of origin, the tissue and cells are crushed to obtain a cell-free extract by centrifugation or the like. This may be used as amylase.
  • a cell-free extract is used as a starting material and purified by a general protein purification method such as salting out, ion exchange chromatography, gel filtration chromatography, hydrophobic chromatography, affinity chromatography and other various chromatographies. May be used. If amylase is secreted extracellularly when it is produced by a microorganism, it can be purified from the medium.
  • the amylase used in the present invention is not limited to a pure product, and may be contained in a plant extract such as soybean whey or a crude product such as a cell-free extract of a microorganism.
  • the content of amylase in the amylase composition is preferably 30% by weight or more, more preferably 50% by weight or more, further preferably 70% by weight or more, still more preferably 80% by weight or more. It is preferable, and 90% by weight or more is particularly preferable.
  • the polyhydric alcohol is not particularly limited as long as it is an alcohol having two or more hydroxyl groups and can reduce the water activity.
  • Specific examples of the polyhydric alcohol include glycerin, sorbitol, propylene glycol, polyvinyl alcohol, pentaerythritol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol and the like. Of these, glycerin is preferable.
  • the content of the polyhydric alcohol in the amylase composition is preferably 30 to 60% by weight, more preferably 30 to 55% by weight. If it is less than 30% by weight, amylase tends not to be sufficiently stabilized, and if it exceeds 60% by weight, the amylase titer in the composition is excessively diluted.
  • the saccharide may be a monosaccharide, a disaccharide, or a polysaccharide of trisaccharide or higher as long as it contains glucose, and is not particularly limited.
  • the disaccharide or polysaccharide is a substance obtained by polymerizing a monosaccharide molecule by a glycosidic bond, and is not particularly limited as long as it contains glucose as one of the monosaccharide molecules.
  • glucose is preferably ⁇ -1,4-bonded.
  • saccharides containing glucose as a constituent unit include dextrin, maltose, maltitol, sucrose, lactose, trehalose, cellobiose and the like.
  • dextrin, sucrose, trehalose, maltitol and the like which do not contain reducing groups that brown during storage and deteriorate the product quality or have a small proportion of reducing groups, are preferable.
  • the content of the saccharide containing glucose as a constituent unit in the amylase composition is preferably 1 to 20% by weight, more preferably 2 to 15% by weight. If it is less than 1% by weight, amylase tends not to be sufficiently stabilized, and if it exceeds 20% by weight, the amylase titer in the composition cannot be improved.
  • the total amount of the saccharide containing glucose as a constituent unit and the polyhydric alcohol in the amylase composition is preferably 70% by weight or less, more preferably 60% by weight or less, further preferably 50% by weight or less, and 45% by weight. Even more preferably by weight% or less. If it exceeds 70% by weight, the concentration of amylase contained in the amylase composition will decrease. In order to improve the amylase concentration in the amylase composition, it is preferable that the total amount of the saccharide containing glucose as a constituent unit and the polyhydric alcohol is small, but the lower limit is generally 30% by weight. ..
  • the form of the amylase composition is not particularly limited and may be either liquid or solid.
  • the liquid form include an aqueous solution, a suspension, and a slurry.
  • the solid form include powders, granules, tablets and the like.
  • the liquid form is preferable from the viewpoint of cost and handling. Conventionally, it has been difficult to maintain the enzymatic activity of amylase and suppress microbial contamination in the liquid form, but the amylase composition of the present invention can stably maintain the amylase activity.
  • the pH of the amylase composition is preferably 4 to 9, more preferably 4.5 to 7, and even more preferably 5 to 6. Precipitates tend to occur below pH 4. Above pH 9, the activity of amylase tends to be impaired.
  • the pH of the amylase composition can be adjusted with an acid such as hydrochloric acid or sulfuric acid or a base such as sodium hydroxide or potassium hydroxide.
  • the enzyme titer of the amylase composition is not particularly limited, and is generally preferably 1,000 to 1,000,000 units / g or less.
  • the enzyme titer is defined as 1 unit of the amount of enzyme that produces 1 mg of maltose per hour under the condition of pH 5.5 / 60 ° C.
  • the amylase composition of the present invention contains a polyhydric alcohol and a saccharide containing glucose as a constituent unit, the activity of amylase can be stably maintained for a long period of time. Even after the amylase composition is stored at 40 ° C. for 3 months, the activity of 70% or more is preferably maintained, and the activity of 80% or more is preferably maintained as compared with that before storage. The activity can be evaluated by the above-mentioned enzyme titer.
  • the amylase composition of the present invention can prevent the growth of viable bacteria in the composition. It is preferable that the viable bacteria do not grow to 10,000 or more even after storage at 40 ° C. for 3 months.
  • the amylase composition can be produced by mixing each component in an arbitrary order. After mixing each component, filtration or sterilization may be performed by contact with a porous material or permeation through a filter.
  • the amylase composition may contain any component in addition to saccharides containing glucose as a constituent unit, a polyhydric alcohol, and amylase.
  • the food additive of the present invention is characterized by containing the above amylase composition.
  • the food additive may contain other ingredients that are acceptable for food.
  • Such other ingredients include, for example, excipients, pH regulators, enzymes, thickening polysaccharides, emulsifiers, mixtures of emulsifiers with polymerized phosphates, dairy products, extracts, sweeteners, fermented flavors. , Eggs, inorganic salts, preservatives, organic acids, metals, filtration aids and the like.
  • the content of these components is not particularly limited, and any amount may be selected by those skilled in the art.
  • pH regulators include, for example, ascorbic acid, acetic acid, dehydroacetic acid, lactic acid, citric acid, gluconic acid, succinic acid, tartaric acid, fumaric acid, malic acid, and adipic acid, and sodium (Na) salts of these organic acids. , Calcium (Ca) salt, and potassium (K) salt as well as carbonic acid, phosphoric acid, and pyrophosphate, and Na and K salts of these inorganic acids.
  • Enzymes include ⁇ -amylase, glucoamylase, plulanase, isoamylase, maltotriohydrase, cyclodexstring lucanotransferase, transglucosidase, dextranase, glucose isomerase, cellulase, xylanase, hemicellulase, mannanase, pectinase, pectinmethylesterase , Glucose-related enzymes such as invertase, lactase, inulinase, ⁇ -galactosidase, chitinase, chitosanase, alginate lyase, protein / amino acid-related enzymes such as protease, peptidase, collagenase, glutaminase, lipid-related enzymes such as lipase, phosphoripase, cellulase, etc.
  • thickening polysaccharide examples include processed starches, gums, alginic acid, alginic acid derivatives, pectin, carrageenan, curdlan, pullulan, gelatin, cellulose derivatives, agar, tamarind, psyllium, and glucomannan.
  • emulsifier examples include glycerin fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, propylene glycol fatty acid ester, sorbitan fatty acid ester, lecithin, enzymatically decomposed lecithin, and saponin.
  • dairy products include milk, skim milk powder, full-fat milk powder, whey powder, casein, cheese, yogurt, condensed milk, fermented milk, cream and the like.
  • Examples of the extracts include yeast extract and malt extract.
  • sweetener examples include stevia, aspartame, glycyrrhizin, acesulfame potassium, sucralose, neotame and the like.
  • inorganic salts examples include salt, ammonium sulfate, sodium sulfate, calcium chloride, polymerized phosphate and the like.
  • Preservatives include, for example, propionic acid, propionate, sulfites, benzoate, sorbic acid, sorbate, shirako protein, polylysine, glycine, acetate and the like.
  • the salt include sodium (Na) salt, calcium (Ca) salt, potassium (K) salt and the like.
  • the food product of the present invention is characterized by containing the above food additives.
  • the food product of the present invention is preferably a processed grain food product.
  • Grains include rice, red beans, rye, barley, buckwheat, wheat, sweet potatoes, potatoes, tapioca, kudzu, corn, long thighs, satoimo, lily roots, lentils, lens beans, chick beans, green beans, pea, sora beans, peanuts, Examples include white bean, soybean, and bean.
  • processed foods of rice and wheat are preferable.
  • Examples of processed rice foods include cooked rice, rice cakes, rice dumplings, rice balls, sushi, fried rice, and rice cakes.
  • Examples of processed wheat foods include bread, cakes, confectionery, and noodles.
  • Starch aging results from partial ⁇ -formation of pregelatinized starch.
  • Amylase prevents starch aging by cleaving maltose, which is a glucose dimer, from the end of the sugar chain to shorten the sugar chain and prevent partial ⁇ -formation. Since the food of the present invention contains an amylase composition, starch aging is suppressed.
  • the time when the food additive of the present invention is blended is not particularly limited, and the food may be produced after adding and / or mixing the food additive to the raw material, or the food.
  • a food additive may be added during the production of the product to allow the amylases to act.
  • the food additive of the present invention may be added before the heating step or after the heating step.
  • amylase acts before the heating step, and the anti-aging effect is maintained for a long time after heating.
  • the anti-aging effect is maintained for a long time after the food is manufactured.
  • the temperature at the time of adding the food additive of the present invention is preferably 4 to 70 ° C, more preferably 25 to 65 ° C, and even more preferably 50 to 60 ° C.
  • ⁇ -amylase derived from soybean it can be allowed to act under high temperature conditions of, for example, 60 ° C. or higher because of its high heat resistance.
  • the food of the present invention can also be stored after blending with the food additive of the present invention.
  • the storage temperature is preferably ⁇ 80 to 30 ° C.
  • the storage temperature during refrigeration is preferably ⁇ 20 to 0 ° C, more preferably ⁇ 10 to -4 ° C.
  • the storage temperature during refrigeration is preferably 0 to 10 ° C, more preferably 0 to 4 ° C.
  • the storage temperature for storage at room temperature is preferably 15 to 25 ° C.
  • the action of amylase can prevent aging in starch and maintain the texture even after the food is stored at low temperature.
  • the method for stabilizing amylase of the present invention includes the step of mixing amylase, a polyhydric alcohol, and a saccharide containing a glucose unit.
  • Amylase, polyhydric alcohols, and sugars containing glucose units are as described above.
  • the mixing order of amylase, polyhydric alcohol, and saccharides containing glucose units is not particularly limited.
  • Soybean whey concentrate, polyhydric alcohol, and sugars containing glucose units were mixed at the ratios shown in Tables 1 to 5, sodium hydroxide solution was added to adjust the pH to 5.2, and the mixture was stirred for 1 hour.
  • the stirred sample was clarified and filtered using Topcoperlite and KC Flock W-100.
  • the filtered sample was sterilized using a 0.2 ⁇ m filter (Toyo Filter Paper Co., Ltd .: C020A047A) to obtain an amylase composition.
  • the ⁇ -amylase activity was measured by a quantitative method (DNS method) using 3,5-dinitrosalicylic acid for reducing sugars.
  • NDS method quantitative method
  • 1 ml of amylase composition was added to a 1.1% glucose substrate solution containing 9 ml of pH 5.5 phosphate buffer, and the mixture was reacted at 60 ° C. for 30 minutes.
  • 1 ml of this reaction solution was added to 3 ml of DNS solution, and boiling was performed for 15 minutes. After boiling, the mixture was cooled to room temperature, distilled water was added, and the volumetric flask was increased to 25 ml, and the absorbance at 550 nm was measured.
  • the glucose concentration reduced from the obtained absorbance was calculated from the calibration curve, and the amount of enzyme producing 1 mg of maltose per hour under the condition of pH 5.5 / 60 ° C. was defined as one unit.
  • the stability of amylase could be greatly improved by using 50% of glycerin and 10% of a saccharide containing glucose as a constituent unit (Examples 1 to 3).
  • the storage stability of amylase was lower than that in the test group containing a saccharide containing glucose as a constituent unit.
  • the stability of amylase could be improved under the condition that 40% of glycerin and 10% of saccharides containing glucose as a constituent unit were used in combination (Example 13). Under the condition that glycerin or a saccharide containing glucose as a constituent unit was used alone, the stability of amylase was low (Comparative Examples 8 to 13).
  • Example 13 no bacterial growth was observed even after 3 months had passed. In Comparative Examples 9 to 13, the bacteria grew. In Comparative Example 8, as shown in FIG. 5, the stability of amylase was low, but no bacterial growth was observed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本発明は、食品用途として人体への影響が懸念される化学物質を用いることなく、長期間にわたりアミラーゼを安定に保存できるアミラーゼ組成物を提供する。 本発明は、グルコースを構成単位として含む糖類、多価アルコール、及びアミラーゼを含む、アミラーゼ組成物に関する。

Description

アミラーゼ組成物
本発明は、アミラーゼ組成物に関する。
βアミラーゼは、マルトースや水飴の製造において用いられており、また、餅・餅菓子等の老化防止製剤としても用いられている。βアミラーゼには大豆、大麦、小麦、甘藷といった植物に由来するものと、微生物由来のものが存在する。大麦由来の液状βアミラーゼ製剤と比較し、大豆由来のβアミラーゼは耐熱性が高く、約60℃の高温でも活性を示すため、大豆以外に由来するβアミラーゼよりも幅広い条件で使用できることが期待される。また、大豆由来のβアミラーゼは、大麦由来のβアミラーゼの1/2の添加量で同等の糖化効果を生じるため、酵素使用量およびコストを低減できることが期待される。
一般的に、液状の酵素製剤には酵素活性の維持や防腐のために安定剤が添加されている。高い防腐効果を得るためには、安息香酸やパラベン類、ソルビン酸といった化学物質が添加されることがあるが、これらの化学物質は食品用途での使用が制限される指定添加物に該当し、食品の安全性への関心の高まりから、市場では敬遠される傾向にある。
製品の保存安定性向上のため、酵素製剤に塩化ナトリウム等の塩類を加えることにより水分活性を下げ、或いは浸透圧を高めることで、酵素製剤における微生物の繁殖を抑制することが可能である。しかし、塩類を含むβアミラーゼ製剤をマルトースの製造に使用する場合には、イオン交換樹脂による精製工程のうちとりわけ脱色・脱塩工程で塩類が悪影響を及ぼすおそれがある。
特許文献1は、プロテアーゼによる自己分解の防止や水系溶媒中での沈殿防止のために多価アルコールと糖類を添加することを開示している。しかし、アミラーゼの長期間にわたる保存安定性を向上させる方法は知られていない。
特開2017-029129号公報
本発明の課題は、食品用途として人体への影響が懸念される化学物質を用いることなく、長期間にわたりアミラーゼを安定に保存できるアミラーゼ組成物を提供することである。
本発明者が鋭意検討の結果、多価アルコール、及び、グルコースを構成単位として含む糖類を併用することで、長期間にわたるアミラーゼの保存安定性を実現することを見出し、本発明を完成した。
すなわち、本発明は、グルコースを構成単位として含む糖類、多価アルコール、及びアミラーゼを含む、アミラーゼ組成物に関する。
グルコースを構成単位として含む糖類、及び多価アルコールの配合量の合計が70重量%以下であることが好ましい。
多価アルコールがグリセリン、ソルビトール、及びプロピレングリコールからなる群から選択されることが好ましい。
糖類が、スクロース、トレハロース、デキストリン、マルトース、及びマルチトールからなる群から選択される1以上であることが好ましい。
アミラーゼがβアミラーゼであることが好ましい。
また、本発明は、前記アミラーゼ組成物を含む食品添加物に関する。
また、本発明は、前記食品添加物を含む食品に関する。
また、本発明は、アミラーゼ、多価アルコール、及びグルコース単位を含む糖類を混合する工程を含む、アミラーゼの安定化方法に関する。
本発明のアミラーゼ組成物は、食品用途として人体への影響が懸念される化学物質を含まず、長期間にわたるアミラーゼの保存安定性を向上させる。また、本発明のアミラーゼ組成物は必須要素としては塩類を含まないため、マルトース製造工程に負荷をかけることもない。
比較例1~4におけるアミラーゼ組成物の相対活性(力価残存率)を示す。 実施例1~3、比較例5~6におけるアミラーゼ組成物の相対活性(力価残存率)を示す。 実施例4~7、比較例7におけるアミラーゼ組成物の相対活性(力価残存率)を示す。 実施例8~12、比較例7~8におけるアミラーゼ組成物の相対活性(力価残存率)を示す。 実施例13、比較例8~13におけるアミラーゼ組成物の相対活性(力価残存率)を示す。
<<アミラーゼ組成物>>
本発明のアミラーゼ組成物は、グルコースを構成単位として含む糖類、多価アルコール、及びアミラーゼを含む。
<アミラーゼ>
アミラーゼはデンプンやグリコーゲン等のα-1,4-結合を切断してマルトースを生成する酵素である。アミラーゼは、さらにαアミラーゼ、βアミラーゼ、グルコアミラーゼ、イソアミラーゼ、マルトジェニックアミラーゼ等に分類される。本発明におけるアミラーゼは特に限定されないが、高い耐熱性を有する製剤の調整が可能なβアミラーゼが好ましい。
本発明におけるアミラーゼの由来は特に限定されず、植物、動物、微生物が挙げられる。この中でも食経験があり食品への適用が容易であるために大豆、大麦、小麦、甘藷由来のアミラーゼ、Aspergillus属、Bacillus属、Streptomyces属などの微生物が産生するアミラーゼが好ましく、大豆由来のβアミラーゼがより好ましい。大豆由来のβアミラーゼは、優れた耐熱性と反応性を有するため、大麦由来のβアミラーゼ等大豆以外に由来するものと比較して幅広い用途での有用性が期待される。
アミラーゼは、由来となる植物、動物、微生物から抽出したもの、遺伝子組み換え技術を用いて大量生産させたもののいずれを用いてもよい。また野生型アミラーゼを用いてもよく、変異型アミラーゼを用いてもよい。
アミラーゼの取得方法として、アミラーゼが由来生物の細胞内に蓄積する場合には、組織および細胞を破砕し、遠心分離などによって無細胞抽出液を得る。これをアミラーゼとして用いてもよい。また、無細胞抽出液を出発材料とし、塩析法や、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、疎水クロマトグラフィー、アフィニティークロマトグラフィーなどの各種クロマトグラフィーなどの一般的なタンパク質精製法により精製したものを用いてもよい。アミラーゼを微生物により生産させる際にアミラーゼが細胞外に分泌される場合には、培地から精製することができる。本発明で用いるアミラーゼは純品には限られず、大豆ホエー等の植物抽出物、微生物の無細胞抽出液等の粗精製物に含まれている状態であってもよい。
高いアミラーゼ力価を保持するために、アミラーゼ組成物中におけるアミラーゼの含有量は30重量%以上が好ましく、50重量%以上がより好ましく、70重量%以上がさらに好ましく、80重量%以上がさらにより好ましく、90重量%以上が特に好ましい。
<多価アルコール>
多価アルコールは、水酸基を2個以上有するアルコールかつ水分活性を低下させることが出来るものであれば特に限定されない。多価アルコールの具体例としては、たとえば、グリセリン、ソルビトール、プロピレングリコール、ポリビニルアルコール、ペンタエリスリトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールなどが挙げられる。これらの中でもグリセリンが好ましい。
アミラーゼ組成物中、多価アルコールの含有量は30~60重量%が好ましく、30~55重量%がより好ましい。30重量%未満ではアミラーゼを十分に安定化できない傾向があり、60重量%を超えると組成物中のアミラーゼ力価が希釈され過ぎてしまう。
<グルコースを構成単位として含む糖類>
糖類は、グルコースを含むものであれば単糖、二糖類、三糖類以上の多糖類のいずれでもよく、特に限定されない。二糖類や多糖類は、グリコシド結合によって単糖分子が重合した物質であって、単糖分子の一つとしてグルコースを含むものであれば特に限定されない。二糖類や多糖類の場合、グルコースはα-1,4-結合していることが好ましい。グルコースを構成単位として含む糖類の具体例としては、たとえばデキストリン、マルトース、マルチトール、スクロース、ラクトース、トレハロース、セロビオースなどが挙げられる。これらの中でも保存中に褐変し製品品質を低下させる還元基を含まない、または還元基の割合が少ないデキストリン、スクロース、トレハロース、マルチトールなどが好ましい。
アミラーゼ組成物中、グルコースを構成単位として含む糖類の含有量は1~20重量%が好ましく、2~15重量%がより好ましい。1重量%未満ではアミラーゼを十分に安定化できない傾向があり、20重量%を超えると組成物中のアミラーゼ力価を向上できない。
さらに、アミラーゼ組成物中、グルコースを構成単位として含む糖類、及び多価アルコールの配合量の合計は、70重量%以下が好ましく、60重量%以下がより好ましく、50重量%以下がさらに好ましく、45重量%以下がさらにより好ましい。70重量%を超えると、アミラーゼ組成物に含まれるアミラーゼ濃度が低下することとなる。アミラーゼ組成物中のアミラーゼ濃度を向上させるために、グルコースを構成単位として含む糖類、及び多価アルコールの配合量の合計量は小さい方が好ましいが、その下限は一般的には30重量%である。
アミラーゼ組成物の形態は特に限定されず、液体または固体のいずれであってもよい。液体形態としては水溶液、懸濁液、スラリー等が挙げられる。固体形態としては粉末、顆粒、錠剤等が挙げられる。この中でも、コストやハンドリングの観点から液状形態が好ましい。従来、液状形態ではアミラーゼの酵素活性を維持し且つ微生物汚染等を抑制することが難しいとされているが、本発明のアミラーゼ組成物ではアミラーゼ活性を安定的に維持できる。
アミラーゼ組成物が液体形態の場合、アミラーゼ組成物のpHは4~9が好ましく、4.5~7がより好ましく、5~6がさらに好ましい。pH4未満では析出物が生じる傾向がある。pH9を超えるとアミラーゼの活性が損なわれる傾向がある。アミラーゼ組成物のpHは、塩酸、硫酸などの酸や、水酸化ナトリウム、水酸化カリウム等の塩基により調整することができる。
アミラーゼ組成物の酵素力価は特に限定されず、一般的に1,000~1,000,000ユニット/g以下が好ましい。ここで、酵素力価は、pH5.5/60℃の条件下で1時間に1mgのマルトースを生成する酵素量を1ユニットとする。
本発明のアミラーゼ組成物は、多価アルコールと、グルコースを構成単位として含む糖類を含むため、アミラーゼの活性を長期にわたって安定に維持できる。アミラーゼ組成物は、40℃で3ヶ月保存した後でも、保存前と比較して70%以上の活性が維持されることが好ましく、80%以上の活性が維持されることが好ましい。活性は、前述の酵素力価により評価できる。
本発明のアミラーゼ組成物は、組成物中での生菌の繁殖を防止できる。40℃で3ヶ月保存した後でも、生菌が10,000個以上に増殖しないことが好ましい。
<組成物の製造方法>
アミラーゼ組成物は、各成分を任意の順序で混合することにより製造できる。各成分を混合した後、多孔質材料との接触や、フィルター透過により、濾過や除菌を行ってもよい。
アミラーゼ組成物は、グルコースを構成単位として含む糖類、多価アルコール、及びアミラーゼの他に任意の成分を含んでいてもよい。
<<食品添加物>>
本発明の食品添加物は、上記アミラーゼ組成物を含むことを特徴とする。食品添加物は、アミラーゼ組成物以外に、食品に許容される他の成分を含んでいてもよい。このような他の成分としては、例えば、賦形剤、pH調整剤、酵素、増粘多糖類、乳化剤、乳化剤と重合リン酸塩との混合物、乳製品、エキス類、甘味料、発酵風味料、卵、無機塩類、保存料、有機酸、金属類、濾過助剤などが挙げられる。これらの成分の含有量は特に限定されず、当業者によって任意の量が選択され得る。
pH調整剤としては、例えば、アスコルビン酸、酢酸、デヒドロ酢酸、乳酸、クエン酸、グルコン酸、コハク酸、酒石酸、フマル酸、リンゴ酸、およびアジピン酸、ならびにこれらの有機酸のナトリウム(Na)塩、カルシウム(Ca)塩、およびカリウム(K)塩ならびに炭酸、リン酸、およびピロリン酸、ならびにこれらの無機酸のNa塩およびK塩が挙げられる。
酵素としては、αアミラーゼ、グルコアミラーゼ、プルラナーゼ、イソアミラーゼ、マルトトリオヒドラーゼ、サイクロデキストリングルカノトランスフェラーゼ、トランスグルコシダーゼ、デキストラナーゼ、グルコースイソメラーゼ、セルラーゼ、キシラナーゼ、ヘミセルラーゼ、マンナナーゼ、ペクチナーゼ、ペクチンメチルエステラーゼ、インベルターゼ、ラクターゼ、イヌリナーゼ、α-ガラクトシダーゼ、キチナーゼ、キトサナーゼ、アルギン酸リアーゼなどの糖質関連酵素、プロテアーゼ、ペプチダーゼ、コラゲナーゼ、グルタミナーゼなどのタンパク質・アミノ酸関連酵素、リパーゼ、ホスホリパーゼ、エステラーゼなどの脂質関連酵素、その他カタラーゼ、グルコースオキシダーゼ、ウレアーゼ、タンナーゼ、デアミナーゼなどが挙げられる。
増粘多糖類としては、例えば、加工澱粉、ガム類、アルギン酸、アルギン酸誘導体、ペクチン、カラギーナン、カードラン、プルラン、ゼラチン、セルロース誘導体、寒天、タマリンド、サイリウム、グルコマンナンなどが挙げられる。
乳化剤としては、例えば、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、レシチン、酵素分解レシチン、サポニンなどが挙げられる。
乳製品としては、例えば、牛乳、脱脂粉乳、全脂粉乳、ホエイ粉、カゼイン、チーズ、ヨーグルト、練乳、発酵乳、クリームなどが挙げられる。
エキス類としては、例えば、酵母エキス、モルトエキスなどが挙げられる。
甘味料としては、例えば、ステビア、アスパルテーム、グリチルリチン、アセスルファムカリウム、スクラロース、ネオテームなどが挙げられる。
無機塩類としては、例えば、食塩、硫酸アンモニウム、硫酸ナトリウム、塩化カルシウム、重合リン酸塩などが挙げられる。
保存料としては、例えば、プロピオン酸、プロピオン酸塩、亜硫酸塩、安息香酸塩、ソルビン酸、ソルビン酸塩、しらこたん白、ポリリジン、グリシン、酢酸塩などが挙げられる。塩としては、ナトリウム(Na)塩、カルシウム(Ca)塩、およびカリウム(K)塩などが挙げられる。
<<食品>>
本発明の食品は、上記食品添加物を含むことを特徴とする。本発明の食品は、穀物加工食品であることが好ましい。穀物としては、米、小豆、ライ麦、大麦、そば、小麦、サツマイモ、ジャガイモ、タピオカ、葛、とうもろこし、長いも、里芋、ユリ根、レンコン、レンズ豆、ひよこ豆、いんげん豆、エンドウ豆、そら豆、落花生、白花豆、大豆、うぐいす豆が挙げられる。この中でも、米、小麦の加工食品が好ましい。米加工食品としては、米飯、おこわ、ちまき、おにぎり、すし、炒飯、餅が挙げられる。小麦加工食品としては、パン、ケーキ、菓子、麺類が挙げられる。
穀物加工食品は、デンプンの老化により長期保存により硬くなり、食感が低下する傾向がある。デンプンの老化は、α化デンプンの部分的なβ化により生じる。アミラーゼは糖鎖の末端からグルコース2量体であるマルトースを切断して糖鎖を短縮し、部分的なβ化を防ぐことによりデンプンの老化を防止する。本発明の食品は、アミラーゼ組成物を含むためにデンプンの老化が抑制されている。
本発明の食品を製造する際に、本発明の食品添加物を配合する時期は特に限定されず、原材料に食品添加物を添加および/または混合してから食品を製造してもよいし、食品の製造途中に食品添加物を配合してアミラーゼを作用させてもよい。
食品の製造方法に加熱工程が含まれる場合には、本発明の食品添加物は加熱工程の前に添加してもよく、加熱工程の後に添加してもよい。加熱工程の前に添加する場合、アミラーゼは加熱工程までの間に作用し、加熱後も長期にわたり老化防止効果が維持される。加熱工程の後に添加する場合、食品の製造後、長期にわたり老化防止効果が維持される。
本発明の食品添加物の添加時の温度は、4~70℃であることが好ましく、25~65℃であることがより好ましく、50~60℃であることがさらに好ましい。大豆由来のβアミラーゼを使用する場合には、耐熱性が高いために、例えば60℃以上の高温条件で作用させることができる。一方、老化防止効果を達成しながらアミラーゼの添加量を低減するためには、食品が低温になってから本発明の食品添加物を添加することが好ましい。
本発明の食品は、本発明の食品添加物を配合した後で保存することも可能である。保存温度は、-80~30℃であることが好ましい。この中でも、冷蔵時の保存温度は-20~0℃が好ましく、-10~-4℃がより好ましい。冷蔵時の保存温度は0~10℃が好ましく、0~4℃がより好ましい。室温保存の保存温度は15~25℃が好ましい。アミラーゼの作用によりデンプン中の老化を防止でき、食品を低温で保存した後でも食感を維持できる。
<<アミラーゼの安定化方法>>
本発明のアミラーゼの安定化方法は、アミラーゼ、多価アルコール、及びグルコース単位を含む糖類を混合する工程を含む。アミラーゼ、多価アルコール、及びグルコース単位を含む糖類については上述した通りである。アミラーゼ、多価アルコール、及びグルコース単位を含む糖類の混合順序は特に限定されない。
以下、実施例を挙げて本発明を説明するが、本発明は以下の実施例に限定されない。以下、「部」又は「%」は特記されない限り、それぞれ「重量部」又は「重量%」を意味する。
(1)使用材料
大豆ホエー(昭和産業株式会社)
グリセリン(阪本薬品工業株式会社:食品添加物グリセリンRG)
デキストリン(松谷化学工業株式会社:マックス1000)
ソルビトール(上野製薬株式会社:ソルビトールウエノ 20M)
マルトース(株式会社林原:サンマルトS)
マルチトール(富士フイルム和光純薬株式会社)
濾過助剤:
トプコパーライト#54(東興パーライト工業株式会社)
KCフロック W-100(内外製粉株式会社)
(2)アミラーゼ組成物の調製
大豆ホエーに重量比0.3%のトプコパーライト#54およびKCフロックW-100を加え、フィルタープレスにより清澄濾過を行い、濾過したサンプルを、UF膜(ダイセンメンブレン社製 FS10-FS-FUY03A1)を用いて濃縮を行い、液状の大豆ホエー濃縮物を得た。
大豆ホエー濃縮物、多価アルコール、グルコース単位を含む糖類を、表1~5に記載の割合で混合し、水酸化ナトリウム溶液を添加してpH5.2に調整した後、1時間攪拌した。攪拌後のサンプルをトプコパーライトおよびKCフロックW-100を用いて清澄濾過した。濾過サンプルは0.2μmフィルター(東洋濾紙株式会社:C020A047A)を用いて除菌を行い、アミラーゼ組成物を得た。
(3)βアミラーゼ活性の測定
製造直後のアミラーゼ組成物、および、40℃で0.5ヶ月、1ヶ月、2ヶ月、3ヶ月保管したアミラーゼ組成物について、下記の方法で活性を測定し、製造直後の活性を100%としたときの相対活性を算出した。その結果を図1~5に示す。
βアミラーゼ活性は還元糖を3,5-ジニトロサリチル酸を用いた定量法(DNS法)により測定を行った。試験方法として、9mlのpH5.5 リン酸緩衝液を含む1.1%グルコース基質溶液に1mlのアミラーゼ組成物を添加し、60℃で30分反応させた。反応開始30分後に、この反応溶液1mlを3mlのDNS溶液に添加し、15分間ボイルを行った。ボイル後に室温へ冷却した後、蒸留水を加え25mlまでメスアップし、550nmの吸光度を測定した。得られた吸光度から還元されたグルコース濃度を検量線より算出し、pH5.5/60℃の条件下で1時間に1mgのマルトースを生成する酵素量を1ユニットとして定義した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
図1において、グリセリン濃度が35~50%(比較例1~2)では40℃での酵素安定性が低く、40℃・3ヶ月の保存後に相対活性が大きく失われた。グリセリン濃度が60~70%(比較例3~4)では水分含量が低減されるために相対活性は維持できたが、組成物中でアミラーゼを高濃度とすることができない。
図2において、グリセリン50%に、グルコースを構成単位として含む糖類を10%併用することにより、アミラーゼの安定性を大きく改善できた(実施例1~3)。グリセリン60%のみ(比較例5)、グリセリン50%とソルビトール10%の併用(比較例6)ではアミラーゼの保存安定性はグルコースを構成単位として含む糖類を含む試験区よりも安定性が低かった。
図3において、グリセリン50%に、グルコースを構成単位として含む糖類を2.5~10%併用したところ、アミラーゼの安定性を大きく改善できた(実施例4~7)。
図4において、グリセリン40%に、グルコースを構成単位として含む糖類を2.5~12.5%併用する条件では、組成物中のアミラーゼを高濃度としつつ、アミラーゼの安定性も改善できた(実施例8~12)。
図5において、グリセリン40%に、グルコースを構成単位として含む糖類を10%併用する条件では、アミラーゼの安定性を改善できた(実施例13)。グリセリン、またはグルコースを構成単位として含む糖類を単独で使用する条件では、アミラーゼの安定性が低かった(比較例8~13)。
(4)アミラーゼ組成物における生菌数
製造直後のアミラーゼ組成物、および、40℃で0.5ヶ月、1ヶ月、2ヶ月、3ヶ月保管したアミラーゼ組成物について、下記の方法で組成物中の生菌数を測定した。その結果を表6に示す。
アミラーゼ組成物25mlを秤量し、225mlの生理食塩水を加えて10倍希釈し、よく混合した。10倍希釈したアミラーゼ組成物から、リン酸緩衝液により10~10倍の希釈系列を作成した。希釈した各溶液1mlを、直径90mmのプレートに入れ、15~20mlのTryptone Glucose Yeast Extract培地(46℃±1℃)を添加して混合し、プレートを作成した。各希釈溶液についてn=2で生菌数を測定した。プレートを30℃±1℃で72時間インキュベートし、プレート上に出現したコロニー数をカウントした。
なお、コロニー数は、最も希釈率の高いプレートで300CFUを超えた場合、その希釈倍率のプレートのみカウントした。コロニー数が30CFU未満の場合、最も希釈率の低いプレートのみカウントした。30~300CFUの場合には2種類の希釈率における平均値を算出した。
Figure JPOXMLDOC01-appb-T000006
実施例13では3ヶ月経過後も菌の増殖がみられなかった。比較例9~13では菌が増殖した。比較例8では図5に示すようにアミラーゼの安定性が低かったが、菌の増殖はみられなかった。

 

Claims (8)

  1. グルコースを構成単位として含む糖類、
    多価アルコール、及び
    アミラーゼ
    を含む、アミラーゼ組成物。
  2. グルコースを構成単位として含む糖類、及び多価アルコールの配合量の合計が70重量%以下である、
    請求項1に記載のアミラーゼ組成物。
  3. 多価アルコールがグリセリン、ソルビトール、及びプロピレングリコールからなる群から選択される、
    請求項1又は2に記載のアミラーゼ組成物。
  4. 糖類が、スクロース、トレハロース、デキストリン、マルトース、及びマルチトールからなる群から選択される1以上である、
    請求項1~3のいずれか1項に記載のアミラーゼ組成物。
  5. アミラーゼがβアミラーゼである、
    請求項1~4のいずれか1項に記載のアミラーゼ組成物。
  6. 請求項1~5のいずれか1項に記載のアミラーゼ組成物を含む食品添加物。
  7. 請求項6に記載の食品添加物を含む食品。
  8. アミラーゼ、多価アルコール、及びグルコース単位を含む糖類を混合する工程を含む、アミラーゼの安定化方法。
PCT/JP2020/010428 2019-03-11 2020-03-11 アミラーゼ組成物 WO2020184596A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/436,945 US20220170002A1 (en) 2019-03-11 2020-03-11 Amylase composition
CN202080000776.7A CN111918562A (zh) 2019-03-11 2020-03-11 淀粉酶组合物
JP2020530532A JP6952196B2 (ja) 2019-03-11 2020-03-11 アミラーゼ組成物
DKPA202100956A DK181636B1 (en) 2019-03-11 2021-10-06 Amylase composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019043746 2019-03-11
JP2019-043746 2019-03-11
JPPCT/JP2020/006424 2020-02-19
PCT/JP2020/006424 WO2020184098A1 (ja) 2019-03-11 2020-02-19 アミラーゼ組成物

Publications (1)

Publication Number Publication Date
WO2020184596A1 true WO2020184596A1 (ja) 2020-09-17

Family

ID=72427826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010428 WO2020184596A1 (ja) 2019-03-11 2020-03-11 アミラーゼ組成物

Country Status (2)

Country Link
US (1) US20220170002A1 (ja)
WO (1) WO2020184596A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169973A (ja) * 1997-08-29 1999-03-16 Kao Corp 酵素の安定化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1076750A (en) * 1964-09-16 1967-07-19 Takeda Chemical Industries Ltd Enzyme preparations in liquid form
CA3007668A1 (en) * 2015-12-18 2017-06-22 Basf Enzymes Llc A liquid formulation of alpha-amylase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169973A (ja) * 1997-08-29 1999-03-16 Kao Corp 酵素の安定化方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CORDT, S. D. ET AL.: "DSC and protein-based time- temperature integrators: case study of alpha- amylase stabilized by polyols and/or sugar", BIOTECHNOLOGY AND BIOENGINEERING, vol. 44, no. 7, 1994, pages 859 - 865, XP001156109, DOI: 10.1002/bit.260440712 *
SAMSON, M. F. ET AL.: "Heat denaturation of durum wheat semolina beta-amylase effects of chemical factors and pasta processing conditions", JOURNAL OF FOOD SCIENCE, vol. 60, no. 6, 1995, pages 1313 - 1320 *
TANI, FUMITO, NISHITANI IWAO, YASUMOTO KYODEN, KITABATAKE NAOFUMI: "Preservative effect of polyols on the stability of biocatalysts during short-term dehydration stress", FOOD SCIENCE AND TECHNOLOGY RESEARCH, vol. 17, no. 4, 2011, pages 385 - 392, XP055738613, DOI: 10.3136/fstr.17.385 *

Also Published As

Publication number Publication date
US20220170002A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP5546249B2 (ja) 超高性能清澄化ジェランガム
WO2011021372A1 (ja) 澱粉ゲル含有食品
JP5684132B2 (ja) 低食塩醤油およびその製造法
JPS6251944A (ja) 酵母膨化パン製品及びその製造方法
WO2012105532A1 (ja) マルトトリオシル転移酵素の新規用途
TW202304319A (zh) 用於生產穀物製品的酶組合物及穀物製品的生產方法
CN110651828A (zh) 一种常温酸奶稳定剂
EP3680330A1 (en) Stabilised dry protein deamidase composition
US20240049746A1 (en) Method for producing rice protein-containing liquid composition
EP4238421A1 (en) Method for producing vegetable protein-processed product having improved food texture
EP4238422A1 (en) Method for manufacturing processed article of vegetable protein food/beverage product in which aroma is enhanced
WO2020184596A1 (ja) アミラーゼ組成物
WO2020184098A1 (ja) アミラーゼ組成物
JP6837584B2 (ja) 植物由来β−グルカン含有シロップ
EP1684589B1 (en) High soluble fiber fermented foods
JP2009142184A (ja) β−グルカン含有飲料
JP5416882B2 (ja) 低分子化処理ガラクトマンナン、ガラクトマンナンの製造方法、食品素材の冷凍変性防止剤、食品または食品素材及び食品または食品素材の冷凍変性防止方法。
Yurdugul et al. The influence of a cellulase bearing enzyme complex from anaerobic fungi on bread staling
JP2020015871A (ja) 澱粉分解物、並びに該澱粉分解物を用いた飲食品用組成物、及び飲食品
US5035903A (en) High fiber bakery products
KR102393648B1 (ko) 검류가 함유된 발효 쌀가루의 제조방법 및 이에 따라 제조된 발효 쌀가루
JP7149930B2 (ja) パンの品質改良剤及び/又は品質改良組成物
WO2023176971A1 (ja) 酵素含有溶液及び乳製品の製造方法
KR102611701B1 (ko) 막걸리 잼 조성물, 이를 포함하는 베이커리용 생크림 조성물 및 이의 제조방법
WO2023152823A1 (ja) 水中油型乳化組成物、および該水中油型乳化組成物が用いられた食品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020530532

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770085

Country of ref document: EP

Kind code of ref document: A1