WO2018064940A1 - 金矿开采和处理方法 - Google Patents

金矿开采和处理方法 Download PDF

Info

Publication number
WO2018064940A1
WO2018064940A1 PCT/CN2017/103555 CN2017103555W WO2018064940A1 WO 2018064940 A1 WO2018064940 A1 WO 2018064940A1 CN 2017103555 W CN2017103555 W CN 2017103555W WO 2018064940 A1 WO2018064940 A1 WO 2018064940A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
price
oxidized solid
processing method
weight
Prior art date
Application number
PCT/CN2017/103555
Other languages
English (en)
French (fr)
Inventor
游海滨
Original Assignee
沈阳坤源科技服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳坤源科技服务有限公司 filed Critical 沈阳坤源科技服务有限公司
Publication of WO2018064940A1 publication Critical patent/WO2018064940A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/08Obtaining noble metals by cyaniding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of gold mining, and in particular relates to a gold mining and processing method.
  • China's refractory gold resources are relatively abundant. Among the proven gold geological reserves, about 1,000 tons are refractory gold resources, accounting for about 1/4 of the proven reserves. These resources are widely distributed in various industries. There are distributions in the Golden province, with Western provinces such as Guizhou, Yunnan, Sichuan, Gansu, Qinghai, Guangxi, and Shaanxi accounting for a large proportion. At home and abroad, it is believed that carbon quality plays an important role in the formation of primary deposits of fine-grained gold deposits, especially in the formation of gold deposits with sedimentary rocks as ore-bearing rocks. Some gold and organic carbons are contained in the Karin Gold Mine, the Dongzhai Gold Mine in Sichuan province, and the gold deposits in the Golden Triangle of Guizhou.
  • carbonaceous gold in gold mines there are three main types of carbonaceous gold in gold mines: solid (elemental) carbon, a mixture of high molecular hydrocarbons and organic acids similar to humic acids, the latter two being collectively referred to as organic carbon.
  • solid (elemental) carbon a mixture of high molecular hydrocarbons and organic acids similar to humic acids, the latter two being collectively referred to as organic carbon.
  • the carbonaceous material present in the ore is generally considered to be the result of a small amount of organic matter introduced during the hydrothermal activity period.
  • the carbonaceous material in the gold ore has a detrimental effect on the cyanide leaching.
  • the organic carbon in the ore can interact with the gold cyanide complex and cannot be treated by conventional cyanidation.
  • these refractory gold mines also contain sulfides.
  • elemental sulfur occurs in a molten state, which easily forms agglomerated sulfur and has affinity for gold, which prevents the cyanide solution from approaching gold. It is not conducive to the recovery of gold by cyanidation and increases the consumption of sodium cyanide.
  • the gold mining and processing method includes the following steps:
  • the gold ore raw material is obtained by grinding
  • step c mixing 3-10% of the oxidized solid minerals into another gold ore material of weight m and again treating at a temperature of 150-200 ° C and a total pressure of 2500-3500 kPa to produce oxidized solid minerals, And repeating step c;
  • tailings particles with a particle size of 70-150 ⁇ m and mixing with industrial slag having a particle diameter of 0.8-2 cm to uniformly adhere the tailings particles to the surface of the industrial slag, and then stacking them into piles.
  • a nutrient solution of Thiobacillus thiooxidans and S. vulgaris was further recovered, and Au was further recovered by a leaching agent.
  • the gold mining and processing method further comprises:
  • the voids formed by the tailings particles and the industrial slag have a porosity of 30% or more to increase the circulation and heat dissipation of the air.
  • step d the gold-cyanide complex is adsorbed by activated carbon to form a gold-loaded charcoal and Au is recovered.
  • the supported gold is desorbed by a concentration of 3% by weight of NaoH and 8% of the desorbent isopropanol at a temperature of 60 to 70 degrees and Au is recovered by electrolysis.
  • the gold ore raw material is a slurry having a solid weight of 35-50%.
  • a gold mining and processing method comprising the steps of:
  • the gold ore raw material is obtained by grinding
  • step c mixing 3-10% of the oxidized solid minerals into another gold ore material of weight m and again treating at a temperature of 150-200 ° C and a total pressure of 2500-3500 kPa to produce oxidized solid minerals, And repeating step c;
  • steps b and c are sent to a vessel having an oxygen pressure of 3000-6000 kPa for cyanation for 35-60 minutes to recover Au.
  • the gold mining and processing method further comprises:
  • a matching production load ratio is determined between 75-100% based on the predicted gold price and historical production cost.
  • the gold-cyanide complex is adsorbed by activated carbon to form a gold-loaded carbon, and the desorption load is carried out at a temperature of 60-70 degrees by a concentration of 3% NaoH and 8% of a desorbent isopropanol. Gold charcoal and recovers Au by electrolysis.
  • a gold mining and processing method characterized by comprising the steps of:
  • the solid mineral formed after the oxidation of the gold ore raw material is continuously fed into a vessel for cyanidation to recover Au.
  • the dispersion of elemental sulfur can be significantly promoted, and the oxidized solid mineral contains an acid, which promotes the decomposition of carbonate in the gold ore raw material, thereby accelerating the oxidation process. , oxidation is more thorough, and promotes the release of Au;
  • the cyanidation reaction is carried out in a vessel having an oxygen pressure of 3000-6000 kPa, so that the cyanation time is less, the formation of thiocyanate is prevented, the amount of sodium cyanide is reduced, and the cost is reduced;
  • the extraction of residual Au is further realized, and the tailings accumulated by the invention have the best void ratio, which is beneficial to accelerate the biooxidation process;
  • FIG. 1 is a schematic flow diagram of a gold mining and processing method in accordance with a preferred embodiment of the present invention.
  • the present invention provides a gold mining and processing method.
  • the gold mining and processing method comprises the following steps:
  • the gold ore raw material is obtained by grinding
  • 3-10% of the oxidized solid minerals promote the release of Au in the slurry while ensuring a high processing capacity of the entire production system, and the overall production efficiency is optimized.
  • step c mixing 3-10% of the oxidized solid minerals into another gold ore material of weight m and again treating at a temperature of 150-200 ° C and a total pressure of 2500-3500 kPa to produce oxidized solid minerals, And repeating step c;
  • the remaining 90-97% of the oxidized solid minerals of steps b and c are sent to a vessel having an oxygen pressure of 3000-6000 kPa for cyanation for 35-60 minutes to recover Au.
  • the cyanidation reaction is carried out in a vessel having an oxygen pressure of 3000-6000 kPa, so that the cyanation time is less, the formation of thiocyanate is prevented, the amount of sodium cyanide is reduced, and the cost is reduced;
  • tailings particles with a particle size of 70-150 ⁇ m and mixing with industrial slag having a particle diameter of 0.8-2 cm to uniformly adhere the tailings particles to the surface of the industrial slag, and then stacking them into piles.
  • a nutrient solution of Thiobacillus thiooxidans and S. vulgaris was further recovered, and Au was further recovered by a leaching agent.
  • the dispersion of elemental sulfur can be remarkably promoted by returning a part of the oxidized solid mineral to the reactor, and the oxidized solid mineral contains an acid, thereby promoting the decomposition of the carbonate in the gold ore raw material, thereby Accelerated the oxidation process, the oxidation is more thorough, and promotes the release of Au.
  • the gold mining and processing method further includes:
  • the matching production load ratio is determined based on the predicted gold price and historical production cost.
  • the gold price forecasting model is the optimal implementation method and can optimally predict the gold price.
  • the full-load production is determined; when the predicted gold price is 115% or less of the historical production cost, the medium-load production is determined; when the predicted gold price is the historical production cost At less than 100%, the minimum load production is determined, for example between 50 and 70%. Understandably, in general, the period of occurrence of the lowest load production usually does not last long. During this period, although there will be a loss due to the price of gold, combined with the depreciation expense of the production equipment, etc., it can be determined The most economical minimum production load to ensure that losses are minimized, and when losses in a certain period of time can be covered by profits in other nearby periods, then choose to maintain production, otherwise stop production.
  • the two factors of oil price and US dollar index can be obtained through the prediction data of international authoritative organizations or existing prediction models, and can be processed by the usual weighted average mathematical methods. It can be understood that in addition to the above optimal prediction model, the prediction model of the gold price may be other models, such as establishing a vector autoregressive model VAR based on the US dollar index and the oil price to predict the gold price and the like.
  • the voids formed by the tailings particles and the industrial slag have a porosity of 30% or more to increase the circulation and heat dissipation of the air.
  • step d the gold-cyanide complex is adsorbed by activated carbon to form a gold-loaded charcoal and Au is recovered.
  • the supported gold is desorbed by a concentration of 3% by weight of NaoH and 8% of the desorbent isopropanol at a temperature of 60-70 and the Au is recovered by electrolysis.
  • the gold ore raw material is a slurry having a solid weight of 35-50%.
  • a gold mining and processing method includes the following steps:
  • the gold ore raw material is obtained by grinding
  • step c mixing 3-10% of the oxidized solid minerals into another gold ore material of weight m and again treating at a temperature of 150-200 ° C and a total pressure of 2500-3500 kPa to produce oxidized solid minerals, And repeating step c;
  • steps b and c are sent to a vessel having an oxygen pressure of 3000-6000 kPa for cyanation for 35-60 minutes to recover Au.
  • the gold mining and processing method further includes:
  • a matching production load ratio is determined between 75-100% based on the predicted gold price and historical production cost.
  • the gold-cyanide complex is adsorbed by activated carbon to form a gold-loaded carbon, and the gold-loaded carbon is desorbed at a temperature of 60-70 degrees by a concentration of 3% NaoH and 8% of a desorbent isopropanol. And recovering Au by electrolysis.
  • a gold mining and processing method is also provided, characterized in that it comprises the following steps:
  • the solid mineral formed after the oxidation of the gold ore raw material is continuously fed into a vessel having a preferred oxygen pressure of 3000-6000 kPa to carry out cyanidation to recover Au.
  • the gold ore raw material is obtained, that is, the slurry is 35%; the gold ore raw material having a weight of 200 kg is treated at a temperature of 180 ° C and a total pressure of 2600 kPa to produce an oxidized solid mineral.
  • the pressurized oxidation process can be carried out in an autoclave, 5% of the oxidized solid mineral (the remaining 95% entering the cyanidation step) is returned to the oxidation vessel and mixed with another 200 kg of pulp, again at 180 ° C and Processing at a total pressure of 2600 kPa to produce oxidized solid minerals, continuing to return 5% of the oxidized solid minerals (the remaining 95% entering the cyanidation step) to the oxidation vessel and mixing with another 200 kg of pulp, cycle.
  • the remaining 95% oxidized solid mineral was sent to a vessel having an oxygen pressure of 3,500 kPa for cyanidation for 45 minutes, and the gold ingot was obtained by desorption electrolysis by the gold-loaded charcoal produced by the above process conditions.
  • the technical indicators are: sulfur oxidation rate of 97.2%, carbon removal rate of 98.5%, and gold leaching rate of 98.1%.
  • the gold ore raw material is obtained, that is, the concentration is 39% pulp; the gold ore raw material with a weight of 210 kg is treated at a temperature of 150 ° C and a total pressure of 2500 kPa to produce an oxidized solid mineral, which will 3% of the oxidized solid mineral (the remaining 97% enters the cyanidation step) is returned to the oxidation vessel and mixed with another 210 kg of slurry, again treated at 150 ° C and a total pressure of 2500 kPa to produce oxidized
  • the solid mineral continues to return 3% of the oxidized solid mineral (the remaining 97% into the cyanidation step) back to the oxidation vessel and mix with another 210 kg of slurry, thus circulating.
  • the remaining 97% oxidized solid mineral was sent to a vessel having an oxygen pressure of 3000 kPa for cyanidation for 60 minutes, and the gold ingot was obtained by desorption electrolysis by the gold-loaded charcoal produced by the above
  • the technical indicators are: sulfur oxidation rate of 97.0%, carbon removal rate of 98.1%, and gold leaching rate of 97.9%.
  • the gold ore raw material is obtained, that is, the concentration is 50% pulp; at a temperature of 200 ° C
  • the gold ore raw material weighing 180 kg is treated at a total pressure of 3,500 kPa to produce an oxidized solid mineral, and 10% of the oxidized solid mineral (the remaining 90% enters the cyanidation step) is returned to the oxidation vessel.
  • Mix with another 180kg of slurry, again at 200 ° C and a total pressure of 3500 kPa to produce oxidized solid minerals continue to 10% of the oxidized solid minerals (the remaining 90% into the cyanidation step) Return to the oxidation vessel and mix with another 180 kg of slurry and cycle.
  • the remaining 90% oxidized solid mineral was sent to a vessel having an oxygen pressure of 2500 kPa for cyanidation for 35 minutes, and the gold ingot was obtained by desorption electrolysis by the gold-loaded charcoal produced by the above process conditions.
  • the technical indicators are: sulfur oxidation rate of 97.4%, carbon removal rate of 98.6%, and gold leaching rate of 98.2%.
  • the tailings particles After further processing the tailings into tailings particles with a particle size of 70 ⁇ m and mixing with industrial slag having a particle diameter of 1.8 cm, the tailings particles are uniformly attached to the surface of the industrial slag, and then piled up, the void ratio is 38%, and iron is sprinkled.
  • the nutrient solution of Thiobacillus oxidans and R. vulgaris is further recovered by leaching agent.
  • the void ratio is 40%.
  • the void ratio is 35%.
  • the void ratio of the tailings accumulated in the present invention is advantageous for accelerating the biooxidation process.
  • the dispersion of elemental sulfur can be significantly promoted, and the oxidized solid mineral contains an acid, which promotes the decomposition of carbonate in the gold ore raw material, thereby accelerating the oxidation process. , oxidation is more thorough, and promotes the release of Au;
  • the cyanidation reaction is carried out in a vessel having an oxygen pressure of 3000-6000 kPa, so that the cyanation time is less, the formation of thiocyanate is prevented, the amount of sodium cyanide is reduced, and the cost is reduced;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Marketing (AREA)
  • Agronomy & Crop Science (AREA)
  • Biochemistry (AREA)
  • Quality & Reliability (AREA)
  • Biotechnology (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Microbiology (AREA)
  • Game Theory and Decision Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种金矿开采和处理方法包括步骤:a.开采金矿后研磨获得金矿原料;b.在温度150-200℃和总压力2500-3500kPa下对重量为m的金矿原料进行处理,以生产出氧化过的固态矿物;c.将氧化过的固态矿物的3-10%混合到另一重量为m的金矿原料中再次在温度150-200℃和总压力2500-3500kPa下进行处理以生产出氧化过的固态矿物,并重复该步骤c;d.将步骤b和c剩余的氧化过的固态矿物送入氧压为3000-6000kpa的容器中进行氰化35-60分钟以回收Au。

Description

金矿开采和处理方法 技术领域
本发明属于金矿开采领域,特别是涉及一种金矿开采和处理方法。
背景技术
我国难处理金矿资源比较丰富,现已探明的黄金地质储量中,约有1000吨左右属于难处理金矿资源,约占探明储量的1/4,这类资源分布广泛,在各个产金省份中均有分布,其中贵州、云南、四川、甘肃、青海、广西和陕西等西部省份占有较大比重。国内外的研究认为,在微细粒金矿原生矿床的形成过程中,尤其以沉积岩为容矿岩石的金矿形成过程中,碳质具有重要作用。卡林金矿、我国四川的东北寨金矿及黔桂滇金三角的一些金矿床中都含较高的碳质和有机碳。
金矿中的碳质主要有三种类型:固体(元素)碳、高分子碳氢化合物的混合物及与腐殖酸类相似的有机酸,后二者合称为有机碳。矿石中存在的碳质,一般认为是热液活动期带入了少量有机质的结果。
金矿中的碳质物对氰化浸出存在有害影响,矿石中的有机碳能和金氰络合物发生作用,因而不能用常规氰化法加以处理。
此外,这些难处理金矿中还含有硫化物,在通常的加压氧化时,元素硫是以熔态出现的,其容易形成成块的硫并对黄金具有亲和力,妨碍了氰化溶液接近黄金,不利于氰化法回收黄金,且增加了氰化钠的消耗。
我国已探明的含碳含硫化物的金矿资源在黄金工业储量中占有相当高的比例,基本上都处于我国西部,解决这种难处理金矿的处理难题,对我国黄金工业的持续发展和西部经济开发具有举足轻重的作用。
此外,国际黄金价格波动幅度较大,这使得黄金生产企业的经济效益难以控制,在这种形势下,企业抗风险能力差,不利于企业长期稳定发展。
发明内容
为了解决现有技术中的至少一个上述问题而提出了本发明的技术方案。
本发明的一个目的在于提供一种金矿开采和处理方法。该金矿开采和处理方法包括以下步骤:
a.开采金矿后研磨获得金矿原料;
b.在温度150-200℃和总压力2500-3500kPa下对重量为m的金矿原料进行处理,以生产出氧化过的固态矿物,将该氧化过的固态矿物按重量分为两部分,其中一部分重量为3-10%,剩余的部分重量为90-97%;
c.将氧化过的固态矿物的3-10%混合到另一重量为m的金矿原料中再次在温度150-200℃和总压力2500-3500kPa下进行处理以生产出氧化过的固态矿物,并重复该步骤c;
d.将步骤b和c剩余的90-97%氧化过的固态矿物送入氧压为3000-6000kpa的容器中进行氰化35-60分钟以回收Au;
e.将尾矿进一步处理为粒径在70-150μm之间的尾矿颗粒后与粒径为0.8-2cm的工业矿渣混合搅拌使尾矿颗粒均匀附着在工业矿渣表面,然后堆积成堆,洒上铁氧化硫杆菌和硫化裂片菌的营养溶液,通过浸滤剂进一步回收Au。
有利地,所述的金矿开采和处理方法还包括:
建立金价预测模型预测未来一段时间内的金价;
获取Au最近半年内的历史生产成本;
根据预测的金价和历史生产成本确定匹配的生产负荷比例;
其中,金价预测模型优选为P=742.356+3.819X-4.929Y,其中,P为金价, 单位为美元/盎司,X为石油价格,单位为美元/桶,Y为美元指数,根据石油价格和美元指数预测未来一段时间内的金价。
根据本发明又一优选方案,尾矿颗粒和工业矿渣所形成堆的空隙率大于等于30%,以增加空气的流通和散热。
根据本发明又一优选方案,步骤d中通过活性炭吸附金氰络合物形成载金炭并回收Au。
根据本发明又一优选方案,通过质量浓度为3%的NaoH和8%的助解吸剂异丙醇在温度60-70度解吸载金炭并通过电解回收Au。
根据本发明又一优选方案,所述金矿原料为固体重量为35-50%的矿浆。
根据本发明又一优选方案,提供了一种金矿开采和处理方法,其特征在于包括以下步骤:
a.开采金矿后研磨获得金矿原料;
b.在温度150-200℃和总压力2500-3500kPa下对重量为m的金矿原料进行处理,以生产出氧化过的固态矿物;
c.将氧化过的固态矿物的3-10%混合到另一重量为m的金矿原料中再次在温度150-200℃和总压力2500-3500kPa下进行处理以生产出氧化过的固态矿物,并重复该步骤c;
d.将步骤b和c剩余的氧化过的固态矿物送入氧压为3000-6000kpa的容器中进行氰化35-60分钟以回收Au。
根据本发明又一优选方案,所述的金矿开采和处理方法还包括:
建立金价预测模型为P=742.356+3.819X-4.929Y,其中,P为金价,单位为美元/盎司,X为石油价格,单位为美元/桶,Y为美元指数,根据石油价格和美元指数预测未来一段时间内的金价;
获取Au最近半年内的历史生产成本;
根据预测的金价和历史生产成本在75-100%之间确定匹配的生产负荷比例。
根据本发明又一优选方案,步骤d中通过活性炭吸附金氰络合物形成载金炭,通过质量浓度为3%的NaoH和8%的助解吸剂异丙醇在温度60-70度解吸载金炭并通过电解回收Au。
根据本发明又一优选方案,还提供了一种金矿开采和处理方法,其特征在于包括以下步骤:
将金矿原料氧化过后形成的固态矿物连续送入容器中进行氰化回收Au。
与现有技术相比,本发明的有益效果在于:
通过将一部分氧化过的固态矿物返回到反应器中可以明显地促进元素硫的分散,并且氧化过的固态矿物中含有酸,促进了金矿原料中的碳酸盐的分解,因而加速了氧化过程,氧化更加彻底,促进了Au的释出;
3-10%的氧化过的固态矿物,在促进Au释出的同时,保证了整个生产系统较高的处理能力,综合生产效率达到最优;
在氧压为3000-6000kpa的容器中进行氰化反应,使得氰化时间更少,防止了硫氰酸盐的形成,减少了氰化钠的用量,降低了成本;
建立金价预测模型,利用石油价格和美元指数两个因子预测金价,优化确定企业生产负荷,有利于确保企业经济效益;
对于尾矿进行堆积和生物氧化,进一步实现了残留Au的提取,并且本发明堆积的尾矿具有最佳的空隙率,有利于加速生物氧化进程;
质量浓度为3%的NaoH和8%的助解吸剂异丙醇解吸载金炭,不使用氰化物,高效环保。
附图说明
图1是根据本发明一种优选实施例的金矿开采和处理方法流程示意图。
具体实施方式
下面结合附图,通过优选实施方式来描述本发明的最佳实施方式,这里的具体实施方式在于详细地说明本发明,而不应理解为对本发明的限制,在不脱离本发明的精神和实质范围的情况下,可以做出各种变形和修改,这些都应包含在本发明的保护范围之内。
参见图1,本发明提供了一种金矿开采和处理方法。该该金矿开采和处理方法包括以下步骤:
a.开采金矿后研磨获得金矿原料;
b.在温度150-200℃和总压力2500-3500kPa下对重量为m的金矿原料进行处理,以生产出氧化过的固态矿物,将该氧化过的固态矿物按重量分为两部分,其中一部分重量为3-10%,剩余的部分重量为90-97%。
3-10%的氧化过的固态矿物,在促进矿浆中Au释出的同时,保证了整个生产系统较高的处理能力,综合生产效率达到最优。
c.将氧化过的固态矿物的3-10%混合到另一重量为m的金矿原料中再次在温度150-200℃和总压力2500-3500kPa下进行处理以生产出氧化过的固态矿物,并重复该步骤c;
d.将步骤b和c剩余的90-97%氧化过的固态矿物送入氧压为3000-6000kpa的容器中进行氰化35-60分钟以回收Au。在氧压为3000-6000kpa的容器中进行氰化反应,使得氰化时间更少,防止了硫氰酸盐的形成,减少了氰化钠的用量,降低了成本;
e.将尾矿进一步处理为粒径在70-150μm之间的尾矿颗粒后与粒径为0.8-2cm的工业矿渣混合搅拌使尾矿颗粒均匀附着在工业矿渣表面,然后堆积成堆,洒上铁氧化硫杆菌和硫化裂片菌的营养溶液,通过浸滤剂进一步回收Au。
本发明中,通过将一部分氧化过的固态矿物返回到反应器中可以明显地促进元素硫的分散,并且氧化过的固态矿物中含有酸,促进了金矿原料中的碳酸盐的分解,因而加速了氧化过程,氧化更加彻底,促进了Au的释出。
作为一种优选方式,所述的金矿开采和处理方法还包括:
建立金价预测模型为P=742.356+3.819X-4.929Y,其中,P为金价,单位为美元/盎司,X为石油价格,单位为美元/桶,Y为美元指数,根据石油价格和美元指数预测未来一段时间内的金价;
获取Au最近半年内的历史生产成本;
根据预测的金价和历史生产成本确定匹配的生产负荷比例。该金价预测模型是最优的实施方式,可以最优地预测金价。
有利地,当预测的金价为历史生产成本的115%以上时,确定满负荷生产;当预测的金价为历史生产成本的115%及以下时,确定中负荷生产;当预测的金价为历史生产成本的100%以下时,确定最低负荷生产,例如50-70%之间的负荷。可以理解的是,一般而言,出现最低负荷生产的时间段通常不会延续很长,这段时间内由于金价原因尽管会出现亏损,结合生产设备的折旧费用等因素,可以确定出相比而言最经济的最低生产负荷,以确保亏损最小化,而当一个周期内某段时间的亏损可以由邻近的其他时段的盈利覆盖时,则选择维持生产,否则停产。
此外,石油价格和美元指数两个因子可以通过国际上的权威机构的预测数据或已有的预测模型来获取,可以采取通常的加权平均等数学方式进行处理。可以理解的是,除了上述最优地预测模型外,金价的预测模型还可以是其它模型,例如基于美元指数和石油价格建立向量自回归模型VAR来预测金价等等。
作为一种优选方式,尾矿颗粒和工业矿渣所形成堆的空隙率大于等于30%,以增加空气的流通和散热。
作为一种优选方式,步骤d中通过活性炭吸附金氰络合物形成载金炭并回收Au。
作为一种优选方式,通过质量浓度为3%的NaoH和8%的助解吸剂异丙醇在温度60-70度解吸载金炭并通过电解回收Au。
作为一种优选方式,所述金矿原料为固体重量为35-50%的矿浆。
作为一种优选方式,提供了一种金矿开采和处理方法,其包括以下步骤:
a.开采金矿后研磨获得金矿原料;
b.在温度150-200℃和总压力2500-3500kPa下对重量为m的金矿原料进行处理,以生产出氧化过的固态矿物;
c.将氧化过的固态矿物的3-10%混合到另一重量为m的金矿原料中再次在温度150-200℃和总压力2500-3500kPa下进行处理以生产出氧化过的固态矿物,并重复该步骤c;
d.将步骤b和c剩余的氧化过的固态矿物送入氧压为3000-6000kpa的容器中进行氰化35-60分钟以回收Au。
作为一种优选方式,所述的金矿开采和处理方法还包括:
建立金价预测模型为P=742.356+3.819X-4.929Y,其中,P为金价,单位为美元/盎司,X为石油价格,单位为美元/桶,Y为美元指数,根据石油价格和美元指数预测未来一段时间内的金价;
获取Au最近半年内的历史生产成本;
根据预测的金价和历史生产成本在75-100%之间确定匹配的生产负荷比例。
作为一种优选方式,步骤d中通过活性炭吸附金氰络合物形成载金炭,通过质量浓度为3%的NaoH和8%的助解吸剂异丙醇在温度60-70度解吸载金炭并通过电解回收Au。
作为一种优选方式,还提供了一种金矿开采和处理方法,其特征在于包括以下步骤:
将金矿原料氧化过后形成的固态矿物连续送入优选氧压为3000-6000kpa的容器中进行氰化回收Au。
实施例1
首先,将开采金矿后研磨获得金矿原料,即浓度为35%矿浆;在温度180℃和总压力2600kPa下对重量为200kg的金矿原料进行处理,以生产出氧化过的固态矿物,该加压氧化过程可以在高压釜内进行,将该氧化过的固态矿物的5%(剩下的95%进入氰化步骤)返回到氧化容器中与另一200kg的矿浆混合,再次在180℃和总压力2600kPa下进行处理以生产出氧化过的固态矿物,继续将氧化过的固态矿物的5%(剩下的95%进入氰化步骤)返回到氧化容器中与另一200kg的矿浆混合,如此循环。将剩余的95%氧化过的固态矿物送入氧压为3500kpa的容器中进行氰化45分钟,通过上述工艺条件产出的载金炭,通过解吸电解得到金锭。
实施技术指标是:硫的氧化率为97.2%,碳去除率98.5%,金浸出率98.1%。
实施例2
首先,将开采金矿后研磨获得金矿原料,即浓度为39%矿浆;在温度150℃和总压力2500kPa下对重量为210kg的金矿原料进行处理,以生产出氧化过的固态矿物,将该氧化过的固态矿物的3%(剩下的97%进入氰化步骤)返回到氧化容器中与另一210kg的矿浆混合,再次在150℃和总压力2500kPa下进行处理以生产出氧化过的固态矿物,继续将氧化过的固态矿物的3%(剩下的97%进入氰化步骤)返回到氧化容器中与另一210kg的矿浆混合,如此循环。将剩余的97%氧化过的固态矿物送入氧压为3000kpa的容器中进行氰化60分钟,通过上述工艺条件产出的载金炭,通过解吸电解得到金锭。
实施技术指标是:硫的氧化率为97.0%,碳去除率98.1%,金浸出率97.9%。
实施例3
首先,将开采金矿后研磨获得金矿原料,即浓度为50%矿浆;在温度200℃ 和总压力3500kPa下对重量为180kg的金矿原料进行处理,以生产出氧化过的固态矿物,将该氧化过的固态矿物的10%(剩下的90%进入氰化步骤)返回到氧化容器中与另一180kg的矿浆混合,再次在200℃和总压力3500kPa下进行处理以生产出氧化过的固态矿物,继续将氧化过的固态矿物的10%(剩下的90%进入氰化步骤)返回到氧化容器中与另一180kg的矿浆混合,如此循环。将剩余的90%氧化过的固态矿物送入氧压为2500kpa的容器中进行氰化35分钟,通过上述工艺条件产出的载金炭,通过解吸电解得到金锭。
实施技术指标是:硫的氧化率为97.4%,碳去除率98.6%,金浸出率98.2%。
将尾矿进一步处理为粒径在70μm的尾矿颗粒后与粒径为1.8cm的工业矿渣混合搅拌使尾矿颗粒均匀附着在工业矿渣表面,然后堆积成堆,空隙率38%,洒上铁氧化硫杆菌和硫化裂片菌的营养溶液,通过浸滤剂进一步回收Au。或者,当选择粒径在85μm的尾矿颗粒后与粒径为2cm的工业矿渣时,空隙率40%。或者,当选择粒径在150μm的尾矿颗粒后与粒径为0.8cm的工业矿渣时,空隙率35%。本发明堆积的尾矿的空隙率,有利于加速生物氧化进程。
综上所述,本发明的有益效果在于:
通过将一部分氧化过的固态矿物返回到反应器中可以明显地促进元素硫的分散,并且氧化过的固态矿物中含有酸,促进了金矿原料中的碳酸盐的分解,因而加速了氧化过程,氧化更加彻底,促进了Au的释出;
3-10%的氧化过的固态矿物,在促进Au释出的同时,保证了整个生产系统较高的处理能力,综合生产效率达到最优;
在氧压为3000-6000kpa的容器中进行氰化反应,使得氰化时间更少,防止了硫氰酸盐的形成,减少了氰化钠的用量,降低了成本;
建立金价预测模型,利用石油价格和美元指数两个因子预测金价,优化确定企业生产负荷,有利于确保企业经济效益;
对于尾矿进行堆积和生物氧化,进一步实现了残留Au的提取,并且质量浓度为3%的NaoH和8%的助解吸剂异丙醇解吸载金炭,不使用氰化物,高效环保。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

  1. 一种金矿开采和处理方法,其特征在于包括以下步骤:
    a.开采金矿后研磨获得金矿原料;
    b.在温度150-200℃和总压力2500-3500kPa下对重量为m的金矿原料进行处理,以生产出氧化过的固态矿物,将该氧化过的固态矿物按重量分为两部分,其中一部分重量为3-10%,剩余的部分重量为90-97%;
    c.将氧化过的固态矿物的3-10%混合到另一重量为m的金矿原料中在温度150-200℃和总压力2500-3500kPa下进行处理以生产出氧化过的固态矿物,并重复该步骤c;
    d.将步骤b和c剩余的90-97%氧化过的固态矿物送入氧压为3000-6000kpa的容器中进行氰化35-60分钟以回收Au;
    e.将尾矿进一步处理为粒径在70-150μm之间的尾矿颗粒后与粒径为0.8-2cm的工业矿渣混合搅拌使尾矿颗粒均匀附着在工业矿渣表面,然后堆积成堆,洒上铁氧化硫杆菌和硫化裂片菌的营养溶液,通过浸滤剂进一步回收Au;
    其中,通过将氧化过的固态矿物的3-10%返回到反应器中明显地促进元素硫的分散,并且氧化过的固态矿物中含有酸,促进了金矿原料中的碳酸盐的分解,因而加速了氧化过程,氧化更加彻底,促进了Au的释出;其中,硫的氧化率达到97.2%,碳去除率达到98.5%,金浸出率达到98.1%。
  2. 根据权利要求1所述的金矿开采和处理方法,其特征在于还包括:
    建立金价预测模型预测未来一段时间内的金价;
    获取Au最近半年内的历史生产成本;
    根据预测的金价和历史生产成本确定匹配的生产负荷比例;
    其中,金价预测模型优选为P=742.356+3.819X-4.929Y,其中,P为金价,单位为美元/盎司,X为石油价格,单位为美元/桶,Y为美元指数,根据石油价格和美元指数预测未来一段时间内的金价。
  3. 根据权利要求1所述的金矿开采和处理方法,其特征在于尾矿颗粒和工业矿渣所形成堆的空隙率大于等于30%,以增加空气的流通和散热。
  4. 根据权利要求1-3任一项所述的金矿开采和处理方法,其特征在于步骤d中通过活性炭吸附金氰络合物形成载金炭并回收Au。
  5. 根据权利要求4所述的金矿开采和处理方法,其特征在于通过质量浓度为3%的NaoH和8%的助解吸剂异丙醇在温度60-70度解吸载金炭并通过电解回收Au。
  6. 根据权利要求1-3任一项所述的金矿开采和处理方法,其特征在于所述金矿原料为固体重量为35-50%的矿浆。
  7. 一种金矿开采和处理方法,其特征在于包括以下步骤:
    a.开采金矿后研磨获得金矿原料;
    b.在温度150-200℃和总压力2500-3500kPa下对重量为m的金矿原料进行处理,以生产出氧化过的固态矿物;
    c.将氧化过的固态矿物的3-10%混合到另一重量为m的金矿原料中在温度150-200℃和总压力2500-3500kPa下进行处理以生产出氧化过的固态矿物,并重复该步骤c;
    d.将步骤b和c剩余的氧化过的固态矿物送入氧压为3000-6000kpa的容器中进行氰化35-60分钟以回收Au;
    其中,通过将氧化过的固态矿物的3-10%返回到反应器中明显地促进元素硫的分散,并且氧化过的固态矿物中含有酸,促进了金矿原料中的碳酸盐的分解,因而加速了氧化过程,氧化更加彻底,促进了Au的释出;其中,硫的氧化率达到97.2%,碳去除率达到98.5%,金浸出率达到98.1%。
  8. 根据权利要求7所述的金矿开采和处理方法,其特征在于还包括:
    建立金价预测模型为P=742.356+3.819X-4.929Y,其中,P为金价,单位为 美元/盎司,X为石油价格,单位为美元/桶,Y为美元指数,根据石油价格和美元指数预测未来一段时间内的金价;
    获取Au最近半年内的历史生产成本;
    根据预测的金价和历史生产成本在75-100%之间确定匹配的生产负荷比例。
  9. 根据权利要求8所述的金矿开采和处理方法,其特征在于步骤d中通过活性炭吸附金氰络合物形成载金炭,通过质量浓度为3%的NaoH和8%的助解吸剂异丙醇在温度60-70度解吸载金炭并通过电解回收Au。
PCT/CN2017/103555 2016-10-08 2017-09-27 金矿开采和处理方法 WO2018064940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610876731.1A CN106282595B (zh) 2016-10-08 2016-10-08 金矿开采和处理方法
CN201610876731.1 2016-10-08

Publications (1)

Publication Number Publication Date
WO2018064940A1 true WO2018064940A1 (zh) 2018-04-12

Family

ID=57717533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103555 WO2018064940A1 (zh) 2016-10-08 2017-09-27 金矿开采和处理方法

Country Status (2)

Country Link
CN (1) CN106282595B (zh)
WO (1) WO2018064940A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235403A (zh) * 2020-03-01 2020-06-05 长春黄金研究院有限公司 一种解吸电解工段高品位粉炭减量的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282595B (zh) * 2016-10-08 2017-08-18 沈阳金丰石化物资贸易有限公司 金矿开采和处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979987A (en) * 1988-07-19 1990-12-25 First Miss Gold, Inc. Precious metals recovery from refractory carbonate ores
CN101876005A (zh) * 2009-11-19 2010-11-03 中南大学 两段加压氧浸法从难处理硫化矿金精矿中提取金的方法
CN102134641A (zh) * 2010-11-10 2011-07-27 紫金矿业集团股份有限公司 一种高炭砷硫金精矿的提金工艺
WO2014056034A1 (en) * 2012-10-10 2014-04-17 Osten Karel John Gold recovery from refractory ores and concentrates
CN106282595A (zh) * 2016-10-08 2017-01-04 沈阳金丰石化物资贸易有限公司 金矿开采和处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979987A (en) * 1988-07-19 1990-12-25 First Miss Gold, Inc. Precious metals recovery from refractory carbonate ores
CN101876005A (zh) * 2009-11-19 2010-11-03 中南大学 两段加压氧浸法从难处理硫化矿金精矿中提取金的方法
CN102134641A (zh) * 2010-11-10 2011-07-27 紫金矿业集团股份有限公司 一种高炭砷硫金精矿的提金工艺
WO2014056034A1 (en) * 2012-10-10 2014-04-17 Osten Karel John Gold recovery from refractory ores and concentrates
CN106282595A (zh) * 2016-10-08 2017-01-04 沈阳金丰石化物资贸易有限公司 金矿开采和处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU, SHAOLUAN: "Pressure Leaching Technology of Refractory Gold Ore", URANIUM MINING AND METALLURGY, vol. 16, no. 4, 30 November 1997 (1997-11-30), pages 237 - 244 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235403A (zh) * 2020-03-01 2020-06-05 长春黄金研究院有限公司 一种解吸电解工段高品位粉炭减量的方法

Also Published As

Publication number Publication date
CN106282595B (zh) 2017-08-18
CN106282595A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN103276206B (zh) 一种高效稳定的碱性硫脲体系用于浸金的方法
CN102534206A (zh) 一种褐铁型红土镍矿的浸出方法
CN102051491B (zh) 一种黄铁矿包裹型金矿富集金的方法
CN103194614B (zh) 一种低品位含铜金矿堆浸-炭吸附生产的方法
CN104789792B (zh) 一种镍柠檬酸根催化硫代硫酸盐浸金的工艺
CN107227401B (zh) 铜渣和红土镍矿共还原制备含铜、镍铁粉的方法
WO2012171481A1 (zh) 全面综合回收和基本无三废、零排放的湿法冶金方法
WO2024000838A1 (zh) 从锂黏土中提取锂的方法
CN106967881A (zh) 一种从风化壳淋积型稀土矿中提取稀土的方法
CN102534195B (zh) 一种难浸金矿提金的工艺方法
WO2018064940A1 (zh) 金矿开采和处理方法
CN102251101B (zh) 含有碳质的金精矿中金的提取工艺
CN113151700B (zh) 一种铀矿石高堆堆浸方法
CN104928464A (zh) 一种微波加热预处理提取含钒物料中有价金属的方法
CN1374150A (zh) 硼铁矿磁一重选分离综合利用的方法
CN113817921A (zh) 一种从石煤钒矿中提取有价金属的方法
CN108486368B (zh) 一种软锰矿高压-非氰化浸出含砷碳质金矿的方法
CN104805285B (zh) 一种以聚乙烯醇磷酸铵为添加剂的硫代硫酸盐浸金方法
CN103725871B (zh) 一种强化高铁锰矿石铁锰分离的添加剂和方法
CN1361295A (zh) 协同浸出和协同溶剂萃取分离相耦合直接浸出硫化锌精矿的方法
CN101736156A (zh) 一种高铁生物浸铜液综合利用的方法
CN101798633B (zh) 一种焙烧-浸出处理褐铁矿型氧化镍矿的方法
CN114606397A (zh) 一种用于褐铁矿型红土镍矿降铁及富集有价金属的方法
CN104017997A (zh) 铜熔铸浮渣生物堆浸回收铜工艺
CN103436714A (zh) 一种石煤与低品位软锰矿共同利用回收钒锰的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17857821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17857821

Country of ref document: EP

Kind code of ref document: A1