WO2020179820A1 - 内燃機関の可変動弁装置 - Google Patents

内燃機関の可変動弁装置 Download PDF

Info

Publication number
WO2020179820A1
WO2020179820A1 PCT/JP2020/009150 JP2020009150W WO2020179820A1 WO 2020179820 A1 WO2020179820 A1 WO 2020179820A1 JP 2020009150 W JP2020009150 W JP 2020009150W WO 2020179820 A1 WO2020179820 A1 WO 2020179820A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
valve
ascending
cam
valve lift
Prior art date
Application number
PCT/JP2020/009150
Other languages
English (en)
French (fr)
Inventor
一也 岡▲崎▼
徳丸 武志
淳一郎 新田
大雅 日比
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2020179820A1 publication Critical patent/WO2020179820A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations

Definitions

  • the present disclosure relates to a variable valve operating device for an internal combustion engine, and more particularly to a variable valve operating device for changing the operating characteristics of an intake valve or an exhaust valve of the internal combustion engine (these are collectively referred to as an engine valve).
  • variable valve gear for making the operating characteristics of an engine valve (for example, at least one of valve timing, valve lift amount, and working angle) variable is known.
  • variable valve operating devices include a variable mechanism capable of switching between at least a first state and a second state in order to switch the operating characteristics of the engine valve.
  • variable mechanisms switch between the first and second states by connecting and disconnecting two rocker arms with a pin.
  • a pin built in one rocker arm is hydraulically pushed out, inserted into a pin hole of the other rocker arm, and two rocker arms are connected.
  • the engine valve may be driven without the pin being completely inserted into the pin hole.
  • the pin may come out of the pin hole during the opening of the engine valve, the engine valve may suddenly move in the valve closing direction, collide with the valve seat or the like, and damage the engine valve.
  • the present disclosure was devised in view of the above circumstances, and the purpose of the present disclosure is a variable valve gear of an internal combustion engine that can suppress damage to the engine valve even when a pin comes out of the pin hole while the engine valve is open. Is to provide.
  • variable mechanism that can switch between the first state and the second state to switch the operating characteristics of the engine valve.
  • the variable mechanism is Camshaft, The first cam and the second cam, which are fixed to the camshaft and have different cam profiles, A first rocker arm and a second rocker arm provided corresponding to the first cam and the second cam, respectively; A coupling mechanism for switching the coupling state of the first rocker arm and the second rocker arm, the pin being provided on one of the first rocker arm and the second rocker arm so as to be retractable, and the other.
  • a connecting mechanism having a pin hole Equipped with In the first state, the pin comes out of the pin hole, and the engine valve has an operating characteristic according to the cam profile of the first cam, In the second state, the pin is inserted into the pin hole, and the engine valve has operating characteristics according to the cam profile of the second cam. In the second state, the second ascending section in which the valve lift amount of the engine valve increases is set to the advance angle side with respect to the first ascending section in the first state.
  • valve lift change rate of the ascending start portion of the second ascending section at a predetermined time is larger than the valve lift change rate of the ascending start portion of the first ascending section at the same time, or (b) the second ascending The valve lift change rate of the ascending end portion of the section at a predetermined time is larger than the valve lift change rate of the ascending end portion of the first ascending section at the same time, or (c) the ascending start portion and ascending of the second ascending section.
  • a variable valve gear of an internal combustion engine characterized in that the valve lift change rate at a predetermined time of the end portion is larger than the valve lift change rate at the same time of the ascending start portion and the ascending end portion of the first ascending section. To be done.
  • the maximum valve lift amount is equal between the first state and the second state.
  • the maximum valve lift period is extended to the retard side as compared with the first state.
  • damage to the engine valve can be suppressed even when the pin comes out of the pin hole while the engine valve is open.
  • FIG. 1 is a schematic plan view showing a partial configuration of a variable valve gear.
  • FIG. 2 is a valve lift diagram showing how the valve timing changes.
  • FIG. 3 is a diagram showing a first state of the variable mechanism.
  • FIG. 4 is a diagram showing a third state of the variable mechanism.
  • FIG. 5 is a diagram showing a second state of the variable mechanism.
  • FIG. 6 is a diagram showing a control map.
  • FIG. 7 is a valve lift diagram showing the valve lift curves in the first state and the third state in detail.
  • FIG. 8 is an enlarged view of FIG. 7 showing a valve lift change rate at a predetermined time in the rising start portion.
  • FIG. 9 is an enlarged view of FIG. 7 showing a valve lift change rate at a predetermined time at the end of climb.
  • FIG. 1 shows a partial configuration of the variable valve gear of the present embodiment.
  • FIG. 1 is a schematic plan view of the cylinder head when viewed from above.
  • the internal combustion engine (engine) of the present embodiment is a multi-cylinder diesel engine mounted on a large vehicle such as a truck or a bus, and specifically, an in-line 6-cylinder diesel engine.
  • a large vehicle such as a truck or a bus
  • an in-line 6-cylinder diesel engine an in-line 6-cylinder diesel engine.
  • the use, type, type, etc. of the vehicle and engine are not limited and are arbitrary.
  • Rotational driving force from a crankshaft (not shown) is transmitted to the camshaft 1 through a power transmission mechanism (not shown) such as a gear mechanism.
  • the engine of the present embodiment is a DOHC (Double OverHead Camshaft) engine that drives an intake valve and an exhaust valve with two camshafts, respectively.
  • the camshaft 1 shown in the figure is an intake cam for opening and closing the intake valve 3. It is a shaft.
  • the present disclosure may be applied to an exhaust camshaft for driving an exhaust valve (not shown). Intake valves and exhaust valves are collectively called engine valves.
  • FIG. 1 shows the configuration for one cylinder.
  • the variable valve gear controls the variable mechanism 5 that can switch between the first state and the second state to switch the operating characteristics of the intake valve 3, and the fluid pressure supplied to the variable mechanism 5 to switch the variable mechanism 5.
  • a fluid pressure control device (described later) for controlling.
  • the operating characteristics of the intake valve 3 refer to the valve timing and the working angle.
  • the fluid pressure is hydraulic pressure, and engine lubricating oil is used as the fluid or working fluid in this embodiment.
  • the fluid pressure control device will be referred to as a hydraulic control device.
  • three cams 4A, 4B, and 4C that open the intake valve 3 against the biasing force of the valve spring 2 are fixedly mounted on the camshaft 1 for each cylinder.
  • Two intake valves 3 are provided for each cylinder, and these two intake valves 3 are simultaneously opened and closed by a valve bridge 8.
  • a part of the three cams 4A, 4B, 4C and a rocker arm 9 cause the valve bridge 8 to move downward against the urging force of the valve spring 2 (the back side in the paper thickness direction in FIG. 1).
  • Direction is pushed down.
  • the valve bridge 8 is pushed upward (in the direction toward the front side in the paper thickness direction in FIG. 1) by the urging force of the valve spring 2.
  • the three cams that is, the first cam 4A, the second cam 4B, and the third cam 4C each have a different cam profile, and both the valve timing and the working angle of the intake valve 3 are switched in three stages. That is, the variable mechanism 5 of the present embodiment can be switched between three stages of a first state, a second state, and a third state.
  • variable mechanism 5 includes a rocker arm 9, and the rocker arm 9 has three rocker arms per cylinder corresponding to the three cams 4A, 4B, 4C, that is, the first rocker arm 9A, the second rocker arm 9B, and the like.
  • a third rocker arm 9C is included.
  • These rocker arms 9A, 9B, 9C are adjacent to each other in the front-rear direction, and are rotatably supported by a common rocker shaft 18.
  • C2 indicates the central axis of the rocker shaft 18.
  • the order of arrangement of the cams and rocker arms in the axial direction is arbitrary, but in the present embodiment, they are second, first, and third in order from the rear.
  • a rocker roller 19 is rotatably provided on the rocker arms 9A, 9B, 9C, and the rocker roller 19 is constantly in contact with the cams 4A, 4B, 4C. Further, only the first rocker arm 9A is provided with the extending portion 20 that is engaged with the upper surface portion of the valve bridge 8.
  • a connecting mechanism for switching the connecting state of the rocker arms 9A, 9B, 9C is provided.
  • Pin holes 24A, 24B, 24C are provided inside the rocker arms 9A, 9B, 9C, and these pin holes 24A, 24B, 24C have four pins for switching the connection state of the rocker arms 9A, 9B, 9C.
  • 21Aa, 21Ab, 21B, and 21C are provided so as to be movable in the axial direction and appear and disappear.
  • a spring 22 that can collectively urge the four pins 21Aa, 21Ab, 21B, and 21C to the front is provided inside the second rocker arm 9B.
  • the positions of the pins 21Aa, 21Ab, 21B and 21C are controlled by supplying and discharging hydraulic pressure to the first and third rocker passages 23A and 23C provided inside the first and third rocker arms 9A and 9C, respectively.
  • a first shaft passage 14A communicated with the first rocker passage 23A of each cylinder and a third shaft passage 14C communicated with the third rocker passage 23C of each cylinder are provided inside the rocker shaft 18.
  • the hydraulic pressures of the first and third rocker passages 23A and 23C of each cylinder are simultaneously controlled, and by extension, the pins 21Aa and 21Ab of each cylinder. , 21B, 21C, and the connection states of the first to third rocker arms 9A, 9B, 9C of each cylinder are switched at the same time.
  • the variable mechanism 5 steps the valve timing and working angle of the intake valve 3 into one of three states as shown in FIG. 2, that is, the first state S1, the second state S2, and the third state S3. It is configured to switch.
  • the valve timing includes both the opening timing at which the engine valve starts valve opening and the closing timing at which the engine valve ends the valve closing.
  • the working angle refers to a crank phase period or a cam phase period in which the engine valve is open (that is, the valve lift amount VL is larger than zero).
  • the maximum valve lift amount VLmax in the first state S1, the second state S2, and the third state S3 is equal. Further, the maximum valve lift period (the period during which the valve lift amount VL is the maximum valve lift amount VLmax) is gradually extended toward the retard side as the first state S1 moves toward the third state S3.
  • the valve lift curve from the opening timing ⁇ 1 to the timing (referred to as the first maximum lift timing) ⁇ 2 when the valve lift amount VL in the first state S1 reaches the maximum valve lift amount VLmax is the same in all states. And.
  • the valve closing is started immediately in the first state S1, and in the second state S2, the valve closing is started after the maximum valve lift amount VLmax is maintained for the second predetermined period ⁇ 2, and the third In the state S3, the valve closing is started after the maximum valve lift amount VLmax is maintained for a longer third predetermined period ⁇ 3.
  • the closing timing of the first state S1 is ⁇ 3, the closing timing of the second state S2 is ⁇ 4 on the retard side of ⁇ 3, and the closing timing of the third state S3 is ⁇ 5 on the retard side of ⁇ 4.
  • the working angle of the first state S1 is the period from ⁇ 1 to ⁇ 3, the working angle of the second state S2 is the longer period of ⁇ 1 to ⁇ 4, and the working angle of the third state S3 is the longer period of ⁇ 1 to ⁇ 5. .. Therefore, in the present embodiment, the maximum valve lift amount VLmax is kept constant, while the closing timing and the working angle are changed in three stages.
  • the shape of the valve lift curve from the valve closing start timing to the valve closing end timing (closing timing) is the same in any state.
  • the outer shapes of the first to third rocker arms 9A, 9B, and 9C are substantially the same.
  • the cam profiles of the first to third cams 4A, 4B, and 4C are set to different cam profiles corresponding to the first to third states S1, S2, and S3, respectively.
  • Each state of the variable mechanism 5 corresponding to the first to third states S1, S2, S3 of the valve timing and the working angle is defined as the first to third states J1, J2, J3.
  • the variable mechanism 5 can be switched to any of these first to third states J1, J2, and J3.
  • the pin 21B is completely inserted into the pin hole 24B and does not protrude
  • the pin 21C is completely inserted into the pin hole 24C and does not protrude.
  • the rear end surface of the pin 21Aa and the front end surface of the pin 21Ab are arranged flush with the rear end surface and the front end surface of the first rocker arm 9A
  • the front end surface of the pin 21B is flush with the front end surface of the second rocker arm 9B
  • the rear end surface of the pin 21C is arranged flush with the rear end surface of the third rocker arm 9C.
  • the first rocker arm 9A is not connected to the second rocker arm 9B and the third rocker arm 9C, and only the operation of the first cam 4A is transmitted to the intake valve 3 through the first rocker arm 9A.
  • the other second and third rocker arms 9B and 9C simply follow the movements of the second and third cams 4B and 4C and make an idling motion (lost motion).
  • the intake valve 3 has an operating characteristic according to the cam profile of the first cam 4A, and operates in the first state S1 according to the cam profile of the first cam 4A.
  • the intake valve 3 is substantially opened/closed by the third cam 4C via the integrated first and third rocker arms 9A and 9C.
  • the intake valve 3 has an operating characteristic according to the cam profile of the third cam 4C, and operates in the third state S3 according to the cam profile of the third cam 4C.
  • the intake valve 3 is substantially opened and closed by the second cam 4B via the integrated first and second rocker arms 9A and 9B.
  • the intake valve 3 has an operating characteristic according to the cam profile of the second cam 4B, and operates in the second state S2 according to the cam profile of the second cam 4B.
  • the hydraulic control device includes an oil pan 10 forming an oil tank, a hydraulic pump 11 that sucks oil from the oil pan 10 and discharges it as pressure oil, and oil supply from the hydraulic pump 11 to a rocker shaft 18.
  • a supply valve (called OSV) 12 provided on the downstream side of the hydraulic pump 11 in the direction
  • a switching valve (called OCV) 13 provided on the downstream side of the OSV 12 and on the upstream side of the rocker shaft 18 in the oil supply direction
  • the OSV 12 A control unit configured to control the OCV 13, a circuit element (circuitry), or an electronic control unit (referred to as an ECU (Electronic Control Unit)) 100 as a controller is provided.
  • a circuit element circuitry
  • ECU Electronic Control Unit
  • the OSV 12 has a plurality of (specifically, three) ports serving as oil inlets and outlets, that is, a first supply port P1, a second supply port P2, and a third supply port P3.
  • the OCV 13 also has a plurality of (specifically, four) ports that form an inlet / outlet for oil, that is, a first switching port Q1, a second switching port Q2, a third switching port Q3, and a fourth switching port Q4.
  • OSV12 and OCV13 are composed of solenoid valves.
  • the ECU 100 controls the engine, and has a CPU (Central Processing Unit) having a calculation function, ROM (Read Only Memory) and RAM (Random Access Memory) which are storage media, an input / output port, and storage other than ROM and RAM. Including equipment and the like.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the first supply port P1 is connected to the outlet of the hydraulic pump 11
  • the second supply port P2 is connected to the first switching port Q1 of the OCV13
  • the third supply port P3 is connected to the oil pan 10.
  • An oil gallery as a pressure oil reservoir may be provided between the first supply port P1 and the hydraulic pump 11.
  • the second switching port Q2 is connected to the first shaft passage 14A
  • the third switching port Q3 is connected to the third shaft passage 14C
  • the fourth switching port Q4 is connected to the oil pan 10.
  • the second supply port P2 and the third supply port P3 are in communication with each other.
  • the ECU 100 includes a rotation speed sensor 15 for detecting the rotation speed of the engine, specifically, the engine rotation speed Ne (rpm) per unit time, and an accelerator opening degree for detecting the accelerator opening degree Ac.
  • the sensor 16 is connected.
  • the ECU 100 calculates the target fuel injection amount F from a predetermined map based on the detected values of the rotation speed Ne and the accelerator opening degree Ac. Further, the ECU 100 switches the variable mechanism 5 according to the control map as shown in FIG. 6 based on the rotation speed Ne and the target fuel injection amount F. In this way, the ECU 100 switches the variable mechanism 5 according to the engine operating state.
  • the engine speed Ne, the accelerator opening degree Ac, and the target fuel injection amount F are parameters representing the engine operating state.
  • the target fuel injection amount F corresponds to the engine load.
  • the ECU 100 switches the variable mechanism 5 to the first state J1. Similarly, the ECU 100 switches the variable mechanism 5 to the second state J2 when the rotation speed Ne and the target fuel injection amount F are in the second region R2 in the control map, and the rotation speed Ne and the target fuel injection amount F are changed. When in the third region R3 in the control map, the variable mechanism 5 is switched to the third state J3.
  • the first region R1 is a region on the low rotation and low load side
  • the third region R3 is a region on the high rotation or high load side
  • the second region R2 is an intermediate region between them. From the first region R1 toward the third region R3, the engine speed Ne becomes higher, and the target fuel injection amount F increases, that is, the engine load becomes higher. Therefore, as the engine speed Ne becomes the high speed side or the engine load becomes the high load side, the state of the variable mechanism 5 changes sequentially as the first state J1, the second state J2, the third state J3, and the valve timing. The operating angle sequentially changes in the direction in which the closing timing is delayed, such as the first state S1, the second state S2, and the third state S3.
  • control map can be set in any way, and it is not limited to the example described here.
  • the engine operating area corresponding to each state can be arbitrarily set according to the request of the actual machine.
  • the ECU 100 When switching the variable mechanism 5 to the first state J1, the ECU 100 turns on the OSV 12 and turns off the OCV 13 as shown in FIG. Then, the pressure oil discharged from the hydraulic pump 11 passes through the first supply port P1, the second supply port P2, the first switching port Q1, and the second switching port Q2 in this order to the first shaft passage 14A and the first rocker passage 23A. To reach. On the other hand, the pressure oil in the third rocker passage 23C and the third shaft passage 14C is discharged to the oil pan 10 through the third switching port Q3 and the fourth switching port Q4 in this order.
  • the ECU 100 turns on the OSV 12 and turns on the OCV 13 as shown in FIG.
  • the pressure oil discharged from the hydraulic pump 11 passes through the first supply port P1, the second supply port P2, the first switching port Q1, and the third switching port Q3 in this order to the third shaft passage 14C and the third rocker passage 23C.
  • the pressure oil in the first rocker passage 23A and the first shaft passage 14A is discharged to the oil pan 10 through the second switching port Q2 and the fourth switching port Q4 in this order.
  • the ECU 100 turns off the OSV 12 and the OCV 13 as shown in FIG. Then, since the first supply port P1 is not connected to any port, the pressure oil supply from the hydraulic pump 11 is stopped. On the other hand, the pressure oil in the first rocker passage 23A and the first shaft passage 14A is discharged to the oil pan 10 through the second switching port Q2, the first switching port Q1, the second supply port P2, and the third supply port P3 in this order. It Further, the pressure oil in the third rocker passage 23C and the third shaft passage 14C is discharged to the oil pan 10 through the third switching port Q3 and the fourth switching port Q4 in this order.
  • variable mechanism 5 has the following problems.
  • the combination of the first state J1 and the third state J3 will be described as an example.
  • the pin 21C is not completely inserted into the pin hole 24A, but is inserted halfway into the pin hole 24A (this state is called incomplete insertion) and into the pin hole 24A.
  • the opening of the intake valve 3 may be started in the trapped state.
  • the variable mechanism 5 suddenly changes to the first state J1 shown in FIG. Then, the intake valve 3 abruptly closes to the position b of the valve lift amount in the first state S1 according to the cam profile of the first cam 4A. As a result, the intake valve 3 may collide with at least one of the valve bridge 8 and the valve seat formed on the cylinder head, and may be damaged by the impact at that time.
  • FIG. 2 is an example in which the intake valve 3 closes the valve up to the position b of the valve lift amount larger than zero, and the upper end of the shaft portion of the intake valve 3 collides with the valve bridge 8.
  • the valve lift amount in the first state S1 is already zero, and in this case, the umbrella portion of the intake valve 3 collides with the valve seat, so that the problem is more serious.
  • the valve closing start timing of the intake valve 3 is greatly delayed as compared with the first state J1. Therefore, if the pin 21C is pulled out at the valve closing start timing in the latter half of the working angle, the amount of operation of the intake valve 3 in the valve closing direction after that is large, so that the impact at the time of collision is inevitably large. The intake valve 3 is seriously damaged.
  • the engine of the present embodiment is an in-line 6-cylinder engine, and there is no valve-opening period in which the intake valve 3 of any cylinder is not opened, and the intake valve 3 of any cylinder is always opened. ing. Therefore, it is difficult to take a control solution in which the variable mechanism 5 is switched and the pin is inserted as completely as possible during the non-opening period when the pin is not loaded.
  • the timing is set so that the pin can be easily pulled out in the first half of the working angle so that the damage to the intake valve 3 can be suppressed. I try to intentionally pull out a pin that was imperfectly inserted at the timing. This point will be described below.
  • FIG. 7 shows the valve lift curve of the intake valve 3 in the first state S1 (J1) and the third state S3 (J3) in this embodiment in detail.
  • the valve lift curve after the first maximum lift timing ⁇ 2 is the same as that shown in FIG.
  • the difference between the two valve lift curves before the timing ⁇ 2 is a feature of this embodiment.
  • the valve lift curve in the second state S2 (J2) is not shown.
  • the start timing of the valve opening direction operation is ⁇ 1.1 and the end timing is ⁇ 2.
  • the section (or period) in which the valve lift amount VL increases from ⁇ 1.1 to ⁇ 2 is referred to as the first ascending section ⁇ 1.
  • the "upward section” is a name given to imitate the gradual rise of the valve lift curve for easy understanding, and gradually (to the bottom dead center side) as the valve lift amount VL increases. Note that this is the opposite of the downward movement of the intake valve 3.
  • the start timing of the valve opening direction operation is ⁇ 1.3 and the end timing is ⁇ 2.3.
  • the section from ⁇ 1.3 to ⁇ 2.3 is referred to as a third upstream section ⁇ 3.
  • the valve lift curves of the first uphill section ⁇ 1 and the third uphill section ⁇ 3 are close to each other and have a similar shape.
  • the third up zone ⁇ 3 is set slightly ahead of the first up zone ⁇ 1. Therefore, the start timing ⁇ 1.3 and the end timing ⁇ 2.3 in the third state S3 are set slightly closer to the advance angle side than the start timing ⁇ 1.1 and the end timing ⁇ 2 in the first state S1. .. As a result, in the third state S3, the valve lift amount VL is maintained at the maximum valve lift amount VLmax from the end timing ⁇ 2.3 earlier than the end timing ⁇ 2.
  • Both ascending sections ⁇ 1 and ⁇ 3 are divided into ascending start portions ⁇ 1A and ⁇ 3A corresponding to the vicinity of the hem, ascending end portions ⁇ 1B and ⁇ 3B corresponding to the vicinity of the top thereof, and intermediate portions ⁇ 1C and ⁇ 3C between them. Will be done.
  • the ascending sections ⁇ 1 and ⁇ 3 are divided into three equal parts in the direction of the valve lift amount VL (vertical axis), the part from the beginning 1/3 is the beginning part ⁇ 1A, ⁇ 3A, and the part from the end is the end
  • VL vertical axis
  • the partial ⁇ 1B, ⁇ 3B and the remaining portion can be the intermediate portions ⁇ 1C, ⁇ 3C.
  • other classification methods are possible.
  • the rate of change (dVL / d ⁇ ) of the valve lift amount VL with respect to the cam phase ⁇ is defined as the valve lift change rate ⁇ .
  • the valve lift change rate ⁇ represents the inclination of the valve lift curve (for example, ⁇ 1A in the figure) at one point on the valve lift curve. As shown in the figure, in both the ascending sections ⁇ 1 and ⁇ 3, there is an inflection point H in the ascending starting portions ⁇ 1A and ⁇ 3A where the valve lift change rate ⁇ sharply increases.
  • the valve lift amount VL increases to the ascending end portions ⁇ 1B and ⁇ 3B while the valve lift change rate ⁇ remains substantially constant toward the retard side from the inflection point H. Then, the valve lift change rate ⁇ gradually decreases in the ascending end portions ⁇ 1B and ⁇ 3B, and the valve lift change rate ⁇ becomes zero at the end timings ⁇ 2 and ⁇ 2.3.
  • the valve lift change rate ⁇ 3A of the predetermined time ⁇ A of the ascending start portion ⁇ 3A of the third ascending section ⁇ 3 is larger than the valve lift change rate ⁇ 1A of the same period ⁇ A of the ascending starting portion ⁇ 1A of the first ascending section ⁇ 1.
  • the valve lift change rate ⁇ 3A in the third state S3 is larger than the valve lift change rate ⁇ 1A in the first state S1 in the ascending start portion ⁇ 3A of the third ascending section ⁇ 3 and the ascending starting portion ⁇ 1A of the first ascending section ⁇ 1.
  • the valve lift change rate ⁇ 3B of the predetermined time ⁇ B of the ascending end portion ⁇ 3B of the third ascending section ⁇ 3 is larger than the valve lift change rate ⁇ 1B of the same period ⁇ B of the ascending end portion ⁇ 1B of the first ascending section ⁇ 1.
  • the valve lift change rate ⁇ 3B in the third state S3 is larger than the valve lift change rate ⁇ 1B in the first state S1 in the ascending end portion ⁇ 3B of the third ascending section ⁇ 3 and the ascending end portion ⁇ 1B of the first ascending section ⁇ 1.
  • valve lift change rates ⁇ 3A and ⁇ 1A of the predetermined time ⁇ A in the ascending start portions ⁇ 3A and ⁇ 1A will be described.
  • the difference between the valve lift change rates ⁇ 3A and ⁇ 1A appears as a difference in acceleration during the operation of the third rocker arm 9C and the first rocker arm 9A.
  • this difference in acceleration increases the load applied to the pin 21C that is incompletely inserted into the pin hole 24A.
  • the incompletely inserted pin 21C can be forcibly released from the pin hole 24A, and the connection between both rocker arms can be forcibly released.
  • the pin 21C incompletely inserted into the pin hole 24A can be ejected by the first rocker arm 9A.
  • the incompletely inserted pin 21C can be intentionally pulled out at a predetermined time ⁇ A during the first half of the working angle.
  • FIGS. 7 and 8 are examples in which the intake valve 3 closes the valve up to the position d of the valve lift amount larger than zero, and the upper end of the shaft portion of the intake valve 3 collides with the valve bridge 8.
  • the position d is a position where the valve lift amount is zero before the valve opening start timing of the first state S1.
  • the umbrella portion of the intake valve 3 collides with the valve seat, but as described above, since the amount of operation in the valve closing direction is small, the impact at the time of collision can be small, and damage to the intake valve 3 is suppressed.
  • valve lift amount of the third ascending section ⁇ 3 at the same timing is always larger than the valve lift amount of the first ascending section ⁇ 1. Therefore, the load on the pin 21C (including the case of incomplete insertion) inserted in the pin hole 24A can be increased as compared with the case where these are the same.
  • valve lift change rates ⁇ 3B and ⁇ 1B at the predetermined timing ⁇ B in the end-of-uphill portions ⁇ 3B and ⁇ 1B will be described. Similar to the above, the difference between the valve lift change rates ⁇ 3B and ⁇ 1B appears as a difference in acceleration between the third rocker arm 9C and the first rocker arm 9A during operation. The difference in acceleration increases the load applied to the pin 21C that is incompletely inserted into the pin hole 24A. As a result, the incompletely inserted pin 21C can be forcibly removed from the pin hole 24A, and the connection between both rocker arms can be forcibly released. In this way, the incompletely inserted pin 21C can be intentionally pulled out at a predetermined time ⁇ B during the first half of the working angle.
  • valve lift amount at position f is sufficiently larger than zero. Therefore, when the pin 21C is pulled out, the intake valve 3 collides with the valve bridge 8 and does not collide with the valve seat.
  • valve lift curve of the second state S2 (J2) before the first maximum lift timing ⁇ 2 is the valve lift curve of the first state S1 (J1). It is the same. However, these may be changed as described later.
  • the valve lift change rates ⁇ 3A and ⁇ 3B of the predetermined time ⁇ A and ⁇ B of the ascending start portion ⁇ 3A and the ascending end portion ⁇ 3B of the third ascending section ⁇ 3 are set to the ascending starting portion ⁇ 1A of the first ascending section ⁇ 1.
  • the valve lift change rates of ⁇ A and ⁇ B at the same time of the ascending end portion ⁇ 1B were larger than those of ⁇ 1A and ⁇ 1B, respectively. Therefore, the pin 21C incompletely inserted in the pin hole 24A can be intentionally pulled out to ⁇ A and ⁇ B at a predetermined time, and the intake valve 3 can be closed with a small amount of operation. Therefore, even when the pin 21C comes out of the pin hole 24A during the opening of the intake valve 3, damage to the intake valve 3 can be suppressed.
  • the "first state and the second state” of the claims correspond to the “first state J1 and the third state J3" of the present embodiment.
  • the “first cam and the second cam” in the claims correspond to the “first cam 4A and the third cam 4C” in the present embodiment.
  • the “first rocker arm and the second rocker arm” in the claims correspond to the “first rocker arm 9A and the third rocker arm 9C” of the present embodiment.
  • the “pin” in the claims corresponds to the “pin 21C” in this embodiment.
  • the “pin hole” in the claims corresponds to the "pin hole 24A” in this embodiment.
  • the “first ascending section and the second ascending section” of the claims correspond to the "first ascending section ⁇ 1 and the third ascending section ⁇ 3" of the present embodiment.
  • the relationship between the pin and the pin hole in the third state J3 may be reversed, and the pin protruding from the first rocker arm 9A may be inserted into the pin hole of the third rocker arm 9C.
  • the relationship between the pin and the pin hole in the second state J2 may be reversed.
  • the above-mentioned relationship between the first state J1 and the third state J3 may be applied to the relationship between the first state J1 and the second state J2. In this case, the latter relationship can be adopted in addition to the former relationship. Then, the valve lift curve of the second state J2 before the first maximum lift timing ⁇ 2 can be made the same as the valve lift curve of the third state J3 shown in FIG. 7.
  • valve lift curve of the second state J2 before the first maximum lift timing ⁇ 2 is made the same as the valve lift curve of the third state J3 shown in FIG. 7, while the third one before the first maximum lift timing ⁇ 2.
  • the valve lift curve of the state J3 can be the same as the valve lift curve of the first state J1 shown in FIG.
  • valve lift change rates ⁇ 3A and ⁇ 1A are changed in the ascending start portions ⁇ 3A and ⁇ 1A of the ascending sections ⁇ 1 and ⁇ 3, and (b) the ascending end portions ⁇ 3B of the ascending sections ⁇ 1 and ⁇ 3 are changed. Both the valve lift change rates ⁇ 3B and ⁇ 1B were changed by ⁇ 1B. However, not limited to this, only one of (a) and (b) may be performed.
  • variable mechanism is switchable in three stages, but it may be switchable in at least two stages, and may be switchable in four or more stages.
  • the disclosure can then be applied to any two-step portion of it.
  • the working fluid of the fluid pressure control device may be gas such as air, and the fluid pressure may be gas pressure such as air pressure. That is, the variable mechanism may be configured to be switchable by gas pressure.
  • variable valve gear for an internal combustion engine that can suppress damage to the engine valve even when a pin comes out of the pin hole during valve opening of the engine valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

内燃機関の可変動弁装置は可変機構を備え、可変機構は、カムシャフトに固設された第1および第2カムと、第1および第2ロッカーアームと、ロッカーアームの連結状態を切り替えるピンおよびピン穴を有した連結機構とを備える。第1状態J1のとき、ピンはピン穴から抜け、エンジンバルブは第1カムのカムプロファイルに従う作動特性とされる。第2状態J3のとき、ピンはピン穴に挿入され、エンジンバルブは第2カムのカムプロファイルに従う作動特性とされる。第2状態のときの第2上り区間β3は第1状態のときの第1上り区間β1よりも進角側に設定される。第2上り区間の上り始め部分β3Aの所定時期αAのバルブリフト変化率γ3Aは、第1上り区間の上り始め部分β1Aの同一時期のバルブリフト変化率γ1Aより大きい。

Description

内燃機関の可変動弁装置
 本開示は内燃機関の可変動弁装置に係り、特に、内燃機関の吸気弁または排気弁(これらを総称してエンジンバルブという)の作動特性を可変にするための可変動弁装置に関する。
 エンジンバルブの作動特性(例えばバルブタイミング、バルブリフト量、作用角の少なくとも一つ)を可変にするための可変動弁装置が公知である。かかる可変動弁装置において、エンジンバルブの作動特性を切り替えるために少なくとも第1状態と第2状態に切替可能な可変機構を備えたものがある。
日本国特開2017-5123号公報
 可変機構において、二つのロッカーアームをピンで連結したり連結解除したりすることにより、第1状態と第2状態を切り替えるものがある。こうした可変機構では通常、切替時に一方のロッカーアームに内蔵されたピンを油圧により押し出し、他方のロッカーアームのピン穴に挿入し、二つのロッカーアームを連結する。
 しかし、切替直後にピンがピン穴に完全に挿入されないまま、エンジンバルブが駆動されることがある。そしてこのとき、エンジンバルブの開弁中にピンがピン穴から抜け、エンジンバルブが急激に閉弁方向に動作し、バルブシート等に衝突して、エンジンバルブに損傷を与える虞がある。
 そこで本開示は、上記事情に鑑みて創案され、その目的は、エンジンバルブの開弁中にピンがピン穴から抜けたときでもエンジンバルブの損傷を抑制することができる内燃機関の可変動弁装置を提供することにある。
 本開示の一の態様によれば、
 エンジンバルブの作動特性を切り替えるために第1状態と第2状態に切替可能な可変機構を備え、
 前記可変機構は、
 カムシャフトと、
 前記カムシャフトに固設されカムプロファイルの異なる第1カムおよび第2カムと、
 前記第1カムおよび前記第2カムにそれぞれ対応して設けられた第1ロッカーアームおよび第2ロッカーアームと、
 前記第1ロッカーアームおよび前記第2ロッカーアームの連結状態を切り替えるための連結機構であって、前記第1ロッカーアームおよび前記第2ロッカーアームの一方に出没可能に設けられたピンと、他方に設けられたピン穴とを有する連結機構と、
 を備え、
 前記第1状態のとき、前記ピンは前記ピン穴から抜け、前記エンジンバルブは、前記第1カムのカムプロファイルに従う作動特性とされ、
 前記第2状態のとき、前記ピンは前記ピン穴に挿入され、前記エンジンバルブは、前記第2カムのカムプロファイルに従う作動特性とされ、
 前記第2状態のとき、前記エンジンバルブのバルブリフト量が増大する第2上り区間は、前記第1状態のときの第1上り区間よりも進角側に設定され、
 (a)前記第2上り区間の上り始め部分の所定時期のバルブリフト変化率が、前記第1上り区間の上り始め部分の同一時期のバルブリフト変化率より大きく、または(b)前記第2上り区間の上り終わり部分の所定時期のバルブリフト変化率が、前記第1上り区間の上り終わり部分の同一時期のバルブリフト変化率より大きく、または(c)前記第2上り区間の上り始め部分と上り終わり部分の所定時期のバルブリフト変化率が、前記第1上り区間の上り始め部分と上り終わり部分の同一時期のバルブリフト変化率よりそれぞれ大きい
 ことを特徴とする内燃機関の可変動弁装置が提供される。
 好ましくは、前記第1状態のときと前記第2状態のときとで最大バルブリフト量は等しく、
 前記第2状態のときには前記第1状態のときよりも最大バルブリフト期間が遅角側に延長される。
 本開示によれば、エンジンバルブの開弁中にピンがピン穴から抜けたときでもエンジンバルブの損傷を抑制することができる。
図1は、可変動弁装置の一部の構成を示す概略平面図である。 図2は、バルブタイミングの変化の様子を示すバルブリフト線図である。 図3は、可変機構の第1状態を示す図である。 図4は、可変機構の第3状態を示す図である。 図5は、可変機構の第2状態を示す図である。 図6は、制御マップを示す図である。 図7は、第1状態および第3状態のバルブリフトカーブを詳細に示すバルブリフト線図である。 図8は、上り始め部分の所定時期におけるバルブリフト変化率を示す図7の拡大図である。 図9は、上り終わり部分の所定時期におけるバルブリフト変化率を示す図7の拡大図である。
 以下、添付図面を参照して本開示の実施形態を説明する。
 図1には、本実施形態の可変動弁装置の一部の構成を示す。図1は、シリンダヘッドを上方から見たときの概略平面図である。
 本実施形態の内燃機関(エンジン)は、トラック、バス等の大型車両に搭載される多気筒ディーゼルエンジンであり、具体的には直列6気筒ディーゼルエンジンである。但し車両およびエンジンの用途、形式、種類等は限定されず任意である。
 クランクシャフト(図示せず)からの回転駆動力が、ギヤ機構等からなる動力伝達機構(図示せず)を通じてカムシャフト1に伝達される。本実施形態のエンジンは、2本のカムシャフトで吸気弁および排気弁をそれぞれ駆動するDOHC(Double OverHead Camshaft)エンジンであり、図示するカムシャフト1は、吸気弁3を開閉駆動するための吸気カムシャフトである。但し付加的または代替的に、本開示を、排気弁(図示せず)を駆動するための排気カムシャフトに適用してもよい。吸気弁および排気弁を総称してエンジンバルブという。
 便宜上、カムシャフト1の中心軸C1の方向(軸方向)における一端側(図1の左側)を前、他端側(図1の右側)を後とする。これら前後方向は、エンジンおよび車両の前後方向と一致する(エンジンは縦置きされる)。但し必ずしも一致しなくてもよい。前方から順に#1気筒~#6気筒が配置される。図1はそのうちの1気筒分の構成を示す。
 可変動弁装置は、吸気弁3の作動特性を切り替えるために第1状態と第2状態に切替可能な可変機構5と、可変機構5を切り替えるために可変機構5に供給される流体圧を制御するための流体圧制御装置(後述)とを備える。本実施形態の場合、吸気弁3の作動特性とはバルブタイミングと作用角のことをいう。また流体圧は油圧であり、本実施形態では流体もしくは作動流体としてエンジン潤滑オイルが使用される。以下、流体圧制御装置を油圧制御装置と言い換えるものとする。
 可変機構5に関し、カムシャフト1には、バルブスプリング2の付勢力に抗じて吸気弁3を開弁する三つのカム4A,4B,4Cが気筒毎に固設される。吸気弁3は1気筒当たりに二つ設けられ、これら二つの吸気弁3がバルブブリッジ8により同時に開閉されるようになっている。吸気弁3の開弁時には、三つのカム4A,4B,4Cの一部およびロッカーアーム9により、バルブブリッジ8が、バルブスプリング2の付勢力に抗じて下方(図1の紙面厚さ方向裏側に向かう方向)に押し下げられる。他方、吸気弁3の閉弁時には逆に、バルブスプリング2の付勢力によってバルブブリッジ8が上方(図1の紙面厚さ方向表側に向かう方向)に押し上げられる。
 三つのカムすなわち第1カム4A、第2カム4Bおよび第3カム4Cは、それぞれ異なるカムプロファイルを有し、吸気弁3のバルブタイミングおよび作用角の両方を三段階に切り替えるようになっている。すなわち本実施形態の可変機構5は、第1状態と第2状態と第3状態の三段階に切替可能である。
 また可変機構5は、ロッカーアーム9を含み、ロッカーアーム9は、三つのカム4A,4B,4Cにそれぞれ対応した1気筒当たりに三つのロッカーアームすなわち第1ロッカーアーム9A、第2ロッカーアーム9Bおよび第3ロッカーアーム9Cを含む。これらロッカーアーム9A,9B,9Cは前後方向に互いに隣接され、共通のロッカーシャフト18に回動可能に支持される。C2はロッカーシャフト18の中心軸を示す。これらカムおよびロッカーアームの軸方向の配列順序は任意であるが、本実施形態では後方から順に第2、第1、第3とされる。
 ロッカーアーム9A,9B,9Cにはロッカーローラ19が回転可能に設けられ、ロッカーローラ19はカム4A,4B,4Cに常時当接される。また、第1ロッカーアーム9Aのみに、バルブブリッジ8の上面部に係合される延在部20が設けられる。第1ロッカーアーム9Aに対する第2および第3ロッカーアーム9B,9Cの連結状態を切り替えることにより、バルブタイミング等を三段階に切り替えるようになっている。
 図3にも詳しく示すように、ロッカーアーム9A,9B,9Cの連結状態を切り替えるための連結機構が設けられる。ロッカーアーム9A,9B,9Cの内部にはピン穴24A,24B,24Cが設けられ、これらピン穴24A,24B,24Cには、ロッカーアーム9A,9B,9Cの連結状態を切り替えるための四つのピン21Aa,21Ab,21B,21Cが軸方向移動可能かつ出没可能に設けられている。また第2ロッカーアーム9Bの内部には、四つのピン21Aa,21Ab,21B,21Cを纏めて前方に付勢可能なバネ22が設けられている。ピン21Aa,21Ab,21B,21Cの位置は、第1および第3ロッカーアーム9A,9Cの内部にそれぞれ設けられた第1および第3ロッカー通路23A,23Cに油圧を給排することにより、制御される。
 ロッカーシャフト18の内部には、各気筒の第1ロッカー通路23Aに連通された第1シャフト通路14Aと、各気筒の第3ロッカー通路23Cに連通された第3シャフト通路14Cとが設けられる。これらシャフト通路14A,14Cに供給される油圧が油圧制御装置により制御されることにより、各気筒の第1および第3ロッカー通路23A,23Cの油圧が同時に制御され、ひいては各気筒のピン21Aa,21Ab,21B,21Cの位置、さらには各気筒の第1~第3ロッカーアーム9A,9B,9Cの連結状態が同時に切り替えられる。
 可変機構5は、吸気弁3のバルブタイミングおよび作用角の両方を、図2に示すような三つの状態、すなわち第1状態S1、第2状態S2および第3状態S3の何れかに段階的に切り替えるように構成されている。ここでバルブタイミングには、エンジンバルブが開弁を開始する開タイミングと、エンジンバルブが閉弁を終了する閉タイミングとの両方が含まれる。また作用角とは、エンジンバルブが開弁している(すなわちバルブリフト量VLがゼロより大きくなっている)クランク位相期間またはカム位相期間をいう。
 本実施形態では、第1状態S1、第2状態S2および第3状態S3のときの最大バルブリフト量VLmaxは等しい。また第1状態S1から第3状態S3に向かうにつれ、最大バルブリフト期間(バルブリフト量VLが最大バルブリフト量VLmaxとなっている期間)は遅角側に段階的に延長される。ここでは便宜上、開タイミングα1から、第1状態S1のバルブリフト量VLが最大バルブリフト量VLmaxに達するタイミング(第1最大リフトタイミングという)α2までのバルブリフトカーブが、何れの状態でも同じであるとする。第1最大リフトタイミングα2以降、第1状態S1では即座に閉弁が開始され、第2状態S2では最大バルブリフト量VLmaxが第2所定期間Δα2だけ維持された後に閉弁が開始され、第3状態S3では最大バルブリフト量VLmaxがさらに長い第3所定期間Δα3だけ維持された後に閉弁が開始される。そして第1状態S1の閉タイミングはα3、第2状態S2の閉タイミングはα3より遅角側のα4、第3状態S3の閉タイミングはα4より遅角側のα5とされる。第1状態S1の作用角はα1~α3までの期間、第2状態S2の作用角はより長いα1~α4までの期間、第3状態S3の作用角はさらに長いα1~α5までの期間である。従って本実施形態では、最大バルブリフト量VLmaxが一定とされる一方で、閉タイミングと作用角が三段階に変化させられる。なお閉弁開始タイミングから閉弁終了タイミング(閉タイミング)までのバルブリフトカーブの形状は何れの状態でも同じである。
 第1~第3ロッカーアーム9A,9B,9Cの外形状は実質的に同一である。これに対し、第1~第3カム4A,4B,4Cのカムプロファイルは、それぞれ第1~第3状態S1,S2,S3に対応した異なるカムプロファイルに設定されている。
 バルブタイミングおよび作用角の第1~第3状態S1,S2,S3に対応した可変機構5の各状態を第1~第3状態J1,J2,J3とする。可変機構5は、これら第1~第3状態J1,J2,J3の何れかに切替可能である。
 第1状態S1で吸気弁3を駆動する場合、図3に示すように、後述する油圧制御装置により第1ロッカー通路23Aに圧力流体としての圧油が供給され、第3ロッカー通路23Cから圧油が排出される。すると、ピン21Aa,21Abが互いに離反するように前後方向に移動され、ピン21Bがバネ22の付勢力に抗じて後方に押し付けられ、ピン21Cが前方に押し付けられる。すると、ピン21Aa,21Abはピン穴24A内に完全に挿入され、ピン穴24Aから突出しない状態となる。同様に、ピン21Bはピン穴24B内に完全に挿入されて突出せず、ピン21Cはピン穴24C内に完全に挿入されて突出しない状態となる。ピン21Aaの後端面とピン21Abの前端面とが、第1ロッカーアーム9Aの後端面と前端面に面一に配置され、ピン21Bの前端面が第2ロッカーアーム9Bの前端面に面一に配置され、ピン21Cの後端面が第3ロッカーアーム9Cの後端面に面一に配置される。これにより第1ロッカーアーム9Aは、第2ロッカーアーム9Bおよび第3ロッカーアーム9Cと非連結の状態となり、第1カム4Aの動作のみが第1ロッカーアーム9Aを通じて吸気弁3に伝達される。そして他の第2および第3ロッカーアーム9B,9Cは単に第2および第3カム4B,4Cの動作に追従して空振り動作(ロストモーション)するだけとなる。こうして吸気弁3は、第1カム4Aのカムプロファイルに従う作動特性とされ、第1カム4Aのカムプロファイルに従って第1状態S1で作動する。
 次に、第3状態S3で吸気弁3を駆動する場合、図4に示すように、第3ロッカー通路23Cに圧油が供給され、第1ロッカー通路23Aから圧油が排出される。すると、ピン21Cが油圧により後方に押し出されて第3ロッカーアーム9Cから突出し、第1ロッカーアーム9Aのピン穴24A内に挿入される。これにより第3ロッカーアーム9Cが第1ロッカーアーム9Aに連結される。他方、残りのピン21Aa,21Ab,21Bは、バネ22の付勢力に抗じてピン21Cにより後方に押し出され、ピン21Aaとピン21Bは第1状態S1のときと同じ位置に位置される。これにより、第1ロッカーアーム9Aと第2ロッカーアーム9Bは非連結の状態となる。従って吸気弁3は、一体となった第1および第3ロッカーアーム9A,9Cを介して、実質的に第3カム4Cによって開閉駆動される。吸気弁3は、第3カム4Cのカムプロファイルに従う作動特性とされ、第3カム4Cのカムプロファイルに従って第3状態S3で作動する。
 次に、第2状態S2で吸気弁3を駆動する場合、図5に示すように、第1ロッカー通路23Aおよび第3ロッカー通路23Cから圧油が排出される。すると、ピン21Bがバネ22により前方に押し出されて第2ロッカーアーム9Bから突出し、第1ロッカーアーム9Aのピン穴24A内に挿入される。これにより第2ロッカーアーム9Bが第1ロッカーアーム9Aに連結される(図1はこの状態を示す)。他方、残りのピン21Aa,21Ab,21Cはピン21Bにより前方に押し出され、ピン21Abとピン21Cは第1状態S1のときと同じ位置に位置される。これにより、第1ロッカーアーム9Aと第3ロッカーアーム9Cは非連結の状態となる。従って吸気弁3は、一体となった第1および第2ロッカーアーム9A,9Bを介して、実質的に第2カム4Bによって開閉駆動される。吸気弁3は、第2カム4Bのカムプロファイルに従う作動特性とされ、第2カム4Bのカムプロファイルに従って第2状態S2で作動する。
 次に、油圧制御装置の構成を説明する。図3に示すように、油圧制御装置は、オイルタンクをなすオイルパン10と、オイルパン10からオイルを吸引し圧油として吐出する油圧ポンプ11と、油圧ポンプ11からロッカーシャフト18に向かうオイル供給方向において油圧ポンプ11の下流側に設けられた供給バルブ(OSVという)12と、オイル供給方向においてOSV12の下流側かつロッカーシャフト18の上流側に設けられた切替バルブ(OCVという)13と、OSV12およびOCV13を制御するように構成された制御ユニット、回路要素(circuitry)もしくはコントローラとしての電子制御ユニット(ECU(Electronic Control Unit)という)100とを備える。
 OSV12は、オイルの出入口をなす複数(具体的には三つ)のポート、すなわち第1供給ポートP1、第2供給ポートP2および第3供給ポートP3を有する。またOCV13も、オイルの出入口をなす複数(具体的には四つ)のポート、すなわち第1切替ポートQ1、第2切替ポートQ2、第3切替ポートQ3および第4切替ポートQ4を有する。OSV12およびOCV13はソレノイドバルブにより構成される。ECU100はエンジンの制御を司るもので、演算機能を有するCPU(Central Processing Unit)、記憶媒体であるROM(Read Only Memory)およびRAM(Random Access Memory)、入出力ポート、ならびにROMおよびRAM以外の記憶装置等を含む。
 OSV12において、第1供給ポートP1は油圧ポンプ11の出口に接続され、第2供給ポートP2はOCV13の第1切替ポートQ1に接続され、第3供給ポートP3はオイルパン10に接続されている。なお第1供給ポートP1と油圧ポンプ11の間に圧油溜めとしてのオイルギャラリを設けてもよい。
 OCV13において、第2切替ポートQ2は第1シャフト通路14Aに接続され、第3切替ポートQ3は第3シャフト通路14Cに接続され、第4切替ポートQ4はオイルパン10に接続されている。
 図3に示すように、OSV12がオン(ON)のとき、第1供給ポートP1と第2供給ポートP2が連通状態になる。
 図5に示すように、OSV12がオフ(OFF)のとき、第2供給ポートP2と第3供給ポートP3が連通状態になる。
 図4に示すように、OCV13がオンのとき、第2切替ポートQ2と第4切替ポートQ4が連通状態になると共に、第1切替ポートQ1と第3切替ポートQ3が連通状態になる。
 図3に示すように、OCV13がオフのとき、第1切替ポートQ1と第2切替ポートQ2が連通状態になると共に、第3切替ポートQ3と第4切替ポートQ4が連通状態になる。
 図3に示すように、ECU100には、エンジンの回転速度、具体的には単位時間当たりのエンジン回転数Ne(rpm)を検出する回転速度センサ15と、アクセル開度Acを検出するアクセル開度センサ16とが接続されている。ECU100は、回転数Neおよびアクセル開度Acの検出値に基づいて所定のマップから目標燃料噴射量Fを算出する。さらにECU100は、回転数Neおよび目標燃料噴射量Fに基づき、図6に示すような制御マップに従って可変機構5を切り替える。このようにECU100は、エンジン運転状態に応じて可変機構5を切り替える。なおエンジン回転数Ne、アクセル開度Acおよび目標燃料噴射量Fはエンジン運転状態を表すパラメータである。目標燃料噴射量Fはエンジンの負荷に対応する。
 回転数Neおよび目標燃料噴射量Fが制御マップ中の第1領域R1にあるとき、ECU100は可変機構5を第1状態J1に切り替える。以下同様に、ECU100は、回転数Neおよび目標燃料噴射量Fが制御マップ中の第2領域R2にあるとき、可変機構5を第2状態J2に切り替え、回転数Neおよび目標燃料噴射量Fが制御マップ中の第3領域R3にあるとき、可変機構5を第3状態J3に切り替える。
 第1領域R1は低回転かつ低負荷側の領域、第3領域R3は高回転または高負荷側の領域、第2領域R2はそれらの間の中間領域である。第1領域R1から第3領域R3に向かうにつれ、エンジン回転数Neは高回転側となり、目標燃料噴射量Fは増大側、すなわちエンジン負荷は高負荷側となる。従って、エンジン回転数Neが高回転側またはエンジン負荷が高負荷側となるにつれ、可変機構5の状態は第1状態J1、第2状態J2、第3状態J3というように順次変化し、バルブタイミングおよび作用角は第1状態S1、第2状態S2、第3状態S3というように、閉タイミングが遅れる方向に順次変化する。
 もっとも、制御マップの形は如何様にも設定でき、ここで述べた例に限られない。実機の要請に合わせて、各状態に対応するエンジン運転領域を任意に設定可能である。
 可変機構5を第1状態J1に切り替える場合、図3に示すようにECU100は、OSV12をオン、OCV13をオフにする。すると、油圧ポンプ11から吐出された圧油は第1供給ポートP1、第2供給ポートP2、第1切替ポートQ1、第2切替ポートQ2を順に経て第1シャフト通路14Aおよび第1ロッカー通路23Aに至る。他方、第3ロッカー通路23Cおよび第3シャフト通路14Cの圧油は、第3切替ポートQ3、第4切替ポートQ4を順に経てオイルパン10に排出される。
 次に、可変機構5を第3状態J3に切り替える場合、図4に示すようにECU100は、OSV12をオン、OCV13をオンにする。すると、油圧ポンプ11から吐出された圧油は第1供給ポートP1、第2供給ポートP2、第1切替ポートQ1、第3切替ポートQ3を順に経て第3シャフト通路14Cおよび第3ロッカー通路23Cに至る。他方、第1ロッカー通路23Aおよび第1シャフト通路14Aの圧油は、第2切替ポートQ2、第4切替ポートQ4を順に経てオイルパン10に排出される。
 次に、可変機構5を第2状態J2に切り替える場合、図5に示すようにECU100は、OSV12をオフ、OCV13をオフにする。すると、第1供給ポートP1がどのポートにも接続されないので油圧ポンプ11からの圧油供給は停止される。他方、第1ロッカー通路23Aおよび第1シャフト通路14Aの圧油は、第2切替ポートQ2、第1切替ポートQ1、第2供給ポートP2、第3供給ポートP3を順に経てオイルパン10に排出される。また第3ロッカー通路23Cおよび第3シャフト通路14Cの圧油は、第3切替ポートQ3、第4切替ポートQ4を順に経てオイルパン10に排出される。
 さて、かかる可変機構5には次のような問題があることが判明した。以下、第1状態J1と第3状態J3の組み合わせを例に挙げて説明する。
 図4に示す第3状態J3のとき、原則的にピン21Cは、図示の如くピン穴24A内に完全に挿入されている。
 しかし、第3状態J3への切替直後だと、ピン21Cがピン穴24A内に完全に挿入されず、ピン穴24Aに中途半端に挿入され(この状態を不完全挿入という)、ピン穴24Aに引っ掛かった状態で吸気弁3の開弁が開始されることがある。
 この場合、図2に示すような吸気弁3の開弁方向への動作期間(α1~α2)と最大バルブリフト量維持期間(Δα3)とでは、ピン21Cへの力の掛かり方(特に力の向き)がそれ程変化しないため、問題とならないことが多い。しかし、吸気弁3が閉弁を開始するタイミング、すなわち最大バルブリフト量維持期間(Δα3)を過ぎた直後のタイミングだと、それ以前と比べ、力の掛かり方が急変する。そのため、このタイミングでピン21Cがピン穴24Aから抜け、吸気弁3が図2に矢印aで示すように急激に大きく閉弁方向に動作することがある。
 ピン21Cがピン穴24Aから抜けると、可変機構5は図3に示した第1状態J1に突然変化する。そして吸気弁3は、第1カム4Aのカムプロファイルに従った第1状態S1のバルブリフト量の位置bまで急激に閉弁動作する。その結果吸気弁3が、バルブブリッジ8と、シリンダヘッドに形成されたバルブシートとの少なくとも一方に衝突し、そのときの衝撃で損傷する虞がある。
 図2の例は、ゼロより大きいバルブリフト量の位置bまで吸気弁3が閉弁動作し、吸気弁3の軸部上端がバルブブリッジ8に衝突する例である。しかし、この時点で既に第1状態S1のバルブリフト量がゼロとなっているものもあり、この場合には、吸気弁3の傘部がバルブシートに衝突するため、問題はより深刻である。
 本実施形態では、第3状態J3のときに第1状態J1のときよりも吸気弁3の閉弁開始タイミングが大きく遅れる。このため、作用角の後半期間にある閉弁開始タイミングでピン21Cが抜けてしまうと、その後の吸気弁3の閉弁方向の動作量が大きいため、必然的に衝突時の衝撃が大きくなり、吸気弁3に大きなダメージを与えてしまう。
 なお、本実施形態のエンジンは直列6気筒エンジンであり、何れの気筒の吸気弁3も開弁していない無開弁期間が存在せず、常に何れかの気筒の吸気弁3が開弁している。そのため、ピンに負荷が掛からない無開弁期間に可変機構5の切り替えを行ってピンをできるだけ完全挿入するという制御上の解決策を採るのが困難である。
 そこで本実施形態では、不完全挿入されたピンが抜けた場合であっても、吸気弁3の損傷を抑制できるよう、敢えて作用角の前半期間にピンが抜け易いようなタイミングを設定し、このタイミングで不完全挿入されたピンを意図的に抜くようにしている。以下、この点について説明する。
 図7に、本実施形態における第1状態S1(J1)および第3状態S3(J3)のときの吸気弁3のバルブリフトカーブを詳細に示す。第1最大リフトタイミングα2以降のバルブリフトカーブは図2に示したものと同様である。そのタイミングα2以前の両者のバルブリフトカーブの相違に、本実施形態の特徴点がある。なお便宜上、第2状態S2(J2)のときのバルブリフトカーブは図示省略する。
 第1状態S1(J1)のとき、開弁方向動作の開始タイミングはα1.1であり、終了タイミングはα2である。このα1.1からα2までの、バルブリフト量VLが増大する区間(もしくは期間)を第1上り区間β1という。なお「上り区間」とは、理解容易のため、バルブリフトカーブが徐々に上昇する様子を模して付された名称であり、バルブリフト量VLの増大に応じて徐々に(下死点側に)下降する吸気弁3の動きとは逆である点に留意されたい。
 他方、第3状態S3(J3)のとき、開弁方向動作の開始タイミングはα1.3であり、終了タイミングはα2.3である。このα1.3からα2.3までの区間を第3上り区間β3という。
 第1上り区間β1と第3上り区間β3のバルブリフトカーブは、互いに接近しており、かつ、類似した形状を有する。但し、第3上り区間β3は第1上り区間β1よりも僅かに進角側に設定されている。従って、第3状態S3のときの開始タイミングα1.3および終了タイミングα2.3は、第1状態S1のときの開始タイミングα1.1および終了タイミングα2よりも僅かに進角側に設定されている。その結果、第3状態S3では、終了タイミングα2より早い終了タイミングα2.3から、バルブリフト量VLが最大バルブリフト量VLmaxに維持される。
 両方の上り区間β1,β3は、その裾部付近に相当する上り始め部分β1A,β3Aと、その頂部付近に相当する上り終わり部分β1B,β3Bと、それらの間の中間部分β1C,β3Cとに区分される。例えば、上り区間β1,β3をバルブリフト量VL(縦軸)の方向に三等分し、その最初から1/3の部分を上り始め部分β1A,β3A、最後から1/3の部分を上り終わり部分β1B,β3B、残りの部分を中間部分β1C,β3Cとすることができる。但し区分方法はこれ以外も可能である。
 カム位相αに対するバルブリフト量VLの変化率(dVL/dα)をバルブリフト変化率γとして定義する。このバルブリフト変化率γは、バルブリフトカーブ上の1点におけるバルブリフトカーブの傾き(例えば図示するγ1A)を表す。図示されるように、両方の上り区間β1,β3において、上り始め部分β1A,β3Aには、バルブリフト変化率γが急増する変曲点Hが存在する。この変曲点Hより遅角側に向かうにつれ、バルブリフト量VLはバルブリフト変化率γがほぼ一定のまま、上り終わり部分β1B,β3Bまで増大する。そして上り終わり部分β1B,β3Bにおいて、バルブリフト変化率γが徐々に減少し、終了タイミングα2,α2.3でバルブリフト変化率γはゼロとなる。
 特に本実施形態では、第3上り区間β3の上り始め部分β3Aの所定時期αAのバルブリフト変化率γ3Aが、第1上り区間β1の上り始め部分β1Aの同一時期αAのバルブリフト変化率γ1Aより大きくされている。言い換えれば、第3上り区間β3の上り始め部分β3Aと第1上り区間β1の上り始め部分β1Aとに、第3状態S3のバルブリフト変化率γ3Aが第1状態S1のバルブリフト変化率γ1Aより大きくなる時期αAが存在する。
 また本実施形態では、第3上り区間β3の上り終わり部分β3Bの所定時期αBのバルブリフト変化率γ3Bが、第1上り区間β1の上り終わり部分β1Bの同一時期αBのバルブリフト変化率γ1Bより大きくされている。言い換えれば、第3上り区間β3の上り終わり部分β3Bと第1上り区間β1の上り終わり部分β1Bとに、第3状態S3のバルブリフト変化率γ3Bが第1状態S1のバルブリフト変化率γ1Bより大きくなる時期αBが存在する。
 このようにバルブリフト変化率を設定すると、次のような利点がもたらされる。まず図7および図8を参照して、上り始め部分β3A,β1Aにおける所定時期αAのバルブリフト変化率γ3A,γ1Aについて説明する。両バルブリフト変化率γ3A,γ1Aの違いは、第3ロッカーアーム9Cと第1ロッカーアーム9Aの動作時における加速度の差となって現れる。そしてこの加速度の差は、ピン穴24Aに不完全挿入されたピン21Cに掛かる負荷を増大させる。これにより、不完全挿入されたピン21Cをピン穴24Aから強制的に離脱させ、両ロッカーアームの連結を強制的に解除することができる。より具体的に言えば、ピン穴24Aに不完全挿入されたピン21Cを第1ロッカーアーム9Aで弾き出すことができる。このように、不完全挿入されたピン21Cを作用角の前半期間の所定時期αAに意図的に抜くことができる。
 ピン21Cがピン穴24Aから抜けると、図8に矢印cで示すように吸気弁3は、第1カム4Aのカムプロファイルに従った第1状態S1のバルブリフト量の位置dまで急激に閉弁動作する。しかし、このときの閉弁方向の動作量が小さいため、吸気弁3がバルブブリッジ8およびバルブシートの少なくとも一方に衝突したとしても、衝突時の衝撃は小さくて済む。そのため、吸気弁3の損傷を抑制することが可能である。
 図7および図8の例は、ゼロより大きいバルブリフト量の位置dまで吸気弁3が閉弁動作し、吸気弁3の軸部上端がバルブブリッジ8に衝突する例である。一方これとは別に、位置dが、第1状態S1の開弁開始タイミングより前のバルブリフト量ゼロの位置である場合も想定される。このときには吸気弁3の傘部がバルブシートに衝突するが、前記同様、閉弁方向の動作量が小さいため、衝突時の衝撃は小さくて済み、吸気弁3の損傷は抑制される。
 なお、同一タイミングにおける第3上り区間β3のバルブリフト量は第1上り区間β1のバルブリフト量よりも常に大きい。このため、これらが同一である場合に比べ、ピン穴24Aに挿入されたピン21C(不完全挿入の場合も含む)への荷重を増やすことができる。
 次に図7および図9を参照して、上り終わり部分β3B,β1Bにおける所定時期αBのバルブリフト変化率γ3B,γ1Bについて説明する。前記同様、両バルブリフト変化率γ3B,γ1Bの違いは、第3ロッカーアーム9Cと第1ロッカーアーム9Aの動作時における加速度の差となって現れる。そしてこの加速度の差は、ピン穴24Aに不完全挿入されたピン21Cに掛かる負荷を増大させる。これにより、不完全挿入されたピン21Cをピン穴24Aから強制的に離脱させ、両ロッカーアームの連結を強制的に解除することができる。このように、不完全挿入されたピン21Cを作用角の前半期間の所定時期αBに意図的に抜くことができる。
 ピン21Cがピン穴24Aから抜けると、図9に矢印eで示すように吸気弁3は、第1カム4Aのカムプロファイルに従った第1状態S1のバルブリフト量の位置fまで急激に閉弁動作する。しかし、このときの閉弁方向の動作量が小さいため、吸気弁3がバルブブリッジ8に衝突したとしても、衝突時の衝撃は小さくて済む。そのため、吸気弁3の損傷を抑制することが可能である。
 この場合、位置fのバルブリフト量はゼロよりも十分大きくなっている。従ってピン21Cが抜けたとき、吸気弁3はバルブブリッジ8に衝突し、バルブシートに衝突することはない。
 因みに図7~図9では省略したが、本実施形態の場合、第1最大リフトタイミングα2以前の第2状態S2(J2)のバルブリフトカーブは、第1状態S1(J1)のバルブリフトカーブと同一となっている。但し後述するように、これらを変えてもよい。
 このように本実施形態では、第3上り区間β3の上り始め部分β3Aと上り終わり部分β3Bの所定時期αA,αBのバルブリフト変化率γ3A,γ3Bを、第1上り区間β1の上り始め部分β1Aと上り終わり部分β1Bの同一時期αA,αBのバルブリフト変化率γ1A,γ1Bよりそれぞれ大きくした。このため、ピン穴24Aに不完全挿入されたピン21Cを所定時期αA,αBに意図的に抜き、吸気弁3を少ない動作量で閉弁動作させることができる。それ故、吸気弁3の開弁中にピン21Cがピン穴24Aから抜けたときでも吸気弁3の損傷を抑制することができる。
 以上の説明から理解されるように、特許請求の範囲の「第1状態と第2状態」は本実施形態の「第1状態J1と第3状態J3」に相当する。特許請求の範囲の「第1カムおよび第2カム」は本実施形態の「第1カム4Aおよび第3カム4C」に相当する。特許請求の範囲の「第1ロッカーアームおよび第2ロッカーアーム」は本実施形態の「第1ロッカーアーム9Aおよび第3ロッカーアーム9C」に相当する。特許請求の範囲の「ピン」は本実施形態の「ピン21C」に相当する。特許請求の範囲の「ピン穴」は本実施形態の「ピン穴24A」に相当する。特許請求の範囲の「第1上り区間と第2上り区間」は本実施形態の「第1上り区間β1と第3上り区間β3」に相当する。
 以上、本開示の実施形態を詳細に述べたが、本開示の実施形態や変形例は他にも様々考えられる。
 (1)例えば、第3状態J3のときのピンとピン穴の関係を逆にし、第1ロッカーアーム9Aから突出したピンを第3ロッカーアーム9Cのピン穴に挿入してもよい。同様に、第2状態J2のときのピンとピン穴の関係を逆にしてもよい。
 (2)上述の第1状態J1と第3状態J3の関係を、第1状態J1と第2状態J2の関係に適用してもよい。この場合、前者の関係に加えて後者の関係を採用することができる。そして第1最大リフトタイミングα2以前の第2状態J2のバルブリフトカーブを、図7に示した第3状態J3のバルブリフトカーブと同じにすることができる。
 あるいは、前者の関係に代えて後者の関係を採用することもできる。この場合、第1最大リフトタイミングα2以前の第2状態J2のバルブリフトカーブを、図7に示した第3状態J3のバルブリフトカーブと同じにする一方、第1最大リフトタイミングα2以前の第3状態J3のバルブリフトカーブを、図7に示した第1状態J1のバルブリフトカーブと同じにすることができる。
 (3)上記実施形態では、(a)上り区間β1,β3の上り始め部分β3A,β1Aでバルブリフト変化率γ3A,γ1Aを変えることと、(b)上り区間β1,β3の上り終わり部分β3B,β1Bでバルブリフト変化率γ3B,γ1Bを変えることとの両方を行った。しかしながら、これに限らず、(a)および(b)のいずれか一方のみを行うようにしてもよい。
 (4)上記実施形態では可変機構を三段階に切替可能なものとしたが、少なくとも二段階で切替可能であればよく、四段階以上で切替可能なものであってもよい。そしてそのうちの任意の二段階部分に本開示を適用できる。
 (5)流体圧制御装置の作動流体は空気等の気体であってもよく、流体圧は空圧等の気体圧であってもよい。すなわち可変機構は、気体圧によって切替可能な構成であってもよい。
 本開示の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本開示の思想に包含されるあらゆる変形例や応用例、均等物が本開示に含まれる。従って本開示は、限定的に解釈されるべきではなく、本開示の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。
 本出願は、2019年3月7日付で出願された日本国特許出願(特願2019-41620)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示によれば、エンジンバルブの開弁中にピンがピン穴から抜けたときでもエンジンバルブの損傷を抑制することができる内燃機関の可変動弁装置を提供する点において有用である。
1 カムシャフト
3 吸気弁
4A 第1カム
4B 第2カム
4C 第3カム
5 可変機構
9A 第1ロッカーアーム
9B 第2ロッカーアーム
9C 第3ロッカーアーム
21Aa,21Ab,21B,21C ピン
24A,24B,24B ピン穴

Claims (2)

  1.  エンジンバルブの作動特性を切り替えるために第1状態と第2状態に切替可能な可変機構を備え、
     前記可変機構は、
     カムシャフトと、
     前記カムシャフトに固設されカムプロファイルの異なる第1カムおよび第2カムと、
     前記第1カムおよび前記第2カムにそれぞれ対応して設けられた第1ロッカーアームおよび第2ロッカーアームと、
     前記第1ロッカーアームおよび前記第2ロッカーアームの連結状態を切り替えるための連結機構であって、前記第1ロッカーアームおよび前記第2ロッカーアームの一方に出没可能に設けられたピンと、他方に設けられたピン穴とを有する連結機構と、
     を備え、
     前記第1状態のとき、前記ピンは前記ピン穴から抜け、前記エンジンバルブは、前記第1カムのカムプロファイルに従う作動特性とされ、
     前記第2状態のとき、前記ピンは前記ピン穴に挿入され、前記エンジンバルブは、前記第2カムのカムプロファイルに従う作動特性とされ、
     前記第2状態のとき、前記エンジンバルブのバルブリフト量が増大する第2上り区間は、前記第1状態のときの第1上り区間よりも進角側に設定され、
     (a)前記第2上り区間の上り始め部分の所定時期のバルブリフト変化率が、前記第1上り区間の上り始め部分の同一時期のバルブリフト変化率より大きく、または(b)前記第2上り区間の上り終わり部分の所定時期のバルブリフト変化率が、前記第1上り区間の上り終わり部分の同一時期のバルブリフト変化率より大きく、または(c)前記第2上り区間の上り始め部分と上り終わり部分の所定時期のバルブリフト変化率が、前記第1上り区間の上り始め部分と上り終わり部分の同一時期のバルブリフト変化率よりそれぞれ大きい
     ことを特徴とする内燃機関の可変動弁装置。
  2.  前記第1状態のときと前記第2状態のときとで最大バルブリフト量は等しく、
     前記第2状態のときには前記第1状態のときよりも最大バルブリフト期間が遅角側に延長される
     請求項1に記載の内燃機関の可変動弁装置。
PCT/JP2020/009150 2019-03-07 2020-03-04 内燃機関の可変動弁装置 WO2020179820A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019041620A JP2020143637A (ja) 2019-03-07 2019-03-07 内燃機関の可変動弁装置
JP2019-041620 2019-03-07

Publications (1)

Publication Number Publication Date
WO2020179820A1 true WO2020179820A1 (ja) 2020-09-10

Family

ID=72336924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009150 WO2020179820A1 (ja) 2019-03-07 2020-03-04 内燃機関の可変動弁装置

Country Status (2)

Country Link
JP (1) JP2020143637A (ja)
WO (1) WO2020179820A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111919015A (zh) * 2018-03-28 2020-11-10 五十铃自动车株式会社 内燃机的可变气门装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477711A (en) * 1987-09-18 1989-03-23 Honda Motor Co Ltd Valve system for internal combustion engine
JPH01285613A (ja) * 1988-05-13 1989-11-16 Honda Motor Co Ltd 内燃機関の動弁機構
JP2017005123A (ja) * 2015-06-11 2017-01-05 いすゞ自動車株式会社 電磁アクチュエータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477711A (en) * 1987-09-18 1989-03-23 Honda Motor Co Ltd Valve system for internal combustion engine
JPH01285613A (ja) * 1988-05-13 1989-11-16 Honda Motor Co Ltd 内燃機関の動弁機構
JP2017005123A (ja) * 2015-06-11 2017-01-05 いすゞ自動車株式会社 電磁アクチュエータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111919015A (zh) * 2018-03-28 2020-11-10 五十铃自动车株式会社 内燃机的可变气门装置
CN111919015B (zh) * 2018-03-28 2022-05-03 五十铃自动车株式会社 内燃机的可变气门装置

Also Published As

Publication number Publication date
JP2020143637A (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
CN101238278B (zh) 内燃机
US8205585B2 (en) Variable valve gear for internal combustion engine
JPH0771278A (ja) エンジンのバルブタイミング制御装置
WO2020179820A1 (ja) 内燃機関の可変動弁装置
JP4069850B2 (ja) 内燃機関のバルブ開閉特性制御装置
WO2020179860A1 (ja) 内燃機関の可変動弁装置
JP6791360B2 (ja) エンジンの制御装置
JP6551445B2 (ja) エンジンの制御装置
JP5859493B2 (ja) 内燃機関の油路構造
JP4432708B2 (ja) 4サイクルエンジン
WO2019188557A1 (ja) 内燃機関の可変動弁装置
WO2020179762A1 (ja) 内燃機関の可変動弁装置
CN106968751B (zh) 用于内燃发动机的阀的可变致动的系统
WO2020189546A1 (ja) 内燃機関の可変動弁装置
EP1936153B1 (en) Internal combusion engine and control arrangement therefor
CN203879564U (zh) 一种可变气门的柴油机配气机构
US10612474B2 (en) Controller for multi-cylinder engine
JP5034404B2 (ja) 内燃機関の制御装置
JP4311813B2 (ja) 火花点火式内燃機関の吸気系統制御装置
JP6607530B2 (ja) エンジンの制御装置
JP4061885B2 (ja) 内燃機関の可変動弁装置
JP5617290B2 (ja) 可変動弁制御システム
WO2020054699A1 (ja) 内燃機関の可変動弁装置
JP5324236B2 (ja) 内燃機関の吸気装置
JP6380256B2 (ja) 内燃機関の可変動弁装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766392

Country of ref document: EP

Kind code of ref document: A1