WO2020181606A1 - 一种红土镍矿的浸出方法 - Google Patents

一种红土镍矿的浸出方法 Download PDF

Info

Publication number
WO2020181606A1
WO2020181606A1 PCT/CN2019/082183 CN2019082183W WO2020181606A1 WO 2020181606 A1 WO2020181606 A1 WO 2020181606A1 CN 2019082183 W CN2019082183 W CN 2019082183W WO 2020181606 A1 WO2020181606 A1 WO 2020181606A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel ore
leaching
laterite nickel
laterite
acid
Prior art date
Application number
PCT/CN2019/082183
Other languages
English (en)
French (fr)
Inventor
许开华
李琴香
朱少文
丁留亮
Original Assignee
荆门市格林美新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荆门市格林美新材料有限公司 filed Critical 荆门市格林美新材料有限公司
Publication of WO2020181606A1 publication Critical patent/WO2020181606A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of metallurgy, and more specifically, to a method for leaching laterite nickel ore.
  • Laterite nickel ore also called laterite ore
  • Laterite nickel ore are surface weathered crust deposits formed by weathering-leaching-sedimentation of nickel sulfide rocks.
  • 60% of the world's nickel-containing resources are laterite-type nickel ore, and the associated metals are mainly iron and cobalt. Due to differences in geographic location, climatic conditions and degree of weathering, the types of red nickel ore around the world are not exactly the same.
  • Highly weathered layer usually contains most of the nickel finely distributed in finely divided goethite particles. This layer is usually called limonite, which generally contains a high proportion of iron; the lighter weathered layer generally contains more nickel
  • the ground is contained in various magnesium silicate minerals. There may be many other nickel-containing silicate minerals in the incompletely weathered zone.
  • the partially weathered zone with high magnesium content is usually called saprolite.
  • the laterite nickel ore is usually treated by hydrometallurgy.
  • Hydrometallurgy can be divided into ammonia leaching process, pressure acid leaching process and atmospheric acid leaching process according to the different leaching solutions.
  • the ammonia leaching process in the wet process is not suitable for treating laterite nickel oxide ore with high copper and cobalt content, but only for treating laterite ore on the surface.
  • the atmospheric pressure acid leaching process is carried out at a lower temperature than pressure acid leaching and under atmospheric pressure.
  • the pressurized acid leaching process is carried out in a high-temperature corrosion-resistant autoclave. Although this method has a high leaching rate and low impurity content in the liquid after leaching, the process has high requirements on equipment and operators on the production line. , High production and operation costs.
  • the first object of the present invention is to provide a method for leaching laterite nickel ore.
  • the leaching method combines atmospheric prepreg and oxygen pressure leaching to effectively reduce acid consumption while ensuring that the leaching rate of nickel is higher than 90%, while reducing equipment requirements, and reducing equipment investment and equipment maintenance. cost.
  • the leaching method includes the following steps:
  • step 2) Add concentrated sulfuric acid to the laterite nickel ore slurry obtained in step 1), and pre-soak for at least 2 hours at normal pressure at not less than 75°C; wherein the mass ratio of acid to dry ore is at least 1:1;
  • step 3 Add the laterite nickel ore slurry obtained in step 1) to the reaction system after step 2) pre-soaking, and perform oxygen pressure leaching to obtain a leachate.
  • the coarse laterite nickel ore slurry can be obtained by slurrying the laterite nickel ore that meets the conditions with water.
  • the laterite nickel ore slurry is preferably obtained from the laterite nickel ore after raw material pretreatment. Specifically, the laterite nickel ore is subjected to pretreatments such as washing, crushing and ball milling to obtain laterite nickel ore slurry with a particle size of less than 0.074 mm.
  • the laterite nickel ore may be one or more of limonite type laterite nickel ore, transition layer laterite nickel ore, and saprolite type laterite nickel ore.
  • the method of the present invention can be applied to any type of laterite nickel ore described above. In the actual production process, the price of each type of laterite nickel ore is different.
  • the method of the present invention can be used to treat laterite nickel ore with lower raw material price, and a nickel leaching solution with a high leaching rate is also obtained, effectively reducing the cost.
  • a thickener is used to concentrate the laterite nickel ore slurry with a particle size of less than 0.074 mm to a laterite nickel ore slurry with an underflow concentration greater than 25%.
  • the acid in the acid-to-ore ratio in step 1) refers to the 98% concentrated sulfuric acid consumed.
  • the acid to mineral ratio is 1:1 to 1.8:1, more preferably (1.3 to 1.8):1.
  • the temperature of the normal pressure prepreg is preferably 85 to 90°C, and the normal pressure prepreg time is preferably 2 to 4 hours.
  • atmospheric prepreg is usually carried out in an atmospheric reaction tank, that is, the laterite nickel ore slurry obtained in step 1) can be pumped into an atmospheric reaction tank for atmospheric prepreg.
  • step 3 before the oxygen pressure leaching after the atmospheric prepreg, it further includes adding sodium salt and/or potassium salt to the prepreg slurry to promote the hydrolysis of iron and aluminum.
  • the sodium salt may be one or more of sodium sulfate, sodium chloride, and sodium lignosulfonate
  • the potassium salt may be potassium sulfate and/or potassium chloride.
  • the addition amount of sodium salt and/or potassium salt is 10-100 kg/t dry ore.
  • the mass ratio between the remaining acid in the reaction system after step 2) and the laterite nickel slurry obtained in step 1) is (0.15 ⁇ 0.5) :1, preferably (0.2-0.5):1.
  • the acid content is calculated based on the total amount of hydrogen ions in the system.
  • the total pressure of the oxygen pressure leaching is 0.3 MPa to 1.5 MPa, and may further be 0.6 MPa to 0.8 MPa.
  • the temperature of the oxygen pressure leaching is 120-180°C and the time is 0.5-4h; further preferably, the temperature of the oxygen pressure leaching is 150°C and the time is 2h.
  • the oxygen pressure leaching of the present invention is performed in an oxygen autoclave. Put the laterite nickel ore or other substances that need to be added in the batching tank. When the reaction in the atmospheric reaction tank is over, move the system after the reaction and the materials in the batching tank into the oxygen autoclave for oxygen pressure leaching .
  • the leaching method includes the following steps:
  • step 2) Pump the laterite-nickel ore slurry obtained in step 1) into the atmospheric reaction tank, add concentrated sulfuric acid, and pre-soak for at least 2 hours at atmospheric pressure at not less than 75°C; wherein the mass ratio of acid to dry ore is at least 1: 1;
  • step 3 The reaction system after pre-soaking in step 2) is transferred into an oxygen autoclave, and the laterite nickel ore slurry obtained in step 1) is leached at 120-180° C. and a total pressure of 0.3 MPa-1.5 Mpa to obtain a leachate.
  • the present invention combines normal pressure prepreg and oxygen pressure leaching, under the premise that the leaching rate of nickel is higher than 90%, the acid consumption is effectively reduced (acid consumption is reduced by at least 30%), and the requirements for equipment are also reduced. Reduce equipment investment and equipment maintenance costs, and reduce production and operation costs.
  • This embodiment provides a method for leaching laterite nickel ore, including the following steps:
  • laterite nickel ore is washed, crushed and ball milled to obtain laterite nickel ore slurry with a particle size of less than 0.074 mm;
  • the laterite nickel ore slurry with a particle size of less than 0.074mm is concentrated by a thickener to a laterite nickel ore slurry with an underflow concentration greater than 25%;
  • step (3) Pump the laterite-nickel ore slurry obtained in step (2) into an atmospheric reaction tank, add 98% concentrated sulfuric acid according to an acid: dry ore mass ratio of 1.3, and pre-soak at 85°C for 4 hours at atmospheric pressure;
  • step (3) Move the presoaked reaction system in step (3) into an oxygen autoclave, and add the laterite nickel ore slurry of step (1) to it (calculate the acid content based on the total amount of hydrogen ions in the system, and the acid-to-ore ratio is 0.2:1) and anhydrous sodium sulfate (addition of 30kg/t dry ore), leached at 150°C and a total pressure of 0.7Mpa for 2h to obtain the leachate.
  • the leaching rate of nickel in the leaching solution obtained in this embodiment is as high as 97%, the content of iron is less than 5g/L, the content of aluminum is less than 5g/L, and the iron removal rate is >92%.
  • This embodiment provides a method for leaching laterite nickel ore, including the following steps:
  • laterite nickel ore is washed, crushed and ball milled to obtain laterite nickel ore slurry with a particle size of less than 0.074 mm;
  • the laterite nickel ore slurry with a particle size of less than 0.074mm is concentrated by a thickener to a laterite nickel ore slurry with an underflow concentration greater than 25%;
  • step (3) Pump the laterite-nickel ore slurry obtained in step (2) into the atmospheric reaction tank, add 98% concentrated sulfuric acid according to the acid: dry ore mass ratio of 1.8, and pre-soak at 90°C for 2 hours at atmospheric pressure;
  • step (3) Move the presoaked reaction system in step (3) into an oxygen autoclave, and add the laterite nickel ore slurry of step (1) to it (calculate the acid content based on the total amount of hydrogen ions in the system, and the acid-to-ore ratio is 0.5:1) and anhydrous potassium sulfate (addition of 30kg/t dry ore), leached at 150°C and a total pressure of 0.8Mpa for 2h to obtain the leachate.
  • the leaching rate of nickel in the leaching solution obtained in this embodiment is greater than 97%, the content of iron is less than 5g/L, the content of aluminum is less than 5g/L, and the iron removal rate is >90%.
  • This embodiment provides a method for leaching laterite nickel ore, including the following steps:
  • laterite nickel ore is washed, crushed and ball milled to obtain laterite nickel ore slurry with a particle size of less than 0.074 mm;
  • the laterite nickel ore slurry with a particle size of less than 0.074mm is concentrated by a thickener to a laterite nickel ore slurry with an underflow concentration greater than 25%;
  • step (3) Pump the laterite-nickel ore slurry obtained in step (2) into the atmospheric reaction tank, add 98% concentrated sulfuric acid according to the acid: dry ore mass ratio of 1.3, and pre-soak at 85°C for 2 hours at atmospheric pressure;
  • step (3) Move the presoaked reaction system in step (3) into an oxygen autoclave, and add the laterite nickel ore slurry of step (1) to it (calculate the acid content based on the total amount of hydrogen ions in the system, and the acid-to-ore ratio is 0.2:1) and anhydrous sodium chloride (adding amount of 30kg/t dry ore), leaching at 150°C, total pressure of 0.6Mpa for 2h to obtain the leachate.
  • the leaching rate of nickel in the leaching solution obtained in this embodiment is greater than 97%, the content of iron is less than 5g/L, the content of aluminum is less than 5g/L, and the iron removal rate is >92%.
  • This embodiment provides a method for leaching laterite nickel ore, including the following steps:
  • laterite nickel ore is washed, crushed and ball milled to obtain laterite nickel ore slurry with a particle size of less than 0.074 mm;
  • the laterite nickel ore slurry with a particle size of less than 0.074mm is concentrated by a thickener to a laterite nickel ore slurry with an underflow concentration greater than 25%;
  • step (3) Pump the laterite-nickel ore slurry obtained in step (2) into an atmospheric reaction tank, add 98% concentrated sulfuric acid according to an acid: dry ore mass ratio of 1.1, and pre-soak at 75°C for 4 hours at atmospheric pressure;
  • step (3) Move the presoaked reaction system in step (3) into an oxygen autoclave, and add the laterite nickel ore slurry of step (1) to it (calculate the acid content based on the total amount of hydrogen ions in the system, and the acid-to-ore ratio is 0.5:1) and anhydrous sodium sulfate (adding 10kg/t dry ore), leaching at 120°C and a total pressure of 0.3Mpa for 0.5h to obtain the leachate.
  • the leaching rate of nickel in the leaching solution obtained in this embodiment is greater than 90%, the content of iron is less than 5 g/L, the content of aluminum is less than 5 g/L, and the iron removal rate is greater than 90%.
  • This embodiment provides a method for leaching laterite nickel ore, including the following steps:
  • laterite nickel ore is washed, crushed and ball milled to obtain laterite nickel ore slurry with a particle size of less than 0.074 mm;
  • the laterite nickel ore slurry with a particle size of less than 0.074mm is concentrated by a thickener to a laterite nickel ore slurry with an underflow concentration greater than 25%;
  • step (3) Pump the laterite-nickel ore slurry obtained in step (2) into an atmospheric reaction tank, add 98% concentrated sulfuric acid according to an acid: dry ore mass ratio of 1.8, and pre-soak at 75°C for 2 hours at atmospheric pressure;
  • step (3) Move the presoaked reaction system in step (3) into an oxygen autoclave, and add the laterite nickel ore slurry of step (1) to it (calculate the acid content based on the total amount of hydrogen ions in the system, and the acid-to-ore ratio is 0.5:1) and anhydrous potassium sulfate (addition of 30kg/t dry ore), leached at 180°C and a total pressure of 1.2Mpa for 2h to obtain the leachate.
  • the leaching rate of nickel in the leaching solution obtained in this embodiment is greater than 95%, the content of iron is less than 5g/L, the content of aluminum is less than 5g/L, and the iron removal rate is >92%.
  • This comparative example provides a method for leaching laterite nickel ore, which includes the following steps:
  • laterite nickel ore is washed, crushed and ball milled to obtain laterite nickel ore slurry with a particle size of less than 0.074 mm;
  • the laterite nickel ore slurry with a particle size of less than 0.074mm is concentrated by a thickener to a laterite nickel ore slurry with an underflow concentration greater than 25%;
  • step (3) Pump the laterite-nickel ore slurry obtained in step (2) into an atmospheric reaction tank, add 98% concentrated sulfuric acid according to an acid: dry ore mass ratio of 1.3, and pre-soak at 65°C for 4 hours at atmospheric pressure;
  • step (3) Move the presoaked reaction system in step (3) into an oxygen autoclave, and add the laterite nickel ore slurry of step (1) to it (calculate the acid content based on the total amount of hydrogen ions in the system, and the acid-to-ore ratio is 1:1) and anhydrous sodium sulfate (adding amount of 30kg/t dry ore), leaching for 2h at 150°C and a total pressure of 0.7Mpa to obtain the leachate.
  • the leaching rate of nickel in the leaching solution obtained in this example was 79%.
  • This comparative example provides a method for leaching laterite nickel ore, which includes the following steps:
  • laterite nickel ore is washed, crushed and ball milled to obtain laterite nickel ore slurry with a particle size of less than 0.074 mm;
  • the laterite nickel ore slurry with a particle size of less than 0.074mm is concentrated by a thickener to a laterite nickel ore slurry with an underflow concentration of 25%;
  • step (3) Pump the laterite-nickel ore slurry obtained in step (2) into an atmospheric reaction tank, add 98% concentrated sulfuric acid according to an acid: dry ore mass ratio of 1.1, and pre-soak at 70°C for 2 hours at atmospheric pressure;
  • step (3) Move the presoaked reaction system in step (3) into an oxygen autoclave, and add the laterite nickel ore slurry of step (1) to it (calculate the acid content based on the total amount of hydrogen ions in the system, and the acid-to-ore ratio is 0.2:1) and anhydrous sodium sulfate (addition of 30kg/t dry ore), leached at 150°C and a total pressure of 0.7Mpa for 2h to obtain the leachate.
  • the leaching rate of nickel in the leaching solution obtained in this example was 75%.
  • the invention provides a method for leaching laterite nickel ore.
  • the leaching method includes the following steps: 1) Concentrating the laterite nickel ore slurry with a particle size of less than 0.074mm to a laterite nickel ore slurry with an underflow concentration greater than 25%; 2) adding concentrated sulfuric acid to the laterite nickel ore slurry obtained in step 1) , Pre-soaking at normal pressure at not less than 75°C for at least 2h; wherein, the mass ratio of acid to dry ore is at least 1:1; 3) Add the obtained in step 1) to the reaction system after step 2) prepreg The laterite nickel ore slurry is subjected to oxygen pressure leaching to obtain the leachate.
  • the present invention combines normal pressure prepreg and oxygen pressure leaching, and under the premise of ensuring that the leaching rate of nickel is higher than 90%, the acid consumption is effectively reduced, while the requirements for equipment are reduced, and the equipment investment and equipment maintenance cost are reduced. , Has good economic value and application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种红土镍矿的浸出方法。该浸出方法包括如下步骤:1)将粒径小于0.074mm的红土镍矿原矿浆浓缩至底流浓度大于25%的红土镍矿矿浆;2)向步骤1)得到的红土镍矿矿浆中加入浓硫酸,在不低于75℃下常压预浸至少2h;其中,酸与干矿的质量比至少为1:1;3)向步骤2)预浸后的反应体系中配入步骤1)得到的红土镍矿矿浆,进行氧压浸出,得浸出液。该方法使用常压预浸和氧压浸出,在保证镍的浸出率高于90%的前提下,有效地降低了酸耗,同时降低了对设备的要求,减少了设备投资和设备维护成本。

Description

一种红土镍矿的浸出方法
交叉引用
本申请要求2019年3月13日提交的专利名称为“一种红土镍矿的浸出方法”的第201910187876.4号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明涉及冶金技术领域,更具体地,涉及一种红土镍矿的浸出方法。
背景技术
红土镍矿(也称红土矿)资源为硫化镍矿岩体风化-淋滤-沉积形成的地表风化壳性矿床。世界上60%的含镍资源为红土型镍矿,伴生金属主要是铁和钴。由于存在地理位位置、气候条件以及风化程度的差异,世界各地的红镍矿类型不完全相同。高度风化层通常将其含有的大部分镍细微分布在细碎的针铁矿颗粒中,该层通常称为褐铁矿,它一般含有高比例的铁;风化较轻的层所含有镍一般更多地包含于各种硅酸镁矿物中,不完全风化带中可能有很多其他含有镍的硅酸盐矿物,部分风化的高含镁带通常称为腐泥土。
在现有技术中,通常采取湿法冶金处理红土镍矿,湿法冶金按其浸出溶液的不同,可分为氨浸工艺、加压酸浸工艺和常压酸浸工艺。其中,湿法工艺中的氨浸法处理工艺不适合处理含铜和含钴高的红土氧化镍矿,只适合于处理表层的红土矿。常压酸浸工艺是在温度比加压酸浸出低且在常压下进行的,该工艺对设备的投资较少,但是由于其优选浸出铁、铝、镁、锰和镍,为了得到高于90%的镍的浸提率,必需加入大量的硫酸来溶解剩余的消耗元素,这会极大的增加硫酸消耗量。加压酸浸工艺是在高温下耐腐蚀的高压釜中进行,该方法虽然具有较高的浸出率,浸出后液杂质含量低,但是该工艺对设备要求高,对生产线上操作人员的要求高,生产运营成本高。
发明内容
本发明的第一目的在于提供一种红土镍矿的浸出方法。该浸出方法结合使用常压预浸和氧压浸出,在保证镍的浸出率高于90%的前提下,有效地降低了酸耗,同时降低了对设备的要求,减少了设备投资和设备维护成本。
该浸出方法包括如下步骤:
1)将粒径小于0.074mm的红土镍矿原矿浆浓缩至底流浓度大于25%的红土镍矿矿浆;
2)向步骤1)得到的红土镍矿矿浆中加入浓硫酸,在不低于75℃下常压预浸至少2h;其中,酸与干矿的质量比至少为1:1;
3)向步骤2)预浸后的反应体系中配入步骤1)得到的红土镍矿矿浆,进行氧压浸出,得浸出液。
红土镍矿粗矿浆可以将满足条件的红土镍矿加水浆化得到,在实际生产过程中,红土镍矿矿浆优选是由红土镍矿经原料预处理后得到的。其中,具体为:将红土镍矿进行洗矿、破碎以及球磨等预处理后得到粒径小于0.074mm的红土镍矿矿浆。
在本发明一个优选实施方式中,红土镍矿可以为褐铁矿型红土镍矿、过渡层红土镍矿、腐泥土型红土镍矿中的一种或多种。本发明的方法可以适用于上述任一种类型的红土镍矿。在实际工艺生产中,每种类型的红土镍矿的价格不同,可以使用本发明的方法对原料价格较低的红土镍矿进行处理,同样得到高浸出率的镍浸出液,有效地降低了成本。
在本发明一个优选实施方式中,步骤1)中使用浓密机将粒径小于0.074mm的红土镍矿矿浆浓缩至底流浓度大于25%的红土镍矿矿浆。
其中,步骤1)中的酸矿比中的酸是指消耗的浓度为98%的浓硫酸。在本发明一个优选实施方式中,步骤2)中,所述酸矿比为1:1~1.8:1,进一步优选为(1.3~1.8):1。其中,为了进一步提高镍的浸出率,常压预浸的温度优选为85~90℃,常压预浸时间优选为2~4h。在生产工艺中,常压 预浸通常在常压反应槽中进行,即可以将步骤1)得到的红土镍矿矿浆泵入常压反应槽中,进行常压预浸。
在本发明一个优选实施方式中,步骤3)中,在常压预浸之后氧压浸出之前,还包括在预浸浆料中加入钠盐和/或钾盐以促进铁、铝的水解。其中,钠盐可以为硫酸钠、氯化钠、木质磺酸钠中的一种或多种,钾盐可以为硫酸钾和/或氯化钾。其中,钠盐和/或钾盐的加入量为10~100kg/t干矿。
在本发明一个优选实施方式中,步骤3)中,步骤2)预浸后的反应体系中余留的酸与配入的步骤1)得到的红土镍矿矿浆的质量比为(0.15~0.5):1,优选为(0.2~0.5):1。其中,以体系中氢离子的总量计算酸的含量。
在本发明一个优选实施方式中,步骤3)中,所述氧压浸出的总压为0.3MPa~1.5Mpa,可以进一步为0.6MPa~0.8Mpa。
在本发明一个优选实施方式中,所述氧压浸出的温度为120~180℃,时间为0.5~4h;进一步优选地是,所述氧压浸出的温度为150℃,时间为2h。其中,本发明的氧压浸出在氧压釜中进行。将需要加入的红土镍矿或是其它物质置于配料槽中,当常压反应槽中的反应结束后,将反应结束后的体系与配料槽中的物质移入氧压釜中,进行氧压浸出。
在本发明一个优选实施方式中,该浸出方法包括如下步骤:
1)将粒径小于0.074mm的红土镍矿粗矿浆经浓密机浓缩至底流浓度大于25%的红土镍矿矿浆;
2)将步骤1)得到的红土镍矿矿浆泵入常压反应槽中,加入浓硫酸,不低于75℃下常压预浸至少2h;其中,酸与干矿的质量比至少为1:1;
3)将步骤2)预浸后的反应体系移入氧压釜中,配入步骤1)得到的红土镍矿矿浆,在120~180℃、总压为0.3MPa~1.5Mpa浸出,得浸出液。
本发明结合使用常压预浸和氧压浸出,在保证镍的浸出率高于90%的前提下,有效地降低了酸耗(酸耗至少降低30%),同时降低了对设备 的要求,减少了设备投资和设备维护成本,降低生产运营成本。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
若未特别指明,实施例中所用技术手段为本领域技术人员所熟知的常规手段,所用原料均为市售商品。
实施例1
本实施例提供了一种红土镍矿的浸出方法,包括如下步骤:
(1)将红土镍矿进行洗矿、破碎以及球磨等预处理后得到粒径小于0.074mm的红土镍矿矿浆;
(2)将粒径小于0.074mm的红土镍矿矿浆经浓密机浓缩至底流浓度大于25%的红土镍矿矿浆;
(3)将步骤(2)得到的红土镍矿矿浆泵入常压反应槽中,按酸:干矿质量比为1.3加入98%浓硫酸,在85℃下常压预浸4h;
(4)将步骤(3)预浸后的反应体系移入氧压釜中,向其中加入步骤(1)的红土镍矿矿浆(以体系中氢离子的总量计算酸的含量,酸矿比为0.2:1)和无水硫酸钠(加入量为30kg/t干矿),在150℃、总压为0.7Mpa浸出2h,得浸出液。
本实施例得到的浸出液中镍的浸出率高达97%,铁的含量小于5g/L,铝的含量小于5g/L,除铁率>92%。
实施例2
本实施例提供了一种红土镍矿的浸出方法,包括如下步骤:
(1)将红土镍矿进行洗矿、破碎以及球磨等预处理后得到粒径小于0.074mm的红土镍矿矿浆;
(2)将粒径小于0.074mm的红土镍矿矿浆经浓密机浓缩至底流浓度大于25%的红土镍矿矿浆;
(3)将步骤(2)得到的红土镍矿矿浆泵入常压反应槽中,按酸:干 矿质量比为1.8加入98%浓硫酸,在90℃下常压预浸2h;
(4)将步骤(3)预浸后的反应体系移入氧压釜中,向其中加入步骤(1)的红土镍矿矿浆(以体系中氢离子的总量计算酸的含量,酸矿比为0.5:1)和无水硫酸钾(加入量为30kg/t干矿),在150℃、总压为0.8Mpa浸出2h,得浸出液。
本实施例得到的浸出液中镍的浸出率大于97%,铁的含量小于5g/L,铝的含量小于5g/L,除铁率>90%。
实施例3
本实施例提供了一种红土镍矿的浸出方法,包括如下步骤:
(1)将红土镍矿进行洗矿、破碎以及球磨等预处理后得到粒径小于0.074mm的红土镍矿矿浆;
(2)将粒径小于0.074mm的红土镍矿矿浆经浓密机浓缩至底流浓度大于25%的红土镍矿矿浆;
(3)将步骤(2)得到的红土镍矿矿浆泵入常压反应槽中,按酸:干矿质量比为1.3加入98%浓硫酸,在85℃下常压预浸2h;
(4)将步骤(3)预浸后的反应体系移入氧压釜中,向其中加入步骤(1)的红土镍矿矿浆(以体系中氢离子的总量计算酸的含量,酸矿比为0.2:1)和无水氯化钠(加入量为30kg/t干矿),在150℃、总压为0.6Mpa浸出2h,得浸出液。
本实施例得到的浸出液中镍的浸出率大于97%,铁的含量小于5g/L,铝的含量小于5g/L,除铁率>92%。
实施例4
本实施例提供了一种红土镍矿的浸出方法,包括如下步骤:
(1)将红土镍矿进行洗矿、破碎以及球磨等预处理后得到粒径小于0.074mm的红土镍矿矿浆;
(2)将粒径小于0.074mm的红土镍矿矿浆经浓密机浓缩至底流浓度大于25%的红土镍矿矿浆;
(3)将步骤(2)得到的红土镍矿矿浆泵入常压反应槽中,按酸:干矿质量比为1.1加入98%浓硫酸,在75℃下常压预浸4h;
(4)将步骤(3)预浸后的反应体系移入氧压釜中,向其中加入步骤(1)的红土镍矿矿浆(以体系中氢离子的总量计算酸的含量,酸矿比为0.5:1)和无水硫酸钠(加入量为10kg/t干矿),在120℃、总压为0.3Mpa浸出0.5h,得浸出液。
本实施例得到的浸出液中镍的浸出率大于90%,铁的含量小于5g/L,铝的含量小于5g/L,除铁率>90%。
实施例5
本实施例提供了一种红土镍矿的浸出方法,包括如下步骤:
(1)将红土镍矿进行洗矿、破碎以及球磨等预处理后得到粒径小于0.074mm的红土镍矿矿浆;
(2)将粒径小于0.074mm的红土镍矿矿浆经浓密机浓缩至底流浓度大于25%的红土镍矿矿浆;
(3)将步骤(2)得到的红土镍矿矿浆泵入常压反应槽中,按酸:干矿质量比为1.8加入98%浓硫酸,在75℃下常压预浸2h;
(4)将步骤(3)预浸后的反应体系移入氧压釜中,向其中加入步骤(1)的红土镍矿矿浆(以体系中氢离子的总量计算酸的含量,酸矿比为0.5:1)和无水硫酸钾(加入量为30kg/t干矿),在180℃、总压为1.2Mpa浸出2h,得浸出液。
本实施例得到的浸出液中镍的浸出率大于95%,铁的含量小于5g/L,铝的含量小于5g/L,除铁率>92%。
对比例1
本对比例提供了一种红土镍矿的浸出方法,包括如下步骤:
(1)将红土镍矿进行洗矿、破碎以及球磨等预处理后得到粒径小于0.074mm的红土镍矿矿浆;
(2)将粒径小于0.074mm的红土镍矿矿浆经浓密机浓缩至底流浓度 大于25%的红土镍矿矿浆;
(3)将步骤(2)得到的红土镍矿矿浆泵入常压反应槽中,按酸:干矿质量比为1.3加入98%浓硫酸,在65℃下常压预浸4h;
(4)将步骤(3)预浸后的反应体系移入氧压釜中,向其中加入步骤(1)的红土镍矿矿浆(以体系中氢离子的总量计算酸的含量,酸矿比为1:1)和无水硫酸钠(加入量为30kg/t干矿),在150℃、总压为0.7Mpa浸出2h,得浸出液。
本实施例得到的浸出液中镍的浸出率为79%。
对比例2
本对比例提供了一种红土镍矿的浸出方法,包括如下步骤:
(1)将红土镍矿进行洗矿、破碎以及球磨等预处理后得到粒径小于0.074mm的红土镍矿矿浆;
(2)将粒径小于0.074mm的红土镍矿矿浆经浓密机浓缩至底流浓度为25%的红土镍矿矿浆;
(3)将步骤(2)得到的红土镍矿矿浆泵入常压反应槽中,按酸:干矿质量比为1.1加入98%浓硫酸,在70℃下常压预浸2h;
(4)将步骤(3)预浸后的反应体系移入氧压釜中,向其中加入步骤(1)的红土镍矿矿浆(以体系中氢离子的总量计算酸的含量,酸矿比为0.2:1)和无水硫酸钠(加入量为30kg/t干矿),在150℃、总压为0.7Mpa浸出2h,得浸出液。
本实施例得到的浸出液中镍的浸出率为75%。
最后,本发明的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明提供一种一种红土镍矿的浸出方法。该浸出方法包括如下步骤:1)将粒径小于0.074mm的红土镍矿原矿浆浓缩至底流浓度大于25% 的红土镍矿矿浆;2)向步骤1)得到的红土镍矿矿浆中加入浓硫酸,在不低于75℃下常压预浸至少2h;其中,酸与干矿的质量比至少为1:1;3)向步骤2)预浸后的反应体系中配入步骤1)得到的红土镍矿矿浆,进行氧压浸出,得浸出液。本发明结合使用常压预浸和氧压浸出,在保证镍的浸出率高于90%的前提下,有效地降低了酸耗,同时降低了对设备的要求,减少了设备投资和设备维护成本,具有较好的经济价值和应用前景。

Claims (9)

  1. 一种红土镍矿的浸出方法,其特征在于,包括如下步骤:
    1)将粒径小于0.074mm的红土镍矿原矿浆浓缩至底流浓度大于25%的红土镍矿矿浆;
    2)向步骤1)得到的红土镍矿矿浆中加入浓硫酸,在不低于75℃下常压预浸至少2h;其中,酸与干矿的质量比至少为1:1;
    3)向步骤2)预浸后的反应体系中配入步骤1)得到的红土镍矿矿浆,进行氧压浸出,得浸出液。
  2. 根据权利要求1所述的浸出方法,其特征在于,步骤1)中,所述粒径小于0.074mm的红土镍矿原矿浆是由红土镍矿经原料预处理后得到的;
    和/或,所述红土镍矿包括褐铁矿型红土镍矿、过渡层红土镍矿、腐泥土型红土镍矿中的一种或多种。
  3. 根据权利要求1或2所述的浸出方法,其特征在于,步骤2)中,所述酸与干矿的质量比为1:1~1.8:1;
    和/或,所述常压预浸的温度为85~90℃,常压预浸时间为2~4h。
  4. 根据权利要求1至3中任一项所述的浸出的方法,其特征在于,步骤3)中,在所述氧压浸出之前,还包括加入钠盐和/或钾盐以促进铁和铝的水解。
  5. 根据权利要求1至4中任一项所述的浸出的方法,其特征在于,步骤3)中,所述反应体系中酸与所述红土镍矿矿浆的质量比为(0.2~0.5):1。
  6. 根据权利要求1至5中任一项所述的浸出的方法,其特征在于,步骤3)中,还包括向步骤2)预浸后的反应体系加入钠盐和/或钾盐以促进铁、铝的水解;其中所述钠盐或者钾盐的加入量为10~100kg/t干矿。
  7. 根据权利要求1至6中任一项所述的浸出的方法,其特征在于,步骤3)中,所述氧压浸出的总压为0.3MPa~1.5Mpa,优选为0.6 MPa~0.8Mpa。
  8. 根据权利要求1至7中任一项所述的浸出的方法,其特征在于,步骤3)中,所述氧压浸出的温度为120~180℃,时间为0.5~4h;优选地是,所述氧压浸出的温度为150℃,时间为2h。
  9. 根据权利要求1至8中任一项所述的制备方法,其特征在于,包括如下步骤:
    1)将粒径小于0.074mm的红土镍矿粗矿浆经浓密机浓缩至底流浓度大于25%的红土镍矿矿浆;
    2)将步骤1)得到的红土镍矿矿浆泵入常压反应槽中,加入浓硫酸,不低于75℃下常压预浸至少2h;其中,酸与干矿的质量比至少为1:1;
    3)将步骤2)预浸后的反应体系移入氧压釜中,配入步骤1)得到的红土镍矿矿浆,在120~180℃、总压为0.3MPa~1.5Mpa浸出,得浸出液。
PCT/CN2019/082183 2019-03-13 2019-04-11 一种红土镍矿的浸出方法 WO2020181606A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910187876.4A CN109837386A (zh) 2019-03-13 2019-03-13 一种红土镍矿的浸出方法
CN201910187876.4 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020181606A1 true WO2020181606A1 (zh) 2020-09-17

Family

ID=66885683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082183 WO2020181606A1 (zh) 2019-03-13 2019-04-11 一种红土镍矿的浸出方法

Country Status (2)

Country Link
CN (1) CN109837386A (zh)
WO (1) WO2020181606A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100985B (zh) * 2019-12-30 2021-05-18 荆门市格林美新材料有限公司 一种含钠铵废液应用于红土镍矿的综合处理方法
CN113073207B (zh) * 2021-03-23 2022-07-22 中国恩菲工程技术有限公司 从高镁型红土镍矿中提取有价金属的方法
CN113526576B (zh) * 2021-05-31 2022-06-03 金川集团股份有限公司 一种高镍低酸低钠硫酸镍溶液的制取方法
CN116287683A (zh) * 2022-12-31 2023-06-23 广西中伟新能源科技有限公司 一种硫化矿物的浸出方法
CN116254410A (zh) * 2022-12-31 2023-06-13 贵州中伟资源循环产业发展有限公司 一种硫化矿物的浸出方法
CN116287703A (zh) * 2022-12-31 2023-06-23 贵州中伟资源循环产业发展有限公司 一种硫化矿物的浸出方法
CN116004983A (zh) * 2022-12-31 2023-04-25 贵州中伟资源循环产业发展有限公司 一种硫化矿物的浸出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534206A (zh) * 2012-02-23 2012-07-04 北京矿冶研究总院 一种褐铁型红土镍矿的浸出方法
CN103614571A (zh) * 2013-10-09 2014-03-05 北京矿冶研究总院 一种红土镍矿联合浸出的工艺
WO2015009254A2 (en) * 2013-07-18 2015-01-22 Meta Ni̇kel Kobalt Madenci̇li̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ High pressure acid leaching of refractory lateritic ores comprising nickel, cobalt and scandium and recovery of scandium from pregnant leach solution and purification precipitates

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139656A (zh) * 2007-10-25 2008-03-12 金川集团有限公司 一种红土镍矿浸出方法
CN101768665A (zh) * 2008-12-30 2010-07-07 厦门紫金矿冶技术有限公司 一种堆浸与高压浸出红土镍矿时降低酸耗的方法
CN104805283A (zh) * 2014-12-31 2015-07-29 金川集团股份有限公司 常压酸浸和中等压力浸出相结合处理红土镍矿的方法
CN107099679B (zh) * 2017-03-10 2019-12-06 中国恩菲工程技术有限公司 红土镍矿高压浸出工艺中抑制铝浸出的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534206A (zh) * 2012-02-23 2012-07-04 北京矿冶研究总院 一种褐铁型红土镍矿的浸出方法
WO2015009254A2 (en) * 2013-07-18 2015-01-22 Meta Ni̇kel Kobalt Madenci̇li̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ High pressure acid leaching of refractory lateritic ores comprising nickel, cobalt and scandium and recovery of scandium from pregnant leach solution and purification precipitates
CN103614571A (zh) * 2013-10-09 2014-03-05 北京矿冶研究总院 一种红土镍矿联合浸出的工艺

Also Published As

Publication number Publication date
CN109837386A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2020181606A1 (zh) 一种红土镍矿的浸出方法
AU2019308625B2 (en) Method for recycling iron, scandium, and aluminum from limonite type lateritic nickel ores
US20230227326A1 (en) Method for producing battery-grade nickel sulfate by using laterite nickel ore
CN102206755B (zh) 一种从钕铁硼废料中分离回收有价元素的方法
WO2017185946A1 (zh) 一种处理低品位红土镍矿的方法及其选矿方法
CN102534206A (zh) 一种褐铁型红土镍矿的浸出方法
WO2024000838A1 (zh) 从锂黏土中提取锂的方法
CN105543509A (zh) 一种混合型稀土精矿或氟碳铈精矿制备氯化稀土的方法
WO2022160493A1 (zh) 一种粗制镍铁合金的回收方法和应用
CN107227401B (zh) 铜渣和红土镍矿共还原制备含铜、镍铁粉的方法
CN112226630B (zh) 一种用盐酸浸出法提取红土镍矿有价金属元素及酸碱再生循环的方法
WO2022126761A2 (zh) 一种从红土镍矿中综合提取有价金属的方法
CN110016563A (zh) 一种高温碳还原黑钨渣高值化利用的方法
CN105568001A (zh) 一种钴合金和氧化钴矿联合高压酸浸的方法
CN105568000A (zh) 一种含钴硫化物和水钴矿联合高压酸浸的方法
CN100554453C (zh) 一种氧化镍矿氯化氧化处理后物料的浸出方法
WO2020093365A1 (zh) 一种常压及加压联合酸浸处理低品位红土镍矿的湿法冶金方法
CN117926027A (zh) 一种红土镍矿石的综合利用方法
CN105238924A (zh) 一种高铁一水硬铝石型铝土矿中铝和铁的提取方法
CN105219957B (zh) 一种从石煤焙烧料中选择性浸出钒的方法
WO2018064940A1 (zh) 金矿开采和处理方法
CN101845547A (zh) 一种从氧化钴矿中回收钴的工艺
EP2829620A1 (en) Method for producing hematite for iron-making use
CN109569893B (zh) 一种电炉镍渣回收镍铜金属的浮选方法
CN106521184A (zh) 一种利用废铜渣提取硫酸铜的工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919321

Country of ref document: EP

Kind code of ref document: A1