WO2020183969A1 - シリコーンゴム系硬化性組成物、構造体、ウェアラブルデバイス、及び構造体の製造方法 - Google Patents

シリコーンゴム系硬化性組成物、構造体、ウェアラブルデバイス、及び構造体の製造方法 Download PDF

Info

Publication number
WO2020183969A1
WO2020183969A1 PCT/JP2020/003513 JP2020003513W WO2020183969A1 WO 2020183969 A1 WO2020183969 A1 WO 2020183969A1 JP 2020003513 W JP2020003513 W JP 2020003513W WO 2020183969 A1 WO2020183969 A1 WO 2020183969A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone rubber
curable composition
based curable
test piece
vinyl group
Prior art date
Application number
PCT/JP2020/003513
Other languages
English (en)
French (fr)
Inventor
岡田 潤
裕美子 山野井
基 佐藤
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to US17/434,764 priority Critical patent/US20220162395A1/en
Priority to KR1020217031952A priority patent/KR20210137111A/ko
Priority to CN202080019327.7A priority patent/CN113614175A/zh
Publication of WO2020183969A1 publication Critical patent/WO2020183969A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09118Moulded substrate

Definitions

  • the present invention relates to a silicone rubber-based curable composition, a structure, a wearable device, and a method for manufacturing the structure.
  • Patent Document 1 states that elongation fatigue resistance can be evaluated based on the number of elongations until it breaks by repeating 100% elongation operations, and that the number of elongations is 2.1 million times for silicone rubber (curing of a curable silicone rubber composition). (Things) are described (Example 1 of Patent Document 1).
  • the bending resistance of the silicone rubber-based curable composition can be evaluated during repeated bending by using the hoax-type bending resistance test.
  • the rate of change in the cut length in the test piece with a notch is used as an index to achieve such resistance. It was found that the flexibility can be controlled. Further diligent research based on these findings revealed that the rate of change in the cut length in the test piece when the number of bends was 50,000 was within a predetermined range, thereby forming a silicone rubber-based curable composition in a molded product. , It has been found that the durability against repeated bending deformation is improved, and the present invention has been completed.
  • a test piece made of a cured product of the silicone rubber-based curable composition Using a test piece made of a cured product of the silicone rubber-based curable composition, a hoax-type bending resistance test conforming to JIS K 6260 is performed, and the number of bendings is 50,000 times, which is measured based on the following procedure.
  • the rate of change in cut length (L 5 / L 0 ) in the test piece is 1.1 or more and 11.5 or less.
  • a silicone rubber-based curable composition is provided. (procedure)
  • the silicone rubber-based curable composition is pressed at 170 ° C. and 10 MPa for 15 minutes, and then heated at 200 ° C.
  • a strip-shaped test piece having a length of 6.3 mm is prepared. At the center of the obtained test piece, a notch having a length of 2.03 mm penetrating the test piece is made parallel to the width direction. Let L 0 be the initial cut length. Subsequently, the test piece with a notch is installed between the gripping tools of the testing machine, a hoax-type bending resistance test is performed based on the following test conditions, and the cutting length in the test piece after a predetermined number of bendings ( mm) is measured. The cut length shall be the average value when the hoax type bending resistance test is performed three times.
  • L 5 be the average value of this cut length.
  • a structure including a cured product of the above silicone rubber-based curable composition is provided.
  • a wearable device is provided in which the wiring and / or a part of the substrate in the wiring board is composed of a cured product of the silicone rubber-based curable composition.
  • the step of curing the above silicone rubber-based curable composition and Provided is a step of obtaining a structure including a cured product of the silicone rubber-based curable composition, and a method for producing the structure.
  • a silicone rubber-based curable composition a structure, a wearable device, and a method for manufacturing the structure, which can realize a molded product having excellent durability against repeated bending deformation.
  • the silicone rubber-based curable composition of the present embodiment contains a vinyl group-containing organopolysiloxane (A) and silica particles (C), and a test piece composed of a cured product of the silicone rubber-based curable composition.
  • the hoax-type bending resistance test conforming to JIS K 6260 was performed using the test piece, and the rate of change in cut length (L 5 / L) in the test piece when the number of bendings was 50,000, which was measured based on the following procedure. 0 ) satisfies 1.1 or more and 11.5 or less.
  • the silicone rubber-based curable composition is pressed at 170 ° C. and 10 MPa for 15 minutes, and then heated at 200 ° C. for 4 hours to prepare a grooved test piece having a predetermined shape in accordance with JIS K 6260.
  • a notch having a predetermined length (2.03 mm) penetrating the following test piece is made in parallel with the width direction.
  • L 0 be the initial cut length.
  • the test piece with a notch is installed between the gripping tools of the testing machine, a hoax-type bending resistance test is performed based on the following test conditions, and the cutting length in the test piece after a predetermined number of bendings ( mm) is measured.
  • the cut length shall be the average value when the hoax type bending resistance test is performed three times.
  • L 5 be the average value of this cut length.
  • the rate of change in cut length is calculated based on the formula: L 5 / L 0 .
  • the bending resistance of a silicone rubber-based curable composition can be evaluated during repeated bending by using a hoax-type bending resistance test.
  • an appropriate index is not set, the evaluation takes time and the evaluation may vary.
  • the number of deformations until fracture is used as an index as in the 100% elongation fatigue life of Patent Document 1
  • the time until fracture becomes long and the number of deformations may vary.
  • a non-cut product is used as the test piece and the fractured state is used as an index, a considerable number of bends are required until the fractured state is different, and even if there is a difference, the variation in the fractured state becomes large. It turned out that it would end up.
  • the rate of change in the cut length in the test piece with a cut is used as a guideline. It has been found that the bending resistance of the molded product of the silicone rubber-based curable composition at the time of repeated bending can be evaluated relatively quickly and stably, and the bending resistance can be controlled.
  • the bending resistance during repeated bending is stably evaluated by using the rate of change in the incision length in the test piece when the number of bendings is 50,000 as an index. Furthermore, it has been found that by setting this index within the above-mentioned predetermined range, the durability of the silicone rubber-based curable composition in the molded product against repeated bending deformation can be improved.
  • the characteristics of low hardness, high tear strength, and high fracture elongation can be improved in a well-balanced manner by appropriately adjusting the inter-crosslink distance and cross-linking density using the above-mentioned rate of change in incision as an index. It is considered that a silicone rubber structure having a small load at the time of bending can be obtained.
  • L 0 is the initial cut length before the hoax-type bending resistance test
  • L 1 , L 3 , and L 5 are each bent 10,000 times after the hoax-type bending resistance test.
  • the average value of the cut lengths when 30,000 times and 50,000 times are used.
  • the upper limit of the incision length change rate (L 5 / L 0 ) in the test piece when the number of times of bending is 50,000 is 11.5 or less, preferably 10.7 or less, more preferably 8.0 or less, and further. It is preferably 6.0 or less. As a result, it is possible to realize a molded body having excellent durability against repeated bending deformation and having mechanical strength as a member. Further, the upper limit of L 5 / L 0 may be 5.3 or less, or 4.0 or less. As a result, bending crack resistance can be obtained. On the other hand, the lower limit of the cut length change rate (L 5 / L 0 ) may be 1.0 or more, and may be 1.1 or more.
  • the upper limit of L 1 / L 0 is, for example, 10.0 or less, preferably 8.0 or less, more preferably 6.0 or less. More preferably, it is 4.0 or less. As a result, it is possible to realize a molded product having excellent durability against repeated bending deformation. Further, since the characteristics can be evaluated by a simpler evaluation method, the productivity of the silicone rubber-based curable composition can be improved.
  • the lower limit of L 1 / L 0 may be 1.0 or more.
  • the upper limit of the cut length L 5 in the test piece when the number of bendings is 50,000 is, for example, 22.5 mm or less, preferably 18.0 mm. Hereinafter, it may be more preferably 15.0 mm or less. Further, the upper limit of L 5 may be 10.8 mm or less. As a result, bending crack resistance can be obtained.
  • the lower limit of L 5 may be, for example, 2.1 mm or more, 2.2 mm or more, or 2.5 mm or more.
  • the upper limit of (L 5- L 0 ) may be, for example, 20.0 mm or less, 10.0 mm or less, 9.5 mm or less, or 8.4 mm or less.
  • the lower limit of (L 5- L 0 ) may be 0.1 mm or more.
  • the upper limit of the cut length L 3 in the test piece when the number of bendings is 50,000 is, for example, 20.0 mm or less, preferably 15.0 mm. Hereinafter, it may be more preferably 11.0 mm or less. Further, the upper limit of L 5 may be 9.0 mm or less and 8.0 mm or less. As a result, bending crack resistance can be obtained.
  • the lower limit of L 3 may be, for example, 2.1 mm or more, or 2.2 mm or more. In the present specification, "to" means that an upper limit value and a lower limit value are included unless otherwise specified.
  • the content of the silica particles (C) may be, for example, 10 parts by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the vinyl group-containing organopolysiloxane (A). Good.
  • the upper limit of the content of the silica particles (C) is preferably 50 parts by weight or less, more preferably 35 parts by weight or less, and further preferably 30 parts by weight or less.
  • the durability against repeated bending deformation can be improved.
  • the content of the silica particles (C) By setting the content of the silica particles (C) to 35 parts by weight or less, the repeated bending durability can be stably increased.
  • the method for preparing the silicone rubber-based curable composition for example, by appropriately selecting the type and blending amount of each component contained in the silicone rubber-based curable composition, the method for preparing the silicone rubber-based curable composition, the method for producing silicone rubber, and the like. It is possible to control the above-mentioned rate of change in cut length, the above-mentioned cut length, the following breaking elongation, tensile strength, tear strength, and hardness.
  • the vinyl group-containing organopolysiloxane (A) a vinyl group-containing linear organopolysiloxane (A1-1) having a relatively small and small vinyl group and having a vinyl group only at the terminal is used.
  • the timing and ratio of addition of the vinyl group-containing organopolysiloxane (A), the blending ratio of the silica particles (C), the specific surface area of the silica particles (C), and silica By controlling the crosslink density and crosslink structure of the resin, the timing and ratio of addition of the vinyl group-containing organopolysiloxane (A), the blending ratio of the silica particles (C), the specific surface area of the silica particles (C), and silica.
  • Surface modification of the particles (C) with the silane coupling agent (D), addition of water, etc. for more reliable progress of the reaction between the silane coupling agent (D) and the silica particles (C), etc.
  • the above-mentioned rate of change in cut length, the cut length, the following breaking elongation, tensile strength, tear strength, and hardness can be mentioned as factors for setting the desired numerical range.
  • a crescent-shaped test piece is prepared using the cured product of the above-mentioned silicone rubber-based curable composition, and the tear strength of the obtained crescent-shaped test piece is measured at 25 ° C. in accordance with JIS K6252 (2001).
  • the lower limit of the tear strength of the cured product of the silicone rubber-based curable composition is, for example, 25 N / mm or more, preferably 28 N / mm or more, more preferably 30 N / mm or more, still more preferably 33 N / mm or more. More preferably, it is 35 N / mm or more.
  • the durability of the silicone rubber during repeated use can be improved.
  • the scratch resistance and mechanical strength of the silicone rubber can be improved.
  • the upper limit of the tear strength is not particularly limited, but may be, for example, 70 N / mm or less, or 60 N / mm or less. Thereby, various characteristics of the silicone rubber can be balanced.
  • a dumbbell-shaped No. 3 test piece was prepared using the cured product of the above silicone rubber-based curable composition, and the obtained dumbbell-shaped No. 3 test piece was prepared at 25 ° C. in accordance with JIS K6251 (2004). Measure the elongation at break.
  • the lower limit of the elongation at break of the cured product of the silicone rubber-based curable composition is, for example, 500% or more, preferably 600% or more, more preferably 700% or more, and further 780% or more. It may be 800% or more or 900% or more. Thereby, the high elasticity and durability of the silicone rubber can be improved.
  • the upper limit of the elongation at break is not particularly limited, but may be, for example, 2000% or less, 1800% or less, or 1500% or less. Thereby, various characteristics of the silicone rubber can be balanced.
  • the upper limit of the durometer hardness A of the cured product of the silicone rubber-based curable composition is not particularly limited, but may be, for example, 70 or less, preferably 55 or less, and more preferably 50 or less. This makes it possible to balance the cured physical properties of the silicone rubber. Further, from the viewpoint of deformability, the upper limit of the durometer hardness A may be 40 or less, 35 or less, or 30 or less. As a result, it is possible to enhance the deformability of the silicone rubber, which facilitates deformation such as bending and stretching.
  • the lower limit of the durometer hardness A is not particularly limited, but may be, for example, 10 or more, preferably 20 or more, and more preferably 25 or more. As a result, the mechanical strength of the silicone rubber can be increased.
  • a dumbbell-shaped No. 3 test piece was prepared using the cured product of the above silicone rubber-based curable composition, and the obtained dumbbell-shaped No. 3 test piece was prepared at 25 ° C. in accordance with JIS K6251 (2004). Measure the tensile strength.
  • the lower limit of the tensile strength of the cured product of the silicone rubber-based curable composition is, for example, 5.0 MPa or more, preferably 6.0 MPa or more, 7.0 MPa or more, 8.0 MPa or more, and 12. It may be 0 MPa or more. Thereby, the mechanical strength of the silicone rubber can be improved. In addition, it is possible to realize a structure having excellent durability that can withstand repeated deformation.
  • the upper limit of the tensile strength is not particularly limited, but may be, for example, 25 MPa or less, or 20 MPa or less. Thereby, various characteristics of the silicone rubber can be balanced.
  • the cured product (silicone rubber) of the silicone rubber-based curable composition of the present embodiment is a molded product that has been processed and molded into various forms depending on the application.
  • the molded body may be molded into various shapes such as a sheet shape, a tubular shape, and a bag shape.
  • the silicone rubber-based curable composition has excellent durability against repeated bending modification, it can be suitably used for forming a molded product for a flexible member.
  • the flexible member refers to a member that is repeatedly stressed in the bending direction under a usage environment, for example. This flexible member may be used in a usage environment where stress is applied in the expansion / contraction direction.
  • the flexible member is a wearable device. That is, the silicone rubber-based curable composition can be suitably used for forming a part of the wearable device, that is, a part of the elastomer member or the flexible member included in the wearable device.
  • the wearable device is a wearable device that can be worn on the body or clothes, preferably on the curved surface of the body or clothes, and detects phenomena from a living body such as heart rate, electrocardiogram, blood pressure, and body temperature. Medical sensors, healthcare devices, foldable displays, stretchable LED arrays, stretchable solar cells, stretchable antennas, stretchable batteries, actuators, wearable computers and the like.
  • the molded body can be used as a member for forming electrodes, wiring, a substrate, a movable member that can be expanded / contracted / bent, an exterior member, and the like used for these.
  • a molded body of a silicone rubber-based curable composition can be bent in a wearable device having a wiring or a wiring substrate, although it is simple. It was found that it can be applied to sex members. That is, a silicone rubber-based curable composition in which the occurrence of cracks and breakage is suppressed when the wire is inserted into the tubular molded body, for example, when the wire is bent at 90 ° and bent about 100 times.
  • the molded body can be suitably used for a flexible member that can be repeatedly bent, such as a wiring or a substrate in a wiring board of a wearable device.
  • the silicone rubber-based curable composition of the present embodiment forms a repeatedly bendable flexible member (wiring and / or substrate in the wiring board) that constitutes a part of the wearable device having the wiring or the wiring board.
  • a wearable device has a wiring board including a wiring and a board, and the wiring and / or a part of the board in the wiring board is composed of a cured product of a silicone rubber-based curable composition. May be good.
  • the structure including the cured product (molded product) of the silicone rubber-based curable composition can be used for various purposes.
  • medical applications, robot applications, and electronic device applications are preferable, and robot applications and electronic device applications can be mentioned.
  • Examples of the structure provided with the cured product (silicone rubber) of the silicone rubber-based curable composition of the present embodiment include medical applications such as medical instruments and equipment applications; automobile applications; robot applications such as industrial robots; electronic devices. Applications: Production equipment for anti-vibration materials, seismic isolation materials, food hoses, etc.-For daily use; Roller members; etc.
  • the silicone rubber of the present embodiment constitutes a part of, for example, a medical tube material; a sealing material; a packing material; a connector material; a keypad material; a drive mechanism; a sensor; as an example of medical equipment / device applications.
  • a medical tube material for example, a medical tube material; a sealing material; a packing material; a connector material; a keypad material; a drive mechanism; a sensor; as an example of medical equipment / device applications.
  • the resin movable member of the present embodiment to a medical tube, the medical tube is excellent in kink resistance, scratch resistance, insertability and transparency, and further excellent in resilience.
  • examples of the medical tube include a medical catheter, a manipulator, a lead, and the like.
  • the silicone rubber of the present embodiment constitutes a part of, for example, a drive mechanism such as a joint; a wiring mechanism such as a wiring cable and a connector; an operation mechanism such as a manipulator; as an example of robot use such as an industrial robot. Can be done.
  • the silicone rubber of the present embodiment is used as an example of an electronic device application, for example, an elastic wiring or wiring substrate used for a wearable device that can be worn on a human body or the like; an optical fiber, a flat cable, a wiring structure, a cable. Cables such as guides; sensors such as touch panels, force sensors, MEMS, seat sensors, etc.; can be partially configured.
  • the silicone rubber of the present embodiment is one of the living products having flexibility, extensibility or foldability such as packaging material such as gas barrier film; cooking utensil; hose; fixing belt; switch; sheet material; packing material; The part can be composed.
  • the silicone rubber-based curable composition of the present embodiment contains a vinyl group-containing organopolysiloxane (A).
  • the vinyl group-containing organopolysiloxane (A) is a polymer that is the main component of the silicone rubber-based curable composition.
  • the vinyl group-containing organopolysiloxane (A) can include a vinyl group-containing linear organopolysiloxane (A1) having a linear structure.
  • the vinyl group-containing linear organopolysiloxane (A1) has a linear structure and contains a vinyl group, and the vinyl group serves as a cross-linking point at the time of curing.
  • the content of the vinyl group of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but is preferably, for example, having two or more vinyl groups in the molecule and 15 mol% or less. , 0.01-12 mol%, more preferably.
  • the amount of vinyl groups in the vinyl group-containing linear organopolysiloxane (A1) is optimized, and a network with each component described later can be reliably formed.
  • the vinyl group content is the mol% of the vinyl group-containing siloxane unit when all the units constituting the vinyl group-containing linear organopolysiloxane (A1) are 100 mol%. However, it is considered that there is one vinyl group for each vinyl group-containing siloxane unit.
  • the degree of polymerization of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but is preferably in the range of, for example, about 1000 to 10000, and more preferably about 2000 to 5000.
  • the degree of polymerization may be calculated from the number average molecular weight.
  • the weight average molecular weight Mw of the vinyl group-containing linear organopolysiloxane (A1) is, for example, 5.0 ⁇ 10 4 ⁇ 1.0 ⁇ 10 6 or less, preferably 1.0 ⁇ 10 5 ⁇ 9.0 ⁇ 10 5, more preferably be 3.0 ⁇ 10 5 ⁇ 8.0 ⁇ 10 5.
  • the Mw (weight average molecular weight) / Mn (number average molecular weight) of the vinyl group-containing linear organopolysiloxane (A1) is, for example, 1.5 or more and 4.0 or less, preferably 1.8 or more and 3.5 or less. It may be preferably 2.0 or more and 2.8 or less.
  • Mw / Mn is a degree of dispersion indicating the width of the molecular weight distribution.
  • the weight average molecular weight and the number average molecular weight can be measured, for example, by polystyrene conversion in GPC (gel permeation chromatography) using chloroform as a developing solvent.
  • the specific gravity of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but is preferably in the range of about 0.9 to 1.1.
  • the silicone rubber obtained has heat resistance, flame retardancy, chemical stability, etc. Can be improved.
  • the vinyl group-containing linear organopolysiloxane (A1) preferably has a structure represented by the following formula (1).
  • R 1 is a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, or a hydrocarbon group in which these are combined.
  • alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable.
  • alkenyl group having 1 to 10 carbon atoms include a vinyl group, an allyl group, a butenyl group and the like, and among them, a vinyl group is preferable.
  • the aryl group having 1 to 10 carbon atoms include a phenyl group and the like.
  • R 2 is a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, or a hydrocarbon group in which these are combined.
  • alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable.
  • alkenyl group having 1 to 10 carbon atoms include a vinyl group, an allyl group, and a butenyl group.
  • the aryl group having 1 to 10 carbon atoms include a phenyl group.
  • R 3 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group in which these are combined.
  • alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable.
  • aryl group having 1 to 8 carbon atoms include a phenyl group.
  • examples of the substituent of R 1 and R 2 in the formula (1) include a methyl group, a vinyl group and the like, and examples of the substituent of R 3 include a methyl group and the like.
  • a plurality of R 1 is independent from each other, may be different from each other, it may be the same. The same applies to R 2 and R 3 . Further, in the formula (1), at least one of a plurality of R 1 and R 2 is an alkenyl group.
  • m and n are the number of repeating units constituting the vinyl group-containing linear organopolysiloxane (A1) represented by the formula (1), m is an integer of 0 to 2000, and n is 1000 to 10000. Is an integer of. m is preferably 0 to 1000, and n is preferably 2000 to 5000. Note that m + n is, for example, an integer of 1000 or more. m and n represent the degree of polymerization calculated using the number average molecular weight Mn.
  • R 1 and R 2 are each independently a methyl group or a vinyl group, and at least one of them is a vinyl group.
  • a vinyl group-containing linear organopolysiloxane (A1) having a structure represented by the formula (1-1) and having only R 1 (terminal) having a vinyl group is referred to as (A1-1) and the formula (1-).
  • a vinyl group-containing linear organopolysiloxane (A1) having a structure represented by 1) in which R 1 (terminal) and R 2 (inside the chain) are vinyl groups is referred to as (A1-2).
  • the vinyl group-containing linear organopolysiloxane (A1) preferably has a vinyl group content of 2 or more vinyl groups in the molecule and is 15 mol% or less.
  • the vinyl group content of the vinyl group-containing linear organopolysiloxane (A1) is, for example, 0.4 mol% or less, preferably 0.3 mol% or less, 0.2 mol% or less, 0.1 mol% or less, It may be 0.08 mol% or less.
  • the vinyl group-containing linear organopolysiloxane (A1) is a first vinyl group-containing straight chain having a vinyl group content of 2 or more in the molecule and 0.1 mol% or less. It is preferable to contain the state organopolysiloxane (A1-1).
  • the vinyl group-containing linear organopolysiloxane (A1) contains a first vinyl group having a vinyl group content of 2 or more in the molecule and 0.1 mol% or less.
  • the linear organopolysiloxane (A1-1) may be used alone, but a second vinyl group-containing linear organopolysiloxane (A1-) having a vinyl group content of more than 0.1 to 15 mol%. 2) or more may be used in combination of two or more.
  • the silicone rubber-based curable composition of the present embodiment may contain organohydrogenpolysiloxane (B).
  • Organohydrogenpolysiloxane (B) is classified into linear organohydrogenpolysiloxane (B1) having a linear structure and branched organohydrogenpolysiloxane (B2) having a branched structure. Either one or both can be included.
  • the linear organohydrogenpolysiloxane (B1) has a linear structure and a structure ( ⁇ Si—H) in which hydrogen is directly bonded to Si, and is a vinyl group-containing organopolysiloxane (A).
  • ⁇ Si—H a structure in which hydrogen is directly bonded to Si
  • A a vinyl group-containing organopolysiloxane
  • it is a polymer that hydrosilylates with the vinyl group of the component blended in the silicone rubber-based curable composition and crosslinks these components.
  • the molecular weight of the linear organohydrogenpolysiloxane (B1) is not particularly limited, but for example, the weight average molecular weight is preferably 20000 or less, and more preferably 1000 or more and 10000 or less.
  • the weight average molecular weight of the linear organohydrogenpolysiloxane (B1) can be measured, for example, by polystyrene conversion in GPC (gel permeation chromatography) using chloroform as a developing solvent.
  • the linear organohydrogenpolysiloxane (B1) usually preferably does not have a vinyl group. As a result, it is possible to accurately prevent the cross-linking reaction from proceeding in the molecule of the linear organohydrogenpolysiloxane (B1).
  • linear organohydrogenpolysiloxane (B1) as described above for example, one having a structure represented by the following formula (2) is preferably used.
  • R 4 is a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, a hydrocarbon group combining these, or a hydride group.
  • alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable.
  • alkenyl group having 1 to 10 carbon atoms include a vinyl group, an allyl group, a butenyl group and the like.
  • the aryl group having 1 to 10 carbon atoms include a phenyl group.
  • R 5 is a hydrocarbon group or a hydride group, in combination a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, these.
  • alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group and a propyl group, and among them, a methyl group is preferable.
  • alkenyl group having 1 to 10 carbon atoms include a vinyl group, an allyl group, a butenyl group and the like.
  • the aryl group having 1 to 10 carbon atoms include a phenyl group.
  • a plurality of R 4 are independent from each other, may be different from each other, it may be the same. The same is true for R 5. However, of the plurality of R 4 and R 5 , at least two or more are hydride groups.
  • R 6 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group in which these are combined.
  • alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable.
  • aryl group having 1 to 8 carbon atoms include a phenyl group.
  • a plurality of R 6 are independent from each other, may be different from each other, it may be the same.
  • Examples of the substituent of R 4 , R 5 , and R 6 in the formula (2) include a methyl group and a vinyl group, and a methyl group is preferable from the viewpoint of preventing an intramolecular cross-linking reaction.
  • m and n are the number of repeating units constituting the linear organohydrogenpolysiloxane (B1) represented by the formula (2), m is an integer of 2 to 150, and n is 2 to 150. It is an integer. Preferably, m is an integer of 2 to 100 and n is an integer of 2 to 100.
  • linear organohydrogenpolysiloxane (B1) only one type may be used alone, or two or more types may be used in combination.
  • the branched organohydrogenpolysiloxane (B2) Since the branched organohydrogenpolysiloxane (B2) has a branched structure, it forms a region having a high crosslink density and is a component that greatly contributes to the formation of a sparsely packed structure with a crosslink density in the silicone rubber system. Further, like the linear organohydrogenpolysiloxane (B1), it has a structure ( ⁇ Si—H) in which hydrogen is directly bonded to Si, and in addition to the vinyl group of the vinyl group-containing organopolysiloxane (A), silicone. It is a polymer that hydrosilylates with the vinyl group of the component contained in the rubber-based curable composition and crosslinks these components.
  • the specific gravity of the branched organohydrogenpolysiloxane (B2) is in the range of 0.9 to 0.95.
  • the branched organohydrogenpolysiloxane (B2) is usually preferably one having no vinyl group. As a result, it is possible to accurately prevent the cross-linking reaction from proceeding in the molecule of the branched organohydrogenpolysiloxane (B2).
  • branched organohydrogenpolysiloxane (B2) those represented by the following average composition formula (c) are preferable.
  • R 7 is a monovalent organic group, a is 1 to 3 in the range of integers, m is H a (R 7) 3- a number of SiO 1/2 units, n represents SiO 4 / It is a number of 2 units)
  • R 7 is a monovalent organic group, preferably a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an aryl group, or a hydrocarbon group in combination thereof.
  • alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable.
  • aryl group having 1 to 10 carbon atoms include a phenyl group.
  • a is the number of hydride groups (hydrogen atoms directly bonded to Si), and is an integer in the range of 1 to 3, preferably 1.
  • n is the number of SiO 4/2 units.
  • Branched organohydrogenpolysiloxane (B2) has a branched structure.
  • the linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpolysiloxane (B2) differ in that their structures are linear or branched, and are different from Si when the number of Si is 1.
  • the number of alkyl groups R to be bonded (R / Si) is 1.8 to 2.1 for the linear organohydrogenpolysiloxane (B1) and 0.8 to 1 for the branched organohydrogenpolysiloxane (B2). It is in the range of 0.7.
  • the branched organohydrogenpolysiloxane (B2) has a branched structure, for example, the amount of residue when heated to 1000 ° C. at a heating rate of 10 ° C./min under a nitrogen atmosphere is 5% or more. It becomes.
  • the linear organohydrogenpolysiloxane (B1) is linear, the amount of residue after heating under the above conditions is almost zero.
  • R 7 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group combining these, or a hydrogen atom.
  • alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group and the like, and among them, a methyl group is preferable.
  • aryl group having 1 to 8 carbon atoms include a phenyl group.
  • the substituent of R 7 include a methyl group and the like.
  • the plurality of R 7s are independent of each other and may be different from each other or may be the same.
  • branched organohydrogenpolysiloxane (B2) only one type may be used alone, or two or more types may be used in combination.
  • the amount of hydrogen atoms (hydride groups) directly bonded to Si is not particularly limited.
  • the linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpoly are added to 1 mol of the vinyl group in the vinyl group-containing linear organopolysiloxane (A1).
  • the total amount of hydride groups of siloxane (B2) is preferably 0.5 to 5 mol, more preferably 1 to 3.5 mol.
  • the silicone rubber-based curable composition of the present embodiment contains silica particles (C).
  • the silica particles (C) are not particularly limited, but for example, fumed silica, calcined silica, precipitated silica and the like are used. These may be used alone or in combination of two or more.
  • the silica particles (C) may contain one or more silica particles surface-treated with the silane coupling agent (D).
  • the specific surface area of the silica particles (C) by the BET method is, for example, 200 m 2 / g to 500 m 2 / g, preferably 220 m 2 / g to 400 m 2 / g, and 250 m 2 / g to 400 m. It is more preferably 2 / g.
  • the average primary particle size of the silica particles (C) is preferably, for example, 1 to 100 nm, and more preferably about 5 to 20 nm.
  • silica particles (C) within the range of the specific surface area and the average particle size, it is possible to improve the hardness and mechanical strength of the formed silicone rubber, particularly the tensile strength.
  • the silicone rubber-based curable composition of the present embodiment may contain a silane coupling agent (D).
  • the silane coupling agent (D) can have a hydrolyzable group.
  • the hydrolyzing group is hydrolyzed by water to become a hydroxyl group, and this hydroxyl group undergoes a dehydration condensation reaction with the hydroxyl group on the surface of the silica particles (C), whereby the surface of the silica particles (C) can be modified.
  • the silane coupling agent (D) can include a silane coupling agent having a hydrophobic group.
  • a silane coupling agent having a hydrophobic group a silane coupling agent having a trimethylsilyl group can be used.
  • this hydrophobic group is imparted to the surface of the silica particles (C), so that the cohesive force of the silica particles (C) is reduced in the silicone rubber-based curable composition and thus in the silicone rubber (hydrogen due to silanol groups). Aggregation due to bonding is reduced), and as a result, it is presumed that the dispersibility of silica particles in the silicone rubber-based curable composition is improved.
  • the interface between the silica particles and the rubber matrix is increased, and the reinforcing effect of the silica particles is increased. Further, it is presumed that the slipperiness of the silica particles in the matrix is improved when the rubber matrix is deformed. Then, by improving the dispersibility and slipperiness of the silica particles (C), the mechanical strength (for example, tensile strength, tear strength, etc.) of the silicone rubber due to the silica particles (C) is improved.
  • the silane coupling agent (D) can include a silane coupling agent having a vinyl group.
  • a vinyl group is introduced on the surface of the silica particles (C). Therefore, when the silicone rubber-based curable composition is cured and a network (crosslinked structure) is formed, the vinyl group of the silica particles (C) also participates in the crosslinking reaction, so that the silica particles (crosslinked structure) are contained in the network. C) will also be incorporated. As a result, it is possible to reduce the hardness and increase the modulus of the formed silicone rubber.
  • silane coupling agent (D) a silane coupling agent having a hydrophobic group and a silane coupling agent having a vinyl group can be used in combination. This makes it possible to balance the dispersibility of silica in the rubber and the crosslinkability of the rubber.
  • the silane coupling agent (D) may be used alone or in combination of two or more.
  • silane coupling agent (D) examples include those represented by the following formula (4).
  • n represents an integer of 1 to 3.
  • Y represents a functional group of any of having a hydrophobic group, a hydrophilic group or a vinyl group, and when n is 1, it is a hydrophobic group, and when n is 2 or 3, at least one of them is. It is a hydrophobic group.
  • X represents a hydrolyzable group.
  • the hydrophobic group is an alkyl group having 1 to 6 carbon atoms, an aryl group, or a hydrocarbon group in which these are combined, and examples thereof include a methyl group, an ethyl group, a propyl group, a phenyl group, and the like. Methyl groups are preferred.
  • hydrophilic group examples include a hydroxyl group, a sulfonic acid group, a carboxyl group, a carbonyl group and the like, and among them, a hydroxyl group is particularly preferable.
  • the hydrophilic group may be contained as a functional group, but it is preferably not contained from the viewpoint of imparting hydrophobicity to the silane coupling agent (D).
  • examples of the hydrolyzable group include an alkoxy group such as a methoxy group and an ethoxy group, a chloro group or a silazane group, and among them, a silazane group is preferable because it has high reactivity with the silica particles (C).
  • a silazane group is preferable because it has high reactivity with the silica particles (C).
  • those having a silazane group as hydrolyzable groups the characteristics of its structure the formula (4) in the structure of (Y n -Si-) comes to have two.
  • silane coupling agent (D) represented by the above formula (4) are as follows.
  • the functional group having a hydrophobic group include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, and the like.
  • alkoxysilanes such as n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane; chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane; hexamethyldisilazane. Can be mentioned.
  • a silane coupling agent having a trimethylsilyl group containing at least one selected from the group consisting of hexamethyldisilazane, trimethylchlorosilane, trimethylmethoxysilane, and trimethylethoxysilane is preferable.
  • Examples of those having a vinyl group as the functional group include methaloxypropyltriethoxysilane, metharoxypropyltrimethoxysilane, methaloxypropylmethyldiethoxysilane, methaloxypropylmethyldimethoxysilane, vinyltriethoxysilane, and vinyltrimethoxy.
  • Alkoxysilanes such as silane, vinylmethyldimethoxysilane; chlorosilanes such as vinyltrichlorosilane, vinylmethyldichlorosilane; and divinyltetramethyldisilazane.
  • a silane coupling agent having a vinyl group-containing organosilyl group containing at least one selected from the group consisting of methyldimethoxysilane is preferable.
  • silane coupling agent (D) contains two types of a silane coupling agent having a trimethylsilyl group and a silane coupling agent having a vinyl group-containing organosilyl group, hexamethyldisilazane as having a hydrophobic group is used. Those having a vinyl group preferably contain divinyltetramethyldisilazane.
  • the ratio of (D1) to (D2) is not particularly limited, but for example, By weight ratio (D1): (D2) is 1: 0.001 to 1: 0.35, preferably 1: 0.01 to 1: 0.20, more preferably 1: 0.03 to 1: 0. It is .15. With such a numerical range, the desired physical properties of the silicone rubber in the silicone rubber can be obtained. Specifically, it is possible to balance the dispersibility of silica in the rubber and the crosslinkability of the rubber.
  • Platinum or platinum compound (E) The silicone rubber-based curable composition of the present embodiment may contain platinum or a platinum compound (E). Platinum or the platinum compound (E) is a catalytic component that acts as a catalyst during curing. The amount of platinum or platinum compound (E) added is the amount of catalyst.
  • platinum or the platinum compound (E) known ones can be used, for example, platinum black, platinum supported on silica, carbon black or the like, chloroplatinic acid or an alcohol solution of chloroplatinic acid, chloride.
  • platinum black platinum black
  • chloroplatinic acid or an alcohol solution of chloroplatinic acid, chloride examples thereof include a complex salt of platinum acid and olefin, and a complex salt of platinum chloride acid and vinyl siloxane.
  • platinum or the platinum compound (E) only one type may be used alone, or two or more types may be used in combination.
  • the silicone rubber-based curable composition of the present embodiment may contain an organic peroxide (H).
  • the organic peroxide (H) is a component that acts as a catalyst during curing.
  • the amount of the organic peroxide (H) added is the amount of the catalyst.
  • the organic peroxide (H) is an organic peroxide in place of the organohydrogenpolysiloxane (B) and the platinum or platinum compound (E), or with the organohydrogenpolysiloxane (B) and the platinum or platinum compound (E).
  • the thing (H) can be used together.
  • organic peroxide (H) examples include ketone peroxides, diacyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peroxides, peroxyesters and peroxydi.
  • examples thereof include carbonates, and specific examples thereof include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methylbenzoyl peroxide, dicumyl peroxide, and 2,5-dimethyl-.
  • Examples thereof include bis (2,5-t-butylperoxy) hexane, di-t-butyl peroxide, t-butylperbenzoate, and 1,6-hexanediol-bis-t-butylperoxycarbonate.
  • the silicone rubber-based curable composition of the present embodiment may contain water (F) in addition to the above components (A) to (E) and (H).
  • Water (F) functions as a dispersion medium for dispersing each component contained in the silicone rubber-based curable composition, and is a component that contributes to the reaction between the silica particles (C) and the silane coupling agent (D). .. Therefore, in the silicone rubber, the silica particles (C) and the silane coupling agent (D) can be more reliably connected to each other, and uniform characteristics can be exhibited as a whole.
  • the silicone rubber-based curable composition of the present embodiment may contain known additive components to be blended in the silicone rubber-based curable composition in addition to the above components (A) to (F).
  • additive components for example, diatomaceous earth, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, cerium oxide, calcium carbonate, magnesium carbonate, zinc carbonate, glass wool, mica and the like can be mentioned.
  • dispersants, pigments, dyes, antistatic agents, antioxidants, flame retardants, thermal conductivity improvers and the like can be appropriately blended.
  • the content ratio of each component is not particularly limited, but is set as follows, for example.
  • the upper limit of the content of the silica particles (C) may be, for example, 60 parts by weight or less, preferably 50 parts by weight or less, based on 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A). However, it may be more preferably 35 parts by weight or less. As a result, it is possible to balance mechanical strength such as hardness and tensile strength.
  • the lower limit of the content of the silica particles (C) is not particularly limited with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A), but may be, for example, 10 parts by weight or more.
  • the silane coupling agent (D) is preferably contained in a proportion of, for example, 5 parts by weight or more and 100 parts by weight or less of the vinyl group-containing organopolysiloxane (A) with respect to 100 parts by weight. More preferably, it is contained in a proportion of 5 parts by weight or more and 40 parts by weight or less. Thereby, the dispersibility of the silica particles (C) in the silicone rubber-based curable composition can be surely improved.
  • the content of the organohydrogenpolysiloxane (B) is specifically, for example, with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A), the silica particles (C) and the silane coupling agent (D). , 0.5 part by weight or more and 20 parts by weight or less is preferable, and 0.8 parts by weight or more and 15 parts by weight or less is more preferable.
  • a more effective curing reaction may be possible.
  • the content of platinum or the platinum compound (E) means the amount of catalyst and can be appropriately set. Specifically, vinyl group-containing organopolysiloxane (A), silica particles (C), and silane coupling agent (The amount of the platinum group metal in this component is 0.01 to 1000 ppm, preferably 0.1 to 500 ppm, based on 100 parts by weight of the total amount of D).
  • the amount of the platinum group metal in this component is 0.01 to 1000 ppm, preferably 0.1 to 500 ppm, based on 100 parts by weight of the total amount of D).
  • the content of the organic peroxide (H) means the amount of the catalyst and can be appropriately set. Specifically, the vinyl group-containing organopolysiloxane (A), the silica particles (C), and the silane coupling agent ( For example, 0.001 parts by weight or more, preferably 0.005 parts by weight or more, and more preferably 0.01 parts by weight or more with respect to 100 parts by weight of the total amount of D). Thereby, the minimum strength as a cured product can be guaranteed.
  • the upper limit of the content of the organic peroxide (H) is, for example, with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A), the silica particles (C), and the silane coupling agent (D). It is 10 parts by weight or less, preferably 5 parts by weight or less, and more preferably 3 parts by weight or less. As a result, the influence of by-products can be suppressed.
  • the content thereof can be appropriately set, but specifically, for example, 10 to 100 parts by weight with respect to 100 parts by weight of the silane coupling agent (D). It is preferably in the range of 30 to 70 parts by weight, and more preferably in the range of 30 to 70 parts by weight. As a result, the reaction between the silane coupling agent (D) and the silica particles (C) can proceed more reliably.
  • each component of the silicone rubber-based curable composition is uniformly mixed by an arbitrary kneading device to prepare a silicone rubber-based curable composition.
  • a vinyl group-containing organopolysiloxane (A), silica particles (C), and a silane coupling agent (D) are weighed in a predetermined amount, and then kneaded by an arbitrary kneading device. A kneaded product containing each of these components (A), (C) and (D) is obtained.
  • this kneaded product is obtained by kneading the vinyl group-containing organopolysiloxane (A) and the silane coupling agent (D) in advance, and then kneading (mixing) the silica particles (C).
  • the dispersibility of the silica particles (C) in the vinyl group-containing organopolysiloxane (A) is further improved.
  • water (F) may be added to the kneaded product of each component (A), (C), and (D) as needed.
  • the reaction between the silane coupling agent (D) and the silica particles (C) can proceed more reliably.
  • the kneading of each component (A), (C), and (D) goes through a first step of heating at the first temperature and a second step of heating at the second temperature.
  • the surface of the silica particles (C) can be surface-treated with the coupling agent (D)
  • the silica particles (C) and the coupling agent (D) are combined.
  • By-products produced by the reaction can be reliably removed from the kneaded product.
  • the component (A) may be added to the obtained kneaded product and further kneaded. Thereby, the familiarity of the components of the kneaded product can be improved.
  • the first temperature is preferably, for example, about 40 to 120 ° C., and more preferably about 60 to 90 ° C., for example.
  • the second temperature is preferably, for example, about 130 to 210 ° C., and more preferably about 160 to 180 ° C., for example.
  • the atmosphere in the first step is preferably under an inert atmosphere such as a nitrogen atmosphere
  • the atmosphere in the second step is preferably under a reduced pressure atmosphere.
  • the time of the first step is preferably, for example, about 0.3 to 1.5 hours, and more preferably about 0.5 to 1.2 hours.
  • the time of the second step is, for example, preferably about 0.7 to 3.0 hours, and more preferably about 1.0 to 2.0 hours.
  • the organohydrogenpolysiloxane (B) and platinum or the platinum compound (E) are weighed in a predetermined amount, and then the kneaded product prepared in the above step [1] using an arbitrary kneading device.
  • Each component (B) and (E) is kneaded to obtain a silicone rubber-based curable composition.
  • the obtained silicone rubber-based curable composition may be a paste containing a solvent.
  • each component (A) to (E) is surely contained in the silicone rubber-based curable composition without proceeding the reaction between the vinyl group-containing organopolysiloxane (A) and the organohydrogenpolysiloxane (B). Can be dispersed in.
  • the temperature at which each component (B) and (E) is kneaded is preferably, for example, about 10 to 70 ° C., more preferably about 25 to 30 ° C. as the roll set temperature.
  • the kneading time is preferably, for example, about 5 minutes to 1 hour, and more preferably about 10 to 40 minutes.
  • the kneading device used in each of the steps [1] and [2] is not particularly limited, but for example, a kneader, two rolls, a Banbury mixer (continuous kneader), a pressurized kneader, or the like can be used.
  • a reaction inhibitor such as 1-ethynylcyclohexanol may be added to the kneaded product.
  • Organic peroxide (H) may be added. Preferred conditions such as temperature and time for kneading the organic peroxide (H), and the conditions for kneading the organohydrogenpolysiloxane (B) and platinum or the platinum compound (E) with respect to the apparatus to be used. Is similar to.
  • a silicone rubber is formed by curing the silicone rubber-based curable composition.
  • the curing step of the silicone rubber-based curable composition is, for example, heating at 100 to 250 ° C. for 1 to 30 minutes (primary curing) and then post-baking (secondary curing) at 200 ° C. for 1 to 4 hours. ) Is done.
  • the silicone rubber of the present embodiment cured product of silicone rubber-based curable composition
  • the method for producing the structure of the present embodiment is configured to have a step of curing the silicone rubber-based curable composition and a step of obtaining a structure containing the cured product of the silicone rubber-based curable composition. Good.
  • the structure may be the above-mentioned wearable device.
  • a hoax-type bending resistance test conforming to JIS K 6260 is performed, and the number of bendings is 50,000 times, which is measured based on the following procedure.
  • the rate of change in cut length (L 5 / L 0 ) in the test piece is 1.1 or more and 11.5 or less.
  • Silicone rubber-based curable composition. (procedure) The silicone rubber-based curable composition is pressed at 170 ° C. and 10 MPa for 15 minutes, and then heated at 200 ° C. for 4 hours to prepare a test piece having a predetermined shape in accordance with JIS K 6260.
  • a notch having a predetermined length penetrating the test piece is made parallel to the width direction.
  • L 0 be the initial cut length.
  • the test piece with a notch is installed between the gripping tools of the testing machine, a hoax-type bending resistance test is performed based on the following test conditions, and the cutting length in the test piece after a predetermined number of bendings ( mm) is measured.
  • the cut length shall be the average value when the hoax type bending resistance test is performed three times.
  • L 5 be the average value of this cut length.
  • the rate of change in cut length is calculated based on the formula: L 5 / L 0 .
  • the silicone rubber-based curable composition according to the above A silicone rubber-based curable composition in which the content of the silica particles (C) is 10 parts by weight or more and 35 parts by weight or less with respect to 100 parts by weight of the vinyl group-containing organopolysiloxane (A). 4. 1. 1. ⁇ 3.
  • a crescent-shaped test piece is prepared using the cured product of the silicone rubber-based curable composition, and the tear strength of the obtained crescent-shaped test piece is measured at 25 ° C.
  • a dumbbell-shaped No. 3 test piece was prepared in accordance with JIS K6251 (2004) using the cured product of the silicone rubber-based curable composition, and the obtained dumbbell-shaped No. 3 test piece was broken at 25 ° C. Measure the elongation.
  • the breaking elongation is calculated by [moving distance between chucks (mm)] ⁇ [initial distance between chucks (60 mm)] ⁇ 100.
  • the unit is%. 6. 1. 1. ⁇ 5.
  • the silicone rubber-based curable composition according to any one of the above.
  • a sheet-shaped test piece was prepared using the cured product of the silicone rubber-based curable composition, and the durometer hardness A of the obtained sheet-shaped test piece was measured at 25 ° C. in accordance with JIS K6253 (1997). To do. 7.
  • a certain structure) -Vinyl group-containing linear organopolysiloxane (A1-2a): Vinyl group-containing dimethylpolysiloxane (structure represented by the formula (1-1), R 1 (terminal) and R 2 (chain) synthesized by Synthesis Scheme 3).
  • (Inside) is a vinyl group
  • -Vinyl group-containing linear organopolysiloxane (A1-2b): Vinyl group-containing dimethylpolysiloxane synthesized by Synthesis Scheme 4 (with a structure represented by the formula (1-1), R 1 (terminal) and R 2 (chain).
  • (Inside) is a vinyl group)
  • Silane coupling agent (D) Silane coupling agent (D-1): Hexamethyldisilazane (HMDZ), manufactured by Gelest, "HEXAMETHYLDISILAZANE (SIH6110.1)”
  • Silane coupling agent (D-2) Divinyltetramethyldisilazane, manufactured by Gelest, "1,3-DIVINYLTETRAMETHYLDISILAZANE (SID4612.0)"
  • the mixture was kneaded under a reduced pressure atmosphere at 160 to 180 ° C. for 2 hours through the second step, then cooled and kneaded for 20 minutes. Subsequently, 100 parts by weight of the obtained kneaded product (silicone rubber compound) was added with organohydrogenpolysiloxane (B) (TC-25D) and platinum or platinum compound (E) (TC) in the proportions shown in Table 1 below. -25A) was added and kneaded with a roll to obtain a silicone rubber-based curable composition.
  • the obtained silicone rubber-based curable composition was placed in the molding space 30 of the mold 10 shown in FIG. 1, pressed at 170 ° C. and 10 MPa for 15 minutes, and subsequently at 200 ° C.
  • a strip-shaped test piece 50 (width: 25 mm, length: 150 mm, thickness: 6.3 mm) with a groove 60 was prepared.
  • a notch 70 having a length of 2.03 mm was made in the center of the groove 60 of the obtained test piece 50 in parallel with the width direction using a blade to obtain a test piece 50 with a notch (FIG. 2). ).
  • the notch 70 penetrated the test piece 50 in the thickness direction.
  • FIG. 1 (a) is a top view of the mold 10
  • FIG. 1 (b) is a side sectional view of the mold 10 as viewed by arrows AA.
  • the mold 10 is provided with a curved convex portion 20 on the bottom surface of the molding space 30.
  • FIG. 2A shows a top view of the test piece 50 having a groove 60 in which the notch 70 is formed
  • FIG. 2B shows a side sectional view of the test piece 50 as viewed from the arrow BB.
  • the test piece 50 obtained in the above is held between the fixed gripping tool 102 and the movable gripping tool 104 of the testing machine 100 (demacha bending crack tester). It was. Specifically, the test piece 50 was attached to the grip so that the distance between the two grips was maximized and the center of the groove 60 of the test piece 50 was located at the center between the grips. At this time, the test piece 50 was held flat so as not to give an extra strain. Subsequently, based on the following test conditions, the movable gripping tool 104 was reciprocated in the vertical direction with reference to the fixed gripping tool 102.
  • the movable gripper 104 approaches the fixed gripper 102 from the maximum distance to the reciprocating motion distance (the test piece 50 is bent), and then the movable gripper 104 is separated to the maximum distance (the test piece 50 is flat).
  • One reciprocating motion one cycle was defined, and the number of cycles (times) was defined as the number of bends.
  • the length (mm) of the notch 70 in the test piece 50 when the number of bendings was 10,000, 30,000, and 50,000 was measured using a digital caliper (manufactured by Mitutoyo).
  • the length of the notch 70 was taken as the average value of the three measured values measured by performing the hoax-type bending resistance test three times. The results are shown in Table 2.
  • L 0 is the initial cut length before the hoax-type bending resistance test
  • L 1 , L 3 , and L 5 are the bending times of 10,000 times, 30,000 times, and 50,000 times after the hoax-type bending resistance test, respectively.
  • Test Examples 1, 2 and 3 were designated as Examples 1, 2 and 3, and Test Examples 4 and 5 were designated as Comparative Examples 1 and 5.
  • ⁇ Making silicone rubber> The obtained silicone rubber-based curable composition was pressed at 170 ° C. and 10 MPa for 15 minutes to form a sheet having a thickness of 1 mm, and was first cured. Subsequently, it was heated at 200 ° C. for 4 hours and secondarily cured. From the above, a sheet-shaped silicone rubber (a cured product of a silicone rubber-based curable composition) was obtained.
  • Tensile stress and elongation at break were measured with three samples, and the average value of the three was used as the measured value.
  • the tear strength was measured with 5 samples, and the average value of 5 was used as the measured value.
  • the average value of each is shown in Table 2.
  • Example 1 the number of times of bending until the test piece broke was measured in the same manner as in the above ⁇ Demacha type bending resistance test> except that the test piece without a notch was used.
  • Example 1 to 3 no fracture was observed at the time of 10,000 times or 100,000 times, and the number of bendings until the fracture was larger in the order of Examples 3, 2 and 1. Among these, it was found that Examples 1 and 2 were superior in bending crack resistance as compared with Example 3.
  • the silicone rubber-based curable compositions of Examples 1 to 3 were superior in durability to repeated bending deformation as compared with Comparative Examples 1 and 2.
  • the molded product of the silicone rubber-based curable composition of Examples 1 to 3 can be suitably used for a flexible member, preferably a wearable device having wiring or a wiring substrate, and more preferably a wiring substrate of the wearable device. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明のシリコーンゴム系硬化性組成物は、ビニル基含有オルガノポリシロキサン(A)と、シリカ粒子(C)と、を含み、当該シリコーンゴム系硬化性組成物の硬化物からなる試験片を用いて、JIS K 6260に準拠したデマチャ式耐屈曲試験を行い、所定の手順に基づいて測定される、屈曲回数が5万回のときの前記試験片における切り込み長さ変化率が、1.1以上11.5以下である。

Description

シリコーンゴム系硬化性組成物、構造体、ウェアラブルデバイス、及び構造体の製造方法
 本発明は、シリコーンゴム系硬化性組成物、構造体、ウェアラブルデバイス、及び構造体の製造方法に関する。
 これまでシリコーンゴムの耐久性において様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、耐伸長疲労性について、100%伸長操作を繰り返し行い破断するまでの伸長回数に基づいて評価できること、その伸長回数が210万回のシリコーンゴム(硬化性シリコーンゴム組成物の硬化物)が記載されている(特許文献1の実施例1)。
特開2008-222849号公報
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の硬化性シリコーンゴム組成物の硬化物において、繰り返しの屈曲変形に対する耐久性の点で改善の余地があることが判明した。
 シリコーンゴムの技術分野において、伸長時の特性についての検討が一般的に行われている。
 しかしながら、繰り返し屈曲時の特性については、十分な検討がなされていなかった。
 本発明者が検討したところ、デマチャ式耐屈曲試験を用いることで、シリコーンゴム系硬化性組成物の成形体について、繰り返し屈曲時における耐屈曲性を評価できることを見出した。さらに検討した結果、JIS K 6260に準拠して、デマチャ式耐屈曲試験の試験条件を適切に設定した上で、切り込み付きの試験片における切り込み長さの変化率を指標とすることで、かかる耐屈曲性を制御できることが判明した。このような知見に基づきさらに鋭意研究したところ、屈曲回数が5万回のときの試験片における切り込み長さの変化率を所定範囲内とすることで、シリコーンゴム系硬化性組成物の成形体における、繰り返しの屈曲変形に対する耐久性が改善されることを見出し、本発明を完成するに至った。
 本発明によれば、
 ビニル基含有オルガノポリシロキサン(A)と、
 シリカ粒子(C)と、を含む、シリコーンゴム系硬化性組成物であって、
 当該シリコーンゴム系硬化性組成物の硬化物からなる試験片を用いて、JIS K 6260に準拠したデマチャ式耐屈曲試験を行い、下記の手順に基づいて測定される、屈曲回数が5万回のときの前記試験片における切り込み長さ変化率(L/L)が、1.1以上11.5以下である、
シリコーンゴム系硬化性組成物が提供される。
(手順)
 当該シリコーンゴム系硬化性組成物を、170℃、10MPaで15分間プレスし、続いて、200℃で4時間加熱し、JIS K 6260に準拠して、幅:25mm、長さ:150mm、厚み:6.3mmを有する短冊状の試験片を作製する。
 得られた試験片の中央において、幅方向に対して平行に、前記試験片を貫通する長さが2.03mm切り込みを入れる。初期の切り込み長さをLとする。
 続いて、切り込み付きの前記試験片を試験機のつかみ具間に設置し、下記の試験条件に基づいて、デマチャ式耐屈曲試験を行い、所定の屈曲回数後の前記試験片における切り込み長さ(mm)を測定する。
 切り込み長さは、デマチャ式耐屈曲試験を3回行ったときの平均値とする。この切り込み長さの平均値をLとする。
 切り込み長さ変化率を、式:L/Lに基づいて算出する。
(試験条件)
・試験規格:JIS K 6260準拠
・試験機:デマチャ屈曲き裂試験機
・試験温度:23±2℃
・つかみ具間最大距離:75mm
・往復運動距離:57mm
・試験速度:300±10回/分
・試験数:n=3
 また本発明によれば、上記シリコーンゴム系硬化性組成物の硬化物を備える構造体が提供される。
 また本発明によれば、
 配線と基板とを含む配線基板を有しており、
 前記配線基板中の前記配線及び/または基板の一部が、上記のシリコーンゴム系硬化性組成物の硬化物で構成される、ウェアラブルデバイスが提供される。
 また本発明によれば、
 上記のシリコーンゴム系硬化性組成物を硬化する工程と、
 前記シリコーンゴム系硬化性組成物の硬化物を備える構造体を得る工程と、を有する構造体の製造方法が提供される。
 本発明によれば、繰り返しの屈曲変形に対する耐久性に優れた成形体を実現できるシリコーンゴム系硬化性組成物、構造体、ウェアラブルデバイス、及び構造体の製造方法が提供される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
金型の構成の一例を示す模式図である。 試験片の構成の一例を示す模式図である。 デマチャ式試験機の構成の一例を示す模式図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。
 本実施形態のシリコーンゴム系硬化性組成物の概要を説明する。
 本実施形態のシリコーンゴム系硬化性組成物は、ビニル基含有オルガノポリシロキサン(A)と、シリカ粒子(C)と、を含み、当該シリコーンゴム系硬化性組成物の硬化物からなる試験片を用いて、JIS K 6260に準拠したデマチャ式耐屈曲試験を行い、下記の手順に基づいて測定される、屈曲回数が5万回のときの前記試験片における切り込み長さ変化率(L/L)が、1.1以上11.5以下を満たすものである。
(手順)
 当該シリコーンゴム系硬化性組成物を、170℃、10MPaで15分間プレスし、続いて、200℃で4時間加熱し、JIS K 6260に準拠して所定形状の溝付き試験片を作製する。
 得られた試験片の溝の中央において、幅方向に対して平行に、下記の試験片を貫通する所定長さ(2.03mm)の切り込みを入れる。初期の切り込み長さをLとする。
 続いて、切り込み付きの前記試験片を試験機のつかみ具間に設置し、下記の試験条件に基づいて、デマチャ式耐屈曲試験を行い、所定の屈曲回数後の前記試験片における切り込み長さ(mm)を測定する。
 切り込み長さは、デマチャ式耐屈曲試験を3回行ったときの平均値とする。この切り込み長さの平均値をLとする。
 切り込み長さ変化率を、式:L/Lに基づいて算出する。
(試験条件)
・試験規格:JIS K 6260準拠
・試験機:デマチャ屈曲き裂試験機
・試験温度:23±2℃
・つかみ具間最大距離:75mm
・往復運動距離:57mm
・試験速度:300±10回/分
・試験数:n=3
(試験片)
・試験片:幅:25±1mm、長さ:140~155mm、厚み:6.30±0.3mmの寸法を有する短冊状試験片で、長さ方向の中央部に(厚み方向に貫通しない)溝部を有する
・試験片の切り込み:試験片の幅方向における長さが2.03mmで、溝部の幅方向の中央に位置し、その溝部を厚み方向に貫通する
 本発明者の知見によれば、デマチャ式耐屈曲試験を用いることで、シリコーンゴム系硬化性組成物の成形体について、繰り返し屈曲時における耐屈曲性を評価できることを見出した。
 しかしながら、適当な指標を設定しないと、評価に時間がかかる上、評価にバラツキが生じる恐れがある。例えば、上記特許文献1の100%伸長疲労寿命のように、破断までの変形回数を指標とした場合、破断までの時間が長くなり、変形回数にバラツキが生じることがあった。また、試験片として切り込み無し品を使用し、破断状態を指標とした場合、破断状態に差が出るまで相当の屈曲回数が必要であり、差が出たとしても破断状態のバラツキが大きくなってしまうことが分かった。
 そこで、さらに検討した結果、JIS K 6260に準拠して、デマチャ式耐屈曲試験の試験条件を適切に設定した上で、切り込み付きの試験片における切り込み長さの変化率を指針とすることで、シリコーンゴム系硬化性組成物の成形体について、繰り返し屈曲時における耐屈曲性を、比較的早く、安定的に評価でき、かかる耐屈曲性を制御できることが判明した。
 このような知見に基づきさらに鋭意研究したところ、屈曲回数が5万回のときの試験片における切り込み長さの変化率を指標とすることで、繰り返し屈曲時における耐屈曲性を安定的に評価することができ、さらには、この指標を上記所定範囲内とすることで、シリコーンゴム系硬化性組成物の成形体における、繰り返しの屈曲変形に対する耐久性を向上できることが見出された。
 詳細なメカニズムは定かでないが、上記の切り込み変化率を指標として、架橋間距離や架橋密度を適切に調整することによって、低硬度、高引裂強度、高破断伸びの特性をバランス良く向上させることにより、屈曲時の負荷が小さいシリコーンゴム構造が得られると考えられる。
 上記デマチャ式耐屈曲試験において、Lを、デマチャ式耐屈曲試験前の初期の切り込み長さとし、L、L、Lを、それぞれ、デマチャ式耐屈曲試験後、屈曲回数が1万回、3万回、5万回のときの切り込み長さの平均値とする。
 上記屈曲回数が5万回のときの試験片における切り込み長さ変化率(L/L)の上限は、11.5以下、好ましくは10.7以下、より好ましくは8.0以下、さらに好ましくは6.0以下である。これにより、繰り返しの屈曲変形に対する耐久性に優れ、部材としての機械的強度を有する成形体を実現できる。また、L/Lの上限は、5.3以下としてもよく、4.0以下としてもよい。これにより、耐屈曲亀裂性が得られる。
 一方、切り込み長さ変化率(L/L)の下限は、1.0以上であればよく、1.1以上としてもよい。
 上記シリコーンゴム系硬化性組成物を用いたデマチャ式耐屈曲試験の結果、L/Lの上限は、例えば、10.0以下、好ましくは8.0以下、より好ましくは6.0以下、さらに好ましくは4.0以下である。これにより、繰り返しの屈曲変形に対する耐久性に優れた成形体を実現できる。また、より簡易な評価方法により特性を評価できるため、シリコーンゴム系硬化性組成物の生産性を向上できる。なお、L/Lの下限は、1.0以上であればよい。
 また、初期の切り込み長さLが2.03mmのとき、上記屈曲回数が5万回のときの試験片における切り込み長さLの上限は、例えば、22.5mm以下、好ましくは18.0mm以下、より好ましくは15.0mm以下としてもよい。また、Lの上限は、10.8mm以下としてもよい。これにより、耐屈曲亀裂性が得られる。
 一方、Lの下限は、例えば、2.1mm以上でもよく、2.2mm以上でもよく、2.5mm以上でもよい。
 このとき、(L-L)の上限は、例えば、20.0mm以下、10.0mm以下、9.5mm以下でもよく、8.4mm以下でもよい。(L-L)の下限は、0.1mm以上でもよい。
 また、初期の切り込み長さLが2.03mmのとき、上記屈曲回数が5万回のときの試験片における切り込み長さLの上限は、例えば、20.0mm以下、好ましくは15.0mm以下、より好ましくは11.0mm以下としてもよい。また、Lの上限は、9.0mm以下、8.0mm以下としてもよい。これにより、耐屈曲亀裂性が得られる。
 一方、Lの下限は、例えば、2.1mm以上でもよく、2.2mm以上でもよい。
 本明細書中、「~」は、特に明示しない限り、上限値と下限値を含むことを表す。
 上記シリコーンゴム系硬化性組成物において、シリカ粒子(C)の含有量が、ビニル基含有オルガノポリシロキサン(A)の全体100重量部に対して、例えば、10重量部以上60重量部以下としてもよい。このシリカ粒子(C)の含有量の上限は、好ましくは50重量部以下、より好ましくは35重量部以下、さらに好ましくは30重量部以下である。このように、シリカ含有量を比較的低くすることで、繰り返しの屈曲変形に対する耐久性を高めることができる。シリカ粒子(C)の含有量を35重量部以下とすることにより、繰り返し屈曲耐久性を安定的に高めることができる。
 本実施形態では、たとえばシリコーンゴム系硬化性組成物中に含まれる各成分の種類や配合量、シリコーンゴム系硬化性組成物の調製方法やシリコーンゴムの製造方法等を適切に選択することにより、上記の切り込み長さ変化率、切り込み長さ、下記の破断伸び、引張強度、引裂強度、硬度を制御することが可能である。これらの中でも、たとえば、ビニル基含有オルガノポリシロキサン(A)として、ビニル基が比較的小さく少なく、末端のみにビニル基を有するビニル基含有直鎖状オルガノポリシロキサン(A1-1)を使用することにより樹脂の架橋密度や架橋構造を制御すること、また、ビニル基含有オルガノポリシロキサン(A)の添加タイミングおよびその比率、シリカ粒子(C)の配合比率、シリカ粒子(C)の比表面積、シリカ粒子(C)のシランカップリング剤(D)で表面改質すること、水を添加すること等のシランカップリング剤(D)とシリカ粒子(C)との反応をより確実に進行させること等が、上記の切り込み長さ変化率、切り込み長さ、下記の破断伸び、引張強度、引裂強度、硬度を所望の数値範囲とするための要素として挙げられる。
 次に、本実施形態のシリコーンゴム系硬化性組成物の特性について説明する。
(引裂強度の測定条件)
 上記シリコーンゴム系硬化性組成物の硬化物を用いてクレセント形試験片を作製し、得られたクレセント形試験片について、25℃、JIS K6252(2001)に準拠して、引裂強度を測定する。
 上記シリコーンゴム系硬化性組成物の硬化物の、引裂強度の下限としては、例えば、25N/mm以上、好ましくは28N/mm以上、より好ましくは30N/mm以上、さらに好ましくは33N/mm以上、一層好ましくは35N/mm以上である。これにより、シリコーンゴムの繰り返し使用時における耐久性を向上できる。また、シリコーンゴムの耐傷付き性や機械的強度を向上できる。
 一方、上記引裂強度の上限としては、特に限定されないが、例えば、70N/mm以下としてもよく、60N/mm以下としてもよい。これにより、シリコーンゴムの諸特性のバランスをとることができる。
(破断伸びの測定条件)
 上記シリコーンゴム系硬化性組成物の硬化物を用いてダンベル状3号形試験片を作製し、得られたダンベル状3号形試験片について、25℃、JIS K6251(2004)に準拠して、破断伸びを測定する。
 上記シリコーンゴム系硬化性組成物の硬化物の、破断伸びの下限としては、例えば、500%以上であり、好ましくは600%以上であり、より好ましくは700%以上であり、さらに780%以上、800%以上、900%以上でもよい。これにより、シリコーンゴムの高伸縮性および耐久性を向上させることができる。
 一方、上記破断伸びの上限としては、特に限定されないが、例えば、2000%以下としてもよく、1800%以下としてもよく、1500%以下としてもよい。これにより、シリコーンゴムの諸特性のバランスをとることができる。
(デュロメータ硬さAの測定条件)
 上記シリコーンゴム系硬化性組成物の硬化物を用いてシート状試験片を作製し、得られたシート状試験片について、25℃、JIS K6253(1997)に準拠して、デュロメータ硬さAを測定する。
 上記シリコーンゴム系硬化性組成物の硬化物の、デュロメータ硬さAの上限は、特に限定されないが、例えば、70以下でもよく、好ましくは55以下でもよく、より好ましくは50以下でもよい。これにより、シリコーンゴムの硬化物性のバランスを図ることができる。また、変形容易性の観点から、デュロメータ硬さAの上限は、40以下でもよく、35以下でもよく、30以下でもよい。これにより、シリコーンゴムにおいて、屈曲や伸張などの変形が容易となる変形容易性を高められる。
 一方、上記デュロメータ硬さAの下限は、特に限定されないが、例えば、10以上、好ましくは20以上、より好ましくは25以上でもよい。これにより、シリコーンゴムの機械的強度を高められる。
(引張強度の測定条件)
 上記シリコーンゴム系硬化性組成物の硬化物を用いてダンベル状3号形試験片を作製し、得られたダンベル状3号形試験片について、25℃、JIS K6251(2004)に準拠して、引張強度を測定する。
 上記シリコーンゴム系硬化性組成物の硬化物の、引張強度の下限としては、例えば、5.0MPa以上であり、好ましくは6.0MPa以上、7.0MPa以上、8.0MPa以上でもよく、12.0MPa以上でもよい。これにより、シリコーンゴムの機械的強度を向上させることができる。また、繰り返しの変形に耐えられる耐久性に優れた構造体を実現できる。一方、上記引張強度の上限としては、特に限定されないが、例えば、25MPa以下としてもよく、20MPa以下としてもよい。これにより、シリコーンゴムの諸特性のバランスをとることができる。
 本実施形態のシリコーンゴム系硬化性組成物の硬化物(シリコーンゴム)は、用途に応じて様々な形態に加工成形された成形体となる。上記成形体は、シート状、筒状、袋状などの各種の形状に成形されてもよい。
 上記シリコーンゴム系硬化性組成物は、繰り返しの屈曲変性に対する耐久性に優れるため、屈曲性部材用の成形体を形成するために好適に用いることができる。屈曲性部材は、例えば、使用環境下において、繰り返し屈曲方向に応力を受ける部材を指す。この屈曲性部材は、伸縮方向に応力を受ける使用環境下で使用してもよい。
 上記屈曲性部材の一例として、例えば、ウェアラブルデバイスが挙げられる。すなわち、上記シリコーンゴム系硬化性組成は、ウェアラブルデバイスの一部、すなわち、ウェアラブルデバイスが備えるエラストマー部材あるいは屈曲性部材の一部を形成するために好適に用いることができる。
 上記ウェアラブルデバイスとしては、身体や衣服に装着可能な、好ましくは身体や衣服の湾曲面に装着可能なウェアラブルデバイスであり、例えば、心拍数、心電図、血圧、体温等の生体からの現象を検出する医療用センサー、ヘルスケアデバイス、折り曲げ可能なディスプレイ、伸縮性LEDアレイ、伸縮性太陽電池、伸縮性アンテナ、伸縮性バッテリ、アクチュエーター、ウエアラブルコンピュータ等が挙げられる。これらに用いる電極や配線、基板、伸縮・屈曲可能な可動部材、外装部材等を構成するための部材として、上記成形体を用いることが可能である。
 ここで、金属製で細線の針金を用いた針金屈曲性試験を行うことによって、簡易でありながらも、シリコーンゴム系硬化性組成物の成形体を、配線または配線基板を有するウェアラブルデバイス中の屈曲性部材に適用できることが分かった。
 すなわち、筒状の成形体に針金を挿入した状態で、例えば、90°に屈曲させ、100回程度屈曲させたときに、亀裂や破損の発生が抑制されているシリコーンゴム系硬化性組成物の成形体は、ウェアラブルデバイスが有する配線基板中の配線や基板等の、繰り返し屈曲可能な屈曲性部材に好適に用いられることが可能となる。
 したがって、本実施形態シリコーンゴム系硬化性組成物は、配線または配線基板を有するウェアラブルデバイスの一部を構成する、繰り返し屈曲可能な屈曲性部材(配線基板中の配線及び/または基板)を形成するために用いることができる。
 すなわち、ウェアラブルデバイスの一例は、配線と基板とを含む配線基板を有しており、配線基板中の配線及び/または基板の一部が、シリコーンゴム系硬化性組成物の硬化物で構成されてもよい。
 また、上記シリコーンゴム系硬化性組成物の硬化物(成形体)を備える構造体は、各種の用途に用いることができる。下記の中でも、医療用途、ロボット用途、電子機器用途が好ましく、ロボット用途電子機器用途が挙げられる。
 本実施形態のシリコーンゴム系硬化性組成物の硬化物(シリコーンゴム)を備える構造体としては、例えば、医療器具・機器用途等の医療用途;自動車用途;産業用ロボット等のロボット用途;電子機器用途;防振材、免震材、食品用ホース等の生産設備・生活用途;ローラー部材;等に用いることができる。
 本実施形態のシリコーンゴムは、医療器具・機器用途の一例として、例えば、医療用のチューブ材;シーリング材;パッキン材;コネクタ材;キーパッド材;駆動機構;センサー;等の一部を構成することができる。例えば、本実施形態の樹脂製可動部材を医療用チューブに適用することで、この医療用チューブは、耐キンク性、耐傷付き性、挿入性及び透明性に優れ、さらに復元性に優れたものとなる。また、医療用チューブとしては、例えば、医療用のカテーテル、マニュピレーターまたはリード等が挙げられる。
 本実施形態のシリコーンゴムは、産業用ロボット等のロボット用途の一例として、例えば、関節等の駆動機構;配線ケーブル、コネクタ等の配線機構;マニュピレーター等の操作機構;などの一部を構成することができる。
 本実施形態のシリコーンゴムは、電子機器用途の一例として、例えば、人間の身体等に着用可能なウェアラブルデバイスに用いられる、伸縮性を有する配線あるいは配線基板;光ファイバー、フラットケーブル、配線構造体、ケーブルガイド等のケーブル;タッチパネル、力覚センサー、MEMS、座席センサー等のセンサー;等の一部を構成することができる。
 その他、本実施形態のシリコーンゴムは、ガスバリアフィルム等の包装材料;調理器具;ホース;定着ベルト;スイッチ;シート材;パッキン材;等の可撓性、伸展性または折りたたみ性を有する生活品の一部を構成することができる。
 本実施形態のシリコーンゴム系硬化性組成物の各成分を詳述する。
<<ビニル基含有オルガノポリシロキサン(A))>>
 本実施形態のシリコーンゴム系硬化性組成物は、ビニル基含有オルガノポリシロキサン(A)を含む。上記ビニル基含有オルガノポリシロキサン(A)は、シリコーンゴム系硬化性組成物の主成分となる重合物である。
 上記ビニル基含有オルガノポリシロキサン(A)は、直鎖構造を有するビニル基含有直鎖状オルガノポリシロキサン(A1)を含むことができる。
 上記ビニル基含有直鎖状オルガノポリシロキサン(A1)は、直鎖構造を有し、かつ、ビニル基を含有しており、かかるビニル基が硬化時の架橋点となる。
 ビニル基含有直鎖状オルガノポリシロキサン(A1)のビニル基の含有量は、特に限定されないが、例えば、分子内に2個以上のビニル基を有し、かつ15モル%以下であるのが好ましく、0.01~12モル%であるのがより好ましい。これにより、ビニル基含有直鎖状オルガノポリシロキサン(A1)中におけるビニル基の量が最適化され、後述する各成分とのネットワークの形成を確実に行うことができる。
 本明細書中、ビニル基含有量とは、ビニル基含有直鎖状オルガノポリシロキサン(A1)を構成する全ユニットを100モル%としたときのビニル基含有シロキサンユニットのモル%である。ただし、ビニル基含有シロキサンユニット1つに対して、ビニル基1つであると考える。
 ビニル基含有直鎖状オルガノポリシロキサン(A1)の重合度は、特に限定されないが、例えば、好ましくは1000~10000程度、より好ましくは2000~5000程度の範囲内である。
 なお、重合度は、数平均分子量から算出してもよい。
 また、ビニル基含有直鎖状オルガノポリシロキサン(A1)の重量平均分子量Mwは、たとえば、5.0×10~1.0×10以下、好ましくは1.0×10~9.0×10、より好ましくは3.0×10~8.0×10としてもよい。
 ビニル基含有直鎖状オルガノポリシロキサン(A1)のMw(重量平均分子量)/Mn(数平均分子量)は、たとえば1.5以上4.0以下、好ましくは1.8以上3.5以下、より好ましくは2.0以上2.8以下としてもよい。なお、Mw/Mnは、分子量分布の幅を示す分散度である。
 重量平均分子量や数平均分子量は、例えばクロロホルムを展開溶媒としたGPC(ゲル透過クロマトグラフィー)におけるポリスチレン換算により測定することができる。
 ビニル基含有直鎖状オルガノポリシロキサン(A1)の比重は、特に限定されないが、0.9~1.1程度の範囲であるのが好ましい。
 ビニル基含有直鎖状オルガノポリシロキサン(A1)として、上記のような範囲内の重合度および比重を有するものを用いることにより、得られるシリコーンゴムの耐熱性、難燃性、化学的安定性等の向上を図ることができる。
 ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、特に、下記式(1)で表される構造を有するものであるが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(1)中、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられ、中でも、ビニル基が好ましい。炭素数1~10のアリール基としては、例えば、フェニル基等が挙げられる。
 式(1)中、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基が挙げられる。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。
 式(1)中、Rは炭素数1~8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~8のアリール基としては、例えば、フェニル基が挙げられる。
 また、式(1)中のRおよびRの置換基としては、例えば、メチル基、ビニル基等が挙げられ、Rの置換基としては、例えば、メチル基等が挙げられる。
 なお、式(1)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。さらに、R、およびRについても同様である。また、式(1)中、複数あるRおよびRの少なくとも1つがアルケニル基である。
 さらに、m、nは、式(1)で表されるビニル基含有直鎖状オルガノポリシロキサン(A1)を構成する繰り返し単位の数であり、mは0~2000の整数、nは1000~10000の整数である。mは、好ましくは0~1000であり、nは、好ましくは2000~5000である。なお、m+nは、例えば、1000以上の整数である。
 m、nは、数平均分子量Mnを用いて算出される重合度を表す。
 また、式(1)で表されるビニル基含有直鎖状オルガノポリシロキサン(A1)の具体的構造としては、例えば下記式(1-1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式(1-1)中、RおよびRは、それぞれ独立して、メチル基またはビニル基であり、少なくとも一方がビニル基である。
 本明細書中、式(1-1)で表わされる構造でR(末端)のみがビニル基であるビニル基含有直鎖状オルガノポリシロキサン(A1)を(A1-1)、式(1-1)で表わされる構造でR(末端)およびR(鎖内)がビニル基であるビニル基含有直鎖状オルガノポリシロキサン(A1)を(A1-2)と表記する。
 上記ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、ビニル基含有量が分子内に2個以上のビニル基を有し、かつ15モル%以下であるものが好ましい。ビニル基含有直鎖状オルガノポリシロキサン(A1)のビニル基量は、例えば、0.4モル%以下、好ましくは0.3モル%以下、0.2モル%以下、0.1モル%以下、0.08モル%以下としてもよい。シリコーンゴムの原料である生ゴムとして、一般的なビニル基含有量を有するビニル基含有直鎖状オルガノポリシロキサン(A1)を用いることで、シリコーンゴムの架橋ネットワーク中に、より効果的に架橋密度の疎密を形成することができる。その結果、より効果的にシリコーンゴムの引裂強度を高めることができる。
 上記ビニル基含有直鎖状オルガノポリシロキサン(A1)は、ビニル基含有量が分子内に2個以上のビニル基を有し、かつ0.1モル%以下である第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)を含むことが好ましい。
 また上記ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、ビニル基含有量が分子内に2個以上のビニル基を有し、かつ0.1モル%以下である第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)を単独で用いてもよいが、ビニル基含有量が0.1超~15モル%である第2のビニル基含有直鎖状オルガノポリシロキサン(A1-2)等を含む2種以上を組み合わせて用いてもよい。
<<オルガノハイドロジェンポリシロキサン(B)>>
 本実施形態のシリコーンゴム系硬化性組成物は、オルガノハイドロジェンポリシロキサン(B)を含んでもよい。
 オルガノハイドロジェンポリシロキサン(B)は、直鎖構造を有する直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐構造を有する分岐状オルガノハイドロジェンポリシロキサン(B2)とに分類され、これらのうちのいずれか一方または双方を含むことができる。
 直鎖状オルガノハイドロジェンポリシロキサン(B1)は、直鎖構造を有し、かつ、Siに水素が直接結合した構造(≡Si-H)を有し、ビニル基含有オルガノポリシロキサン(A)のビニル基の他、シリコーンゴム系硬化性組成物に配合される成分が有するビニル基とヒドロシリル化反応し、これらの成分を架橋する重合体である。
 直鎖状オルガノハイドロジェンポリシロキサン(B1)の分子量は特に限定されないが、例えば、重量平均分子量が20000以下であるのが好ましく、1000以上、10000以下であることがより好ましい。
 なお、直鎖状オルガノハイドロジェンポリシロキサン(B1)の重量平均分子量は、例えばクロロホルムを展開溶媒としたGPC(ゲル透過クロマトグラフィー)におけるポリスチレン換算により測定することができる。
 また、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、通常、ビニル基を有しないものであるのが好ましい。これにより、直鎖状オルガノハイドロジェンポリシロキサン(B1)の分子内において架橋反応が進行するのを的確に防止することができる。
 以上のような直鎖状オルガノハイドロジェンポリシロキサン(B1)としては、例えば、下記式(2)で表される構造を有するものが好ましく用いられる。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、これらを組み合わせた炭化水素基、またはヒドリド基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられる。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。
 また、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、これらを組み合わせた炭化水素基、またはヒドリド基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられる。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。
 なお、式(2)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。Rについても同様である。ただし、複数のRおよびRのうち、少なくとも2つ以上がヒドリド基である。
 また、Rは炭素数1~8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~8のアリール基としては、例えば、フェニル基が挙げられる。複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。
 なお、式(2)中のR,R,Rの置換基としては、例えば、メチル基、ビニル基等が挙げられ、分子内の架橋反応を防止する観点から、メチル基が好ましい。
 さらに、m、nは、式(2)で表される直鎖状オルガノハイドロジェンポリシロキサン(B1)を構成する繰り返し単位の数であり、mは2~150の整数、nは2~150の整数である。好ましくは、mは2~100の整数、nは2~100の整数である。
 なお、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 分岐状オルガノハイドロジェンポリシロキサン(B2)は、分岐構造を有するため、架橋密度が高い領域を形成し、シリコーンゴムの系中の架橋密度の疎密構造形成に大きく寄与する成分である。また、上記直鎖状オルガノハイドロジェンポリシロキサン(B1)同様、Siに水素が直接結合した構造(≡Si-H)を有し、ビニル基含有オルガノポリシロキサン(A)のビニル基の他、シリコーンゴム系硬化性組成物に配合される成分のビニル基とヒドロシリル化反応し、これら成分を架橋する重合体である。
 また、分岐状オルガノハイドロジェンポリシロキサン(B2)の比重は、0.9~0.95の範囲である。
 さらに、分岐状オルガノハイドロジェンポリシロキサン(B2)は、通常、ビニル基を有しないものであるのが好ましい。これにより、分岐状オルガノハイドロジェンポリシロキサン(B2)の分子内において架橋反応が進行するのを的確に防止することができる。
 また、分岐状オルガノハイドロジェンポリシロキサン(B2)としては、下記平均組成式(c)で示されるものが好ましい。
 平均組成式(c)
   (H(R3-aSiO1/2(SiO4/2
(式(c)において、Rは一価の有機基、aは1~3の範囲の整数、mはH(R3-aSiO1/2単位の数、nはSiO4/2単位の数である)
 式(c)において、Rは一価の有機基であり、好ましくは、炭素数1~10の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。
 式(c)において、aは、ヒドリド基(Siに直接結合する水素原子)の数であり、1~3の範囲の整数、好ましくは1である。
 また、式(c)において、mはH(R3-aSiO1/2単位の数、nはSiO4/2単位の数である。
 分岐状オルガノハイドロジェンポリシロキサン(B2)は分岐状構造を有する。直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)は、その構造が直鎖状か分岐状かという点で異なり、Siの数を1とした時のSiに結合するアルキル基Rの数(R/Si)が、直鎖状オルガノハイドロジェンポリシロキサン(B1)では1.8~2.1、分岐状オルガノハイドロジェンポリシロキサン(B2)では0.8~1.7の範囲となる。
 なお、分岐状オルガノハイドロジェンポリシロキサン(B2)は、分岐構造を有しているため、例えば、窒素雰囲気下、1000℃まで昇温速度10℃/分で加熱した際の残渣量が5%以上となる。これに対して、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、直鎖状であるため、上記条件で加熱した後の残渣量はほぼゼロとなる。
 また、分岐状オルガノハイドロジェンポリシロキサン(B2)の具体例としては、下記式(3)で表される構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式(3)中、Rは炭素数1~8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基、もしくは水素原子である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~8のアリール基としては、例えば、フェニル基が挙げられる。Rの置換基としては、例えば、メチル基等が挙げられる。
 なお、式(3)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。
 また、式(3)中、「-O-Si≡」は、Siが三次元に広がる分岐構造を有することを表している。
 なお、分岐状オルガノハイドロジェンポリシロキサン(B2)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)において、Siに直接結合する水素原子(ヒドリド基)の量は、それぞれ、特に限定されない。ただし、シリコーンゴム系硬化性組成物において、ビニル基含有直鎖状オルガノポリシロキサン(A1)中のビニル基1モルに対し、直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)の合計のヒドリド基量が、0.5~5モルとなる量が好ましく、1~3.5モルとなる量がより好ましい。これにより、直鎖状オルガノハイドロジェンポリシロキサン(B1)および分岐状オルガノハイドロジェンポリシロキサン(B2)と、ビニル基含有直鎖状オルガノポリシロキサン(A1)との間で、架橋ネットワークを確実に形成させることができる。
<<シリカ粒子(C)>>
 本実施形態のシリコーンゴム系硬化性組成物は、シリカ粒子(C)を含む。
 シリカ粒子(C)としては、特に限定されないが、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ等が用いられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。シリカ粒子(C)は、シランカップリング剤(D)で表面処理されたシリカ粒子を1種または2種以上含んでもよい。
 シリカ粒子(C)は、例えば、BET法による比表面積が例えば、200m/g~500m/gであり、220m/g~400m/gであるのが好ましく、250m/g~400m/gであるのがより好ましい。
 また、シリカ粒子(C)の平均一次粒径は、例えば1~100nmであるのが好ましく、5~20nm程度であるのがより好ましい。
 シリカ粒子(C)として、かかる比表面積および平均粒径の範囲内であるものを用いることにより、形成されるシリコーンゴムの硬さや機械的強度の向上、特に引張強度の向上をさせることができる。
<<シランカップリング剤(D)>>
 本実施形態のシリコーンゴム系硬化性組成物は、シランカップリング剤(D)を含んでもよい。
 シランカップリング剤(D)は、加水分解性基を有することができる。加水分解基が水により加水分解されて水酸基になり、この水酸基がシリカ粒子(C)表面の水酸基と脱水縮合反応することで、シリカ粒子(C)の表面改質を行うことができる。
 シランカップリング剤(D)は、疎水性基を有するシランカップリング剤を含むことができる。疎水性基を有するシランカップリング剤として、トリメチルシリル基を有するシランカップリング剤を用いることができる。これにより、シリカ粒子(C)の表面にこの疎水性基が付与されるため、シリコーンゴム系硬化性組成物中ひいてはシリコーンゴム中において、シリカ粒子(C)の凝集力が低下(シラノール基による水素結合による凝集が少なくなる)し、その結果、シリコーンゴム系硬化性組成物中のシリカ粒子の分散性が向上すると推測される。これにより、シリカ粒子とゴムマトリックスとの界面が増加し、シリカ粒子の補強効果が増大する。さらに、ゴムのマトリックス変形の際、マトリックス内でのシリカ粒子の滑り性が向上すると推測される。そして、シリカ粒子(C)の分散性の向上及び滑り性の向上によって、シリカ粒子(C)によるシリコーンゴムの機械的強度(例えば、引張強度や引裂強度など)が向上する。
 また、シランカップリング剤(D)は、ビニル基を有するシランカップリング剤を含むことができる。これにより、シリカ粒子(C)の表面にビニル基が導入される。そのため、シリコーンゴム系硬化性組成物の硬化の際、ネットワーク(架橋構造)が形成される際に、シリカ粒子(C)が有するビニル基も、架橋反応に関与するため、ネットワーク中にシリカ粒子(C)も取り込まれるようになる。これにより、形成されるシリコーンゴムの低硬度化および高モジュラス化を図ることができる。
 上記シランカップリング剤(D)としては、疎水性基を有するシランカップリング剤およびビニル基を有するシランカップリング剤を併用することができる。これにより、ゴム中におけるシリカの分散性およびゴムの架橋性のバランスを図ることができる。シランカップリング剤(D)は、これらを単独で用いても2種以上を組み合わせて用いてもよい。
 シランカップリング剤(D)としては、例えば、下記式(4)で表わされるものが挙げられる。
-Si-(X)4-n・・・(4)
 上記式(4)中、nは1~3の整数を表わす。Yは、疎水性基、親水性基またはビニル基を有するもののうちのいずれかの官能基を表わし、nが1の時は疎水性基であり、nが2または3の時はその少なくとも1つが疎水性基である。Xは、加水分解性基を表わす。
 疎水性基は、炭素数1~6のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基であり、例えば、メチル基、エチル基、プロピル基、フェニル基等が挙げられ、中でも、特に、メチル基が好ましい。
 また、親水性基は、例えば、水酸基、スルホン酸基、カルボキシル基またはカルボニル基等が挙げられ、中でも、特に、水酸基が好ましい。なお、親水性基は、官能基として含まれていてもよいが、シランカップリング剤(D)に疎水性を付与するという観点からは含まれていないのが好ましい。
 さらに、加水分解性基は、メトキシ基、エトキシ基のようなアルコキシ基、クロロ基またはシラザン基等が挙げられ、中でも、シリカ粒子(C)との反応性が高いことから、シラザン基が好ましい。なお、加水分解性基としてシラザン基を有するものは、その構造上の特性から、上記式(4)中の(Y-Si-)の構造を2つ有するものとなる。
 上記式(4)で表されるシランカップリング剤(D)の具体例は、次の通りである。
 上記官能基として疎水性基を有するものとして、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシランのようなアルコキシシラン;メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシランのようなクロロシラン;ヘキサメチルジシラザンが挙げられる。この中でも、ヘキサメチルジシラザン、トリメチルクロロシラン、トリメチルメトキシシラン、及びトリメチルエトキシシランからなる群から選択される一種以上を含むトリメチルシリル基を有するシランカップリング剤が好ましい。
 上記官能基としてビニル基を有するものとして、例えば、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシランのようなアルコキシシラン;ビニルトリクロロシラン、ビニルメチルジクロロシランのようなクロロシラン;ジビニルテトラメチルジシラザンが挙げられる。この中でも、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ジビニルテトラメチルジシラザン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、及びビニルメチルジメトキシシランからなる群から選択される一種以上を含むビニル基含有オルガノシリル基を有するシランカップリング剤が好ましい。
 またシランカップリング剤(D)がトリメチルシリル基を有するシランカップリング剤およびビニル基含有オルガノシリル基を有するシランカップリング剤の2種を含む場合、疎水性基を有するものとしてはヘキサメチルジシラザン、ビニル基を有するものとしてはジビニルテトラメチルジシラザンを含むことが好ましい。
 トリメチルシリル基を有するシランカップリング剤(D1)およびビニル基含有オルガノシリル基を有するシランカップリング剤(D2)を併用する場合、(D1)と(D2)の比率は、特に限定されないが、例えば、重量比で(D1):(D2)が、1:0.001~1:0.35、好ましくは1:0.01~1:0.20、より好ましくは1:0.03~1:0.15である。このような数値範囲とすることにより、シリコーンゴム中の所望のシリコーンゴムの物性を得ることができる。具体的には、ゴム中におけるシリカの分散性およびゴムの架橋性のバランスを図ることができる。
<<白金または白金化合物(E)>>
 本実施形態のシリコーンゴム系硬化性組成物は、白金または白金化合物(E)を含んでもよい。
 白金または白金化合物(E)は、硬化の際の触媒として作用する触媒成分である。白金または白金化合物(E)の添加量は触媒量である。
 白金または白金化合物(E)としては、公知のものを使用することができ、例えば、白金黒、白金をシリカやカーボンブラック等に担持させたもの、塩化白金酸または塩化白金酸のアルコール溶液、塩化白金酸とオレフィンの錯塩、塩化白金酸とビニルシロキサンとの錯塩等が挙げられる。
 なお、白金または白金化合物(E)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、本実施形態のシリコーンゴム系硬化性組成物は、有機過酸化物(H)を含んでもよい。
 有機過酸化物(H)は、硬化の際の触媒として作用する成分である。有機過酸化物(H)の添加量は触媒量である。有機過酸化物(H)は、オルガノハイドロジェンポリシロキサン(B)および白金または白金化合物(E)に代えて、またはオルガノハイドロジェンポリシロキサン(B)および白金または白金化合物(E)と有機過酸化物(H)を併用して使用することができる。
 有機過酸化物(H)としては、例えば、ケトンパーオキサイド類、ジアシルパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、パーオキシエステル類およびパーオキシジカーボネート類が挙げられ、具体的には、例えばベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,6-ヘキサンジオール-ビス-t-ブチルパーオキシカーボネート等が挙げられる。
<<水(F)>>
 また、本実施形態のシリコーンゴム系硬化性組成物には、上記成分(A)~(E)、(H)以外に、水(F)が含まれていてもよい。
 水(F)は、シリコーンゴム系硬化性組成物に含まれる各成分を分散させる分散媒として機能するとともに、シリカ粒子(C)とシランカップリング剤(D)との反応に寄与する成分である。そのため、シリコーンゴム中において、シリカ粒子(C)とシランカップリング剤(D)とを、より確実に互いに連結したものとすることができ、全体として均一な特性を発揮することができる。
 さらに、本実施形態のシリコーンゴム系硬化性組成物は、上記(A)~(F)成分の他、シリコーンゴム系硬化性組成物に配合される公知の添加成分を含有していてもよい。例えば、珪藻土、酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム、酸化セリウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ガラスウール、マイカ等が挙げられる。その他、分散剤、顔料、染料、帯電防止剤、酸化防止剤、難燃剤、熱伝導性向上剤等を適宜配合することができる。
 なお、シリコーンゴム系硬化性組成物において、各成分の含有割合は特に限定されないが、例えば、以下のように設定される。
 本実施形態において、シリカ粒子(C)の含有量の上限は、ビニル基含有オルガノポリシロキサン(A)の合計量100重量部に対し、例えば、60重量部以下でもよく、好ましくは50重量部以下でもよく、さらに好ましくは35重量部以下でもよい。これにより、硬さや引張強度等の機械的強度のバランスを図ることができる。また、シリカ粒子(C)の含有量の下限は、ビニル基含有オルガノポリシロキサン(A)の合計量100重量部に対し、特に限定されないが、例えば、10重量部以上でもよい。
 シランカップリング剤(D)は、ビニル基含有オルガノポリシロキサン(A)100重量部に対し、例えば、シランカップリング剤(D)が5重量部以上100重量部以下の割合で含有するのが好ましく、5重量部以上40重量部以下の割合で含有するのがより好ましい。これにより、シリカ粒子(C)のシリコーンゴム系硬化性組成物中における分散性を確実に向上させることができる。
 オルガノハイドロジェンポリシロキサン(B)の含有量は、具体的にビニル基含有オルガノポリシロキサン(A)及びシリカ粒子(C)及びシランカップリング剤(D)の合計量100重量部に対して、例えば、0.5重量部以上20重量部以下の割合で含有することが好ましく、0.8重量部以上15重量部以下の割合で含有するのがより好ましい。(B)の含有量が前記範囲内であることで、より効果的な硬化反応ができる可能性がある。
 白金または白金化合物(E)の含有量は、触媒量を意味し、適宜設定することができるが、具体的にビニル基含有オルガノポリシロキサン(A)、シリカ粒子(C)、シランカップリング剤(D)の合計量100重量部に対して、本成分中の白金族金属が重量単位で0.01~1000ppmとなる量であり、好ましくは、0.1~500ppmとなる量である。白金または白金化合物(E)の含有量を上記下限以上とすることにより、得られるシリコーンゴム組成物を十分硬化させることができる。白金または白金化合物(E)の含有量を上記上限以下とすることにより、得られるシリコーンゴム組成物の硬化速度を向上させることができる。
 有機過酸化物(H)の含有量は、触媒量を意味し、適宜設定することができるが、具体的にビニル基含有オルガノポリシロキサン(A)、シリカ粒子(C)、シランカップリング剤(D)の合計量100重量部に対して、例えば、0.001重量部以上、好ましくは0.005重量部以上、より好ましくは0.01重量部以上である。これにより、硬化物としての最低限の強度を担保することができる。また、有機過酸化物(H)の含有量の上限は、ビニル基含有オルガノポリシロキサン(A)、シリカ粒子(C)、シランカップリング剤(D)の合計量100重量部に対して、例えば、10重量部以下、好ましくは5重量部以下、より好ましくは3重量部以下である。これにより、副生成物による影響を抑制できる。
 さらに、水(F)を含有する場合、その含有量は、適宜設定することができるが、具体的には、シランカップリング剤(D)100重量部に対して、例えば、10~100重量部の範囲であるのが好ましく、30~70重量部の範囲であるのがより好ましい。これにより、シランカップリング剤(D)とシリカ粒子(C)との反応をより確実に進行させることができる。
<シリコーンゴムの製造方法>
 次に、本実施形態のシリコーンゴムの製造方法について説明する。
 本実施形態のシリコーンゴムの製造方法としては、シリコーンゴム系硬化性組成物を調製し、このシリコーンゴム系硬化性組成物を硬化させることによりシリコーンゴムを得ることができる。
 以下、詳述する。
 まず、シリコーンゴム系硬化性組成物の各成分を、任意の混練装置により、均一に混合してシリコーンゴム系硬化性組成物を調製する。
[1]たとえば、ビニル基含有オルガノポリシロキサン(A)と、シリカ粒子(C)と、シランカップリング剤(D)とを所定量秤量し、その後、任意の混練装置により、混練することで、これら各成分(A)、(C)、(D)を含有する混練物を得る。
 なお、この混練物は、予めビニル基含有オルガノポリシロキサン(A)とシランカップリング剤(D)とを混練し、その後、シリカ粒子(C)を混練(混合)して得るのが好ましい。これにより、ビニル基含有オルガノポリシロキサン(A)中におけるシリカ粒子(C)の分散性がより向上する。
 また、この混練物を得る際には、水(F)を必要に応じて、各成分(A)、(C)、および(D)の混練物に添加するようにしてもよい。これにより、シランカップリング剤(D)とシリカ粒子(C)との反応をより確実に進行させることができる。
 さらに、各成分(A)、(C)、(D)の混練は、第1温度で加熱する第1ステップと、第2温度で加熱する第2ステップとを経るようにするのが好ましい。これにより、第1ステップにおいて、シリカ粒子(C)の表面をカップリング剤(D)で表面処理することができるとともに、第2ステップにおいて、シリカ粒子(C)とカップリング剤(D)との反応で生成した副生成物を混練物中から確実に除去することができる。その後、必要に応じて、得られた混練物に対して、成分(A)を添加し、更に混練してもよい。これにより、混練物の成分のなじみを向上させることができる。
 第1温度は、例えば、40~120℃程度であるのが好ましく、例えば、60~90℃程度であるのがより好ましい。第2温度は、例えば、130~210℃程度であるのが好ましく、例えば、160~180℃程度であるのがより好ましい。
 また、第1ステップにおける雰囲気は、窒素雰囲気下のような不活性雰囲気下であるのが好ましく、第2ステップにおける雰囲気は、減圧雰囲気下であるのが好ましい。
 さらに、第1ステップの時間は、例えば、0.3~1.5時間程度であるのが好ましく、0.5~1.2時間程度であるのがより好ましい。第2ステップの時間は、例えば、0.7~3.0時間程度であるのが好ましく、1.0~2.0時間程度であるのがより好ましい。
 第1ステップおよび第2ステップを、上記のような条件とすることで、前記効果をより顕著に得ることができる。
[2]次に、オルガノハイドロジェンポリシロキサン(B)と、白金または白金化合物(E)とを所定量秤量し、その後、任意の混練装置を用いて、上記工程[1]で調製した混練物に、各成分(B)、(E)を混練することで、シリコーンゴム系硬化性組成物を得る。得られたシリコーンゴム系硬化性組成物は溶剤を含むペーストであってもよい。
 なお、この各成分(B)、(E)の混練の際には、予め上記工程[1]で調製した混練物とオルガノハイドロジェンポリシロキサン(B)とを、上記工程[1]で調製した混練物と白金または白金化合物(E)とを混練し、その後、それぞれの混練物を混練するのが好ましい。これにより、ビニル基含有オルガノポリシロキサン(A)とオルガノハイドロジェンポリシロキサン(B)との反応を進行させることなく、各成分(A)~(E)をシリコーンゴム系硬化性組成物中に確実に分散させることができる。
 各成分(B)、(E)を混練する際の温度は、ロール設定温度として、例えば、10~70℃程度であるのが好ましく、25~30℃程度であるのがより好ましい。
 さらに、混練する時間は、例えば、5分~1時間程度であるのが好ましく、10~40分程度であるのがより好ましい。
 上記工程[1]および上記工程[2]において、温度を上記範囲内とすることにより、ビニル基含有オルガノポリシロキサン(A)とオルガノハイドロジェンポリシロキサン(B)との反応の進行をより的確に防止または抑制することができる。また、上記工程[1]および上記工程[2]において、混練時間を上記範囲内とすることにより、各成分(A)~(E)をシリコーンゴム系硬化性組成物中により確実に分散させることができる。
 なお、各工程[1]、[2]において使用される混練装置としては、特に限定されないが、例えば、ニーダー、2本ロール、バンバリーミキサー(連続ニーダー)、加圧ニーダー等を用いることができる。
 また、本工程[2]において、混練物中に1-エチニルシクロヘキサノールのような反応抑制剤を添加するようにしてもよい。これにより、混練物の温度が比較的高い温度に設定されたとしても、ビニル基含有オルガノポリシロキサン(A)とオルガノハイドロジェンポリシロキサン(B)との反応の進行をより的確に防止または抑制することができる。
 また、本工程[2]において、オルガノハイドロジェンポリシロキサン(B)と白金または白金化合物(E)に代えて、またはオルガノハイドロジェンポリシロキサン(B)と白金または白金化合物(E)と併用して、有機過酸化物(H)を添加してもよい。有機過酸化物(H)を混練する際の温度、時間等の好ましい条件、使用する装置については、前記オルガノハイドロジェンポリシロキサン(B)と白金または白金化合物(E)とを混練する際の条件と同様である。
[3]次に、シリコーンゴム系硬化性組成物を硬化させることによりシリコーンゴムを形成する。
 本実施形態において、シリコーンゴム系硬化性組成物の硬化工程は、例えば、100~250℃で1~30分間加熱(1次硬化)した後、200℃で1~4時間ポストベーク(2次硬化)することによって行われる。
 以上のような工程を経ることで、本実施形態のシリコーンゴム(シリコーンゴム系硬化性組成物の硬化物)が得られる。
 本実施形態の構造体の製造方法は、シリコーンゴム系硬化性組成物を硬化する工程と、シリコーンゴム系硬化性組成物の硬化物を備える構造体を得る工程と、有するように構成されてもよい。
 かかる構造体を得る工程において、構造体が、上記のウェアラブルデバイスであってもよい。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、参考形態の例を付記する。
1. ビニル基含有オルガノポリシロキサン(A)と、
 シリカ粒子(C)と、を含む、シリコーンゴム系硬化性組成物であって、
 当該シリコーンゴム系硬化性組成物の硬化物からなる試験片を用いて、JIS K 6260に準拠したデマチャ式耐屈曲試験を行い、下記の手順に基づいて測定される、屈曲回数が5万回のときの前記試験片における切り込み長さ変化率(L/L)が、1.1以上11.5以下である、
シリコーンゴム系硬化性組成物。
(手順)
 当該シリコーンゴム系硬化性組成物を、170℃、10MPaで15分間プレスし、続いて、200℃で4時間加熱し、JIS K 6260に準拠して所定形状の試験片を作製する。
 得られた試験片の中央において、幅方向に対して平行に、前記試験片を貫通する所定長さの切り込みを入れる。初期の切り込み長さをLとする。
 続いて、切り込み付きの前記試験片を試験機のつかみ具間に設置し、下記の試験条件に基づいて、デマチャ式耐屈曲試験を行い、所定の屈曲回数後の前記試験片における切り込み長さ(mm)を測定する。
 切り込み長さは、デマチャ式耐屈曲試験を3回行ったときの平均値とする。この切り込み長さの平均値をLとする。
 切り込み長さ変化率を、式:L/Lに基づいて算出する。
(試験条件)
・試験規格:JIS K 6260準拠
・試験機:デマチャ屈曲き裂試験機
・試験温度:23±2℃
・つかみ具間最大距離:75mm
・往復運動距離:57mm
・試験速度:300±10回/分
・試験数:n=3
2. 1.に記載のシリコーンゴム系硬化性組成物であって、
 上記の手順に基づいたデマチャ式耐屈曲試験を行い、屈曲回数が1万回のときの前記試験片における切り込み長さをLとしたとき、L/Lが、1.0以上10.0以下を満たす、
シリコーンゴム系硬化性組成物。
3. 1.または2.に記載のシリコーンゴム系硬化性組成物であって、
 前記シリカ粒子(C)の含有量が、前記ビニル基含有オルガノポリシロキサン(A)の全体100重量部に対して、10重量部以上35重量部以下である、シリコーンゴム系硬化性組成物。
4. 1.~3.のいずれか一つに記載のシリコーンゴム系硬化性組成物であって、
 下記の条件で測定される、当該シリコーンゴム系硬化性組成物の引裂強度が、25N/mm以上である、シリコーンゴム系硬化性組成物。
(引裂強度の測定条件)
 当該シリコーンゴム系硬化性組成物の硬化物を用いてクレセント形試験片を作製し、得られたクレセント形試験片について、25℃、JIS K6252(2001)に準拠して、引裂強度を測定する。
5. 1.~4.のいずれか一つに記載のシリコーンゴム系硬化性組成物であって、
 下記の条件で測定される、当該シリコーンゴム系硬化性組成物の硬化物の破断伸びが、500%以上であるシリコーンゴム系硬化性組成物。
(破断伸びの測定条件)
 当該シリコーンゴム系硬化性組成物の硬化物を用いてJIS K6251(2004)に準拠してダンベル状3号形試験片を作製し、25℃における、得られたダンベル状3号形試験片の破断伸びを測定する。破断伸びは、[チャック間移動距離(mm)]÷[初期チャック間距離(60mm)]×100で計算する。単位は%である。
6. 1.~5.のいずれか一つに記載のシリコーンゴム系硬化性組成物であって、
 下記の条件で測定される、当該シリコーンゴム系硬化性組成物の硬化物の、デュロメータ硬さAが、10以上70以下である、シリコーンゴム系硬化性組成物。
(デュロメータ硬さAの測定条件)
 当該シリコーンゴム系硬化性組成物の硬化物を用いてシート状試験片を作製し、得られたシート状試験片について、25℃、JIS K6253(1997)に準拠して、デュロメータ硬さAを測定する。
7. 1.~6.のいずれか一つに記載のシリコーンゴム系硬化性組成物であって、
 下記の条件で測定される、当該シリコーンゴム系硬化性組成物の硬化物の引張強度が、5.0MPa以上である、シリコーンゴム系硬化性組成物。
(引張強度の測定条件)
 当該シリコーンゴム系硬化性組成物の硬化物を用いてダンベル状3号形試験片を作製し、得られたダンベル状3号形試験片について、25℃、JIS K6251(2004)に準拠して、引張強度を測定する。
8. 1.~7.のいずれか一つに記載のシリコーンゴム系硬化性組成物であって、
 BET法で測定された前記シリカ粒子(C)比表面積は、200m/g以上500m/g以下である、シリコーンゴム系硬化性組成物。
9. 1.~8.のいずれか一つに記載のシリコーンゴム系硬化性組成物であって、
 屈曲性部材用の成形体を形成するために用いる、シリコーンゴム系硬化性組成物。
10. 1.~9.のいずれか一つに記載のシリコーンゴム系硬化性組成物であって、
 ウェアラブルデバイス用の成形体を形成するために用いる、シリコーンゴム系硬化性組成物。
11. 1.~10.のいずれか一つに記載のシリコーンゴム系硬化性組成物の硬化物を備える構造体。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
 表1に示す実施例および比較例で用いた原料成分を以下に示す。
(ビニル基含有オルガノポリシロキサン(A))
・ビニル基含有直鎖状オルガノポリシロキサン(A1-1a):合成スキーム1により合成したビニル基含有ジメチルポリシロキサン(式(1-1)で表わされる構造でR(末端)のみがビニル基である構造)
・ビニル基含有直鎖状オルガノポリシロキサン(A1-1b):合成スキーム2により合成したビニル基含有ジメチルポリシロキサン(式(1-1)で表わされる構造でR(末端)のみがビニル基である構造)
・ビニル基含有直鎖状オルガノポリシロキサン(A1-2a):合成スキーム3により合成したビニル基含有ジメチルポリシロキサン(式(1-1)で表わされる構造でR(末端)およびR(鎖内)がビニル基である構造)
・ビニル基含有直鎖状オルガノポリシロキサン(A1-2b):合成スキーム4により合成したビニル基含有ジメチルポリシロキサン(式(1-1)で表わされる構造でR(末端)およびR(鎖内)がビニル基である構造)
(オルガノハイドロジェンポリシロキサン(B))
モメンティブ社製:「TC-25D」
(シリカ粒子(C))
・シリカ粒子(C-1):シリカ微粒子(粒径7nm、比表面積300m/g)、日本アエロジル社製、「AEROSIL 300」
・シリカ粒子(C-2):シリカ微粒子(粒径16nm、比表面積110m/g)、日本アエロジル社製、「AEROSIL R972」
(シランカップリング剤(D))
・シランカップリング剤(D-1):ヘキサメチルジシラザン(HMDZ)、Gelest社製、「HEXAMETHYLDISILAZANE(SIH6110.1)」
・シランカップリング剤(D-2):ジビニルテトラメチルジシラザン、Gelest社製、「1,3-DIVINYLTETRAMETHYLDISILAZANE(SID4612.0)」
(白金または白金化合物(E))
モメンティブ社製:「TC-25A」
(ビニル基含有オルガノポリシロキサン(A)の合成)
[合成スキーム1:ビニル基含有直鎖状オルガノポリシロキサン(A1-1a)の合成]
 下記式(5)にしたがって、低ビニル基含有直鎖状オルガノポリシロキサン(A1-1a)を合成した。
 すなわち、Arガス置換した、冷却管および攪拌翼を有する300mLセパラブルフラスコに、オクタメチルシクロテトラシロキサン74.7g(252mmol)、カリウムシリコネート0.1gを入れ、昇温し、120℃で30分間攪拌した。なお、この際、粘度の上昇が確認できた。
 その後、155℃まで昇温し、3時間攪拌を続けた。そして、3時間後、1,3-ジビニルテトラメチルジシロキサン0.1g(0.6mmol)を添加し、さらに、155℃で4時間攪拌した。
 さらに、4時間後、トルエン250mLで希釈した後、水で3回洗浄した。洗浄後の有機層をメタノール1.5Lで数回洗浄することで、再沈精製し、オリゴマーとポリマーを分離した。得られたポリマーを60℃で一晩減圧乾燥し、低ビニル基含有直鎖状オルガノポリシロキサン(A1-1a)を合成した(Mn=2.2×10、Mw=4.8×10)。また、H-NMRスペクトル測定により算出したビニル基含有量は0.039モル%であった。
Figure JPOXMLDOC01-appb-C000006
[合成スキーム2:ビニル基含有直鎖状オルガノポリシロキサン(A1-1b)の合成]
 上記(A1-1a)の合成工程において、155℃まで昇温した後の反応時間を3.5時間に変えたこと以外は、(A1-1a)の合成工程と同様にすることで低ビニル基含有直鎖状オルガノポリシロキサン(A1-1b)を合成した(Mn=2.7×10、Mw=5.2×10)。また、H-NMRスペクトル測定により算出したビニル基含有量は0.031モル%であった。
[合成スキーム3:ビニル基含有直鎖状オルガノポリシロキサン(A1-2a)の合成]
 上記(A1-1a)の合成工程において、オクタメチルシクロテトラシロキサン75.3g(254mmol)に加えて2,4,6,8-テトラメチル2,4,6,8-テトラビニルシクロテトラシロキサン0.12g(0.35mmol)を用いたこと以外は、(A1-1a)の合成工程と同様にすることで、下記式(6)のように、ビニル基含有直鎖状オルガノポリシロキサン(A1-2a)を合成した(Mn=2.5×10、Mw=5.0×10)。また、H-NMRスペクトル測定により算出したビニル基含有量は0.130モル%であった。
Figure JPOXMLDOC01-appb-C000007
[合成スキーム4:ビニル基含有直鎖状オルガノポリシロキサン(A1-2b)の合成]
 上記(A1-2a)の合成工程において、オクタメチルシクロテトラシロキサンの添加量を73.2g(247mmol)、2,4,6,8-テトラメチル2,4,6,8-テトラビニルシクロテトラシロキサンの添加量を2.61g(7.6mmol)に変えたこと以外は、(A1-2a)の合成工程と同様にすることで、高ビニル基含有直鎖状オルガノポリシロキサン(A1-2b)を合成した(Mn=2.5×10、Mw=5.4×10)。また、H-NMRスペクトル測定により算出したビニル基含有量は2.826モル%であった。
<シリコーンゴム系硬化性組成物の調製>
(試験例1~5)
 下記の表1に示す割合で、ビニル基含有オルガノポリシロキサン(A)、シランカップリング剤(D)および水(F)の混合物を予め混練し、その後、混合物にシリカ粒子(C)を加えてさらに混練し、混練物(シリコーンゴムコンパウンド)を得た。
 ここで、シリカ粒子(C)添加後の混練は、カップリング反応のために窒素雰囲気下、60~90℃の条件下で1時間混練する第1ステップと、副生成物(アンモニア)の除去のために減圧雰囲気下、160~180℃の条件下で2時間混練する第2ステップとを経ることで行い、その後、冷却し、20分間混練した。
 続いて、得られた混練物(シリコーンゴムコンパウンド)100重量部に、下記の表1に示す割合で、オルガノハイドロジェンポリシロキサン(B)(TC-25D)および白金または白金化合物(E)(TC-25A)を加えて、ロールで混練し、シリコーンゴム系硬化性組成物を得た。
Figure JPOXMLDOC01-appb-T000008
<デマチャ式耐屈曲試験>
 得られたシリコーンゴム系硬化性組成物について、下記の手順で測定されるデマチャ式耐屈曲試験を行い、屈曲回数が1万回、3万回、5万回のときの試験片における切り込み長さを測定した。評価結果を表2に示す。
(試験片の作成)
 JIS K 6260に準拠して、得られたシリコーンゴム系硬化性組成物を図1に示す金型10の成形空間30中に入れ、170℃、10MPaで15分間プレスし、続いて、200℃で4時間加熱して、溝60付きの短冊状の試験片50(幅:25mm、長さ:150mm、厚み:6.3mm)を作製した。得られた試験片50の溝60の中央において、幅方向に対して平行に、刃を用いて、長さ:2.03mmの切り込み70を入れ、切り込み付きの試験片50を得た(図2)。切り込み70は、試験片50を厚み方向に貫通するものであった。
 図1(a)は、金型10の上面図、図1(b)は、金型10のA-A矢視の側面断面図を表す。金型10は、成形空間30の底面に曲面状の凸部20を備える。
 また、図2(a)は、切り込み70が形成された溝60付きの試験片50の上面図、図2(b)は、試験片50のB-B矢視の側面断面図を表す。
(手順)
 図3に示すように、試験機100(デマチャ屈曲き裂試験機)の固定つかみ具102と可動つかみ具104との間に、上記(試験片の作成)で得られた試験片50を保持させた。
 具体的には、2つのつかみ具間距離を最大にし、つかみ具間の中心に試験片50の溝60の中心が位置するように、試験片50をつかみ具に取り付けた。このとき、試験片50を、余分なひずみを与えないように平面状に保持させた。
 続いて、下記の試験条件に基づいて、固定つかみ具102を基準に、可動つかみ具104を上下方向に往復運動させた。可動つかみ具104が、最大距離から往復運動距離まで固定つかみ具102に近づき(試験片50が屈曲し)、その後、可動つかみ具104が最大距離まで離れる(試験片50が平面状)まで、を1往復運動(1サイクル)とし、そのサイクルの回数(回)を屈曲回数とした。
 屈曲回数が1万回、3万回、5万回のときの試験片50における切り込み70の長さ(mm)を、デジタルノギス(ミツトヨ社製)を用いて測定した。
 なお、切り込み70の長さは、上記デマチャ式耐屈曲試験を3回行って測定された、3つの測定値の平均値とした。結果を表2に示す。
 切り込み長さ変化率を式:L/Lに基づいて算出した。
 Lは、デマチャ式耐屈曲試験前の初期の切り込み長さとし、L、L、Lは、それぞれ、デマチャ式耐屈曲試験後、屈曲回数が1万回、3万回、5万回のときの切り込み長さの平均値とした。
(試験条件)
・試験規格:JIS K 6260(2017)準拠
・試験機:低温槽付きデマチャ屈曲き裂試験機(安田製作所製)
・試験温度:23±2℃
・つかみ具間最大距離:75mm(図3中のDmax
・往復運動距離:57mm(図3中のDmv
・状態調節:1回目の試験開始前、23℃10分静置した。2回目、3回目の試験開始前、同じ条件の環境中に5分間静置した。
・試験速度:300±10回/分
・試験数:n=3
 上記<デマチャ式耐屈曲試験>において、屈曲回数が1万回、3万回、5万回のときの試験片が破断した場合は25.0mmとした。
Figure JPOXMLDOC01-appb-T000009
 得られた切り込み長さの結果を踏まえ、試験例1,2,3を実施例1,2,3とし、試験例4,5を比較例1,2とした。
 得られた各実施例・各比較例のシリコーンゴム系硬化性組成物について、以下の評価項目に基づいて評価を行った。
<シリコーンゴムの作製>
 得られたシリコーンゴム系硬化性組成物を、170℃、10MPaで15分間プレスし、厚さ1mmのシート状に成形すると共に、1次硬化した。続いて、200℃で4時間加熱し、2次硬化した。
 以上により、シート状シリコーンゴム(シリコーンゴム系硬化性組成物の硬化物)を得た。
 硬度については、2つのサンプルを用いて、各サンプルでn=5で測定を行い、計10個の測定の平均値を測定値とした。引張応力、破断伸びについては、3つのサンプルで行い、3つの平均値を測定値とした。引裂強度については、5つのサンプルで行い、5つの平均値を測定値とした。
 それぞれの平均値を表2に示す。
(硬度)
 得られた厚さ1mmのシート状シリコーンゴムを6枚積層し、6mmの試験片を作製した。得られた試験片に対して、25℃において、JIS K6253(1997)に準拠してタイプAデュロメータ硬さを測定した。
(引裂強度)
 得られた厚さ1mmのシート状シリコーンゴムを用いて、JIS K6252(2001)に準拠して、クレセント形試験片を作製し、25℃で、得られたクレセント形試験片の引裂強度を測定した。単位は、N/mmである。
(引張強度)
 得られた厚さ1mmのシート状シリコーンゴムを用いて、JIS K6251(2004)に準拠して、ダンベル状3号形試験片を作製し、25℃で、得られたダンベル状3号形試験片の引張強度を測定した。単位はMPaである。
(破断伸び)
 得られた厚さ1mmのシート状シリコーンゴムを用いて、JIS K6251(2004)に準拠して、ダンベル状3号形試験片を作製し、25℃で、得られたダンベル状3号形試験片の破断伸びを測定した。破断伸びは、[チャック間移動距離(mm)]÷[初期チャック間距離(60mm)]×100で計算した。単位は%である。
(耐久性の評価)
 各実施例および各比較例で得られたシリコーンゴム系硬化性組成を用いて、170℃で5分、200℃で4時間の条件で硬化し、厚み:1mm×内径:2mmを有する筒状部材(チューブ)を作成した。得られた筒状部材にスチール針金(TRUSCO製 スチール針金 小巻タイプ 線径1.6mm×15m)を挿入した耐久性試験サンプルを準備して、耐久試験を行った。具体的には、耐久性試験サンプルの90°曲げ試験を100回繰り返して実施し、耐久性を判断した。試験後に外観異常がなかった筒状部材を○、試験後に亀裂や破損があるものを×とした。
 また、切り込みを入れなかった試験片を使用した以外は上記<デマチャ式耐屈曲試験>と同様にして、試験片が破断するまでの屈曲回数を測定した。実施例1~3において、1万回のときでも、10万回のときでも破断が見られず、破断までの屈曲回数が、実施例3、2、1の順で大きい結果を示した。
 この中でも、実施例1、2は、実施例3と比べて耐屈曲亀裂性に優れることが分かった。
 実施例1~3のシリコーンゴム系硬化性組成物は、比較例1、2と比べて、その硬化物が繰り返し屈曲変形に対する耐久性に優れることが分かった。このような実施例1~3のシリコーンゴム系硬化性組成物の成形体は、屈曲性部材、好ましくは配線や配線基板を有するウェアラブルデバイス、より好ましくはウェアラブルデバイスの配線基板に好適に用いることができる。
 この出願は、2019年3月8日に出願された日本出願特願2019-043023号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (17)

  1.  ビニル基含有オルガノポリシロキサン(A)と、
     シリカ粒子(C)と、を含む、シリコーンゴム系硬化性組成物であって、
     当該シリコーンゴム系硬化性組成物の硬化物からなる試験片を用いて、JIS K 6260に準拠したデマチャ式耐屈曲試験を行い、下記の手順に基づいて測定される、屈曲回数が5万回のときの前記試験片における切り込み長さ変化率(L/L)が、1.1以上11.5以下である、
    シリコーンゴム系硬化性組成物。
    (手順)
     当該シリコーンゴム系硬化性組成物を、170℃、10MPaで15分間プレスし、続いて、200℃で4時間加熱し、JIS K 6260に準拠して、幅:25mm、長さ:150mm、厚み:6.3mmを有する短冊状の試験片を作製する。
     得られた試験片の中央において、幅方向に対して平行に、前記試験片を貫通する長さが2.03mmの切り込みを入れる。初期の切り込み長さをLとする。
     続いて、切り込み付きの前記試験片を試験機のつかみ具間に設置し、下記の試験条件に基づいて、デマチャ式耐屈曲試験を行い、所定の屈曲回数後の前記試験片における切り込み長さ(mm)を測定する。
     切り込み長さは、デマチャ式耐屈曲試験を3回行ったときの平均値とする。この切り込み長さの平均値をLとする。
     切り込み長さ変化率を、式:L/Lに基づいて算出する。
    (試験条件)
    ・試験規格:JIS K 6260準拠
    ・試験機:デマチャ屈曲き裂試験機
    ・試験温度:23±2℃
    ・つかみ具間最大距離:75mm
    ・往復運動距離:57mm
    ・試験速度:300±10回/分
    ・試験数:n=3
  2.  請求項1に記載のシリコーンゴム系硬化性組成物であって、
     上記の手順に基づいたデマチャ式耐屈曲試験を行い、屈曲回数が1万回のときの前記試験片における切り込み長さをLとしたとき、L/Lが、1.0以上10.0以下を満たす、
    シリコーンゴム系硬化性組成物。
  3.  請求項1または2に記載のシリコーンゴム系硬化性組成物であって、
     前記シリカ粒子(C)の含有量が、前記ビニル基含有オルガノポリシロキサン(A)の全体100重量部に対して、10重量部以上35重量部以下である、シリコーンゴム系硬化性組成物。
  4.  請求項1~3のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
     下記の条件で測定される、当該シリコーンゴム系硬化性組成物の引裂強度が、25N/mm以上である、シリコーンゴム系硬化性組成物。
    (引裂強度の測定条件)
     当該シリコーンゴム系硬化性組成物の硬化物を用いてクレセント形試験片を作製し、得られたクレセント形試験片について、25℃、JIS K6252(2001)に準拠して、引裂強度を測定する。
  5.  請求項1~4のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
     下記の条件で測定される、当該シリコーンゴム系硬化性組成物の硬化物の破断伸びが、500%以上であるシリコーンゴム系硬化性組成物。
    (破断伸びの測定条件)
     当該シリコーンゴム系硬化性組成物の硬化物を用いてJIS K6251(2004)に準拠してダンベル状3号形試験片を作製し、25℃における、得られたダンベル状3号形試験片の破断伸びを測定する。破断伸びは、[チャック間移動距離(mm)]÷[初期チャック間距離(60mm)]×100で計算する。単位は%である。
  6.  請求項1~5のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
     下記の条件で測定される、当該シリコーンゴム系硬化性組成物の硬化物の、デュロメータ硬さAが、10以上70以下である、シリコーンゴム系硬化性組成物。
    (デュロメータ硬さAの測定条件)
     当該シリコーンゴム系硬化性組成物の硬化物を用いてシート状試験片を作製し、得られたシート状試験片について、25℃、JIS K6253(1997)に準拠して、デュロメータ硬さAを測定する。
  7.  請求項1~6のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
     下記の条件で測定される、当該シリコーンゴム系硬化性組成物の硬化物の引張強度が、5.0MPa以上である、シリコーンゴム系硬化性組成物。
    (引張強度の測定条件)
     当該シリコーンゴム系硬化性組成物の硬化物を用いてダンベル状3号形試験片を作製し、得られたダンベル状3号形試験片について、25℃、JIS K6251(2004)に準拠して、引張強度を測定する。
  8.  請求項1~7のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
     BET法で測定された前記シリカ粒子(C)比表面積は、200m/g以上500m/g以下である、シリコーンゴム系硬化性組成物。
  9.  請求項1~8のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
     前記ビニル基含有オルガノポリシロキサン(A)が、下記一般式(1-1)で表されるビニル基含有直鎖状オルガノポリシロキサン(A1)を含む、シリコーンゴム系硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1-1)中、Rはビニル基、Rは、メチル基またはビニル基であり、mは、0~2000の整数、nは1000~10000の整数である。)
  10.  請求項1~9のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
     前記ビニル基含有オルガノポリシロキサン(A)が、ビニル基量が0.4モル%以下のビニル基含有直鎖状オルガノポリシロキサン(A1)を含む、シリコーンゴム系硬化性組成物。
  11.  請求項1~10のいずれか一項に記載のシリコーンゴム系硬化性組成物であって、
     ウェアラブルデバイスの構成の一部を形成するために用いる、シリコーンゴム系硬化性組成物。
  12.  請求項11に記載のシリコーンゴム系硬化性組成物であって、
     ウェアラブルデバイスが有する配線基板中の配線及び/又は基板を形成するために用いる、シリコーンゴム系硬化性組成物。
  13.  請求項11または請求項12に記載のシリコーンゴム系硬化性組成物であって
     前記ウェアラブルデバイスが、身体や衣服の湾曲面に装着可能なものである、シリコーンゴム系硬化性組成物。
  14.  請求項1~13のいずれか一項に記載のシリコーンゴム系硬化性組成物の硬化物を備える構造体。
  15.  配線と基板とを含む配線基板を有しており、
     前記配線基板中の前記配線及び/または基板の一部が、請求項1~13のいずれか一項に記載のシリコーンゴム系硬化性組成物の硬化物で構成される、ウェアラブルデバイス。
  16.  請求項1~13のいずれか一項に記載のシリコーンゴム系硬化性組成物を硬化する工程と、
     前記シリコーンゴム系硬化性組成物の硬化物を備える構造体を得る工程と、を有する構造体の製造方法。
  17.  請求項16に記載の構造体の製造方法であって、
     前記構造体を得る工程において、前記構造体がウェアラブルデバイスである、構造体の製造方法。
PCT/JP2020/003513 2019-03-08 2020-01-30 シリコーンゴム系硬化性組成物、構造体、ウェアラブルデバイス、及び構造体の製造方法 WO2020183969A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/434,764 US20220162395A1 (en) 2019-03-08 2020-01-30 Silicone rubber-based curable composition,structure, wearable device, and method for manufacturing structure
KR1020217031952A KR20210137111A (ko) 2019-03-08 2020-01-30 실리콘 고무계 경화성 조성물, 구조체, 웨어러블 디바이스, 및 구조체의 제조 방법
CN202080019327.7A CN113614175A (zh) 2019-03-08 2020-01-30 硅酮橡胶系固化性组合物、结构体、佩戴式设备及结构体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019043023A JP2020143259A (ja) 2019-03-08 2019-03-08 シリコーンゴム系硬化性組成物、およびそれを用いたウェアラブルデバイス
JP2019-043023 2019-03-08

Publications (1)

Publication Number Publication Date
WO2020183969A1 true WO2020183969A1 (ja) 2020-09-17

Family

ID=72353303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003513 WO2020183969A1 (ja) 2019-03-08 2020-01-30 シリコーンゴム系硬化性組成物、構造体、ウェアラブルデバイス、及び構造体の製造方法

Country Status (5)

Country Link
US (1) US20220162395A1 (ja)
JP (1) JP2020143259A (ja)
KR (1) KR20210137111A (ja)
CN (1) CN113614175A (ja)
WO (1) WO2020183969A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158518A (ja) * 1996-12-02 1998-06-16 Shin Etsu Chem Co Ltd 自動車ジョイントカバーブーツ用シリコーンゴム組成物
JP2018070866A (ja) * 2016-10-21 2018-05-10 住友ベークライト株式会社 シリコーンゴム系硬化性組成物および成形体
JP2018090774A (ja) * 2016-11-30 2018-06-14 住友ベークライト株式会社 樹脂製可動部材および構造体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222849A (ja) 2007-03-13 2008-09-25 Shin Etsu Chem Co Ltd 耐疲労性に優れた硬化物を与える硬化性シリコーンゴム組成物及びその硬化物
CN104583327B (zh) * 2012-07-25 2019-09-24 住友电木株式会社 硅橡胶系固化性组合物
JP2016002103A (ja) * 2014-06-13 2016-01-12 信越化学工業株式会社 医療用バルーンカテーテル製造用付加硬化性シリコーンゴム組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158518A (ja) * 1996-12-02 1998-06-16 Shin Etsu Chem Co Ltd 自動車ジョイントカバーブーツ用シリコーンゴム組成物
JP2018070866A (ja) * 2016-10-21 2018-05-10 住友ベークライト株式会社 シリコーンゴム系硬化性組成物および成形体
JP2018090774A (ja) * 2016-11-30 2018-06-14 住友ベークライト株式会社 樹脂製可動部材および構造体

Also Published As

Publication number Publication date
CN113614175A (zh) 2021-11-05
US20220162395A1 (en) 2022-05-26
KR20210137111A (ko) 2021-11-17
JP2020143259A (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP6881478B2 (ja) 樹脂製可動部材および構造体
JP7230326B2 (ja) 樹脂製可動部材および構造体
JP7183534B2 (ja) シリコーンゴム系硬化性組成物および成形体
JP2022036155A (ja) 樹脂製可動部材および医療機器
JP7102763B2 (ja) エラストマーおよび成形体
WO2020183969A1 (ja) シリコーンゴム系硬化性組成物、構造体、ウェアラブルデバイス、及び構造体の製造方法
JP2020143270A (ja) シリコーンゴム系硬化性組成物、およびその構造体
JP6844637B2 (ja) シリコーンゴム系硬化性組成物、およびその構造体
CN112262179B (zh) 弹性体及成型体
JP2024071514A (ja) シリコーンゴム系硬化性組成物、およびその構造体
JP2021088688A (ja) シリコーンゴム、及び構造体
JP7275473B2 (ja) エラストマーおよび成形体
JP7043867B2 (ja) 樹脂製可動部材およびロボット
JP2021081029A (ja) シリコーンゴム系硬化性組成物、及びそれを用いた流体駆動型アクチュエータ
JP2023085568A (ja) エラストマーおよびそれを用いたウェアラブルデバイス
JP2021138895A (ja) エラストマー、及びウェアラブルデバイス
JP2021116362A (ja) シリコーンゴム系硬化性組成物、及びアクチュエータ
JP7434827B2 (ja) シリコーンゴム系硬化性組成物、及びそれを用いた流体駆動型アクチュエータ
JP2021080397A (ja) シリコーンゴム系硬化性組成物、及びそれを用いた流体駆動型アクチュエータ
JP7490966B2 (ja) シリコーンゴム系硬化性組成物、及びアクチュエータ
JP7124534B2 (ja) シリコーンゴム系硬化性組成物および構造体
JP2021116363A (ja) シリコーンゴム系硬化性組成物、及び流体駆動型アクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20768958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031952

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20768958

Country of ref document: EP

Kind code of ref document: A1