WO2024000838A1 - 从锂黏土中提取锂的方法 - Google Patents

从锂黏土中提取锂的方法 Download PDF

Info

Publication number
WO2024000838A1
WO2024000838A1 PCT/CN2022/119982 CN2022119982W WO2024000838A1 WO 2024000838 A1 WO2024000838 A1 WO 2024000838A1 CN 2022119982 W CN2022119982 W CN 2022119982W WO 2024000838 A1 WO2024000838 A1 WO 2024000838A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
leaching
clay
liquid
sodium
Prior art date
Application number
PCT/CN2022/119982
Other languages
English (en)
French (fr)
Inventor
包冬莲
李长东
阮丁山
陈若葵
乔延超
李波
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024000838A1 publication Critical patent/WO2024000838A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of lithium extraction from lithium ore, and specifically relates to a method for extracting lithium from lithium clay.
  • lithium as a key element in lithium-ion batteries, has attracted more and more attention from the industry.
  • Lithium salt products represented by lithium carbonate and lithium hydroxide are in short supply in the market and prices remain high. Therefore, the further development of lithium resources is very urgent.
  • lithium salt products on the market mainly come from lithium extraction from spodumene, lithium extraction from lepidolite, lithium extraction from salt lakes, and lithium recovery from retired lithium-ion batteries.
  • lithium clay was once ignored due to the low grade of lithium oxide.
  • many large-scale lithium clay mines have been discovered at home and abroad, with lithium carbonate equivalents exceeding one million tons, and the reserves are very considerable.
  • the mining and smelting of clay minerals has great development prospects.
  • Patent CN110358931A discloses "an ion exchange method for extracting lithium from carbonated clay type lithium ore”. This method uses ferric iron salts and roasted clay clinker to achieve lithium leaching in the form of ion exchange at 85°C, but the leaching rate On the low side, the consumption of iron salts is high, and industrialization is difficult; patent CN202010684178.8 discloses "A method for extracting lithium from lithium-containing clay”. This method combines ball-milled lithium clay with calcium carbonate, sodium sulfate, and potassium sulfate. Roasting in a certain proportion, crushing and leaching to obtain a lithium-containing solution.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a method for extracting lithium from lithium clay. This method has a simple process, high leaching of lithium, and has great application prospects.
  • a method for extracting lithium from lithium clay including the following steps:
  • the roasted clinker is ground and mixed with a leaching agent and water, leached at a temperature of 150-300°C and a pressure of 1.4-2.5MPa, and solid-liquid separation is performed to obtain a lithium-containing solution and leaching residue;
  • the leaching agent It is at least one of sodium hydroxide, potassium hydroxide, a strong acid salt of sodium or a strong acid salt of potassium;
  • step S3 Add an appropriate amount of the leaching agent to the lithium-containing solution, and then return to step S2 for cyclic leaching.
  • step S3 Add an appropriate amount of the leaching agent to the lithium-containing solution, and then return to step S2 for cyclic leaching.
  • step S1 the lithium content of the lithium clay powder is 0.1-0.5 wt%.
  • the lithium clay powder includes at least one of carbonate clay minerals, volcanic rock clay minerals or Jadar lithium boron minerals.
  • the particle size of the lithium clay powder is 50-400 mesh.
  • the particle size of the lithium clay powder is 100-200 mesh.
  • the roasting temperature is 400-1200°C.
  • the roasting temperature is 500-800°C.
  • the roasting time is 1-5 hours. Preferably, the roasting time is 2-3 hours.
  • the molar ratio of the metal elements in the leaching agent to the lithium in the roasted clinker is (1-10):1.
  • the molar ratio of the metal elements in the leaching agent to the lithium in the roasted clinker is (2-5):1.
  • the strong acid salt of sodium is selected from at least one of sodium sulfate or sodium chloride; the strong acid salt of potassium is selected from potassium sulfate or potassium chloride. of at least one.
  • the leaching temperature is 200-250°C and the pressure is 1.8-2.2MPa.
  • the leaching time is 1-12 hours. Preferably, the leaching time is 2-6 hours.
  • the volume ratio (solid-liquid ratio) of the mass of the roasted clinker to water (solid-liquid ratio) is 1g:(2-10)L.
  • the solid-liquid ratio of the roasted clinker and water is 1g:(2-4)L.
  • step S3 the number of cyclic leaching is 2-5 times (the first time is counted from the first leaching).
  • step S3 the concentration of lithium in the lithium-rich solution is 0.5-10g/L.
  • the present invention is based on the ion exchange between Li + in the lithium clay ore and Na + /K + in the leaching agent under high temperature and high pressure to realize the selective leaching of lithium in the lithium clay. It adopts a solid-liquid reaction system under high pressure and the reaction kinetics is It can directly realize the ion exchange process between roasted lithium clay and sodium/potassium salt. It has been experimentally verified that the present invention can achieve a lithium leaching rate of more than 90% at a temperature of 150-300°C and a pressure of 1.4-2.5MPa. . At the same time, through high-temperature roasting, some inert mineral forms in the clay ore are transformed into crystal forms, which improves the compatibility of the process.
  • the method for extracting lithium from lithium-containing clay based on high temperature and high pressure proposed by the present invention has a simple process, strong compatibility, high lithium leaching rate, and has application prospects.
  • the present invention uses sodium/potassium hydroxide or sodium/potassium strong acid salt as the leaching agent.
  • Na and K have smaller ionic radii and higher ion exchange kinetics, while avoiding Ca
  • Mg increases the difficulty of subsequent lithium solution recovery and reduces subsequent impurity removal costs.
  • weak acid salts choose strong acid salts that are easy to dissolve and avoid safety risks caused by hydrolysis and decomposition of the leaching agent under high temperature and pressure.
  • Figure 1 is a process flow diagram of Embodiment 1 of the present invention.
  • a method of extracting lithium from lithium clay Refer to Figure 1. The specific process is:
  • S3 Grind the obtained roasted clinker with a ball mill. Take 500g of the ground powder and add water and sodium chloride. The liquid-to-solid ratio of water and roasted clinker is 3L:1g. The amount of sodium chloride is Na: Li is 3:1, react in a high temperature and high pressure reactor at 200°C for 4 hours, and the reaction pressure is 1.6-2.0MPa;
  • the first leaching lithium solution is named the primary leaching lithium solution.
  • the primary leaching lithium solution is added with sodium chloride according to the ratio of Na:Li to 3:1. Return to step S3 for cyclic leaching, and obtain lithium-rich leachate after three cycles.
  • the composition of the lithium clay, the leaching residue and the leachate of the present invention were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer.
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • atomic absorption spectrophotometer atomic absorption spectrophotometer.
  • multiple leaching rates (leaching liquid volume) * (lithium concentration - circulating liquid lithium concentration) / (leaching material Mass*lithium content)*100%
  • the lithium leaching rate in one leaching process is calculated to be 92%.
  • the lithium leaching rate in the cyclic leaching process is basically unaffected and can reach 90%.
  • the lithium concentration in one leaching is 981ppm. After three cycles, Lithium concentration increased to 2879ppm.
  • a method of extracting lithium from lithium clay is:
  • S3 Grind the obtained roasted clinker with a ball mill. Take 500g of the ground powder and add water and sodium chloride. The liquid-to-solid ratio of water and roasted clinker is 3L:1g. The amount of sodium chloride is Na: Li is 2:1, react in a high temperature and high pressure reactor at 200°C for 4 hours, and the reaction pressure is 1.6-2.0MPa;
  • step S4 After the reaction, the slurry is separated from solid to liquid to obtain the lithium-containing solution and leaching residue.
  • the first leaching lithium solution is named the primary leaching lithium liquid.
  • the primary leaching lithium liquid is added with sodium chloride according to the ratio of Na:Li to 2:1. Return to step S3 for cyclic leaching, and obtain lithium-rich leachate after three cycles.
  • the composition of the lithium clay, the leaching residue and the leaching liquid of the present invention were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer.
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • atomic absorption spectrophotometer atomic absorption spectrophotometer.
  • Table 2 The detection results are shown in Table 2.
  • the primary leaching rate of lithium (leaching liquid volume * lithium concentration) / (leaching material mass * lithium content) * 100%
  • multiple leaching rates (leaching liquid volume) * (lithium concentration - circulating liquid lithium concentration) / (leaching material Quality * lithium content) * 100%
  • the calculated lithium leaching rate in one leaching process can be 95.3%
  • the lithium leaching rate in the cyclic leaching process is basically unaffected, up to 94.1%
  • the lithium concentration in one leaching is 731ppm
  • a method of extracting lithium from lithium clay is:
  • S3 Grind the obtained roasted clinker with a ball mill. Take 500g of the ground powder and add water and sodium chloride. The liquid-to-solid ratio of water and roasted clinker is 3L:1g. The amount of sodium chloride is Na: Li is 2:1, react in a high-temperature and high-pressure reactor at 250°C for 4 hours, and the reaction pressure is 1.6-2.2MPa;
  • the first leaching lithium solution is named the primary leaching lithium solution.
  • the primary leaching lithium solution is added with sodium chloride according to the ratio of Na:Li to 3:1. Return to step S3 for cyclic leaching, and obtain lithium-rich leachate after three cycles.
  • the composition of the lithium clay, the leaching residue and the leaching liquid of the present invention were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer.
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • atomic absorption spectrophotometer atomic absorption spectrophotometer.
  • multiple leaching rates (leaching liquid volume) * (lithium concentration - circulating liquid lithium concentration) / (leaching material Mass*lithium content)*100%
  • the lithium leaching rate in one leaching process is calculated to be 94.7%.
  • the lithium leaching rate in the cyclic leaching process is basically unaffected and can reach 93.9%.
  • the lithium concentration in one leaching is 1326ppm. After three cycles, Lithium concentration increased to 3945ppm.
  • a method of extracting lithium from lithium clay is:
  • S3 Grind the obtained roasted clinker with a ball mill. Take 500g of the ground powder and add water and sodium chloride. The liquid-to-solid ratio of water and roasted clinker is 3L:1g. The amount of sodium chloride is Na: Li is 3:1, react in a high-temperature and high-pressure reactor at 200°C for 4 hours, and the reaction pressure is 1.4-2.0MPa;
  • the first leaching lithium solution is named the primary leaching lithium solution.
  • the primary leaching lithium solution is added with sodium chloride according to the ratio of Na:Li to 3:1. Return to step S3 for cyclic leaching, and obtain lithium-rich leachate after three cycles.
  • the composition of the lithium clay, the leaching residue and the leaching liquid of the present invention were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer.
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • atomic absorption spectrophotometer atomic absorption spectrophotometer.
  • multiple leaching rates (leaching liquid volume) * (lithium concentration - circulating liquid lithium concentration) / (leaching material Mass*lithium content)*100%
  • the lithium leaching rate in one leaching process is calculated to be 95.8%.
  • the lithium leaching rate in the cyclic leaching process is basically unaffected and can reach 94.8%.
  • the lithium concentration in one leaching is 1022pm. After three cycles, Lithium concentration increased to 3037ppm.
  • a method for extracting lithium from lithium clay The difference from Example 1 is that the conditions of the leaching reaction are different.
  • the specific process is:
  • S3 Grind the obtained roasted clinker with a ball mill. Take 500g of the ground powder and add water and sodium chloride. The liquid-to-solid ratio of water and roasted clinker is 3L:1g. The amount of sodium chloride is Na: Li is 3:1, react in a high-temperature and high-pressure reactor at 130°C for 4 hours, and the reaction pressure is 0.2-0.6MPa;
  • the first leaching lithium solution is named the primary leaching lithium solution.
  • the primary leaching lithium solution is added with sodium chloride according to the ratio of Na:Li to 3:1. Return to step S3 for cyclic leaching, and obtain lithium-rich leachate after three cycles.
  • the composition of the lithium clay, the leaching residue and the leaching liquid of the present invention were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer.
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • atomic absorption spectrophotometer atomic absorption spectrophotometer.
  • Table 5 The detection results are shown in Table 5.
  • the primary leaching rate of lithium (leaching liquid volume * lithium concentration) / (leaching material mass * lithium content) * 100%
  • multiple leaching rates (leaching liquid volume) * (lithium concentration - circulating liquid lithium concentration) / (leaching material Mass * lithium content) * 100%
  • the lithium leaching rate in the primary leaching process is only 37.2%.
  • the lithium leaching rate in the cyclic leaching process is basically unaffected, about 36.2%.
  • the primary leaching lithium concentration is 335ppm.
  • the lithium leaching rate is 335ppm.
  • the concentration was increased to 978ppm.
  • This comparative example shows that temperature and pressure have a great influence on the lithium leaching effect. When the temperature and pressure are insufficient, the lithium leaching rate is very low.
  • a method for extracting lithium from lithium clay The difference from Example 2 is that magnesium chloride is used as the leaching agent.
  • the specific process is:
  • S3 Grind the obtained roasted clinker with a ball mill. Take 500g of the ground powder and add water and sodium chloride. The liquid-solid ratio of water and roasted clinker is 3L:1g. The amount of magnesium chloride is Mg:Li. 2:1, react in a high temperature and high pressure reactor at 200°C for 4 hours, the reaction pressure is 1.6-2.0MPa;
  • the first leaching lithium solution is named the primary leaching lithium solution.
  • the primary leaching lithium solution is added with magnesium chloride according to the ratio of Mg:Li 2:1 and returns to the step.
  • S3 is used for cyclic leaching, and the lithium-rich leachate is obtained after three cycles.
  • the composition of the lithium clay, the leaching residue and the leaching liquid of the present invention were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer.
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • atomic absorption spectrophotometer atomic absorption spectrophotometer.
  • multiple leaching rates (leaching liquid volume) * (lithium concentration - circulating liquid lithium concentration) / (leaching material Mass * lithium content) * 100%
  • the calculated lithium leaching rate in the primary leaching process is only 27.9%
  • the lithium leaching rate in the cyclic leaching process is basically unaffected, about 26.5%
  • the primary leaching lithium concentration is 326ppm
  • This comparative example uses magnesium salt as the leaching agent, which not only
  • a method for extracting lithium from lithium clay The difference from Example 3 is that the roasting process of step S2 is not performed.
  • the specific process is:
  • S2 Grind the obtained crushed material with a ball mill. Take 500g of the ground powder and add water and sodium chloride. The liquid-to-solid ratio of water and crushed material is 3L:1g. The amount of sodium chloride is Na:Li. 2:1, react in a high temperature and high pressure reactor at 250°C for 4 hours, the reaction pressure is 1.6-2.2MPa;
  • the first leaching lithium solution is named the primary leaching lithium solution.
  • the primary leaching lithium solution is added with sodium chloride according to the ratio of Na:Li to 3:1. Return to step S3 for cyclic leaching, and obtain lithium-rich leachate after three cycles.
  • the composition of the lithium clay, the leaching residue and the leaching liquid of the present invention were detected using an inductively coupled plasma optical emission spectrometer (ICP-OES) and an atomic absorption spectrophotometer.
  • the detection results are shown in Table 7.
  • the primary leaching rate of lithium (volume of leaching liquid * lithium concentration) / (mass of leaching material * lithium content) * 100%
  • the multiple leaching rate (volume of leaching liquid) * (lithium concentration - lithium concentration of circulating liquid) / (leaching material Mass*lithium content)*100%
  • the calculated lithium leaching rate in the primary leaching process is only 36.8%
  • the lithium leaching rate in the cyclic leaching process is basically unaffected, about 34.8%
  • the primary leaching lithium concentration is 454ppm
  • the lithium clay raw ore was not roasted and transformed into crystal forms, there are many inert ore types in the raw materials, and the ion exchange

Abstract

一种从锂黏土中提取锂的方法,将锂黏土粉末进行焙烧,焙烧熟料经研磨后与浸出剂和水混合,在150-300℃的温度和1.4-2.5MPa的压力下进行浸出,固液分离得到含锂溶液和浸出渣,浸出剂为氢氧化钠、氢氧化钾、钠的强酸盐或钾的强酸盐中的至少一种,将含锂溶液加入适量浸出剂返回浸出步骤中用于循环浸出,依此过程循环浸出若干次,得到富锂溶液。

Description

从锂黏土中提取锂的方法 技术领域
本发明属于锂矿石提锂技术领域,具体涉及一种从锂黏土中提取锂的方法。
背景技术
随着锂离子电池的迅速推广,锂作为锂离子电池中的关键元素,愈发受到行业关注,以碳酸锂和氢氧化锂为代表的锂盐产品,市场已经供不应求,价格高居不下。所以,锂资源的进一步开发显得十分迫切。
目前,市场上的锂盐产品主要来源于锂辉石提锂、锂云母提锂、盐湖提锂以及退役锂离子电池中的锂回收,而锂黏土由于氧化锂品位较低一度被忽视,近年随着矿物勘探工作的深入开展,国内外均发现许多大型的锂黏土矿,其碳酸锂当量均在百万吨级以上,储量非常可观。相对于十分有限、日渐枯竭、价格高昂的锂辉石、锂云母矿,黏土矿的开采和冶炼十分具有发展前景。
针对锂黏土中锂的回收,目前国内相关提锂技术十分有限。专利CN110358931A公开了《一种离子交换法提取碳酸粘土型锂矿中锂》的方法,该法通过三价铁盐和焙烧黏土熟料在85℃以离子交换的形式实现锂的浸出,但浸出率偏低,铁盐的消耗较高,工业化难度较大;专利CN202010684178.8公开了《一种含锂黏土提锂的方法》,该法将球磨后的锂黏土同碳酸钙、硫酸钠、硫酸钾按一定比例焙烧,粉碎后浸出得到含锂溶液,该法产生大量的钙硅废渣,难以处理,渣中氧化锂含量达到0.2%,仅适用于氧化锂品位较高的黏土矿;专利CN201410098348.9公开了《一种低品位含锂粘土矿提锂的方法》,该法提出了一种“改性焙烧-堆浸”的新工艺,但焙烧过程引入了氟化钙,氟离子对设备的腐蚀性较大,产生的氟化氢也对大气存在污染。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种从锂黏土中提取锂的方法,该方法工艺简单、锂的浸出较高,极具应用前景。
根据本发明的一个方面,提出了一种从锂黏土中提取锂的方法,包括以下步骤:
S1:将锂黏土粉末进行焙烧,得到焙烧熟料;
S2:所述焙烧熟料经研磨后与浸出剂和水混合,在150-300℃的温度和1.4-2.5MPa的压力下进行浸出,固液分离得到含锂溶液和浸出渣;所述浸出剂为氢氧化钠、氢氧化钾、钠的强酸盐或钾的强酸盐中的至少一种;
S3:向所述含锂溶液中加入适量所述浸出剂,然后返回步骤S2中用于循环浸出,依此过程循环浸出若干次,得到富锂溶液。
在本发明的一些实施方式中,步骤S1中,所述锂黏土粉末的锂含量为0.1-0.5wt%。
在本发明的一些实施方式中,步骤S1中,所述锂黏土粉末包括碳酸盐型黏土矿、火山岩型黏土矿或贾达尔锂硼矿中的至少一种。
在本发明的一些实施方式中,步骤S1中,所述锂黏土粉末的粒度为50-400目。优选的,所述锂黏土粉末的粒度为100-200目。
在本发明的一些实施方式中,步骤S1中,所述焙烧的温度为400-1200℃。优选的,所述焙烧的温度为500-800℃。
在本发明的一些实施方式中,步骤S1中,所述焙烧的时间为1-5h。优选的,所述焙烧的时间为2-3h。
在本发明的一些实施方式中,步骤S2中,所述浸出剂中的金属元素与所述焙烧熟料中的锂的摩尔比为(1-10):1。优选的,所述浸出剂中的金属元素与所述焙烧熟料中的锂的摩尔比为(2-5):1。
在本发明的一些实施方式中,步骤S2中,所述钠的强酸盐选自硫酸钠或氯化钠中的至少一种;所述钾的强酸盐选自硫酸钾或氯化钾中的至少一种。
在本发明的一些优选的实施方式中,步骤S2中,所述浸出的温度为200-250℃,压力为1.8-2.2MPa。
在本发明的一些实施方式中,步骤S2中,所述浸出的时间为1-12h。优选的,所述浸出的时间2-6h。
在本发明的一些实施方式中,步骤S2中,所述焙烧熟料的质量与水的体积比(固液比)为1g:(2-10)L。优选的,所述焙烧熟料与水的固液比为1g:(2-4)L。
在本发明的一些实施方式中,步骤S3中,所述循环浸出的次数为2-5次(以首次浸出开始算第一次)。
在本发明的一些实施方式中,步骤S3中,所述富锂溶液中锂的浓度为0.5-10g/L。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明基于高温高压下锂黏土矿中Li +同浸出剂中Na +/K +之间的离子交换作用实现锂黏土中的锂选择性浸出,在高压下采用固液反应体系,反应动力学高,可直接实现焙烧后的锂黏土同钠/钾盐的离子交换过程,经实验验证本发明在150-300℃的温度以及1.4-2.5MPa的压力下能够实现90%以上的锂浸出率。同时通过高温焙烧,使黏土矿中某些惰性矿型进行晶型转化,提高了工艺的兼容性,通过对焙烧熟料进行研磨,有效地降低了物料的粒度,有利于提高高压浸出过程反应速率,而浸出锂液的循环使用,有利于提高锂浓度的同时减少浸出剂的用量。总体来看,基于本发明提出的高温高压提取含锂黏土中锂的一种方法,其流程简单、兼容性强、锂的浸出率较高,具备应用前景。
2、本发明采用钠/钾的氢氧化物或钠/钾的强酸盐作为浸出剂,与Ca、Mg相比,Na、K的离子半径较小,离子交换动力学较高,同时避免Ca、Mg的引入而增加后续锂溶液回收的难度,降低后续除杂成本。与弱酸盐相比,选择强酸盐易溶解,避免高温高压下浸出剂发生水解、分解导致的安全风险。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动 的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种从锂黏土中提取锂的方法,参照图1,具体过程为:
S1:将一种含锂黏土用破碎机破碎至100目(原矿成份见表1);
S2:将得到破碎料在500℃下进行焙烧,焙烧时间为3h;
S3:将得到的焙烧熟料用球磨机进行研磨,取500g研磨后的粉料,加入水和氯化钠,水和焙烧熟料的液固比为3L:1g,氯化钠的用量按Na:Li为3:1,在高温高压反应釜中200℃下反应4小时,反应压力为1.6-2.0MPa;
S4:反应后的浆料经过固液分离得到含锂溶液和浸出渣,第一次浸出的锂溶液命名为一次浸出锂液,一次浸出锂液按Na:Li为3:1补加氯化钠返回步骤S3中用于循环浸出,循环三次后得到富锂浸出液。
对本发明的锂黏土组成、浸出渣和浸出液,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表1所示。其中锂的一次浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,多次浸出率=(浸出液体积)*(锂浓度-循环液锂浓度)/(浸出物料质量*锂含量)*100%,计算得到一次浸出过程锂的浸出率可得到92%,循环浸出过程锂的浸出率基本不受影响,可达90%,一次浸出锂浓度为981ppm,循环三次后锂浓度提高至2879ppm。
表1实施例1锂黏土原料及浸出液组成
元素 Li Na K Mg Ca Al Si
锂黏土原料wt% 0.32 1.21 1.03 0.35 0.27 18.35 19.52
一次浸出液/ppm 981 5415 62 136 389 27 236
二次浸出液/ppm 1952 10923 79 251 765 46 239
三次浸出液/ppm 2879 16378 92 276 796 56 241
实施例2
一种从锂黏土中提取锂的方法,具体过程为:
S1:将一种含锂黏土用破碎机破碎至100目(原矿成份见表2);
S2:将得到破碎料在600℃下进行焙烧,焙烧时间为2h;
S3:将得到的焙烧熟料用球磨机进行研磨,取500g研磨后的粉料,加入水和氯化钠,水和焙烧熟料的液固比为3L:1g,氯化钠的用量按Na:Li为2:1,在高温高压反应釜中200℃下反应4小时,反应压力为1.6-2.0MPa;
S4:反应后的浆料经过固液分离得到含锂溶液和浸出渣,第一次浸出的锂溶液命名为一次浸出锂液,一次浸出锂液按Na:Li为2:1补加氯化钠返回步骤S3中用于循环浸出,循环三次后得到富锂浸出液。
对本发明的锂黏土组成、浸出渣和浸出液,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表2所示。其中锂的一次浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,多次浸出率=(浸出液体积)*(锂浓度-循环液锂浓度)/(浸出物料质量*锂含量)*100%,计算得到一次浸出过程锂的浸出率可得到95.3%,循环浸出过程锂的浸出率基本不受影响,可达94.1%,一次浸出锂浓度为731ppm,三次后锂浓度提高至2163ppm。
表2实施例2锂黏土原料及浸出液组成
元素 Li Na K Mg Ca Al Si
锂黏土原料wt% 0.23 1.05 1.31 0.24 0.29 23.75 18.23
一次浸出液/ppm 731 3911 72 119 395 234 189
二次浸出液/ppm 1451 7834 132 212 783 45 264
三次浸出液/ppm 2163 11923 147 269 832 62 305
实施例3
一种从锂黏土中提取锂的方法,具体过程为:
S1:将一种含锂黏土用破碎机破碎至100目(原矿成份见表3);
S2:将得到破碎料在700℃下进行焙烧,焙烧时间为2h;
S3:将得到的焙烧熟料用球磨机进行研磨,取500g研磨后的粉料,加入水和氯化 钠,水和焙烧熟料的液固比为3L:1g,氯化钠的用量按Na:Li为2:1,在高温高压反应釜中250℃下反应4小时,反应压力为1.6-2.2MPa;
S4:反应后的浆料经过固液分离得到含锂溶液和浸出渣,第一次浸出的锂溶液命名为一次浸出锂液,一次浸出锂液按Na:Li为3:1补加氯化钠返回步骤S3中用于循环浸出,循环三次后得到富锂浸出液。
对本发明的锂黏土组成、浸出渣和浸出液,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表3所示。其中锂的一次浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,多次浸出率=(浸出液体积)*(锂浓度-循环液锂浓度)/(浸出物料质量*锂含量)*100%,计算得到一次浸出过程锂的浸出率可得到94.7%,循环浸出过程锂的浸出率基本不受影响,可达93.9%,一次浸出锂浓度为1326ppm,循环三次后锂浓度提高至3945ppm。
表3实施例3黏土原料及浸出液组成
元素 Li Na K Mg Ca Al Si
锂黏土原料wt% 0.42 1.17 1.25 0.31 0.29 19.62 18.31
一次浸出液/ppm 1326 6712 76 196 368 25 325
二次浸出液/ppm 2639 13425 142 242 690 48 365
三次浸出液/ppm 3945 20136 197 312 712 59 372
实施例4
一种从锂黏土中提取锂的方法,具体过程为:
S1:将一种含锂黏土用破碎机破碎至100目(原矿成份见表4);
S2:将得到破碎料在800℃下进行焙烧,焙烧时间为2h;
S3:将得到的焙烧熟料用球磨机进行研磨,取500g研磨后的粉料,加入水和氯化钠,水和焙烧熟料的液固比为3L:1g,氯化钠的用量按Na:Li为3:1,在高温高压反应釜中200℃下反应4小时,反应压力为1.4-2.0MPa;
S4:反应后的浆料经过固液分离得到含锂溶液和浸出渣,第一次浸出的锂溶液命名 为一次浸出锂液,一次浸出锂液按Na:Li为3:1补加氯化钠返回步骤S3中用于循环浸出,循环三次后得到富锂浸出液。
对本发明的锂黏土组成、浸出渣和浸出液,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表4所示。其中锂的一次浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,多次浸出率=(浸出液体积)*(锂浓度-循环液锂浓度)/(浸出物料质量*锂含量)*100%,计算得到一次浸出过程锂的浸出率可得到95.8%,循环浸出过程锂的浸出率基本不受影响,可达94.8%,一次浸出锂浓度为1022pm,循环三次后锂浓度提高至3037ppm。
表4实施例4锂黏土原料及浸出液组成
元素 Li Na K Mg Ca Al Si
锂黏土原料wt% 0.32 0.95 1.35 0.23 0.69 28.56 16.32
一次浸出液/ppm 1022 10623 85 132 831 34 232
二次浸出液/ppm 2035 21254 158 232 865 58 247
三次浸出液/ppm 3037 31879 225 346 894 89 256
对比例1
一种从锂黏土中提取锂的方法,与实施例1的区别在于,浸出反应的条件不同,具体过程为:
S1:将一种含锂黏土用破碎机破碎至100目(原矿成份见表5);
S2:将得到破碎料在500℃下进行焙烧,焙烧时间为3h;
S3:将得到的焙烧熟料用球磨机进行研磨,取500g研磨后的粉料,加入水和氯化钠,水和焙烧熟料的液固比为3L:1g,氯化钠的用量按Na:Li为3:1,在高温高压反应釜中130℃下反应4小时,反应压力为0.2-0.6MPa;
S4:反应后的浆料经过固液分离得到含锂溶液和浸出渣,第一次浸出的锂溶液命名为一次浸出锂液,一次浸出锂液按Na:Li为3:1补加氯化钠返回步骤S3中用于循环浸出,循环三次后得到富锂浸出液。
对本发明的锂黏土组成、浸出渣和浸出液,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表5所示。其中锂的一次浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,多次浸出率=(浸出液体积)*(锂浓度-循环液锂浓度)/(浸出物料质量*锂含量)*100%,计算得到一次浸出过程锂的浸出率只有37.2%,循环浸出过程锂的浸出率基本不受影响,约为36.2%,一次浸出锂浓度为335ppm,循环三次后锂浓度提高至978ppm。本对比例表明温度和压力对锂浸出效果影响很大,当温度和压力不足时,锂浸出率是很低的。
表5对比例1锂黏土原料及浸出液组成
元素 Li Na K Mg Ca Al Si
锂黏土原料wt% 0.27 1.02 0.98 0.19 0.78 23.56 17.63
一次浸出液/ppm 335 9948 76 95 768 31 256
二次浸出液/ppm 365 19876 149 185 782 56 263
三次浸出液/ppm 978 29344 212 279 803 86 269
对比例2
一种从锂黏土中提取锂的方法,与实施例2的区别在于,浸出剂采用氯化镁,具体过程为:
S1:将一种含锂黏土用破碎机破碎至100目(原矿成份见表6);
S2:将得到破碎料在600℃下进行焙烧,焙烧时间为2h;
S3:将得到的焙烧熟料用球磨机进行研磨,取500g研磨后的粉料,加入水和氯化钠,水和焙烧熟料的液固比为3L:1g,氯化镁的用量按Mg:Li为2:1,在高温高压反应釜中200℃下反应4小时,反应压力为1.6-2.0MPa;
S4:反应后的浆料经过固液分离得到含锂溶液和浸出渣,第一次浸出的锂溶液命名为一次浸出锂液,一次浸出锂液按Mg:Li为2:1补加氯化镁返回步骤S3中用于循环浸出,循环三次后得到富锂浸出液。
对本发明的锂黏土组成、浸出渣和浸出液,采用电感耦合等离子体发射光谱仪 (ICP-OES)和原子吸收分光光度计检测,检测结果如表6所示。其中锂的一次浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,多次浸出率=(浸出液体积)*(锂浓度-循环液锂浓度)/(浸出物料质量*锂含量)*100%,计算得到一次浸出过程锂的浸出率只有27.9%,循环浸出过程锂的浸出率基本不受影响,约26.5%,一次浸出锂浓度为326ppm,三次后锂浓度提高至978ppm。本对比例使用了镁盐作为浸出剂,不仅浸出率低,而且导致浸出液中镁大量存在,增加后续除杂的负担。
表6对比例2锂黏土原料及浸出液组成
元素 Li Na K Mg Ca Al Si
锂黏土原料wt% 0.35 1.11 1.03 0.29 0.35 26.78 17.59
一次浸出液/ppm 326 92 83 12213 356 32 153
二次浸出液/ppm 657 179 156 24418 695 57 296
三次浸出液/ppm 978 268 219 36629 987 83 448
对比例3
一种从锂黏土中提取锂的方法,与实施例3的区别在于,未进行步骤S2的焙烧处理,具体过程为:
S1:将一种含锂黏土用破碎机破碎至100目(原矿成份见表7);
S2:将得到的破碎料用球磨机进行研磨,取500g研磨后的粉料,加入水和氯化钠,水和破碎料的液固比为3L:1g,氯化钠的用量按Na:Li为2:1,在高温高压反应釜中250℃下反应4小时,反应压力为1.6-2.2MPa;
S3:反应后的浆料经过固液分离得到含锂溶液和浸出渣,第一次浸出的锂溶液命名为一次浸出锂液,一次浸出锂液按Na:Li为3:1补加氯化钠返回步骤S3中用于循环浸出,循环三次后得到富锂浸出液。
对本发明的锂黏土组成、浸出渣和浸出液,采用电感耦合等离子体发射光谱仪(ICP-OES)和原子吸收分光光度计检测,检测结果如表7所示。其中锂的一次浸出率=(浸出液体积*锂浓度)/(浸出物料质量*锂含量)*100%,多次浸出率=(浸出液体积) *(锂浓度-循环液锂浓度)/(浸出物料质量*锂含量)*100%,计算得到一次浸出过程锂的浸出率只有36.8%,循环浸出过程锂的浸出率基本不受影响,约34.8%,一次浸出锂浓度为454ppm,循环三次后锂浓度提高至1291ppm。本对比例由于未对锂黏土原矿进行焙烧转化晶型,原料中存在较多惰性矿型,离子交换过程较难进行,导致浸出率低。
表7对比例3锂黏土原料及浸出液组成
元素 Li Na K Mg Ca Al Si
锂黏土原料wt% 0.37 1.21 0.89 0.48 0.32 28.36 17.56
一次浸出液/ppm 454 10721 56 78 356 42 225
二次浸出液/ppm 827 21435 108 146 376 58 236
三次浸出液/ppm 1291 32153 145 198 385 86 254
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种从锂黏土中提取锂的方法,其特征在于,包括以下步骤:
    S1:将锂黏土粉末进行焙烧,得到焙烧熟料;
    S2:所述焙烧熟料经研磨后与浸出剂和水混合,在150-300℃的温度和1.4-2.5MPa的压力下进行浸出,固液分离得到含锂溶液和浸出渣;所述浸出剂为氢氧化钠、氢氧化钾、钠的强酸盐或钾的强酸盐中的至少一种;
    S3:向所述含锂溶液中加入适量所述浸出剂,然后返回步骤S2中用于循环浸出,依此过程循环浸出若干次,得到富锂溶液。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述锂黏土粉末为碳酸盐型黏土矿、火山岩型黏土矿或贾达尔锂硼矿中的至少一种。
  3. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述锂黏土粉末的粒度为50-400目。
  4. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述焙烧的温度为400-1200℃。
  5. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述焙烧的时间为1-5h。
  6. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述浸出剂中的金属元素与所述焙烧熟料中的锂的摩尔比为(1-10):1。
  7. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述钠的强酸盐选自硫酸钠或氯化钠中的至少一种;所述钾的强酸盐选自硫酸钾或氯化钾中的至少一种。
  8. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述浸出的时间为1-12h。
  9. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述焙烧熟料的质量与水的体积比为1g:(2-10)L。
  10. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述富锂溶液中锂的浓度为0.5-10g/L。
PCT/CN2022/119982 2022-06-28 2022-09-20 从锂黏土中提取锂的方法 WO2024000838A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210741423.3 2022-06-28
CN202210741423.3A CN115161496A (zh) 2022-06-28 2022-06-28 从锂黏土中提取锂的方法

Publications (1)

Publication Number Publication Date
WO2024000838A1 true WO2024000838A1 (zh) 2024-01-04

Family

ID=83487931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119982 WO2024000838A1 (zh) 2022-06-28 2022-09-20 从锂黏土中提取锂的方法

Country Status (2)

Country Link
CN (1) CN115161496A (zh)
WO (1) WO2024000838A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116002736A (zh) * 2022-12-29 2023-04-25 四川顺应锂材料科技有限公司 一种黏土锂矿有压浸出分离铝和锂制备氢氧化铝的方法
CN116829745B (zh) * 2023-04-19 2024-04-09 广东邦普循环科技有限公司 一种从沉积型贫锂黏土中选择性提锂的方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107089674A (zh) * 2017-07-03 2017-08-25 福州大学 一种锂辉石硫酸钠加压浸出提锂工艺
CN107815557A (zh) * 2017-10-16 2018-03-20 福州大学 一种锂辉石管道反应提锂工艺
CN111893318A (zh) * 2020-07-16 2020-11-06 江西赣锋锂业股份有限公司 一种含锂黏土提锂的方法
WO2021146768A1 (en) * 2020-01-20 2021-07-29 Tianqi Lithium Kwinana Pty Ltd A process for producing alumina and a lithium salt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107089674A (zh) * 2017-07-03 2017-08-25 福州大学 一种锂辉石硫酸钠加压浸出提锂工艺
CN107815557A (zh) * 2017-10-16 2018-03-20 福州大学 一种锂辉石管道反应提锂工艺
WO2021146768A1 (en) * 2020-01-20 2021-07-29 Tianqi Lithium Kwinana Pty Ltd A process for producing alumina and a lithium salt
CN111893318A (zh) * 2020-07-16 2020-11-06 江西赣锋锂业股份有限公司 一种含锂黏土提锂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU, LI: "Study on Mineralogical Characteristics and Green Leaching Technology of Clay-Type Lithium Resources", CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY I, no. 12, 15 December 2021 (2021-12-15), ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN115161496A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2024000838A1 (zh) 从锂黏土中提取锂的方法
CN102206755B (zh) 一种从钕铁硼废料中分离回收有价元素的方法
CN106064813B (zh) 一种铝电解槽废旧阴极炭块综合回收方法
WO2023226546A1 (zh) 一种从锂黏土中回收锂的方法
CN106129511A (zh) 一种从废旧锂离子电池材料中综合回收有价金属的方法
CN102244309B (zh) 一种从电动汽车锂系动力电池中回收锂的方法
CN101186969B (zh) 一种从合金中分离稀土、铁、铜、钴和钨的方法
CN106086471B (zh) 一种锂云母脱氟和有价金属浸出的方法
WO2017185946A1 (zh) 一种处理低品位红土镍矿的方法及其选矿方法
US11530465B2 (en) Method for decomposing mixed wolframite and scheelite ore in alkaline system
WO2012171481A1 (zh) 全面综合回收和基本无三废、零排放的湿法冶金方法
CN102242262A (zh) 一种弱碱性氨基酸盐体系处理低品位氧化锌矿的方法
CN111484043A (zh) 一种废旧锰酸锂和磷酸铁锂正极材料的综合回收方法
CN103757200A (zh) 一种红土镍矿分离富集镍铁的方法
CN103911514A (zh) 废旧硬质合金磨削料的回收处理方法
Li et al. Leaching of indium from waste LCD screens by oxalic acid in temperature-controlled aciduric stirred reactor
CN102352442B (zh) 一种废铅酸蓄电池铅膏脱硫方法
CN104152671B (zh) 一种由含锡铁矿制备炼铁用铁精矿的方法
CN105039724A (zh) 一种熔炼炉烟灰的处理方法
CN110735032B (zh) 一种钒钛铁共生矿处理工艺
CN108516569B (zh) 锂云母焙烧制备硫酸锂溶液的方法
CN108866354A (zh) 一种从含钒矿石中高效提取钒的方法
CN102605174A (zh) 一种从低镍高铁红土镍矿中分别回收镍和铁的工艺方法
CN113621837B (zh) 一种低品位细粒级稀土矿的稀土提取方法
CN113735179B (zh) 一种利用铁锰制备高纯硫酸铁的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948927

Country of ref document: EP

Kind code of ref document: A1