WO2020189546A1 - 内燃機関の可変動弁装置 - Google Patents

内燃機関の可変動弁装置 Download PDF

Info

Publication number
WO2020189546A1
WO2020189546A1 PCT/JP2020/011060 JP2020011060W WO2020189546A1 WO 2020189546 A1 WO2020189546 A1 WO 2020189546A1 JP 2020011060 W JP2020011060 W JP 2020011060W WO 2020189546 A1 WO2020189546 A1 WO 2020189546A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
state
variable mechanism
oil
internal combustion
Prior art date
Application number
PCT/JP2020/011060
Other languages
English (en)
French (fr)
Inventor
徳丸 武志
一也 岡▲崎▼
淳一郎 新田
大雅 日比
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2020189546A1 publication Critical patent/WO2020189546A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a variable valve gear of an internal combustion engine, and more particularly to a variable valve gear for making the operating characteristics of an intake valve or an exhaust valve (collectively referred to as an engine valve) of an internal combustion engine variable.
  • a variable valve gear for making the operating characteristics of an engine valve for example, at least one of valve timing, valve lift amount, and working angle
  • a variable valve gear at least a variable mechanism capable of switching between a first state and a second state for switching the operating characteristics of the engine valve, and a hydraulic pressure supplied to the variable mechanism for switching the variable mechanism are controlled.
  • Some are equipped with a hydraulic control device.
  • the state of the variable mechanism at the time of starting the internal combustion engine may be predetermined. Let this be the first state. In this case, when the variable mechanism is in the second state instead of the first state before the start, the variable mechanism must be promptly switched to the first state immediately after the start of the start.
  • the present disclosure was devised in view of the above circumstances, and an object thereof is to provide a variable valve gear for an internal combustion engine capable of improving the startability of the internal combustion engine.
  • a variable mechanism that can switch between the first state and the second state to switch the operating characteristics of the engine valve
  • a hydraulic pressure control device for controlling the hydraulic pressure supplied to the variable mechanism to switch the variable mechanism is a variable valve gear of an internal combustion engine equipped with
  • the hydraulic control device is With a hydraulic pump An oil gallery that stores the pressure oil discharged from the hydraulic pump, A valve unit that selectively supplies the pressure oil stored in the oil gallery to the variable mechanism, A main passage connecting the hydraulic pump, the oil gallery and the valve unit, A bypass passage that bypasses the oil gallery and connects a position between the hydraulic pump and the oil gallery in the main passage and a position between the oil gallery and the valve unit.
  • a bypass valve provided in the bypass passage and A control unit configured to control the valve unit and the bypass valve, With The control unit is When the variable mechanism is put into the first state, the valve unit is put into the first state and the pressure oil of the oil gallery is supplied to the variable mechanism. When the variable mechanism is put into the second state, the valve unit is put into the second state and the pressure oil is discharged from the variable mechanism. When the internal combustion engine is started, the valve unit is put into the first state, the bypass valve is opened, and the pressure oil discharged from the hydraulic pump is supplied to the valve unit through the bypass passage.
  • a variable valve gear for an internal combustion engine is provided.
  • control unit opens the bypass valve at the same time as the start of the internal combustion engine, and then closes the bypass valve when a predetermined valve opening end condition is satisfied.
  • the valve opening end condition includes that the pressure of the oil gallery becomes equal to or higher than a predetermined threshold value.
  • control unit opens the bypass valve when a predetermined valve opening execution condition is satisfied at the time of starting the internal combustion engine.
  • the valve opening execution condition includes that the pressure of the oil gallery is less than a predetermined threshold value.
  • the startability of an internal combustion engine can be improved.
  • FIG. 1 is a schematic plan view showing a partial configuration of a variable valve gear.
  • FIG. 2 is a valve lift diagram showing how the valve timing changes.
  • FIG. 3 is a diagram showing a first state of the variable mechanism.
  • FIG. 4 is a diagram showing a third state of the variable mechanism.
  • FIG. 5 is a diagram showing a second state of the variable mechanism.
  • FIG. 6 is a diagram showing a control map.
  • FIG. 7 is a flowchart showing a control method at the time of starting the engine.
  • FIG. 8 is a time chart showing changes in engine speed, gallery pressure, and outlet pressure of the bypass passage when the engine is started.
  • FIG. 1 shows a partial configuration of the variable valve gear of the present embodiment.
  • FIG. 1 is a schematic plan view of the cylinder head when viewed from above.
  • the internal combustion engine (engine) of the present embodiment is a multi-cylinder diesel engine mounted on a large vehicle such as a truck or a bus, and specifically, an in-line 6-cylinder diesel engine.
  • a large vehicle such as a truck or a bus
  • an in-line 6-cylinder diesel engine an in-line 6-cylinder diesel engine.
  • the use, type, type, etc. of the vehicle and engine are not limited and are arbitrary.
  • the rotational driving force from the crankshaft (not shown) is transmitted to the camshaft 1 through a power transmission mechanism (not shown) including a gear mechanism or the like.
  • the engine of the present embodiment is a DOHC (Double OverHead Camshaft) engine that drives an intake valve and an exhaust valve with two camshafts, respectively.
  • the camshaft 1 shown in the figure is an intake cam for opening and closing the intake valve 3. It is a shaft.
  • the present disclosure may be applied to an exhaust camshaft for driving an exhaust valve (not shown). Intake valves and exhaust valves are collectively called engine valves.
  • one end side (left side in FIG. 1) in the direction (axial direction) of the central axis C1 of the camshaft 1 is the front, and the other end side (right side in FIG. 1) is the rear.
  • These front-rear directions coincide with the front-rear directions of the engine and the vehicle (the engine is installed vertically). However, they do not necessarily have to match.
  • # 1 to # 6 cylinders are arranged in order from the front.
  • FIG. 1 shows the configuration of one cylinder.
  • the variable valve gear controls at least a variable mechanism 5 capable of switching between a first state and a second state in order to switch the operating characteristics of the intake valve 3, and a hydraulic pressure supplied to the variable mechanism 5 in order to switch the variable mechanism 5. It is equipped with a hydraulic control device (described later) for this purpose.
  • the operating characteristics of the intake valve 3 refer to the valve timing and the working angle.
  • Engine lubrication oil is used as the oil as the working fluid.
  • variable mechanism 5 three cams 4A, 4B, and 4C that open the intake valve 3 against the urging force of the valve spring 2 are fixed to the camshaft 1 for each cylinder.
  • Two intake valves 3 are provided for each cylinder, and these two intake valves 3 are opened and closed at the same time by the valve bridge 8.
  • the valve bridge 8 When the intake valve 3 is opened, a part of the three cams 4A, 4B, 4C and the rocker arm 9 cause the valve bridge 8 to move downward against the urging force of the valve spring 2 (the back side in the paper thickness direction in FIG. 1). It is pushed down in the direction toward).
  • the intake valve 3 is closed, the valve bridge 8 is pushed upward (in the direction toward the front side in the paper thickness direction in FIG. 1) by the urging force of the valve spring 2.
  • the three cams that is, the first cam 4A, the second cam 4B, and the third cam 4C each have a different cam profile, and both the valve timing and the working angle of the intake valve 3 are switched in three stages. That is, the variable mechanism 5 of the present embodiment can be switched between three stages of a first state, a second state, and a third state.
  • variable mechanism 5 includes a rocker arm 9, and the rocker arm 9 has three rocker arms per cylinder corresponding to the three cams 4A, 4B, 4C, that is, the first rocker arm 9A, the second rocker arm 9B, and the like.
  • the third rocker arm 9C is included.
  • These rocker arms 9A, 9B, and 9C are adjacent to each other in the front-rear direction and are rotatably supported by a common rocker shaft 18.
  • C2 indicates the central axis of the rocker shaft 18.
  • the arrangement order of these cams and rocker arms in the axial direction is arbitrary, but in the present embodiment, the second, first, and third are used in this order from the rear.
  • a rocker roller 19 is rotatably provided on the rocker arms 9A, 9B, 9C, and the rocker roller 19 is constantly in contact with the cams 4A, 4B, 4C. Further, only the first rocker arm 9A is provided with an extending portion 20 that is engaged with the upper surface portion of the valve bridge 8.
  • a connecting mechanism for switching the connecting state of the rocker arms 9A, 9B, 9C is provided.
  • Pin holes 24A, 24B, 24C are provided inside the rocker arms 9A, 9B, 9C, and these pin holes 24A, 24B, 24C have four pins for switching the connection state of the rocker arms 9A, 9B, 9C.
  • 21Aa, 21Ab, 21B, and 21C are provided so as to be movable in the axial direction and appear and disappear.
  • a spring 22 that can collectively urge the four pins 21Aa, 21Ab, 21B, and 21C to the front is provided inside the second rocker arm 9B.
  • the positions of the pins 21Aa, 21Ab, 21B, 21C are controlled by supplying and discharging hydraulic pressure to the first and third rocker passages 23A, 23C provided inside the first and third rocker arms 9A, 9C, respectively.
  • a first shaft passage 14A communicated with the first rocker passage 23A of each cylinder and a third shaft passage 14C communicated with the third rocker passage 23C of each cylinder are provided inside the rocker shaft 18.
  • the hydraulic pressures of the first and third rocker passages 23A and 23C of each cylinder are simultaneously controlled, and by extension, the pins 21Aa and 21Ab of each cylinder. , 21B, 21C, and the connected state of the first to third rocker arms 9A, 9B, 9C of each cylinder can be switched at the same time.
  • the variable mechanism 5 steps the valve timing and working angle of the intake valve 3 into one of three states as shown in FIG. 2, that is, the first state S1, the second state S2, and the third state S3. It is configured to switch.
  • the valve timing includes both the opening timing at which the engine valve starts valve opening and the closing timing at which the engine valve ends the valve closing.
  • the working angle refers to a crank phase period or a cam phase period in which the engine valve is open (that is, the valve lift amount VL is larger than zero).
  • the maximum valve lift amount VLmax in the first state S1, the second state S2, and the third state S3 is equal. Further, from the first state S1 to the third state S3, the maximum valve lift period (the period during which the valve lift amount VL is the maximum valve lift amount VLmax) is gradually extended to the retard side.
  • the valve lift curve from the opening timing ⁇ 1 to the timing (referred to as the first maximum lift timing) ⁇ 2 when the valve lift amount VL in the first state S1 first reaches the maximum valve lift amount VLmax is the same in any state.
  • valve closing is immediately started in the first state S1, and in the second state S2, the valve closing is started after the maximum valve lift amount VLmax is maintained for the second predetermined period ⁇ 2, and the third.
  • the valve closing is started after the maximum valve lift amount VLmax is maintained for a longer third predetermined period ⁇ 3.
  • the closing timing of the first state S1 is ⁇ 3, the closing timing of the second state S2 is ⁇ 4 on the retard side of ⁇ 3, and the closing timing of the third state S3 is ⁇ 5 on the retard side of ⁇ 4.
  • the working angle of the first state S1 is the period from ⁇ 1 to ⁇ 3, the working angle of the second state S2 is the longer period of ⁇ 1 to ⁇ 4, and the working angle of the third state S3 is the longer period of ⁇ 1 to ⁇ 5. .. Therefore, in the present embodiment, the maximum valve lift amount VLmax is kept constant, while the closing timing and the working angle are changed in three stages.
  • the shape of the valve lift curve from the valve closing start timing to the valve closing end timing (closing timing) is the same in any state.
  • the outer shapes of the first to third rocker arms 9A, 9B, and 9C are substantially the same.
  • the cam profiles of the first to third cams 4A, 4B, and 4C are set to different cam profiles corresponding to the first to third states S1, S2, and S3, respectively.
  • Each state of the variable mechanism 5 corresponding to the first to third states S1, S2, S3 of the valve timing and the working angle is defined as the first to third states J1, J2, J3.
  • the variable mechanism 5 can be switched to any of these first to third states J1, J2, and J3.
  • a hydraulic control device described later supplies pressure oil as a pressure fluid to the first rocker passage 23A and the pin hole 24A, and the third rocker passage Pressure oil is discharged from 23C and pin hole 24C. Then, the pins 21Aa and 21Ab are moved in the front-rear direction so as to be separated from each other, the pin 21B is pressed backward against the urging force of the spring 22, and the pin 21C is pressed forward. Then, the pins 21Aa and 21Ab are completely inserted into the pin hole 24A and do not protrude from the pin hole 24A.
  • the pin 21B is completely inserted into the pin hole 24B and does not protrude
  • the pin 21C is completely inserted into the pin hole 24C and does not protrude.
  • the rear end surface of the pin 21Aa and the front end surface of the pin 21Ab are arranged flush with the rear end surface and the front end surface of the first rocker arm 9A
  • the front end surface of the pin 21B is flush with the front end surface of the second rocker arm 9B
  • the rear end surface of the pin 21C is arranged flush with the rear end surface of the third rocker arm 9C.
  • the first rocker arm 9A is not connected to the second rocker arm 9B and the third rocker arm 9C, and only the operation of the first cam 4A is transmitted to the intake valve 3 through the first rocker arm 9A.
  • the other second and third rocker arms 9B and 9C simply follow the movements of the second and third cams 4B and 4C and perform a missed motion (lost motion).
  • the intake valve 3 has an operating characteristic according to the cam profile of the first cam 4A, and operates in the first state S1 according to the cam profile of the first cam 4A.
  • the intake valve 3 is substantially opened and closed by the third cam 4C via the integrated first and third rocker arms 9A and 9C.
  • the intake valve 3 has an operating characteristic according to the cam profile of the third cam 4C, and operates in the third state S3 according to the cam profile of the third cam 4C.
  • the intake valve 3 is substantially opened and closed by the second cam 4B via the integrated first and second rocker arms 9A and 9B.
  • the intake valve 3 has an operating characteristic according to the cam profile of the second cam 4B, and operates in the second state S2 according to the cam profile of the second cam 4B.
  • the hydraulic control device generally selects the hydraulic pump 11, the oil gallery 30 for storing the pressure oil discharged from the hydraulic pump 11, and the pressure oil stored in the oil gallery 30 for the variable mechanism 5.
  • ECU Electronic Control Unit
  • the hydraulic pump 11 sucks oil from the oil pan 10 as an oil tank and discharges it as pressure oil.
  • a main passage 33 from the oil pan 10 to the valve unit 31 is provided, and the hydraulic pump 11 and the oil gallery 30 are provided in the main passage 33 in order from the upstream side. In this way, the hydraulic pump 11, the oil gallery 30, and the valve unit 31 are connected by the main passage 33.
  • the pressure oil discharged from the hydraulic pump 11 is supplied to the oil gallery 30 through the main passage 33.
  • the hydraulic pump 11 is a mechanical type driven by the crankshaft of the engine. However, it may be an electric type driven by an electric motor.
  • an oil cooler 34 for cooling oil and an oil filter 35 for filtering oil are provided in order from the upstream side.
  • the oil gallery 30 is a sufficiently large space that functions as a main pressure oil reservoir, and is integrally formed with the cylinder block of the engine in the present embodiment. However, it may be formed separately.
  • the oil gallery 30 is connected to a plurality of parts 36 that require lubrication or hydraulic pressure supply, which are different from the variable mechanism 5, and supplies oil to each of the parts 36.
  • the entrance of the oil gallery 30 is connected to the oil filter 35 via the main passage 33.
  • the outlet of the oil gallery 30 on the variable mechanism 5 side is connected to the valve unit 31 via the main passage 33.
  • the valve unit 31 includes an upstream supply valve (referred to as OSV) 12 and a downstream switching valve (referred to as OCV) 13 connected to each other.
  • OSV upstream supply valve
  • OCV downstream switching valve
  • the OSV 12 has a plurality of (specifically, three) ports that form an inlet / outlet for oil, that is, a first supply port P1, a second supply port P2, and a third supply port P3.
  • the OCV 13 also has a plurality of (specifically, four) ports that form an inlet / outlet for oil, that is, a first switching port Q1, a second switching port Q2, a third switching port Q3, and a fourth switching port Q4.
  • OSV12 and OCV13 are composed of solenoid valves.
  • the first supply port P1 is connected to the main passage 33
  • the second supply port P2 is connected to the first switching port Q1 of the OCV 13
  • the third supply port P3 is connected to the oil pan 10.
  • the second switching port Q2 is connected to the first shaft passage 14A
  • the third switching port Q3 is connected to the third shaft passage 14C
  • the fourth switching port Q4 is connected to the oil pan 10.
  • the ECU 100 controls the engine, and has a CPU (Central Processing Unit) having a calculation function, ROM (Read Only Memory) and RAM (Random Access Memory) as storage media, an input / output port, and storage other than ROM and RAM. Including equipment and the like.
  • the ECU 100 controls the OSV 12 and the OCV 13 on and off.
  • the first supply port P1 and the second supply port P2 are in a communicating state.
  • the hydraulic pump 11 is used. The hydraulic oil is allowed to pass through OSV12.
  • the ECU 100 includes a rotation speed sensor 15 that detects the rotation speed of the engine, specifically, the engine rotation speed Ne (rpm) per unit time (minutes), and the operation amount of the accelerator pedal, that is, An accelerator opening sensor 16 that detects the accelerator opening Ac is connected.
  • the ECU 100 calculates the target fuel injection amount F from a predetermined map based on the detected values of the rotation speed Ne and the accelerator opening degree Ac. Further, the ECU 100 switches the variable mechanism 5 according to the control map as shown in FIG. 6 based on the rotation speed Ne and the target fuel injection amount F. In this way, the ECU 100 switches the variable mechanism 5 according to the engine operating state.
  • the engine speed Ne, the accelerator opening degree Ac, and the target fuel injection amount F are parameters representing the engine operating state.
  • the accelerator opening degree Ac and the target fuel injection amount F are parameters representing the load of the engine.
  • the ECU 100 switches the variable mechanism 5 to the first state J1. Similarly, the ECU 100 switches the variable mechanism 5 to the second state J2 when the rotation speed Ne and the target fuel injection amount F are in the second region R2 in the control map, and the rotation speed Ne and the target fuel injection amount F are changed. When in the third region R3 in the control map, the variable mechanism 5 is switched to the third state J3.
  • the first region R1 is a region on the low rotation and low load side
  • the third region R3 is a region on the high rotation or high load side
  • the second region R2 is an intermediate region between them.
  • the engine speed Ne becomes the high speed side
  • the target fuel injection amount F becomes the increase side, that is, the engine load becomes the high load side. Therefore, as the engine speed Ne becomes the high speed side or the engine load becomes the high load side, the state of the variable mechanism 5 changes sequentially as the first state J1, the second state J2, the third state J3, and the valve timing.
  • the working angle changes sequentially in the direction in which the closing timing is delayed, such as the first state S1, the second state S2, and the third state S3.
  • control map can be set in any way, and it is not limited to the example described here.
  • the engine operating area corresponding to each state can be arbitrarily set according to the request of the actual machine.
  • the ECU 100 controls the valve unit 31 to the first state, specifically, turns off the OSV 12 and turns off the OCV 13. Then, the pressure oil of the oil gallery 30 passes through the first supply port P1, the second supply port P2, the first switching port Q1, and the second switching port Q2 in this order, and reaches the first shaft passage 14A and the first rocker passage 23A. On the other hand, the pressure oil in the third rocker passage 23C and the third shaft passage 14C is discharged to the oil pan 10 through the third switching port Q3 and the fourth switching port Q4 in this order.
  • the ECU 100 controls the valve unit 31 to the third state, specifically, OSV12 is turned off and OCV13 is turned on, as shown in FIG. Then, the pressure oil of the oil gallery 30 passes through the first supply port P1, the second supply port P2, the first switching port Q1, and the third switching port Q3 in this order, and reaches the third shaft passage 14C and the third rocker passage 23C. On the other hand, the pressure oil in the first rocker passage 23A and the first shaft passage 14A is discharged to the oil pan 10 through the second switching port Q2 and the fourth switching port Q4 in this order.
  • the ECU 100 controls the valve unit 31 to the second state, specifically, turns the OSV 12 on and turns off the OCV 13. Then, since the first supply port P1 is not connected to any port, the pressure oil supply from the oil gallery 30 is stopped. On the other hand, the pressure oil in the first rocker passage 23A and the first shaft passage 14A is discharged to the oil pan 10 through the second switching port Q2, the first switching port Q1, the second supply port P2, and the third supply port P3 in this order. To. Further, the pressure oil in the third rocker passage 23C and the third shaft passage 14C is discharged to the oil pan 10 through the third switching port Q3 and the fourth switching port Q4 in this order.
  • the bypass passage 37 bypasses the oil gallery 30 and has a position between the hydraulic pump 11 and the oil gallery 30 in the main passage 33 and a position between the oil gallery 30 and the valve unit 31. connect.
  • the bypass passage 37 bypasses the oil cooler 34, the oil filter 35, and the oil gallery 30.
  • the upstream end of the bypass passage 37 is connected to a position between the hydraulic pump 11 and the oil cooler 34 in the main passage 33, branches from the main passage 33 at this position, and extracts and introduces pressure oil from the main passage 33. ..
  • the downstream end of the bypass passage 37 is connected to a position between the oil gallery 30 and the OSV 12 in the main passage 33, joins the main passage 33 at this position, and supplies pressure oil to the main passage 33.
  • the bypass valve 39 is composed of a solenoid valve and is controlled to open and close by the ECU 100.
  • the bypass valve 39 opens when turned on by the ECU 100 to allow the flow of pressure oil in the bypass passage 37. Further, the bypass valve 39 is closed when turned off by the ECU 100 to prohibit the flow of pressure oil in the bypass passage 37.
  • the oil gallery 30 is provided with a gallery pressure sensor 41 and a gallery temperature sensor 42 for detecting the internal pressure (referred to as gallery pressure Pg) and temperature (referred to as gallery temperature Tg).
  • gallery pressure Pg the internal pressure
  • gallery temperature Tg temperature
  • the output signals of these sensors are sent to the ECU 100.
  • the ECU 100 controls on / off of the starter motor (S / M) 47 that rotationally drives the crankshaft when the engine is started.
  • variable mechanism 5 it is predetermined and planned that the variable mechanism 5 will be in the first state J1 as shown in FIG. 3 when the engine is started.
  • the valve lift curve (see FIG. 2) in the first state J1 is adapted so as to be optimum including the start.
  • variable mechanism 5 is in the first state J1.
  • the pressure oil supplied to the variable mechanism 5 will be released.
  • the pressure oil supplied to the pin hole 24A of the first rocker arm 9A flows back through the hydraulic pump 11 and is discharged to the oil pan 10.
  • variable mechanism 5 becomes the second state J2 as shown in FIG. Since this is not preferable for the next start, the variable mechanism 5 must be promptly switched to the first state J1 immediately after the start of the next start.
  • the pressure oil of the oil gallery 30 also comes out while the engine is stopped. Immediately after the start of the start, the gallery pressure Pg has not yet risen sufficiently, and the hydraulic pressure is not large enough to switch the variable mechanism 5 to the first state J1. This is more pronounced if the start is a cold or cold start or if the downtime before the start is long.
  • a bypass passage 37 that bypasses the oil gallery 30 is provided, and the bypass valve 39 is opened immediately after the start of the engine start, so that the relatively high pressure oil from the hydraulic pump 11 is directly passed through the bypass passage 37.
  • the valve unit 31 and the variable mechanism 5 are supplied to the valve unit 31, and the pressure oil thereof can be used to quickly switch the variable mechanism 5 to the first state J1.
  • the bypass valve 39 is closed during the normal operation of the engine so that the pressure oil discharged from the hydraulic pump 11 flows only to the main passage 33. Then, when the engine is started, the valve unit 31 is put into the first state (OSV12 is turned off, OCV13 is turned off) as shown in FIG. 3, the bypass valve 39 is opened, and the pressure oil discharged from the hydraulic pump 11 is discharged. It is directly supplied to the valve unit 31 through the bypass passage 37.
  • variable mechanism 5 which was in the second state J2 while the engine is stopped can be quickly switched to the first state J1, and even when the gallery pressure Pg is not sufficiently raised, in the first state J1. Engine start can be achieved. This makes it possible to improve the startability of the engine.
  • the ECU 100 controls according to the procedure shown in the flowchart.
  • valve unit 31 In the initial state, the engine and the vehicle are stopped, and the OSV 12, OCV 13 and bypass valve 39 are all off. Therefore, the valve unit 31 is in the first state as shown in FIG. 3, but since the hydraulic pressure is released from the variable mechanism 5, the variable mechanism 5 is in the second state J2 as shown in FIG. .. That is, the valve unit 31 is in a preferable state for starting, but the variable mechanism 5 is not in a preferable state for starting. Therefore, it is necessary to immediately switch the variable mechanism 5 to the first state J1 at the same time as the start of the start.
  • step S101 it is determined whether or not the starter motor 47 is turned on based on the internal signal of the ECU 100. If it is not turned on, it goes into a standby state, and if it is turned on, the process proceeds to step S102.
  • the starter motor 47 is also turned on by operating the driver's key switch.
  • step S102 it is determined whether or not a predetermined valve opening execution condition for executing the valve opening of the bypass valve 39 is satisfied. Specifically, when the gallery pressure Pg detected by the gallery pressure sensor 41 is less than a predetermined threshold value Pgs (when the main condition described later is not satisfied), the valve opening execution condition is satisfied.
  • the threshold value Pgs is set as the minimum value of the gallery pressure at which the variable mechanism 5 can be switched by the pressure oil of the oil gallery 30 alone.
  • step S103 If the valve opening execution condition is satisfied, the process proceeds to step S103, and the bypass valve 39 is turned on, that is, opened. As a result, the pressure oil from the hydraulic pump 11 is directly supplied to the valve unit 31 at the same time as the start of the engine start.
  • variable mechanism 5 is switched to the first state J1. In this way, the variable mechanism 5 can be quickly switched to the first state J1 at the same time as the start of the start, the subsequent start can be smoothly performed, and the startability can be improved.
  • next step S104 it is determined whether or not a predetermined valve opening end condition for terminating the opening of the bypass valve 39 is satisfied. For example, when the main condition that the gallery pressure Pg detected by the gallery pressure sensor 41 becomes equal to or higher than a predetermined threshold value Pgs is satisfied, the valve opening end condition is satisfied.
  • step S105 the bypass valve 39 is turned off or closed, and the flowchart ends. As a result, the pressure oil supply through the bypass passage 37 is terminated.
  • the first sub-condition is that the gallery temperature Tg detected by the gallery temperature sensor 42 is equal to or higher than a predetermined threshold value Tgs.
  • Tgs a predetermined threshold value
  • the gallery pressure Pg is equal to or higher than the threshold Pgs. Therefore, it can be determined that the valve opening end condition is satisfied based on the first subcondition.
  • the second sub-condition is that the engine speed Ne detected by the rotation speed sensor 15 is equal to or higher than a predetermined threshold value Ne.
  • the threshold Nes can be, for example, a rotation speed equal to or slightly higher than a predetermined idle rotation speed.
  • the gallery pressure Pg is equal to or higher than the threshold value Pgs. Therefore, it can be determined that the valve opening end condition is satisfied based on the second subcondition. ..
  • step S102 if the valve opening execution condition is not satisfied in step S102, the process proceeds to step S105 and the bypass valve 39 is closed.
  • the bypass valve 39 is closed and the pressure oil is not supplied through the bypass passage 37.
  • FIG. 8 shows changes in the engine speed Ne, the gallery pressure Pg, and the outlet pressure Pa of the bypass passage 37 when the engine is started.
  • the outlet pressure Pa of the bypass passage 37 is the hydraulic pressure at the confluence position where the bypass passage 37 joins the main passage 33.
  • the gallery pressure Pg starts to rise at time t3 immediately after the first explosion, and rises behind the rise of the engine speed Ne. Then, the threshold value Pgs is reached at time t5, which is later than time t4, and then the pressure Pgi corresponding to the idle rotation speed Nei is reached at time t6.
  • the bypass passage outlet pressure Pa starts to rise immediately from the time t1 when the starter motor 47 is turned on, and quickly rises to a pressure Pa1 higher than the threshold value Pgs.
  • This pressure Pa1 is a value substantially equal to the discharge pressure of the hydraulic pump 11.
  • the bypass passage outlet pressure Pa reaches the threshold value Pgs and further the pressure Pa1 earlier than the timing t2 of the first explosion. Therefore, the variable mechanism 5 can be switched to the first state J1 before the first explosion, and the startability can be improved.
  • bypass valve 40 Since the bypass valve 40 is closed at time t5 and the pressure oil supply from the bypass passage 37 to the main passage 33 is stopped, the bypass passage outlet pressure Pa drops slightly to the gallery pressure Pg immediately after that.
  • the bypass valve 39 is opened when the engine is started, and the pressure oil from the hydraulic pump 11 is supplied to the valve unit 31 through the bypass passage 37. Therefore, the variable mechanism 5 can be quickly switched to the first state J1 suitable for starting immediately after the start of the engine, and the startability of the engine can be improved.
  • first state and the second state of the variable mechanism in the claims correspond to the “first state J1 and the second state J2" of the variable mechanism 5 in the present embodiment. To do.
  • the state such as the valve timing for starting the engine is set to the first state S1, but it may be set to the second state S2 or the third state S3.
  • variable mechanism 5 is a rocker arm switching type, but other types are also possible.
  • a vane-type variable mechanism that rotationally drives a movable vane coaxially fixed to the camshaft according to the supply and discharge of hydraulic pressure to change the relative phase of the camshaft with respect to the cam sprocket or cam gear may be used.
  • variable mechanism is switchable in three stages, but it may be switchable in at least two stages, and may be switchable in four or more stages. And the present disclosure can be applied to any two-step portion thereof.
  • variable valve gear for an internal combustion engine capable of improving the startability of the internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

内燃機関の可変動弁装置は、第1状態J1と第2状態に切替可能な可変機構と、可変機構に供給される油圧を制御する油圧制御装置とを備える。油圧制御装置は、油圧ポンプ11と、オイルギャラリ30と、バルブユニット31と、メイン通路33と、バイパス通路37と、バイパス弁39と、制御ユニット100とを備える。可変機構を第1状態にするとき、バルブユニットを第1状態にして可変機構にオイルギャラリの圧油を供給する。可変機構を第2状態にするとき、バルブユニットを第2状態にして可変機構から圧油を排出する。内燃機関の始動時に、バルブユニットを第1状態にすると共に、バイパス弁を開弁して、油圧ポンプから吐出された圧油をバイパス通路を通じてバルブユニットに供給する。

Description

内燃機関の可変動弁装置
 本開示は内燃機関の可変動弁装置に係り、特に、内燃機関の吸気弁または排気弁(これらを総称してエンジンバルブという)の作動特性を可変にするための可変動弁装置に関する。
 エンジンバルブの作動特性(例えばバルブタイミング、バルブリフト量、作用角の少なくとも一つ)を可変にするための可変動弁装置が公知である。かかる可変動弁装置において、エンジンバルブの作動特性を切り替えるために少なくとも第1状態と第2状態に切替可能な可変機構と、可変機構を切り替えるために可変機構に供給される油圧を制御するための油圧制御装置とを備えたものがある。
日本国特開2008-114844号公報
 こうした可変動弁装置において、内燃機関の始動時における可変機構の状態が予め決められている場合がある。仮にこれを第1状態とする。この場合、始動前に可変機構が第1状態でなく、第2状態になっているときには、始動開始直後に可変機構を第1状態に速やかに切り替えなければならない。
 しかし、内燃機関の始動開始直後では、まだ油圧が十分に立ち上がっておらず、可変機構を第1状態に切り替えるのに十分な大きさの油圧になっていない。そのため第1状態への切り替えが不可能で、第2状態で始動せざるを得ず、良好な始動性を得るのが困難という問題がある。
 そこで本開示は、上記事情に鑑みて創案され、その目的は、内燃機関の始動性を向上できる内燃機関の可変動弁装置を提供することにある。
 本開示の一の態様によれば、
 エンジンバルブの作動特性を切り替えるために第1状態と第2状態に切替可能な可変機構と、
 前記可変機構を切り替えるために前記可変機構に供給される油圧を制御するための油圧制御装置と、
 を備えた内燃機関の可変動弁装置であって、
 前記油圧制御装置は、
 油圧ポンプと、
 前記油圧ポンプから吐出された圧油を貯留するオイルギャラリと、
 前記オイルギャラリに貯留された圧油を前記可変機構に選択的に供給するバルブユニットと、
 前記油圧ポンプ、前記オイルギャラリおよび前記バルブユニットを連結するメイン通路と、
 前記オイルギャラリをバイパスするバイパス通路であって、前記メイン通路における前記油圧ポンプおよび前記オイルギャラリの間の位置と、前記オイルギャラリおよび前記バルブユニットの間の位置とを連結するバイパス通路と、
 前記バイパス通路に設けられたバイパス弁と、
 前記バルブユニットおよび前記バイパス弁を制御するように構成された制御ユニットと、
 を備え、
 前記制御ユニットは、
 前記可変機構を第1状態にするとき、前記バルブユニットを第1状態にして前記可変機構に前記オイルギャラリの圧油を供給し、
 前記可変機構を第2状態にするとき、前記バルブユニットを第2状態にして前記可変機構から圧油を排出し、
 前記内燃機関の始動時に、前記バルブユニットを第1状態にすると共に、前記バイパス弁を開弁して、前記油圧ポンプから吐出された圧油を前記バイパス通路を通じて前記バルブユニットに供給する
 ことを特徴とする内燃機関の可変動弁装置が提供される。
 好ましくは、前記制御ユニットは、前記内燃機関の始動開始と同時に前記バイパス弁を開弁し、その後、所定の開弁終了条件が成立したとき、前記バイパス弁を閉弁する。
 好ましくは、前記開弁終了条件が、前記オイルギャラリの圧力が所定の閾値以上になったことを含む。
 好ましくは、前記制御ユニットは、前記内燃機関の始動時に、所定の開弁実行条件が成立しているとき、前記バイパス弁を開弁し、
 前記開弁実行条件が、前記オイルギャラリの圧力が所定の閾値未満になっていることを含む。
 本開示によれば、内燃機関の始動性を向上できる。
図1は、可変動弁装置の一部の構成を示す概略平面図である。 図2は、バルブタイミングの変化の様子を示すバルブリフト線図である。 図3は、可変機構の第1状態を示す図である。 図4は、可変機構の第3状態を示す図である。 図5は、可変機構の第2状態を示す図である。 図6は、制御マップを示す図である。 図7は、エンジン始動時の制御方法を示すフローチャートである。 図8は、エンジン始動時のエンジン回転数、ギャラリ圧、およびバイパス通路の出口圧の推移を示すタイムチャートである。
 以下、添付図面を参照して本開示の実施形態を説明する。
 図1には、本実施形態の可変動弁装置の一部の構成を示す。図1は、シリンダヘッドを上方から見たときの概略平面図である。
 本実施形態の内燃機関(エンジン)は、トラック、バス等の大型車両に搭載される多気筒ディーゼルエンジンであり、具体的には直列6気筒ディーゼルエンジンである。但し車両およびエンジンの用途、形式、種類等は限定されず任意である。
 クランクシャフト(図示せず)からの回転駆動力が、ギヤ機構等からなる動力伝達機構(図示せず)を通じてカムシャフト1に伝達される。本実施形態のエンジンは、2本のカムシャフトで吸気弁および排気弁をそれぞれ駆動するDOHC(Double OverHead Camshaft)エンジンであり、図示するカムシャフト1は、吸気弁3を開閉駆動するための吸気カムシャフトである。但し付加的または代替的に、本開示を、排気弁(図示せず)を駆動するための排気カムシャフトに適用してもよい。吸気弁および排気弁を総称してエンジンバルブという。
 便宜上、カムシャフト1の中心軸C1の方向(軸方向)における一端側(図1の左側)を前、他端側(図1の右側)を後とする。これら前後方向は、エンジンおよび車両の前後方向と一致する(エンジンは縦置きされる)。但し必ずしも一致しなくてもよい。前方から順に#1気筒~#6気筒が配置される。図1はそのうちの1気筒分の構成を示す。
 可変動弁装置は、吸気弁3の作動特性を切り替えるために少なくとも第1状態と第2状態に切替可能な可変機構5と、可変機構5を切り替えるために可変機構5に供給される油圧を制御するための油圧制御装置(後述)とを備える。本実施形態の場合、吸気弁3の作動特性とはバルブタイミングと作用角のことをいう。作動流体としてのオイルにはエンジン潤滑用オイルが使用される。
 可変機構5に関し、カムシャフト1には、バルブスプリング2の付勢力に抗じて吸気弁3を開弁する三つのカム4A,4B,4Cが気筒毎に固設される。吸気弁3は1気筒当たりに二つ設けられ、これら二つの吸気弁3がバルブブリッジ8により同時に開閉されるようになっている。吸気弁3の開弁時には、三つのカム4A,4B,4Cの一部およびロッカーアーム9により、バルブブリッジ8が、バルブスプリング2の付勢力に抗じて下方(図1の紙面厚さ方向裏側に向かう方向)に押し下げられる。他方、吸気弁3の閉弁時には逆に、バルブスプリング2の付勢力によってバルブブリッジ8が上方(図1の紙面厚さ方向表側に向かう方向)に押し上げられる。
 三つのカムすなわち第1カム4A、第2カム4Bおよび第3カム4Cは、それぞれ異なるカムプロファイルを有し、吸気弁3のバルブタイミングおよび作用角の両方を三段階に切り替えるようになっている。すなわち本実施形態の可変機構5は、第1状態と第2状態と第3状態の三段階に切替可能である。
 また可変機構5は、ロッカーアーム9を含み、ロッカーアーム9は、三つのカム4A,4B,4Cにそれぞれ対応した1気筒当たりに三つのロッカーアームすなわち第1ロッカーアーム9A、第2ロッカーアーム9Bおよび第3ロッカーアーム9Cを含む。これらロッカーアーム9A,9B,9Cは前後方向に互いに隣接され、共通のロッカーシャフト18に回動可能に支持される。C2はロッカーシャフト18の中心軸を示す。これらカムおよびロッカーアームの軸方向の配列順序は任意であるが、本実施形態では後方から順に第2、第1、第3とされる。
 ロッカーアーム9A,9B,9Cにはロッカーローラ19が回転可能に設けられ、ロッカーローラ19はカム4A,4B,4Cに常時当接される。また、第1ロッカーアーム9Aのみに、バルブブリッジ8の上面部に係合される延在部20が設けられる。第1ロッカーアーム9Aに対する第2および第3ロッカーアーム9B,9Cの連結状態を切り替えることにより、バルブタイミング等を三段階に切り替えるようになっている。
 図3にも詳しく示すように、ロッカーアーム9A,9B,9Cの連結状態を切り替えるための連結機構が設けられる。ロッカーアーム9A,9B,9Cの内部にはピン穴24A,24B,24Cが設けられ、これらピン穴24A,24B,24Cには、ロッカーアーム9A,9B,9Cの連結状態を切り替えるための四つのピン21Aa,21Ab,21B,21Cが軸方向移動可能かつ出没可能に設けられている。また第2ロッカーアーム9Bの内部には、四つのピン21Aa,21Ab,21B,21Cを纏めて前方に付勢可能なバネ22が設けられている。ピン21Aa,21Ab,21B,21Cの位置は、第1および第3ロッカーアーム9A,9Cの内部にそれぞれ設けられた第1および第3ロッカー通路23A,23Cに油圧を給排することにより、制御される。
 ロッカーシャフト18の内部には、各気筒の第1ロッカー通路23Aに連通された第1シャフト通路14Aと、各気筒の第3ロッカー通路23Cに連通された第3シャフト通路14Cとが設けられる。これらシャフト通路14A,14Cに供給される油圧が油圧制御装置により制御されることにより、各気筒の第1および第3ロッカー通路23A,23Cの油圧が同時に制御され、ひいては各気筒のピン21Aa,21Ab,21B,21Cの位置、さらには各気筒の第1~第3ロッカーアーム9A,9B,9Cの連結状態が同時に切り替えられる。
 可変機構5は、吸気弁3のバルブタイミングおよび作用角の両方を、図2に示すような三つの状態、すなわち第1状態S1、第2状態S2および第3状態S3の何れかに段階的に切り替えるように構成されている。ここでバルブタイミングには、エンジンバルブが開弁を開始する開タイミングと、エンジンバルブが閉弁を終了する閉タイミングとの両方が含まれる。また作用角とは、エンジンバルブが開弁している(すなわちバルブリフト量VLがゼロより大きくなっている)クランク位相期間またはカム位相期間をいう。
 本実施形態では、第1状態S1、第2状態S2および第3状態S3のときの最大バルブリフト量VLmaxは等しい。また第1状態S1から第3状態S3に向かうにつれ、最大バルブリフト期間(バルブリフト量VLが最大バルブリフト量VLmaxとなっている期間)は遅角側に段階的に延長される。開タイミングα1から、第1状態S1のバルブリフト量VLが最大バルブリフト量VLmaxに最初に到達するタイミング(第1最大リフトタイミングという)α2までのバルブリフトカーブは、何れの状態でも同じである。第1最大リフトタイミングα2以降、第1状態S1では即座に閉弁が開始され、第2状態S2では最大バルブリフト量VLmaxが第2所定期間Δα2だけ維持された後に閉弁が開始され、第3状態S3では最大バルブリフト量VLmaxがさらに長い第3所定期間Δα3だけ維持された後に閉弁が開始される。そして第1状態S1の閉タイミングはα3、第2状態S2の閉タイミングはα3より遅角側のα4、第3状態S3の閉タイミングはα4より遅角側のα5とされる。第1状態S1の作用角はα1~α3までの期間、第2状態S2の作用角はより長いα1~α4までの期間、第3状態S3の作用角はさらに長いα1~α5までの期間である。従って本実施形態では、最大バルブリフト量VLmaxが一定とされる一方で、閉タイミングと作用角が三段階に変化させられる。なお閉弁開始タイミングから閉弁終了タイミング(閉タイミング)までのバルブリフトカーブの形状は何れの状態でも同じである。
 第1~第3ロッカーアーム9A,9B,9Cの外形状は実質的に同一である。これに対し、第1~第3カム4A,4B,4Cのカムプロファイルは、それぞれ第1~第3状態S1,S2,S3に対応した異なるカムプロファイルに設定されている。
 バルブタイミングおよび作用角の第1~第3状態S1,S2,S3に対応した可変機構5の各状態を第1~第3状態J1,J2,J3とする。可変機構5は、これら第1~第3状態J1,J2,J3の何れかに切替可能である。
 第1状態S1で吸気弁3を駆動する場合、図3に示すように、後述する油圧制御装置により第1ロッカー通路23Aおよびピン穴24Aに圧力流体としての圧油が供給され、第3ロッカー通路23Cおよびピン穴24Cから圧油が排出される。すると、ピン21Aa,21Abが互いに離反するように前後方向に移動され、ピン21Bがバネ22の付勢力に抗じて後方に押し付けられ、ピン21Cが前方に押し付けられる。すると、ピン21Aa,21Abはピン穴24A内に完全に挿入され、ピン穴24Aから突出しない状態となる。同様に、ピン21Bはピン穴24B内に完全に挿入されて突出せず、ピン21Cはピン穴24C内に完全に挿入されて突出しない状態となる。ピン21Aaの後端面とピン21Abの前端面とが、第1ロッカーアーム9Aの後端面と前端面に面一に配置され、ピン21Bの前端面が第2ロッカーアーム9Bの前端面に面一に配置され、ピン21Cの後端面が第3ロッカーアーム9Cの後端面に面一に配置される。これにより第1ロッカーアーム9Aは、第2ロッカーアーム9Bおよび第3ロッカーアーム9Cと非連結の状態となり、第1カム4Aの動作のみが第1ロッカーアーム9Aを通じて吸気弁3に伝達される。そして他の第2および第3ロッカーアーム9B,9Cは単に第2および第3カム4B,4Cの動作に追従して空振り動作(ロストモーション)するだけとなる。こうして吸気弁3は、第1カム4Aのカムプロファイルに従う作動特性とされ、第1カム4Aのカムプロファイルに従って第1状態S1で作動する。
 次に、第3状態S3で吸気弁3を駆動する場合、図4に示すように、第3ロッカー通路23Cおよびピン穴24Cに圧油が供給され、第1ロッカー通路23Aおよびピン穴24Aから圧油が排出される。すると、ピン21Cが油圧により後方に押し出されて第3ロッカーアーム9Cから突出し、第1ロッカーアーム9Aのピン穴24A内に挿入される。これにより第3ロッカーアーム9Cが第1ロッカーアーム9Aに連結される。他方、残りのピン21Aa,21Ab,21Bは、バネ22の付勢力に抗じてピン21Cにより後方に押し出され、ピン21Aaとピン21Bは第1状態S1のときと同じ位置に位置される。これにより、第1ロッカーアーム9Aと第2ロッカーアーム9Bは非連結の状態となる。従って吸気弁3は、一体となった第1および第3ロッカーアーム9A,9Cを介して、実質的に第3カム4Cによって開閉駆動される。吸気弁3は、第3カム4Cのカムプロファイルに従う作動特性とされ、第3カム4Cのカムプロファイルに従って第3状態S3で作動する。
 次に、第2状態S2で吸気弁3を駆動する場合、図5に示すように、第1ロッカー通路23Aおよびピン穴24Aと、第3ロッカー通路23Cおよびピン穴24Cとから、圧油が排出される。すると、ピン21Bがバネ22により前方に押し出されて第2ロッカーアーム9Bから突出し、第1ロッカーアーム9Aのピン穴24A内に挿入される。これにより第2ロッカーアーム9Bが第1ロッカーアーム9Aに連結される(図1はこの状態を示す)。他方、残りのピン21Aa,21Ab,21Cはピン21Bにより前方に押し出され、ピン21Abとピン21Cは第1状態S1のときと同じ位置に位置される。これにより、第1ロッカーアーム9Aと第3ロッカーアーム9Cは非連結の状態となる。従って吸気弁3は、一体となった第1および第2ロッカーアーム9A,9Bを介して、実質的に第2カム4Bによって開閉駆動される。吸気弁3は、第2カム4Bのカムプロファイルに従う作動特性とされ、第2カム4Bのカムプロファイルに従って第2状態S2で作動する。
 次に、油圧制御装置の構成を説明する。図3に示すように、油圧制御装置は概して、油圧ポンプ11と、油圧ポンプ11から吐出された圧油を貯留するオイルギャラリ30と、オイルギャラリ30に貯留された圧油を可変機構5に選択的に供給するバルブユニット31と、油圧ポンプ11、オイルギャラリ30およびバルブユニット31を連結するメイン通路33と、オイルギャラリ30をバイパスするバイパス通路37と、バイパス通路37に設けられたバイパス弁39と、バルブユニット31およびバイパス弁39を制御するように構成された制御ユニット、回路要素(circuitry)もしくはコントローラとしての電子制御ユニット(ECU(Electronic Control Unit)という)100とを備える。
 油圧ポンプ11は、オイルタンクとしてのオイルパン10からオイルを吸引し、圧油として吐出する。オイルパン10からバルブユニット31に至るメイン通路33が設けられ、油圧ポンプ11とオイルギャラリ30はメイン通路33に上流側から順に設けられる。こうして油圧ポンプ11、オイルギャラリ30およびバルブユニット31はメイン通路33により連結される。油圧ポンプ11から吐出された圧油はメイン通路33を通じてオイルギャラリ30に供給される。
 油圧ポンプ11は、エンジンのクランクシャフトによって駆動される機械式である。但し、電気モータによって駆動される電動式であってもよい。油圧ポンプ11とオイルギャラリ30の間のメイン通路33には、オイルを冷却するオイルクーラ34と、オイルを濾過するオイルフィルタ35とが上流側から順に設けられる。
 オイルギャラリ30は、メインの圧油溜めとして機能する十分大きな空間であって、本実施形態ではエンジンのシリンダブロックに一体に形成される。但し別体で形成されてもよい。オイルギャラリ30は、可変機構5とは別の、潤滑または油圧供給が必要な複数の部位36に連通接続され、それら各部位36にオイルを供給するようになっている。
 オイルギャラリ30の入口は、メイン通路33を介してオイルフィルタ35に接続される。他方、オイルギャラリ30の可変機構5側の出口は、メイン通路33を介してバルブユニット31に接続される。
 バルブユニット31は、互いに接続された上流側の供給バルブ(OSVという)12と、下流側の切替バルブ(OCVという)13とを含む。
 OSV12は、オイルの出入口をなす複数(具体的には三つ)のポート、すなわち第1供給ポートP1、第2供給ポートP2および第3供給ポートP3を有する。またOCV13も、オイルの出入口をなす複数(具体的には四つ)のポート、すなわち第1切替ポートQ1、第2切替ポートQ2、第3切替ポートQ3および第4切替ポートQ4を有する。OSV12およびOCV13はソレノイドバルブにより構成される。
 OSV12において、第1供給ポートP1はメイン通路33に接続され、第2供給ポートP2はOCV13の第1切替ポートQ1に接続され、第3供給ポートP3はオイルパン10に接続されている。
 OCV13において、第2切替ポートQ2は第1シャフト通路14Aに接続され、第3切替ポートQ3は第3シャフト通路14Cに接続され、第4切替ポートQ4はオイルパン10に接続されている。
 ECU100はエンジンの制御を司るもので、演算機能を有するCPU(Central Processing Unit)、記憶媒体であるROM(Read Only Memory)およびRAM(Random Access Memory)、入出力ポート、ならびにROMおよびRAM以外の記憶装置等を含む。ECU100は、OSV12およびOCV13をオンオフ制御する。
 図3に示すように、OSV12がオフ(OFF)のとき、第1供給ポートP1と第2供給ポートP2が連通状態になる。なお、失陥時にOSV12が強制的にオフになっても油圧ポンプ11から可変機構5への圧油供給をできるようにするため、フェールセーフの観点から、OSV12がオフのとき、油圧ポンプ11からの圧油がOSV12を通過できるようにしている。
 図5に示すように、OSV12がオン(ON)のとき、第2供給ポートP2と第3供給ポートP3が連通状態になる。
 図3に示すように、OCV13がオフのとき、第1切替ポートQ1と第2切替ポートQ2が連通状態になると共に、第3切替ポートQ3と第4切替ポートQ4が連通状態になる。
 図4に示すように、OCV13がオンのとき、第2切替ポートQ2と第4切替ポートQ4が連通状態になると共に、第1切替ポートQ1と第3切替ポートQ3が連通状態になる。
 図3に示すように、ECU100には、エンジンの回転速度、具体的には単位時間(毎分)当たりのエンジン回転数Ne(rpm)を検出する回転速度センサ15と、アクセルペダルの操作量すなわちアクセル開度Acを検出するアクセル開度センサ16とが接続されている。ECU100は、回転数Neおよびアクセル開度Acの検出値に基づいて所定のマップから目標燃料噴射量Fを算出する。さらにECU100は、回転数Neおよび目標燃料噴射量Fに基づき、図6に示すような制御マップに従って可変機構5を切り替える。このようにECU100は、エンジン運転状態に応じて可変機構5を切り替える。なおエンジン回転数Ne、アクセル開度Acおよび目標燃料噴射量Fはエンジン運転状態を表すパラメータである。アクセル開度Acおよび目標燃料噴射量Fはエンジンの負荷を表すパラメータである。
 回転数Neおよび目標燃料噴射量Fが制御マップ中の第1領域R1にあるとき、ECU100は可変機構5を第1状態J1に切り替える。以下同様に、ECU100は、回転数Neおよび目標燃料噴射量Fが制御マップ中の第2領域R2にあるとき、可変機構5を第2状態J2に切り替え、回転数Neおよび目標燃料噴射量Fが制御マップ中の第3領域R3にあるとき、可変機構5を第3状態J3に切り替える。
 第1領域R1は低回転かつ低負荷側の領域、第3領域R3は高回転または高負荷側の領域、第2領域R2はそれらの間の中間領域である。第1領域R1から第3領域R3に向かうにつれ、エンジン回転数Neは高回転側となり、目標燃料噴射量Fは増大側、すなわちエンジン負荷は高負荷側となる。従って、エンジン回転数Neが高回転側またはエンジン負荷が高負荷側となるにつれ、可変機構5の状態は第1状態J1、第2状態J2、第3状態J3というように順次変化し、バルブタイミングおよび作用角は第1状態S1、第2状態S2、第3状態S3というように、閉タイミングが遅れる方向に順次変化する。
 もっとも、制御マップの形は如何様にも設定でき、ここで述べた例に限られない。実機の要請に合わせて、各状態に対応するエンジン運転領域を任意に設定可能である。
 可変機構5を第1状態J1に切り替える場合、図3に示すようにECU100は、バルブユニット31を第1状態に制御し、具体的にはOSV12をオフ、OCV13をオフにする。すると、オイルギャラリ30の圧油は第1供給ポートP1、第2供給ポートP2、第1切替ポートQ1、第2切替ポートQ2を順に経て第1シャフト通路14Aおよび第1ロッカー通路23Aに至る。他方、第3ロッカー通路23Cおよび第3シャフト通路14Cの圧油は、第3切替ポートQ3、第4切替ポートQ4を順に経てオイルパン10に排出される。
 次に、可変機構5を第3状態J3に切り替える場合、図4に示すようにECU100は、バルブユニット31を第3状態に制御し、具体的にはOSV12をオフ、OCV13をオンにする。すると、オイルギャラリ30の圧油は第1供給ポートP1、第2供給ポートP2、第1切替ポートQ1、第3切替ポートQ3を順に経て第3シャフト通路14Cおよび第3ロッカー通路23Cに至る。他方、第1ロッカー通路23Aおよび第1シャフト通路14Aの圧油は、第2切替ポートQ2、第4切替ポートQ4を順に経てオイルパン10に排出される。
 次に、可変機構5を第2状態J2に切り替える場合、図5に示すようにECU100は、バルブユニット31を第2状態に制御し、具体的にはOSV12をオン、OCV13をオフにする。すると、第1供給ポートP1がどのポートにも接続されないのでオイルギャラリ30からの圧油供給は停止される。他方、第1ロッカー通路23Aおよび第1シャフト通路14Aの圧油は、第2切替ポートQ2、第1切替ポートQ1、第2供給ポートP2、第3供給ポートP3を順に経てオイルパン10に排出される。また第3ロッカー通路23Cおよび第3シャフト通路14Cの圧油は、第3切替ポートQ3、第4切替ポートQ4を順に経てオイルパン10に排出される。
 図3に示すように、バイパス通路37は、オイルギャラリ30をバイパスすると共に、メイン通路33における油圧ポンプ11およびオイルギャラリ30の間の位置と、オイルギャラリ30およびバルブユニット31の間の位置とを連結する。
 本実施形態の場合、バイパス通路37は、オイルクーラ34、オイルフィルタ35およびオイルギャラリ30をバイパスする。そしてバイパス通路37の上流端は、メイン通路33における油圧ポンプ11とオイルクーラ34の間の位置に接続され、この位置でメイン通路33から分岐し、メイン通路33から圧油を抽出し、導入する。他方、バイパス通路37の下流端は、メイン通路33におけるオイルギャラリ30とOSV12の間の位置に接続され、この位置でメイン通路33に合流し、メイン通路33に圧油を供給する。
 バイパス弁39はソレノイドバルブにより構成され、ECU100によって開閉制御される。バイパス弁39は、ECU100によってオンされたとき開となってバイパス通路37における圧油の流れを許容する。またバイパス弁39は、ECU100によってオフされたとき閉となってバイパス通路37における圧油の流れを禁止する。
 次に、他の電気的構成を説明する。オイルギャラリ30には、その内部の圧力(ギャラリ圧Pgという)および温度(ギャラリ温Tgという)を検出するためのギャラリ圧センサ41およびギャラリ温センサ42が設けられる。これらセンサの出力信号はECU100に送られる。またECU100は、エンジン始動時にクランクシャフトを回転駆動するスタータモータ(S/M)47をオンオフ制御する。
 さて、ここで本実施形態の課題を説明する。本実施形態の場合、エンジン始動時に可変機構5を図3に示すような第1状態J1とすることが予め決められ、予定されている。言い換えれば、第1状態J1でエンジンを始動することが予め決められ、第1状態J1のときのバルブリフトカーブ(図2参照)は、始動時も含めて最適となるように適合されている。
 通常、エンジンは停止前にアイドル運転しており、そのときエンジン運転状態は図6の制御マップ中の第1領域R1にある。従って可変機構5は第1状態J1となっている。
 この状態でエンジンを停止すると、可変機構5に供給されていた圧油が抜ける。特に、第1ロッカーアーム9Aのピン穴24Aに供給されていた圧油が、油圧ポンプ11を逆流してオイルパン10に排出される。
 こうなると、可変機構5は図5に示すような第2状態J2となってしまう。このままでは、次回の始動にとって好ましくないため、次回の始動開始直後に可変機構5を第1状態J1に速やかに切り替えなければならない。
 しかし、エンジン停止中にはオイルギャラリ30の圧油も抜ける。また始動開始直後では、ギャラリ圧Pgがまだ十分に立ち上がっておらず、可変機構5を第1状態J1に切り替えるのに十分な大きさの油圧になっていない。このことは、始動が低温始動または冷間始動だったり、始動前の停止時間が長かったりするとより顕著である。
 このようにギャラリ圧Pgが不足する状態では、第1状態J1への切り替えが不可能か著しく困難である。そのため、不本意にも第2状態J2で始動せざるを得ず、良好な始動性を得るのが困難という問題がある。
 そこで本実施形態では、オイルギャラリ30をバイパスするバイパス通路37を設け、エンジン始動開始直後にバイパス弁39を開弁することにより、油圧ポンプ11からの比較的高圧の圧油をバイパス通路37を通じて直接的にバルブユニット31、ひいては可変機構5に供給し、その圧油を利用して可変機構5を第1状態J1に速やかに切り替えることを可能としている。
 以下、ECU100によって実行されるバルブユニット31とバイパス弁39の制御の概要を説明する。
 本実施形態では概して、エンジンの通常運転時にバイパス弁39を閉とし、油圧ポンプ11から吐出された圧油をメイン通路33にのみ流すようにする。そしてエンジンの始動時には、バルブユニット31を図3に示すような第1状態(OSV12をオフ、OCV13をオフ)にすると共に、バイパス弁39を開弁し、油圧ポンプ11から吐出された圧油をバイパス通路37を通じて直接的にバルブユニット31に供給する。
 すると、供給された圧油は、図3に示されるようなルートを辿ってロッカーアーム9Aのピン穴24Aに供給される。これにより、エンジン停止中に第2状態J2になっていた可変機構5を、第1状態J1に速やかに切り替えることができ、ギャラリ圧Pgが十分に立ち上がっていない場合でも、第1状態J1でのエンジン始動を達成できる。これにより、エンジンの始動性を向上することが可能である。
 次に図7を参照して、エンジン始動時の制御方法を説明する。ECU100は図示されるフローチャートの手順に従って制御を行う。
 初期状態において、エンジンおよび車両は停止しており、OSV12、OCV13およびバイパス弁39はいずれもオフである。従ってバルブユニット31は図3に示すような第1状態となっているが、可変機構5からは油圧が抜けているため、可変機構5は図5に示すような第2状態J2となっている。つまり、バルブユニット31は始動にとって好ましい状態となっているが、可変機構5は始動にとって好ましい状態となっていない。よって始動開始と同時に可変機構5を即座に第1状態J1に切り替える必要がある。
 エンジンを起動するためのスイッチ、例えばキースイッチが運転手によりオンされると、フローチャートが開始する。最初のステップS101では、ECU100の内部信号に基づき、スタータモータ47がオンされたか否かが判断される。オンされてなければ待機状態となり、オンされたらステップS102に進む。なおスタータモータ47のオンも運転手のキースイッチの操作により行われる。
 ステップS102では、バイパス弁39の開弁を実行するための所定の開弁実行条件が成立しているか否かが判断される。具体的には、ギャラリ圧センサ41により検出されたギャラリ圧Pgが所定の閾値Pgs未満のとき(後述の主条件が非成立のとき)、開弁実行条件が成立する。閾値Pgsは、オイルギャラリ30の圧油単独で可変機構5を切り替えられるギャラリ圧の最小値として設定されている。
 開弁実行条件が成立している場合、ステップS103に進んで、バイパス弁39がオンすなわち開とされる。これにより、エンジンの始動開始と同時に油圧ポンプ11からの圧油がバルブユニット31に直接的に供給される。
 この供給された圧油は、図3に示すような経路を辿って第1ロッカーアーム9Aのピン穴24Aに供給され、可変機構5を第1状態J1に切り替える。こうして可変機構5を始動開始と同時に速やかに第1状態J1に切り替えることができ、その後の始動を円滑に行い、始動性を向上することができる。
 この後、エンジンが始動され、エンジンはアイドル回転数で運転する。そしてこれに伴い、ギャラリ圧Pgも次第に上昇する。
 次のステップS104では、バイパス弁39の開弁を終了するための所定の開弁終了条件が成立したか否かが判断される。例えば、ギャラリ圧センサ41により検出されたギャラリ圧Pgが所定の閾値Pgs以上になったという主条件が成立したとき、開弁終了条件が成立する。
 開弁終了条件が成立してなければ待機状態となり、開弁終了条件が成立したならば、ステップS105に進んでバイパス弁39がオフすなわち閉とされ、フローチャートが終了する。これにより、バイパス通路37を通じた圧油供給が終了される。
 ギャラリ圧Pgが閾値Pgs以上に上昇すれば、もはや油圧ポンプ11から直接的に圧油を供給する必要はない。よってこの場合にはバイパス通路37を通じた圧油供給を終了し、代わって、オイルギャラリ30の圧油に可変機構5の切り替えを担当させる。
 開弁終了条件については、前述の主条件に加えてまたはそれに代えて、次の副条件を採用してもよい。第1の副条件は、ギャラリ温センサ42により検出されたギャラリ温Tgが所定の閾値Tgs以上であることである。エンジンの始動後の暖機が進み、ギャラリ温Tgが所定の閾値Tgs以上となっている場合には、ギャラリ圧Pgが閾値Pgs以上となっているとみなせる。よって第1の副条件に基づき、開弁終了条件が成立したと判断することができる。
 第2の副条件は、回転速度センサ15により検出されたエンジン回転数Neが所定の閾値Nes以上となったことである。閾値Nesは例えば、所定のアイドル回転数と同等かそれより若干高い回転数とすることができる。このようにエンジン回転数Neが十分高くなった場合には、ギャラリ圧Pgが閾値Pgs以上になったとみなせるので、第2の副条件に基づき、開弁終了条件が成立したと判断することができる。
 ところで、ステップS102で開弁実行条件が成立していない場合には、ステップS105に進んで、バイパス弁39が閉とされる。
 例えば、ギャラリ圧Pgが既に閾値Pgs以上となった状況下でエンスト等によりエンジンが停止し、その後短時間内に再始動したような場合には、スタータオンの時点でギャラリ圧Pgが閾値Pgs以上であるため、油圧ポンプ11からの圧油を直接的に供給する必要はない。よってこの場合にはバイパス弁39を閉とし、バイパス通路37を通じた圧油供給を実行しない。
 図8には、エンジン始動時のエンジン回転数Ne、ギャラリ圧Pg、およびバイパス通路37の出口圧Paの推移を示す。なおバイパス通路37の出口圧Paとは、バイパス通路37がメイン通路33に合流する合流位置での油圧である。
 時刻t0でキースイッチがオンされ、時刻t1でスタータモータ47がオンされると、エンジンがクランキング回転数Necrで回転される。その後時刻t2で初爆を迎えると、エンジン回転数Neは次第に上昇し、時刻t4でアイドル回転数Neiに達する。
 ギャラリ圧Pgは、初爆直後の時刻t3から上昇し始め、エンジン回転数Neの上昇に遅れる格好で上昇する。そして時刻t4よりも遅れた時刻t5で閾値Pgsに達し、その後時刻t6で、アイドル回転数Nei相当の圧力Pgiに達する。
 他方、バイパス通路出口圧Paは、スタータモータ47がオンされた時刻t1から即座に上昇し始め、閾値Pgsより高い圧力Pa1まで速やかに立ち上がる。この圧力Pa1は、油圧ポンプ11の吐出圧にほぼ等しい値である。バイパス通路出口圧Paは、初爆のタイミングt2よりも早く、閾値Pgsさらには圧力Pa1に達する。このため、初爆前に可変機構5を第1状態J1に切り替えることができ、始動性を向上できる。
 なお、時刻t5でバイパス弁40が閉とされ、バイパス通路37からメイン通路33への圧油供給が停止されるので、その直後、バイパス通路出口圧Paはギャラリ圧Pgまで若干低下する。
 このように本実施形態では、エンジンの始動時にバイパス弁39を開弁し、油圧ポンプ11からの圧油をバイパス通路37を通じてバルブユニット31に供給する。このため、エンジンの始動開始直後に可変機構5を、始動に適した第1状態J1に速やかに切り替えることができ、エンジンの始動性を向上することができる。
 以上の説明から理解されるように、特許請求の範囲における可変機構の「第1状態と第2状態」は、本実施形態における可変機構5の「第1状態J1と第2状態J2」に相当する。
 以上、本開示の実施形態を詳細に述べたが、本開示の実施形態や変形例は他にも様々考えられる。
 (1)例えば、前記実施形態ではエンジン始動用のバルブタイミング等の状態を第1状態S1としたが、第2状態S2または第3状態S3としてもよい。
 (2)前記実施形態では、可変機構5をロッカーアーム切替式のものとしたが、これ以外の形式も可能である。例えば、カムシャフトに同軸固定された可動ベーンを油圧の給排に応じて回転駆動し、カムスプロケットまたはカムギアに対するカムシャフトの相対位相を変化させるベーン式の可変機構としてもよい。
 (3)上記実施形態では可変機構を三段階に切替可能なものとしたが、少なくとも二段階で切替可能であればよく、四段階以上で切替可能なものであってもよい。そしてそのうちの任意の二段階部分に本開示を適用できる。
 本開示の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本開示の思想に包含されるあらゆる変形例や応用例、均等物が本開示に含まれる。従って本開示は、限定的に解釈されるべきではなく、本開示の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。
 本出願は、2019年3月20日付で出願された日本国特許出願(特願2019-53139)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示によれば、内燃機関の始動性を向上可能な内燃機関の可変動弁装置を提供する点において有用である。
5 可変機構
11 油圧ポンプ
30 オイルギャラリ
31 バルブユニット
33 メイン通路
37 バイパス通路
39 バイパス弁
100 電子制御ユニット(ECU)

Claims (5)

  1.  エンジンバルブの作動特性を切り替えるために第1状態と第2状態に切替可能な可変機構と、
     前記可変機構を切り替えるために前記可変機構に供給される油圧を制御するための油圧制御装置と、
     を備えた内燃機関の可変動弁装置であって、
     前記油圧制御装置は、
     油圧ポンプと、
     前記油圧ポンプから吐出された圧油を貯留するオイルギャラリと、
     前記オイルギャラリに貯留された圧油を前記可変機構に選択的に供給するバルブユニットと、
     前記油圧ポンプ、前記オイルギャラリおよび前記バルブユニットを連結するメイン通路と、
     前記オイルギャラリをバイパスするバイパス通路であって、前記メイン通路における前記油圧ポンプおよび前記オイルギャラリの間の位置と、前記オイルギャラリおよび前記バルブユニットの間の位置とを連結するバイパス通路と、
     前記バイパス通路に設けられたバイパス弁と、
     前記バルブユニットおよび前記バイパス弁を制御するように構成された制御ユニットと、
     を備え、
     前記制御ユニットは、
     前記可変機構を第1状態にするとき、前記バルブユニットを第1状態にして前記可変機構に前記オイルギャラリの圧油を供給し、
     前記可変機構を第2状態にするとき、前記バルブユニットを第2状態にして前記可変機構から圧油を排出し、
     前記内燃機関の始動時に、前記バルブユニットを第1状態にすると共に、前記バイパス弁を開弁して、前記油圧ポンプから吐出された圧油を前記バイパス通路を通じて前記バルブユニットに供給する
     ことを特徴とする内燃機関の可変動弁装置。
  2.  前記制御ユニットは、前記内燃機関の始動開始と同時に前記バイパス弁を開弁し、その後、所定の開弁終了条件が成立したとき、前記バイパス弁を閉弁する
     請求項1に記載の内燃機関の可変動弁装置。
  3.  前記開弁終了条件が、前記オイルギャラリの圧力が所定の閾値以上になったことを含む
     請求項2に記載の内燃機関の可変動弁装置。
  4.  前記制御ユニットは、前記内燃機関の始動時に、所定の開弁実行条件が成立しているとき、前記バイパス弁を開弁し、
     前記開弁実行条件が、前記オイルギャラリの圧力が所定の閾値未満になっていることを含む
     請求項1~3のいずれか一項に記載の内燃機関の可変動弁装置。
  5.  前記可変機構の前記第1状態は、前記内燃機関の始動時に予め決められた状態であり、前記可変機構の前記第2状態とは異なる
     請求項1に記載の内燃機関の可変動弁装置。
PCT/JP2020/011060 2019-03-20 2020-03-13 内燃機関の可変動弁装置 WO2020189546A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-053139 2019-03-20
JP2019053139A JP2020153307A (ja) 2019-03-20 2019-03-20 内燃機関の可変動弁装置

Publications (1)

Publication Number Publication Date
WO2020189546A1 true WO2020189546A1 (ja) 2020-09-24

Family

ID=72521041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011060 WO2020189546A1 (ja) 2019-03-20 2020-03-13 内燃機関の可変動弁装置

Country Status (2)

Country Link
JP (1) JP2020153307A (ja)
WO (1) WO2020189546A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217610A (ja) * 1990-01-24 1991-09-25 Honda Motor Co Ltd 内燃機関の弁作動状態切換検出装置
JPH084511A (ja) * 1994-06-22 1996-01-09 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
JP2008231968A (ja) * 2007-03-19 2008-10-02 Denso Corp バルブタイミング調整装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217610A (ja) * 1990-01-24 1991-09-25 Honda Motor Co Ltd 内燃機関の弁作動状態切換検出装置
JPH084511A (ja) * 1994-06-22 1996-01-09 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
JP2008231968A (ja) * 2007-03-19 2008-10-02 Denso Corp バルブタイミング調整装置

Also Published As

Publication number Publication date
JP2020153307A (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
JP6308251B2 (ja) エンジンのオイル供給装置
JP6791360B2 (ja) エンジンの制御装置
WO2018173989A1 (ja) エンジンの制御装置
JP5249887B2 (ja) エンジンの制御装置
JP6551445B2 (ja) エンジンの制御装置
WO2020179762A1 (ja) 内燃機関の可変動弁装置
JP6075449B2 (ja) 弁開閉時期制御装置
WO2020189546A1 (ja) 内燃機関の可変動弁装置
WO2020179860A1 (ja) 内燃機関の可変動弁装置
WO2020179820A1 (ja) 内燃機関の可変動弁装置
JP5330923B2 (ja) エンジンの制御装置
CN111919015B (zh) 内燃机的可变气门装置
JP4221001B2 (ja) 内燃機関の制御装置
JP6146341B2 (ja) エンジンのバルブタイミング制御装置
JP3826298B2 (ja) 内燃機関のバルブタイミング制御装置
JP6551440B2 (ja) エンジンの制御装置
JP6607529B2 (ja) エンジンの制御装置
JP6607530B2 (ja) エンジンの制御装置
JP2002266669A (ja) 内燃機関の可変バルブタイミング制御装置
JP7385553B2 (ja) エンジン搭載車両
JP2014066227A (ja) 内燃機関の制御装置
WO2020054699A1 (ja) 内燃機関の可変動弁装置
JPH0681678A (ja) 弁可変駆動機構付きエンジンの切り換え制御装置
JPH1136907A (ja) 内燃機関のバルブタイミング制御装置
US8290690B2 (en) Method and system for reducing operating errors in a variable value actuation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773054

Country of ref document: EP

Kind code of ref document: A1