WO2020184134A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2020184134A1
WO2020184134A1 PCT/JP2020/006784 JP2020006784W WO2020184134A1 WO 2020184134 A1 WO2020184134 A1 WO 2020184134A1 JP 2020006784 W JP2020006784 W JP 2020006784W WO 2020184134 A1 WO2020184134 A1 WO 2020184134A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating member
washer
stator
axial direction
motor
Prior art date
Application number
PCT/JP2020/006784
Other languages
English (en)
French (fr)
Inventor
大佑 平塚
祥司郎 中
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP20769570.1A priority Critical patent/EP3913768A4/en
Priority to CN202080010494.5A priority patent/CN113330662A/zh
Publication of WO2020184134A1 publication Critical patent/WO2020184134A1/ja
Priority to US17/472,226 priority patent/US20210408867A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/14Provisions for readily assembling or disassembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/268R32
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/805Fastening means, e.g. bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers

Definitions

  • This disclosure relates to a compressor.
  • Insulating bolts may be used for fastening between members that need to be electrically insulated (see, for example, Patent Document 1).
  • an insulating tube having an electrical insulating property is provided for the bolt.
  • the purpose of the present disclosure is to improve the insulation of the compressor motor.
  • the first aspect of the present disclosure is with the motor (10) A compression mechanism (20) that is driven by the motor (10) to compress the refrigerant, A casing (30) accommodating the motor (10) and the compression mechanism (20), One or more fastening members (60) that fasten the stator (12) of the motor (10) to a predetermined support member (40), and Insulating member (70) with electrical insulation and With The motor (10) is exposed to the refrigerant in the casing (30).
  • the stator (12) is provided with a fixing portion (12a) for fixing the stator (12) to the support member (40) integrally or separately.
  • One or more through holes (13) are formed in the fixing portion (12a).
  • the insulating member (70) is provided between the fastening member (60) and the wall surface (13a) of the through hole (13).
  • the insulating member (70) is a compressor characterized by having a dielectric constant lower than that of the refrigerant.
  • the insulating member (70) has a lower dielectric constant than the refrigerant. Therefore, in this embodiment, the insulation property of the compressor motor can be improved.
  • a second aspect of the present disclosure is, in the first aspect, Equipped with an annular washer (80) with electrical insulation
  • the stator (12) is insulated from the fastening member (60) by the washer (80).
  • the insulating member (70) has a tubular shape, and has an axial gap (W1, W2) with respect to a member (80, 90, 96) facing the fastening member (60) in the axial direction. It is a compressor characterized by being.
  • a third aspect of the present disclosure is, in the second aspect,
  • the end face (71) of the insulating member (70) in the axial direction is a compressor characterized in that it does not overlap with the washer (80) when viewed from the axial direction.
  • the insulating member (70) has an axial gap (W1, W2) with respect to the opposing member (80, 90, 96). Therefore, in this aspect, axial stress does not act on the insulating member (70) due to the fastening by the fastening member (60).
  • a fourth aspect of the present disclosure is, in the second aspect, At least a part of the end face (71) of the insulating member (70) in the axial direction overlaps with the washer (80) when viewed from the axial direction.
  • the insulating member (70) has an axial gap (W1, W2) with respect to the facing washer (80). Therefore, in this aspect, axial stress does not act on the insulating member (70) due to the fastening by the fastening member (60).
  • a fifth aspect of the present disclosure is, in any one of the first to fourth aspects,
  • the material of the insulating member (70) is a compressor characterized by being any one of polyphenylene sulfide, liquid crystal polymer, polybutylene terephthalate, and epoxy resin.
  • a sixth aspect of the present disclosure is, in any of the second to fourth aspects,
  • the material of the washer (80) is a compressor characterized by being ceramic.
  • FIG. 1 is a cross-sectional view of the compressor according to the first embodiment.
  • FIG. 2 is another cross-sectional view of the compressor.
  • FIG. 3 shows a fixed state of the stator and the bracket.
  • FIG. 4 shows a cross-sectional view of the vicinity of the bracket according to the modified example of the first embodiment.
  • FIG. 5 is a cross-sectional view of the compressor according to the second embodiment.
  • FIG. 6 is another configuration example of the washer.
  • FIG. 7 shows another configuration example of the fixed portion.
  • FIG. 1 is a cross-sectional view of the compressor (1) according to the first embodiment.
  • the compressor (1) includes a motor (10), a compression mechanism (20), a casing (30), a bracket (40), and a bearing (50).
  • FIG. 2 shows another cross-sectional view of the compressor (1).
  • FIG. 2 is a cross section orthogonal to the cross section of FIG. FIG. 2 corresponds to the II-II cross section of FIG.
  • the members permanent magnets, coils, etc.
  • the casing (30) is a cylindrical member with both ends closed.
  • the casing (30) is made of a metal member such as iron.
  • the casing (30) has conductivity.
  • the casing (30) is provided with a suction pipe (21) for sucking the refrigerant and a discharge pipe (31) for discharging the refrigerant.
  • the suction pipe (21) and the discharge pipe (31) are connected to the piping of the refrigerant circuit (not shown).
  • the motor (10) is a so-called magnet-embedded motor (IPM motor) in this example.
  • the motor (10) includes a rotor (11), a stator (12), and a drive shaft (15).
  • the rotor (11) is formed by, for example, laminating electromagnetic steel sheets. A permanent magnet (not shown) is embedded in the rotor (11).
  • the drive shaft (15) is fitted in the center of the rotor (11). In this example, the rotor (11) and the drive shaft (15) are fixed by so-called shrink fitting.
  • One end of the drive shaft (15) is connected to the compression mechanism (20), and the other end is supported by a bearing (50) (see FIG. 1).
  • the stator (12) is formed, for example, by laminating electromagnetic steel sheets.
  • the stator (12) is provided with a plurality of coils (not shown) that form an electromagnet.
  • the outer peripheral edge portion (so-called back yoke) of the stator (12) functions as a fixing portion (12a) for fixing the stator (12).
  • a plurality of through holes (13) are formed in the fixed portion (12a) at equal pitches in the circumferential direction (see FIG. 2). In this example, the through holes (13) are provided at a 90 ° pitch. These through holes (13) are used for fixing the stator (12) (details will be described later).
  • These through holes (13) are round holes.
  • the through hole (13) (round hole) has a diameter into which the insulating member (70) described later can be inserted.
  • the motor (10) is fixed in the casing (30). Specifically, the stator (12) is fixed to the casing (30) via the bracket (40). The fixing of the motor (10) (stator (12)) and the casing (30) will be described in detail later.
  • the compression mechanism (20) is a so-called scroll type compression mechanism in this example.
  • the compression mechanism (20) is housed in a casing (30). Specifically, the compression mechanism (20) is press-fitted into the casing (30).
  • a suction pipe (21) is connected to the compression mechanism (20).
  • the compression mechanism (20) is driven by a drive shaft (15).
  • the compression mechanism (20) When the motor (10) is driven, the compression mechanism (20) sucks the refrigerant (for example, R32, R410A, etc.) from the suction pipe (21). The compression mechanism (20) compresses the sucked refrigerant. The compression mechanism (20) discharges the compressed refrigerant into the casing (30). The motor (10) is exposed to the refrigerant in the casing (30). The refrigerant discharged into the casing (30) is discharged from the discharge pipe (31).
  • the refrigerant for example, R32, R410A, etc.
  • the bracket (40) is a member for fixing the motor (10) (more accurately, the stator (12)) to the casing (30).
  • the same number of brackets (40) as the through holes (13) of the stator (12) are provided (see FIG. 2).
  • each bracket (40) is a member having an L-shaped cross section.
  • the bracket (40) is made of a metal member such as iron.
  • the bracket (40) has conductivity.
  • the bracket (40) is formed with a through hole (41) corresponding to the through hole (13) of the stator (12). These brackets (40) are located on the inner peripheral surface (32) of the casing (30) and at positions where the through holes (41) of the bracket (40) and the through holes (13) of the stator (12) correspond to each other. It is fixed by welding. By welding the bracket (40) and the casing (30), they are electrically connected.
  • stator (12) is fixed to the casing (30) via the bracket (40).
  • Bolts (60), insulating members (70), washers (80), and nuts (90) are used for this fixing.
  • the bolt (60) is a so-called hexagon bolt in this example.
  • the bolt (60) is made of a metal such as iron.
  • the bolt (60) has conductivity.
  • the bolt (60) comprises a torso (61) and a head (62).
  • a male screw is formed on the body (61). As shown in FIG. 1, the body portion (61) is inserted into a through hole (41) provided in the bracket (40).
  • the head (62) is sized so that it does not penetrate the through hole (13).
  • the head (62) is in contact with the bracket (40).
  • the nut (90) is a so-called hexagon nut in this example.
  • the nut (90) is also made of metal such as iron.
  • the nut (90) is conductive.
  • the insulating member (70) is a tubular member.
  • a through hole (72) is formed in the insulating member (70) in the axial direction (meaning the axial direction in the tubular form).
  • the diameter of the through hole (72) is large enough to allow the body (61) of the bolt (60) to pass through. With the body (61) passed through the through hole (72), there is almost no radial gap between the two.
  • the insulating member (70) has electrical insulation.
  • a material having a dielectric constant lower than that of the refrigerant is used for the insulating member (70).
  • the insulating member (70) is formed of polyphenylene sulfide (abbreviated as PPS).
  • the washer (80) is an annular member. Two washers (80) are used for one bolt (60). In the following description, when it is necessary to identify a plurality of members such as a washer (80), a branch number is added to the reference code (for example, 80-1, 80-2).
  • the washer (80) has electrical insulation.
  • the washer (80) is made of ceramic. More specifically, the washer (80) is made of alumina.
  • the inner diameter of the through hole of the washer (80) is larger than the outer diameter of the insulating member (70).
  • FIG. 3 shows the fixed state of the stator (12) and the bracket (40).
  • the stator (12) fixed to the bracket (40)
  • the bracket (40) is attached to the casing (30) in advance.
  • Bolts (60) are attached to each bracket (40).
  • the bolt (60) has its head (62) fixed to the bracket (40) by welding.
  • the washer (80-1) is fitted (see FIG. 3).
  • the stator (12) is attached after the bracket (40), bolt (60), and washer (80-1) are placed in the casing (30).
  • a washer (80-1) is interposed between the stator (12) and the bracket (40).
  • An insulating member (70) is fitted to the body (61) of the bolt (60). In other words, the insulating member (70) is provided between the bolt (60) and the wall surface (13a) of the through hole (13) of the stator (12). With the insulating member (70) fitted in the through hole (13) of the stator (12), there is almost no radial gap between the two.
  • the nut (90) is tightened to the bolt (60).
  • the nut (90) and stator (12) are electrically insulated by a washer (80-2).
  • the end face (71) of the insulating member (70) in the axial direction does not overlap with the washer (80) when viewed from the axial direction. This is because the inner diameter of the through hole of the washer (80) is larger than the outer diameter of the insulating member (70).
  • the length of the insulating member (70) is set in the axial direction so as to have an axial gap (W1) with respect to the member (here, the nut (90)) facing the bolt (60) in the axial direction. ing.
  • the present embodiment includes a motor (10), a compression mechanism (20) driven by the motor (10) to compress the casing, the motor (10), and the compression mechanism (20).
  • a casing (30) to be accommodated, one or more fastening members (60) for fastening the stator (12) of the motor (10) to a predetermined support member (40), and an insulating member (70) having electrical insulation. ) And.
  • the motor (10) is exposed to the refrigerant in the casing (30), and the stator (12) has a fixing portion (12) for fixing the stator (12) to the support member (40).
  • 12a) is integrally provided, one or a plurality of through holes (13) are formed in the fixing portion (12a), and the insulating member (70) is formed by the fastening member (60) and the through hole (13).
  • the insulating member (70) is provided between the wall surface (13a) and the wall surface (13a) of 13), and is characterized in that the dielectric constant is lower than that of the refrigerant.
  • stator (12) is electrically insulated from the bolt (60), nut (90), and bracket (40).
  • the insulating member (70) has a lower dielectric constant than the refrigerant.
  • the permittivity of the refrigerant is 14.27 at 23 ° C and 11.27 at 40 ° C.
  • the dielectric constant of PPS used as the material of the insulating member (70) is 4.2.
  • the insulating property is improved as compared with the case where the inside of the through hole (13) (the gap between the bolt and the stator) of the stator (12) is filled with the refrigerant.
  • the insulation property of the motor (10) of the compressor (1) can be improved.
  • insulating member (70) instead of resin (PPS in this example).
  • resin is more advantageous than ceramic in terms of dielectric constant (insulation).
  • the dielectric constant of alumina, which is an example of ceramic, is 8.4.
  • the insulating member (70) of the present embodiment has an axial gap with respect to the nut (90) and the washer (80) in the axial direction of the bolt (60). As a result, even if the nut (90) is tightened to the bolt (60), no axial stress acts on the insulating member (70).
  • the washer (80) is made of ceramic. As a result, even if stress acts on the washer (80) by fastening the bolt (60) and the nut (90), it can sufficiently withstand.
  • FIG. 4 shows a cross-sectional view of the vicinity of the bracket (40) according to the modified example of the first embodiment.
  • the shape of the washer (80) is different from that of the first embodiment.
  • the inner diameter of the through hole of the washer (80) is smaller than the outer diameter of the insulating member (70).
  • the length of the insulating member (70) is set so as to have an axial gap (W2) with respect to the member (here, the washer (80)) facing the bolt (60) in the axial direction. ing.
  • FIG. 5 is a cross-sectional view of the compressor (1) according to the second embodiment.
  • the fastening structure of the stator (12) is different from that of the first embodiment.
  • a pin (95) and a fixing ring (96) are used instead of the bolt (60).
  • the pin (95) is integrally formed with the bracket (40).
  • the pin (95) is made of a metal such as iron.
  • the pin (95) is passed through the through hole (72) of the insulating member (70). With the pin (95) passed through the through hole (72), there is almost no radial gap between the two.
  • the fixing ring (96) is an annular member.
  • the fixing ring (96) is formed with a through hole for press-fitting the pin (95).
  • the outer diameter of the fixing ring (96) is such that it does not penetrate the through hole (13) of the stator (12).
  • the fixing ring (96) is made of a metal such as iron.
  • the fixing ring (96) is conductive.
  • the bracket (40) is attached to the casing (30) in advance.
  • a washer (80-1) is interposed between the stator (12) and the bracket (40).
  • An insulating member (70) is fitted to the pin (95).
  • the insulating member (70) is provided between the pin (95) and the wall surface (13a) of the through hole (13) of the stator (12). With the insulating member (70) fitted in the through hole (13) of the stator (12), there is almost no radial gap between the two.
  • a fixing ring (96) is press-fitted to the tip of the pin (95).
  • the fixing ring (96) and the stator (12) are electrically insulated by a washer (80-2). By this press fitting, the fixing ring (96) presses the stator (12) via the washer (80-2).
  • the end face (71) of the insulating member (70) in the axial direction of the pin (95) does not overlap with the washer (80) when viewed from the axial direction.
  • the length of the insulating member (70) is set so as to have an axial gap (W1) with respect to the member (here, the fixing ring (96)) facing the pin (95) in the axial direction. Has been done.
  • the stator (12) is electrically insulated from the pin (95), the fixing ring (96), and the bracket (40). Also in this embodiment, the same effect as that of the first embodiment can be obtained.
  • the embodiment may have the following configuration.
  • the nut (90) may be fastened only to some bolts (60).
  • the positions of the bolt (60) and nut (90) may be reversed.
  • the stator (12) may be fixed by attaching the nut (90) to the bracket (40) and screwing the bolt (60) into the nut (90).
  • the insulating member (70) and the washer (80) are arranged in the same manner as in the first embodiment.
  • the fixing ring (96) may be provided only for a part of the pins (95).
  • Bolts (60) in the first embodiment and the number of pins (95) in the second embodiment are examples. Bolts (60) and pins (95) may be provided at unequal pitches.
  • the material of the insulating member (70) is only an example.
  • PBT polybutylene terephthalate
  • LCP liquid crystal polymer
  • epoxy resin epoxy resin
  • phenol resin polyphenol resin
  • polyesters polyimide, polyetheretherketone (abbreviated as abbreviation).
  • PEEK polyetheretherketone
  • varnishes polyamides (eg nylon) and the like.
  • polyesters include alkyd resin, polyethylene terephthalate (abbreviated as PET), polyethylene naphthalate (abbreviated as PEN), and the like.
  • the material (ceramic) of the washer (80) is also an example.
  • zirconia may be used instead of alumina.
  • the compression mechanism is also an example.
  • a rotary type compression mechanism can be mentioned.
  • the shape of the washer (80) is also an example.
  • a flanged sleeve can be used as the washer (80) (see FIG. 6).
  • the sleeve portion (81) (cylindrical portion) of the washer (80) is fitted into the through hole (13) of the stator (12).
  • a gap (W3) is formed between the end face (71) of the insulating member (70) and the end face of the sleeve portion (81).
  • the fixing portion (12a) does not necessarily have to be integrally formed with the stator (12).
  • FIG. 7 shows another configuration example of the fixed portion (12a).
  • the stator (12) and the fixing portion (12a) are separate bodies.
  • the insulating member (70) may be formed by pouring a fluidized molten resin or by pouring a thermosetting resin and curing it, instead of using a tubular member.
  • Compressor 10 Motor 12 Stator 13 Through hole 13a Wall surface 20 Compression mechanism 30 Casing 40 Bracket (support member) 60 bolts (fastening member) 70 Insulation member 71 End face 80 Washer 90 Nut 96 Fixing ring W1, W2 Gap

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

モータ(10)の固定子(12)を所定の支持部材(40)に締結する1又は複数の締結部材(60)と、電気絶縁性を有する絶縁部材(70)とを設ける。モータ(10)は、ケーシング(30)内において冷媒に曝される。固定子(12)には、固定部(12a)が一体的、または別体として設けられ、固定部(12a)には、1又は複数の貫通孔(13)が形成され、絶縁部材(70)は、締結部材(60)と貫通孔(13)の壁面(13a)との間に設けられ、絶縁部材(70)は、冷媒よりも誘電率が低い。

Description

圧縮機
 本開示は、圧縮機に関するものである。
 電気的絶縁を施す必要のある部材間の締結には、絶縁ボルトが用いられることがある(例えば特許文献1を参照)。特許文献1の例では、ボルトに対して、電気的絶縁性を有する絶縁管を設けている。
実開昭60-128016号公報
 特許文献1の例でも部材間の電気的絶縁は可能であるが、使用環境によっては、更なる絶縁性の向上が望まれる。
 本開示の目的は、圧縮機のモータにおける絶縁性を向上することにある。
 本開示の第1の態様は、
 モータ(10)と、
 前記モータ(10)によって駆動されて、冷媒を圧縮する圧縮機構(20)と、
 前記モータ(10)及び前記圧縮機構(20)を収容するケーシング(30)と、
 前記モータ(10)の固定子(12)を所定の支持部材(40)に締結する1又は複数の締結部材(60)と、
 電気絶縁性を有する絶縁部材(70)と、
 を備え、
 前記モータ(10)は、前記ケーシング(30)内において前記冷媒に曝され、
 前記固定子(12)には、前記固定子(12)を前記支持部材(40)に固定するための固定部(12a)が一体的、または別体として設けられ、
 前記固定部(12a)には、1又は複数の貫通孔(13)が形成され、
 前記絶縁部材(70)は、前記締結部材(60)と前記貫通孔(13)の壁面(13a)との間に設けられ、
 前記絶縁部材(70)は、前記冷媒よりも誘電率が低いことを特徴とする圧縮機である。
 第1の態様では、絶縁部材(70)は、前記冷媒よりも誘電率が低い。そのため、本態様では、圧縮機のモータにおける絶縁性を向上できる。
 本開示の第2の態様は、第1の態様において、
 電気絶縁性を有する環状のワッシャ(80)を備え、
 前記固定子(12)は、前記ワッシャ(80)によって前記締結部材(60)と絶縁され、
 前記絶縁部材(70)は筒状であり、前記締結部材(60)の軸方向において対向する部材(80,90,96)に対して、前記軸方向の隙間(W1,W2)を有していることを特徴とする圧縮機である。
 本開示の第3の態様は、第2の態様において、
 前記軸方向における前記絶縁部材(70)の端面(71)は、前記軸方向から見て、前記ワッシャ(80)とオーバーラップしないことを特徴とする圧縮機である。
 第2の態様、及び第3の態様では、絶縁部材(70)は、対向する部材(80,90,96)に対して、軸方向の隙間(W1,W2)を有している。そのため、本態様では、締結部材(60)による締結によって、絶縁部材(70)に、軸方向の応力が作用しない。
 本開示の第4の態様は、第2の態様において、
 前記軸方向における前記絶縁部材(70)の端面(71)の少なくとも一部は、前記軸方向から見て、前記ワッシャ(80)とオーバーラップし、
 前記絶縁部材(70)における前記ワッシャ(80)とのオーバーラップ部分は、前記軸方向において、前記ワッシャ(80)に対して、前記軸方向の隙間を有していることを特徴とする圧縮機である。
 第4の態様では、絶縁部材(70)は、対向するワッシャ(80)に対して、軸方向の隙間(W1,W2)を有している。そのため、本態様では、締結部材(60)による締結によって、絶縁部材(70)に、軸方向の応力が作用しない。
 本開示の第5の態様は、第1から第4の態様の何れかにおいて、
 前記絶縁部材(70)の材料は、ポリフェニレンサルファイド、液晶ポリマー、ポリブチレンテレフタレート、及びエポキシ樹脂の何れかであることを特徴とする圧縮機である。
 本開示の第6の態様は、第2から第4の態様の何れかにおいて、
 前記ワッシャ(80)の材料は、セラミックであることを特徴とする圧縮機である。
図1は、実施形態1にかかる圧縮機の断面図である。 図2は、圧縮機の他の断面図である。 図3は、固定子とブラケットとの固定状態を示す。 図4は、実施形態1の変形例に係る、ブラケット付近の断面図を示す。 図5は、実施形態2にかかる圧縮機の断面図である。 図6は、ワッシャの他の構成例である。 図7は、固定部の他の構成例を示す。
 《実施形態1》
 図1は、実施形態1にかかる圧縮機(1)の断面図である。図1に示すように、圧縮機(1)は、モータ(10)、圧縮機構(20)、ケーシング(30)、ブラケット(40)、及び軸受(50)を備えている。図2に、圧縮機(1)の他の断面図を示す。図2は、図1の断面に直交する断面である。図2は、図1のII-II断面に相当する。図2では、モータ(10)が通常備える部材(永久磁石、コイル等)の図示を省略してある。
 ケーシング(30)は、両端が閉じた円筒状の部材である。ケーシング(30)は、鉄などの金属部材で形成されている。ケーシング(30)は、導電性を有している。ケーシング(30)には、冷媒を吸入するための吸入管(21)、及び冷媒を吐出するための吐出管(31)が設けられている。吸入管(21)及び吐出管(31)は、冷媒回路(図示を省略)の配管が接続される。
 モータ(10)は、この例では、いわゆる磁石埋込型のモータ(IPMモータ)である。モータ(10)は、回転子(11)、固定子(12)、及び駆動軸(15)を備えている。
 回転子(11)は、例えば、電磁鋼板を積層して形成される。回転子(11)には、永久磁石(図示を省略)が埋め込まれている。回転子(11)の中心には、駆動軸(15)が嵌め込まれている。この例では、回転子(11)と駆動軸(15)とは、いわゆる焼き嵌めで固定されている。駆動軸(15)は、一端が圧縮機構(20)に接続され、他端が軸受(50)で支持されている(図1参照)。
 固定子(12)は、例えば、電磁鋼板を積層して形成される。固定子(12)には、電磁石を形成する複数のコイル(図示を省略)が設けられている。固定子(12)の外側の周縁部分(いわゆるバックヨーク)は、固定子(12)を固定するための固定部(12a)として機能する。固定部(12a)には、複数の貫通孔(13)が周方向に等ピッチで形成されている(図2を参照)。この例では、貫通孔(13)は、90°ピッチで設けられている。これらの貫通孔(13)は、固定子(12)の固定に利用される(詳細は後述)。これらの貫通孔(13)は、丸穴である。貫通孔(13)(丸穴)は、後述の絶縁部材(70)を挿入できる直径を有している。
 モータ(10)は、ケーシング(30)内に固定されている。具体的には、固定子(12)が、ブラケット(40)を介してケーシング(30)に固定されている。モータ(10)(固定子(12))とケーシング(30)との固定については、後に詳述する。
 圧縮機構(20)は、この例では、いわゆるスクロール式の圧縮機構である。圧縮機構(20)は、ケーシング(30)に収容されている。具体的には、圧縮機構(20)は、ケーシング(30)に圧入されている。圧縮機構(20)には、吸入管(21)が接続されている。圧縮機構(20)は、駆動軸(15)で駆動される。
 モータ(10)が駆動すると、圧縮機構(20)は、吸入管(21)から冷媒(例えばR32,R410A等)を吸入する。圧縮機構(20)は、吸入した冷媒を圧縮する。圧縮機構(20)は、圧縮した冷媒をケーシング(30)内に吐出する。モータ(10)は、ケーシング(30)内において冷媒に曝される。ケーシング(30)内に吐出された冷媒は、吐出管(31)から吐出される。
 ブラケット(40)は、モータ(10)(より正確には固定子(12))をケーシング(30)に固定するための部材である。この例では、固定子(12)の貫通孔(13)と同数のブラケット(40)が設けられている(図2参照)。図1に示すように、それぞれのブラケット(40)は、断面がL字状の部材である。ブラケット(40)は、鉄などの金属部材で形成されている。ブラケット(40)は、導電性を有している。
 ブラケット(40)には、固定子(12)の貫通孔(13)に対応する貫通孔(41)が形成されている。これらのブラケット(40)は、ケーシング(30)の内周面(32)で、かつ、ブラケット(40)の貫通孔(41)と固定子(12)の貫通孔(13)とが対応する位置に、溶接によって固定されている。ブラケット(40)とケーシング(30)とが溶接されたことによって、両者は電気的に接続される。
 〈モータとケーシングの固定〉
 既述の通り、固定子(12)は、ブラケット(40)を介してケーシング(30)に固定されている。この固定には、ボルト(60)、絶縁部材(70)、ワッシャ(80)、及びナット(90)が用いられている。
 ボルト(60)は、この例では、いわゆる六角ボルトである。ボルト(60)は、鉄などの金属で形成されている。ボルト(60)は、導電性を有している。ボルト(60)は、胴部(61)と頭部(62)とを備えている。胴部(61)には、雄ねじが形成されている。胴部(61)は、図1に示すように、ブラケット(40)に設けられた貫通孔(41)に挿入されている。頭部(62)は、貫通孔(13)を貫通しない大きさである。頭部(62)は、ブラケット(40)に接している。
 ナット(90)は、この例では、いわゆる六角ナットである。ナット(90)も、鉄などの金属で形成されている。ナット(90)は、導電性を有している。
 絶縁部材(70)は、筒状の部材である。絶縁部材(70)には、軸方向(前記筒状の形態における軸方向を意味する)に貫通孔(72)が形成されている。貫通孔(72)の直径は、ボルト(60)の胴部(61)を通すことができる大きさである。貫通孔(72)に胴部(61)を通した状態で、両者の間には、径方向の隙間はほとんどない。
 絶縁部材(70)は、電気絶縁性を有している。絶縁部材(70)には、冷媒よりも誘電率が低い材料が採用されている。具体的に、この例では、絶縁部材(70)は、ポリフェニレンサルファイド(Poly Phenylene Sulfide:略称PPS)によって形成されている。
 ワッシャ(80)は、環状の部材である。ワッシャ(80)は、一つのボルト(60)に対して二つ使用される。以下の説明において、ワッシャ(80)のように複数個ある部材を識別する必要がある場合には、参照符合に枝番を付す(例えば80-1、80-2)。
 ワッシャ(80)は、電気絶縁性を有している。この例では、ワッシャ(80)は、セラミックで形成されている。より具体的には、ワッシャ(80)は、アルミナで形成されている。ワッシャ(80)の貫通孔の内径は、絶縁部材(70)の外径よりも大きい。
 図3に、固定子(12)とブラケット(40)との固定状態を示す。本実施形態では、固定子(12)をブラケット(40)に固定した状態で、固定子(12)の外周面とケーシング(30)の内周面(32)との間には隙間(W1)がある。
 この例では、予め、ブラケット(40)がケーシング(30)に取り付けられている。それぞれのブラケット(40)には、ボルト(60)が取り付けられている。詳しくは、ボルト(60)は、頭部(62)がブラケット(40)に、溶接によって固定されている。ボルト(60)は、ブラケット(40)に固定された後、ワッシャ(80-1)が嵌め込まれる(図3参照)。
 この例では、ブラケット(40)、ボルト(60)、及びワッシャ(80-1)がケーシング(30)内に配置された後に、固定子(12)が取り付けられている。固定子(12)とブラケット(40)との間には、ワッシャ(80-1)が介在する。ボルト(60)の胴部(61)には、絶縁部材(70)が嵌められている。換言すると、絶縁部材(70)は、ボルト(60)と、固定子(12)の貫通孔(13)の壁面(13a)との間に設けられている。固定子(12)の貫通孔(13)に絶縁部材(70)を嵌めた状態で、両者の間には、径方向の隙間は、ほとんどない。
 ナット(90)は、ボルト(60)に締め付けられている。ナット(90)と固定子(12)とは、ワッシャ(80-2)によって電気的に絶縁されている。図3に示すように、軸方向(ボルト(60)の軸方向)における絶縁部材(70)の端面(71)は、軸方向から見て、ワッシャ(80)とオーバーラップしない。ワッシャ(80)の貫通孔の内径は、絶縁部材(70)の外径よりも大きいからである。絶縁部材(70)は、ボルト(60)の軸方向において対向する部材(ここではナット(90))に対して、軸方向の隙間(W1)を有するように、軸方向の長さが設定されている。
 以上をまとめると、本実施形態は、モータ(10)と、前記モータ(10)によって駆動されて、冷媒を圧縮する圧縮機構(20)と、前記モータ(10)及び前記圧縮機構(20)を収容するケーシング(30)と、前記モータ(10)の固定子(12)を所定の支持部材(40)に締結する1又は複数の締結部材(60)と、電気絶縁性を有する絶縁部材(70)とを備えている。
 前記モータ(10)は、前記ケーシング(30)内において前記冷媒に曝され、前記固定子(12)には、前記固定子(12)を前記支持部材(40)に固定するための固定部(12a)が一体的に設けられ、前記固定部(12a)には、1又は複数の貫通孔(13)が形成され、前記絶縁部材(70)は、前記締結部材(60)と前記貫通孔(13)の壁面(13a)との間に設けられ、前記絶縁部材(70)は、前記冷媒よりも誘電率が低いことを特徴とする。
 以上の締結構造により、固定子(12)は、ボルト(60)、ナット(90)、及びブラケット(40)と、電気的に絶縁される。
 〈本実施形態における効果〉
 本実施形態では、絶縁部材(70)は、冷媒よりも誘電率が低い。この例では、冷媒の誘電率が23°Cで14.27、40°Cで11.27である。絶縁部材(70)の材料として用いたPPSの誘電率は、4.2である。本実施形態では、固定子(12)の貫通孔(13)内(ボルトと固定子の間の隙間)が冷媒で満たされる場合よりも絶縁性が向上する。本実施形態では、圧縮機(1)のモータ(10)における絶縁性を向上することができる。
 なお、絶縁部材(70)は、樹脂(この例ではPPS)に代えてセラミックを採用することも考えられる。ただし、セラミックよりも樹脂の方が誘電率(絶縁性)に関しては有利である。セラミックの一例であるアルミナの誘電率は、8.4である。
 絶縁部材(70)に不要な応力が作用すると、雰囲気(例えば潤滑油などの存在)によっては、絶縁部材(70)の耐力が低下する懸念がある。それに対して、本実施形態では、そのような懸念がない。本実施形態の絶縁部材(70)は、ボルト(60)の軸方向において、ナット(90)及びワッシャ(80)に対して、軸方向の隙間を有している。それにより、ナット(90)をボルト(60)に締め付けても、絶縁部材(70)には、軸方向の応力が作用しない。
 本実施形態では、ワッシャ(80)は、セラミックで構成されている。これにより、ボルト(60)とナット(90)とを締結してワッシャ(80)に応力が作用しても、十分に耐えることができる。
 《実施形態1の変形例》
 図4に、実施形態1の変形例に係る、ブラケット(40)付近の断面図を示す。この例は、ワッシャ(80)の形状が実施形態1と異なっている。
 図4に示すように、本変形例では、ワッシャ(80)の貫通孔の内径は、絶縁部材(70)の外径よりも小さい。それにより、ボルト(60)の軸方向における絶縁部材(70)の端面(71)の少なくとも一部は、軸方向から見て、ワッシャ(80)とオーバーラップする。
 絶縁部材(70)は、ボルト(60)の軸方向において対向する部材(ここではワッシャ(80))に対して、軸方向の隙間(W2)を有するように、軸方向の長さが設定されている。それにより、ナット(90)をボルト(60)に締め付けても、絶縁部材(70)には、軸方向の応力が作用しない。換言すると、本変形例では、例えば潤滑油などの存在する雰囲気下でも絶縁部材(70)の耐力が低下する懸念がない。
 《実施形態2》
 図5は、実施形態2にかかる圧縮機(1)の断面図である。本実施形態では、固定子(12)の締結構造が実施形態1等と異なっている。具体的に本実施形態では、ボルト(60)の代わりに、ピン(95)と固定リング(96)が用いられている。
 ピン(95)は、ブラケット(40)と一体的に形成されている。ピン(95)は、鉄などの金属で形成されている。ピン(95)は、絶縁部材(70)の貫通孔(72)に通される。貫通孔(72)にピン(95)を通した状態で、両者の間には、径方向の隙間は、ほとんどない。
 固定リング(96)は、環状の部材である。固定リング(96)には、ピン(95)を圧入するための貫通孔が形成されている。固定リング(96)の外径は、固定子(12)の貫通孔(13)を貫通しない大きさである。固定リング(96)は、鉄などの金属で形成されている。固定リング(96)は、導電性を有する。
 この例でも、ブラケット(40)が、予めケーシング(30)に取り付けられている。固定子(12)とブラケット(40)との間には、ワッシャ(80-1)が介在する。ピン(95)には、絶縁部材(70)が嵌められている。換言すると、絶縁部材(70)は、ピン(95)と、固定子(12)の貫通孔(13)の壁面(13a)との間に設けられている。固定子(12)の貫通孔(13)に絶縁部材(70)を嵌めた状態で、両者の間には、径方向の隙間は、ほとんどない。
 ピン(95)の先端には、固定リング(96)が圧入されている。固定リング(96)と固定子(12)とは、ワッシャ(80-2)によって電気的に絶縁されている。この圧入によって、固定リング(96)は、ワッシャ(80-2)を介して、固定子(12)を押さえつけている。
 この例でも、図5に示すように、ピン(95)の軸方向における絶縁部材(70)の端面(71)は、軸方向から見て、ワッシャ(80)とオーバーラップしない。絶縁部材(70)は、ピン(95)の軸方向において対向する部材(ここでは固定リング(96))に対して、軸方向の隙間(W1)を有するように、軸方向の長さが設定されている。
 〈本実施形態における効果〉
 以上の締結構造により、固定子(12)は、ピン(95)、固定リング(96)、及びブラケット(40)と、電気的に絶縁される。本実施形態でも、実施形態1と同様の効果を得ることができる。
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
 実施形態1では、ナット(90)は、一部のボルト(60)に対してのみ締結するようにしてもよい。
 ボルト(60)とナット(90)の位置は、逆の関係にしてもよい。具体的には、ナット(90)をブラケット(40)に取り付けておいて、そのナット(90)にボルト(60)をねじ込むことによって、固定子(12)を固定してもよい。この場合においても、絶縁部材(70)、及びワッシャ(80)を実施形態1と同様に配置する。
 実施形態2では、一部のピン(95)に対してのみ固定リング(96)を設けるようにしてもよい。
 実施形態1のボルト(60)の数や実施形態2のピン(95)の数は例示である。ボルト(60)やピン(95)は、不等ピッチで設けてもよい。
 絶縁部材(70)の材料は、例示にすぎない。PPSの他に例えば、ポリブチレンテレフタレート(polybutylene terephthalate:略称PBT)、液晶ポリマー(Liquid Crystal Polymer: 略称LCP)、エポキシ樹脂、フェノール樹脂、ポリエステル類、ポリイミド、ポリエーテルエーテルケトン(Poly Ether Ether Ketone:略称PEEK)、ワニス、ポリアミド類(例えばナイロン)等を挙げることができる。なお、ポリエステル類としては、アルキド樹脂、ポリエチレンテレフタレート(Polyethyleneterephthalate:略称PET)、ポリエチレンナフタレート(polyethylene naphthalate:略称PEN)等などを挙げることができる。
 ワッシャ(80)の材料(セラミック)も例示である。アルミナに代えて、例えばジルコニアを用いてもよい。
 圧縮機構も例示である。スクロール式の圧縮機構の他に、例えば、ロータリ式の圧縮機構を挙げることができる。
 ワッシャ(80)の形状も例示である。例えば、ワッシャ(80)として、フランジつきスリーブを用いることも可能である(図6を参照)。図6の例では、ワッシャ(80)のスリーブ部分(81)(円筒部分)が固定子(12)の貫通孔(13)に嵌め込まれている。絶縁部材(70)の端面(71)と、スリーブ部分(81)の端面との間には、隙間(W3)が形成されている。これにより、ナット(90)をボルト(60)に締め付けても、絶縁部材(70)には、軸方向の応力が作用しない。図6のワッシャ(80)は、実施形態2にも適用できる。
 固定部(12a)は、必ずしも、固定子(12)と一体的に構成しなくてもよい。図7に固定部(12a)の他の構成例を示す。図7では、固定子(12)と固定部(12a)は、別体である。
 絶縁部材(70)は、筒状の部材を用いる代わりに、流動性を有する溶融樹脂を流し込んで形成したり、熱硬化性樹脂を流し込んで硬化させることによって形成したりしてもよい。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 以上説明したように、本開示は、圧縮機について有用である。
  1   圧縮機
 10   モータ
 12   固定子
 13   貫通孔
 13a  壁面
 20   圧縮機構
 30   ケーシング
 40   ブラケット(支持部材)
 60   ボルト(締結部材)
 70   絶縁部材
 71   端面
 80   ワッシャ
 90   ナット
 96   固定リング
 W1,W2   隙間

Claims (6)

  1.  モータ(10)と、
     前記モータ(10)によって駆動されて、冷媒を圧縮する圧縮機構(20)と、
     前記モータ(10)及び前記圧縮機構(20)を収容するケーシング(30)と、
     前記モータ(10)の固定子(12)を所定の支持部材(40)に締結する1又は複数の締結部材(60)と、
     電気絶縁性を有する絶縁部材(70)と、
     を備え、
     前記モータ(10)は、前記ケーシング(30)内において前記冷媒に曝され、
     前記固定子(12)には、前記固定子(12)を前記支持部材(40)に固定するための固定部(12a)が一体的、または別体として設けられ、
     前記固定部(12a)には、1又は複数の貫通孔(13)が形成され、
     前記絶縁部材(70)は、前記締結部材(60)と前記貫通孔(13)の壁面(13a)との間に設けられ、
     前記絶縁部材(70)は、前記冷媒よりも誘電率が低いことを特徴とする圧縮機。
  2.  請求項1において、
     電気絶縁性を有する環状のワッシャ(80)を備え、
     前記固定子(12)は、前記ワッシャ(80)によって前記締結部材(60)と絶縁され、
     前記絶縁部材(70)は筒状であり、前記締結部材(60)の軸方向において対向する部材(80,90,96)に対して、前記軸方向の隙間(W1,W2)を有していることを特徴とする圧縮機。
  3.  請求項2において、
     前記軸方向における前記絶縁部材(70)の端面(71)は、前記軸方向から見て、前記ワッシャ(80)とオーバーラップしないことを特徴とする圧縮機。
  4.  請求項2において、
     前記軸方向における前記絶縁部材(70)の端面(71)の少なくとも一部は、前記軸方向から見て、前記ワッシャ(80)とオーバーラップし、
     前記絶縁部材(70)における前記ワッシャ(80)とのオーバーラップ部分は、前記軸方向において、前記ワッシャ(80)に対して、前記軸方向の隙間を有していることを特徴とする圧縮機。
  5.  請求項1から請求項4の何れかにおいて、
     前記絶縁部材(70)の材料は、ポリフェニレンサルファイド、液晶ポリマー、ポリブチレンテレフタレート、及びエポキシ樹脂の何れかであることを特徴とする圧縮機。
  6.  請求項2から請求項4の何れかにおいて、
     前記ワッシャ(80)の材料は、セラミックであることを特徴とする圧縮機。
PCT/JP2020/006784 2019-03-12 2020-02-20 圧縮機 WO2020184134A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20769570.1A EP3913768A4 (en) 2019-03-12 2020-02-20 COMPRESSOR
CN202080010494.5A CN113330662A (zh) 2019-03-12 2020-02-20 压缩机
US17/472,226 US20210408867A1 (en) 2019-03-12 2021-09-10 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-044351 2019-03-12
JP2019044351A JP7502587B2 (ja) 2019-03-12 2019-03-12 圧縮機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/472,226 Continuation US20210408867A1 (en) 2019-03-12 2021-09-10 Compressor

Publications (1)

Publication Number Publication Date
WO2020184134A1 true WO2020184134A1 (ja) 2020-09-17

Family

ID=72428008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006784 WO2020184134A1 (ja) 2019-03-12 2020-02-20 圧縮機

Country Status (5)

Country Link
US (1) US20210408867A1 (ja)
EP (1) EP3913768A4 (ja)
JP (1) JP7502587B2 (ja)
CN (1) CN113330662A (ja)
WO (1) WO2020184134A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118160190A (zh) * 2022-10-07 2024-06-07 株式会社斯巴鲁 电动机的制造方法、电动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128016U (ja) 1984-02-06 1985-08-28 三菱電機株式会社 絶縁ボルト
JPS6141918U (ja) * 1984-08-22 1986-03-18 三菱重工業株式会社 締付装置
JPH059146U (ja) * 1991-07-11 1993-02-05 国産電機株式会社 回転電機用固定子
JP3155761U (ja) * 2009-08-26 2009-12-03 株式会社 大井製作所 絶縁ボルト構造および配管連結構造
JP2012244744A (ja) * 2011-05-18 2012-12-10 Daikin Ind Ltd 電動機
JP2016140242A (ja) * 2016-04-20 2016-08-04 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 電動機及びこれを用いた空気調和機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476960A (en) * 1968-07-01 1969-11-04 Singer Co Double insulated power tools
US3693035A (en) * 1970-09-15 1972-09-19 Black & Decker Mfg Co Double insulated field mounting for universal motor
JPS61197321U (ja) * 1985-05-29 1986-12-09
JPH01234008A (ja) * 1988-03-14 1989-09-19 Toshiba Corp 絶縁スペーサ
JPH11266555A (ja) * 1998-03-16 1999-09-28 Toshiba Corp 回転電機の回転子
JP2001280249A (ja) * 2000-03-31 2001-10-10 Matsushita Electric Ind Co Ltd 圧縮機および電動機
JP4592143B2 (ja) * 2000-04-06 2010-12-01 パナソニック株式会社 圧縮機および電動機
JP4658407B2 (ja) 2001-08-27 2011-03-23 三菱重工業株式会社 絶縁構造型ロータカップリング
US8520986B2 (en) 2010-04-05 2013-08-27 George Franklin Dailey Use of fiber optic sensor techniques for monitoring and diagnostics of large AC generators
WO2014112405A1 (ja) * 2013-01-17 2014-07-24 ダイキン工業株式会社 絶縁電線
JP3215057U (ja) 2017-12-12 2018-02-22 株式会社 大井製作所 配管連結構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128016U (ja) 1984-02-06 1985-08-28 三菱電機株式会社 絶縁ボルト
JPS6141918U (ja) * 1984-08-22 1986-03-18 三菱重工業株式会社 締付装置
JPH059146U (ja) * 1991-07-11 1993-02-05 国産電機株式会社 回転電機用固定子
JP3155761U (ja) * 2009-08-26 2009-12-03 株式会社 大井製作所 絶縁ボルト構造および配管連結構造
JP2012244744A (ja) * 2011-05-18 2012-12-10 Daikin Ind Ltd 電動機
JP2016140242A (ja) * 2016-04-20 2016-08-04 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 電動機及びこれを用いた空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913768A4

Also Published As

Publication number Publication date
JP2020150613A (ja) 2020-09-17
EP3913768A4 (en) 2022-11-09
JP7502587B2 (ja) 2024-06-19
US20210408867A1 (en) 2021-12-30
CN113330662A (zh) 2021-08-31
EP3913768A1 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP6377128B2 (ja) 回転子の製造方法
JP5502822B2 (ja) 電動機およびそれを備えた電気機器
WO2014171006A1 (ja) 回転電機
WO2020184134A1 (ja) 圧縮機
US20080150401A1 (en) Fan, motor and fixing structure thereof
CN211343337U (zh) 电动油泵
US20140346921A1 (en) Device for retaining a machine component in an electric machine and electric machine
WO2012105193A1 (ja) モールドモータ
US10090726B2 (en) Motor and air-conditioning apparatus
JP2015006072A (ja) 回転電機、回転負荷結合体及び回転負荷結合体を具備する空気調和機
CN108390499B (zh) 电动机及鼓风机
KR102565400B1 (ko) 직류 브러시리스 모터
CN107834728B (zh) 电机转子及包括其的电机
JP2012191734A (ja) 電動機
JP6802315B2 (ja) 圧縮機の駆動装置及びその組立方法
US11742714B2 (en) Motor and driving member
CN110521092A (zh) 马达
US9853520B2 (en) Molded motor and air-conditioning outdoor unit
WO2022131269A1 (ja) モータ固定構造の製造方法、モータ固定構造、圧縮機、および冷凍装置
US11770054B2 (en) Motor
JP2013066252A (ja) 電動機およびそれを備えた電気機器
JP2020148108A (ja) モータの取付方法
JP5490182B2 (ja) 電動機、この電動機を内蔵した空気調和機、およびこの電動機の製造方法
CN112366898B (en) Motor and electrical equipment using same
WO2021171556A1 (ja) 電動機、送風機及び空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020769570

Country of ref document: EP

Effective date: 20210819