WO2020179745A1 - 活性炭およびその製造方法 - Google Patents

活性炭およびその製造方法 Download PDF

Info

Publication number
WO2020179745A1
WO2020179745A1 PCT/JP2020/008740 JP2020008740W WO2020179745A1 WO 2020179745 A1 WO2020179745 A1 WO 2020179745A1 JP 2020008740 W JP2020008740 W JP 2020008740W WO 2020179745 A1 WO2020179745 A1 WO 2020179745A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
mass
pore volume
adsorption
butane
Prior art date
Application number
PCT/JP2020/008740
Other languages
English (en)
French (fr)
Inventor
光▲徳▼ 西田
人見 充則
山田 隆之
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to MX2021010687A priority Critical patent/MX2021010687A/es
Priority to CA3130076A priority patent/CA3130076A1/en
Priority to US17/435,087 priority patent/US20220135410A1/en
Priority to BR112021016013-2A priority patent/BR112021016013A2/pt
Priority to KR1020217027407A priority patent/KR20210133223A/ko
Priority to CN202080018766.6A priority patent/CN113474287A/zh
Priority to EP20767364.1A priority patent/EP3936478A4/en
Priority to JP2021504089A priority patent/JPWO2020179745A1/ja
Publication of WO2020179745A1 publication Critical patent/WO2020179745A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0854Details of the absorption canister
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/384Granulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume

Definitions

  • the present invention relates to activated carbon and a method for producing the same.
  • a canister capable of adsorbing and desorbing transpired fuel is used in order to prevent the vaporized fuel from being released from the fuel tank of the vehicle to the outside.
  • Activated carbon is generally used as an adsorbent in the canister. The activated carbon temporarily adsorbs or collects the evaporated fuel from the fuel tank when the vehicle is stopped, and it is a fresh air that sucks the adsorbed evaporated fuel during operation. Detachable by replacing with air. Then, the desorbed evaporated fuel is burned in the internal combustion engine.
  • the activated carbon used in such a canister one having fine pores for adsorbing the transpiration fuel is widely used.
  • Patent Document 1 states that it is produced from lignocellulose, has a butane treatment ability of 15 to 25 g / 100 cm 3 , and has a pore ratio with respect to the total pore volume of a pore having a diameter of 1.8 to 50 nm.
  • a highly active and high-density activated carbon having a perforation ratio of 20% or less with respect to the total pore volume of pores having a diameter of 50% or more and a diameter of more than 50 nm is disclosed.
  • the document describes that the activated carbon can be produced by adjusting the water content and heating temperature of the carbonaceous material, pelletizing it with an extrusion molding machine and a pin mixer, and heating and firing it.
  • Patent Document 2 describes activated carbon.
  • the weight loss by heating a mixture of wood-based material and a phosphoric acid compound in a uniaxial or twin-screw extrusion kneader at 140 ° C. for 30 minutes exceeds 10% by mass under kneading and heating conditions.
  • the carbonaceous material that has undergone the plasticization / compaction step to obtain a carbonic material that has been plasticized and compacted to less than 25% by mass and the carbonic material that has undergone the plasticization / compaction step can be reduced in weight by heating at 140 ° C. for 30 minutes.
  • a packing density of 0.25 to 0.6 g/cm 3 , a pore volume of 0.5 to 1.2 cm 3 /g, and a packing of 0.25 to 0.4 cm 3 /cm 3 It has a density x pore volume, a surface area of 1000 m 2 / g or more, a packing density of 400 m 2 / cm 3 or more x surface area, an average pore diameter of 18 to 35 ⁇ and an effective adsorption amount of butane of 5.0 to 15 g / 100 mL.
  • Chemically activated activated carbon suitable for adsorption and desorption of hydrophobic organic compounds is disclosed.
  • Activated carbon for canisters is required to have high adsorption performance that can trap the generated transpiration fuel.
  • the butane saturated adsorption performance of activated carbon in Patent Documents 2 and 3 is not sufficient, and higher adsorption performance has been demanded.
  • activated carbon for canisters is also required to have a small amount of residual vaporized fuel after desorption.
  • the temperature change or adsorption replacement (replacement of the evaporated fuel with the residue) of the residue that remains during repeated adsorption/desorption cycles is greater than that of the residue that is irreversibly adsorbed at the beginning of the adsorption/desorption cycle.
  • an object of the present invention is to provide an activated carbon having a high butane saturated adsorption rate and a low butane residual amount even after repeating adsorption/desorption cycles, and a method for producing the same.
  • the present inventors have found that the above problem can be solved by activated carbon in which a specific BET specific surface area (A) and a specific pore volume ratio (B) / (C) are specific values.
  • the present invention has been completed.
  • the present invention includes the following preferred embodiments. [1]
  • the BET specific surface area (A) obtained from the adsorption isotherm of carbon dioxide is 1250 to 1800 m 2 / g, and the pore diameter 0 obtained by performing a grand canonical Monte Carlo simulation on the adsorption isotherm of carbon dioxide.
  • the ratio (B) / (C) of the pore volume (B) mL / g at a pore diameter of 0.7 to 0.7 nm to the pore volume (C) mL / g at a pore diameter of 0.7 to 1.1 nm is 0.
  • Activated carbon that is 640 or less.
  • the relationship between the BET specific surface area (A), the pore volume (B) and the pore volume (C) satisfies the following formula: (A) ⁇ (B) / (C) ⁇ 1050. The activated carbon described.
  • an activated carbon having a high butane saturation adsorption rate and a low butane residual amount even after repeating an adsorption / desorption cycle, and a method for producing the same.
  • the BET specific surface area (A) determined from the adsorption isotherm of carbon dioxide is 1250-1800 m 2 / g. Yes, the pore volume (B) mL/g and the pore diameter of 0.7 to 1. at the pore diameter of 0.4 to 0.7 nm obtained by performing the Grand Canonical Monte Carlo simulation on the adsorption and desorption isotherm of carbon dioxide.
  • the ratio (B) / (C) to the pore volume (C) mL / g at 1 nm is 0.640 or less.
  • the activated carbon of the present invention has a specific BET specific surface area (A) determined from the adsorption isotherm of carbon dioxide and a specific pore volume ratio (B)/(C), it has a high butane saturation adsorption rate. , It is possible to have a low residual amount of butane even after repeating the adsorption / desorption cycle.
  • the adsorption / desorption cycle is carried out up to 100 cycles with the step of adsorbing butane on activated carbon and then desorbing it as one cycle, and the average value from the second to sixth cycles is used.
  • the increase rate of the residual amount of butane after the adsorption/desorption cycle of the activated carbon is determined. This low rate of increase in butane residue means that the activated carbon has excellent desorption performance.
  • the average value of the butane residual amount at the beginning of the cycle (second to sixth cycles) excluding the first cycle is compared to the average butane residual amount at the end of the cycle of 96th to 100th cycles. I paid attention to whether the increase. In order to reduce the measurement error, the average value of the butane residual amount of each 5 cycles at the beginning and end of the cycle was used instead of the butane residual amount of each 1 cycle at the beginning and end of the cycle.
  • the butane residual amount may differ even if the adsorption performance reduction rate is the same.
  • the evaluation method in the literature is a method of evaluating the gasoline adsorption performance value after 200 cycles with respect to the gasoline adsorption performance initial value (value at the first cycle) different from the gasoline adsorption performance in the cycles after the second cycle. is there.
  • the evaluation method of the present invention is different from the evaluation method described in Cited Document 2, and can evaluate more accurate adsorption / desorption performance of activated carbon.
  • the BET specific surface area (A) determined from the adsorption isotherm of carbon dioxide of the activated carbon of the present invention is 1250 to 1800 m 2 /g.
  • the BET specific surface area (A) is considerably smaller than 1250 m 2 /g, butane has few pores that can be adsorbed and sufficient adsorption performance cannot be obtained.
  • the BET specific surface area (A) increases in the direction approaching 1250 m 2 / g, the pores to which butane can be adsorbed also increase, but when the BET specific surface area (A) is smaller than 1250 m 2 / g, the adsorbed butane becomes pores.
  • BWC Butane Working Capacity, hereinafter also referred to as “BWC”), which is not preferable as the activated carbon for canister.
  • the BET specific surface area (A) is preferably 1275 m 2 / g or more, more preferably 1300 m 2 / g or more, and further preferably 1400 m 2 / g or more.
  • BET specific surface area (A) is preferably 1775m 2 / g or less, and more preferably not more than 1750m 2 / g.
  • the ratio of the pore volume (B) mL / g at a pore diameter of 0.4 to 0.7 nm and the pore volume (C) mL / g at a pore diameter of 0.7 to 1.1 nm of the activated carbon of the present invention ( B) / (C) is 0.640 or less.
  • a pore volume ratio (B) / (C) greater than 0.640 means that the pore volume (B) is too large or the pore volume (C) is too small, which is desired. Detachment performance cannot be obtained.
  • the pore volume ratio (B) / (C) is preferably 0.600 or less, more preferably 0.570 or less.
  • the pore volume ratio (B) / (C) is preferably 0.450 or more, more preferably 0.470 or more.
  • a small pore volume ratio (B) / (C) means that the pore volume (B) is small or the pore volume (C) is large.
  • the pore volume ratio (B) / (C) is at least the above lower limit value, it is easy to obtain the desired adsorption performance.
  • the BET specific surface area (A), the pore volume ratio (B) / (C), and the pore volumes (B), (C), and (D) described below are, for example, the steps of the method for producing activated carbon described below. It can be adjusted to a desired value by adjusting the mass ratio of the phosphoric acid compound to the scraps in i), the mass reduction rate in step (ii) and / or the oxidation conditions in step (iv). In particular, in the method for producing activated carbon described later, the ratio of the specific BET specific surface area (A) to the specific pore volume (B) / (in the present invention) by satisfying a specific mass reduction rate and a specific oxidation condition. C) and can be obtained.
  • the BET specific surface area (A), the pore volume ratio (B) / (C), and the pore volumes (B), (C), and (D) described later are determined by the methods described in Examples described later. You can
  • the relationship between the BET specific surface area (A), the pore volume (B) and the pore volume (C) satisfies the following formula: (A) ⁇ (B) / (C) ⁇ 1050.
  • the value of (A) ⁇ (B) / (C) is preferably 1000 or less, more preferably 950 or less. When this value is not more than the upper limit value, it is considered that there are few pores in which butane remains, and it is easy to obtain a low butane residual amount increase rate even after the adsorption / desorption cycle.
  • the value of (A) ⁇ (B) / (C) is preferably 800 or more, more preferably 825 or more. When this value is at least the lower limit value, it is easy to obtain a desired adsorption amount.
  • the pore volume (B) at a pore diameter of 0.4 to 0.7 nm is preferably 0.135 mL/g or less, more preferably 0.125 mL/g or less, and particularly preferably 0.120 mL/g or less.
  • the pore volume (B) is preferably 0.100 mL / g or more, more preferably 0.110 mL / g or more.
  • the pore volume (D) at a pore diameter of 0.6 to 0.7 nm is preferably 0.050 mL/g or less, more preferably 0.047 mL/g or less, and particularly preferably 0.045 mL/g or less.
  • the pore volume (D) is, for example, 0.030 mL/g or more, preferably 0.035 mL/g or more, and more preferably 0.040 mL/g or more.
  • the activated carbon of the present invention has a specific BET specific surface area (A) and a ratio (B)/(C) of pore volumes, and also has a pore volume (D) equal to or less than the above upper limit, adsorption/desorption It is considered that there are fewer pores that cause an increase in the butane residual amount in the process of repeating the cycle, and it is easy to obtain a low butane residual amount increase rate.
  • the packing density of the activated carbon of the present invention is preferably 0.330 g/mL or less, more preferably 0.315 g/mL or less, and further preferably 0.300 g/mL or less. From the viewpoint of the strength of activated carbon, the packing density is preferably 0.220 g / mL or more.
  • the packing density is less than or equal to the above upper limit value by adjusting the mass reduction rate in step (ii), the molding pressure condition in step (iii), and/or the oxidation condition in step (iv) of the method for producing activated carbon described below. And can be adjusted to a value above the lower limit.
  • the packing density can be measured according to ASTM D2854.
  • the shape of the activated carbon of the present invention is not particularly limited, and may be any shape such as crushed shape, granule shape, pellet shape (for example, spherical shape, columnar shape or plate shape), or a blend of different shapes. May be. Pellets are preferable from the viewpoint of easily obtaining excellent adsorption performance, desorption performance, air permeability or low fine powder property. Therefore, in a preferred embodiment of the present invention, the activated carbon is in the form of pellets. When the activated carbon is in the form of pellets, the average particle size is preferably 1 to 9 mm and 2 to 7 mm when the activated carbon is spherical, from the viewpoint of obtaining preferable air permeability and packing density.
  • the activated carbon when the activated carbon is columnar, its average pillar outer diameter and average pillar length are preferably 1 to 9 mm and 2 to 12 mm, respectively, and more preferably 2 to 7 mm and 4 to 10 mm, respectively.
  • the average particle size, the average column outer diameter and the average column length can be measured by a general method (for example, a measuring method using a caliper).
  • the activated carbon of the present invention is an activated carbon obtained by activating with a phosphoric acid compound. Therefore, in this embodiment, the activated carbon is a phosphate-activated activated carbon. Activation using a phosphoric acid compound will be described in the section [Method for producing activated carbon] described later.
  • the butane saturation adsorption rate of the activated carbon of the present invention refers to butane adsorption performance (Butane Activity, unit: mass%) according to ASTM D5228, and can be measured according to ASTM D5228.
  • the butane saturation adsorption rate is preferably 63.5% or more, more preferably 68.0% or more.
  • the butane saturation adsorption rate can be adjusted to the above value or higher by, for example, adjusting the mass ratio of the phosphoric acid compound to sawdust, the mass reduction rate, the oxidation conditions, the activation rate, and the like in the production method.
  • the activated carbon of the present invention has a high butane saturation adsorption rate. As a result, even with a low filling density, a sufficient adsorption capacity can be obtained while reducing the weight of the canister when filling the canister.
  • the butane residual amount increase rate of the activated carbon of the present invention is preferably 15.0% or less, more preferably 10.0% or less.
  • the adjustment of the butane residual amount increase rate to the above value or less can be achieved by, for example, adjusting the mass ratio of the phosphoric acid compound to the sawdust, the mass reduction rate, the oxidation condition or the activation degree in the production method.
  • the rate of increase in butane residue can be determined by the method described in Examples described later.
  • the activated carbon of the present invention has both a high butane saturation adsorption rate and a low butane residual amount increase rate even after repeated adsorption / desorption cycles. Therefore, the activated carbon of the present invention can be suitably used as an activated carbon for an automobile canister. Therefore, in one aspect, the activated carbon of the present invention is an activated carbon for an automobile canister.
  • the activated carbon of the present invention can be applied to various transpiration fuels, for example, not only ordinary gasoline which is a general automobile fuel but also gasoline containing alcohol.
  • Activated carbon of the present invention for example, (I) a step of mixing sawdust and a phosphate compound, (Ii) heating the obtained mixture to reduce the mass of phosphoric acid and sawdust in the mixture by 5 to 20% by mass based on the total mass of phosphoric acid and sawdust in the dry state; (Iii) A step of molding a mixture with reduced mass, (Iv) heating the obtained molded product in the presence of oxygen to oxidize it, Manufacturing that includes (v) firing the oxidized molded product in an atmosphere of an inert gas or a gas that does not react with the oxidized molded product at the firing temperature, and (vi) washing the dried molded product with water and then drying it. Can be manufactured by method.
  • sawdust broad-leaved sawdust such as zelkova, coniferous sawdust such as cedar or pine, and bamboo sawdust can be used. Further, these sawdusts may be mixed and used. With respect to the water content of sawdust, it can be widely used from dried sawdust having evaporated water to sawdust containing water, for example, sawdust having a water content of about 60%.
  • phosphoric acid compound phosphoric acid, polyphosphoric acid, pyrophosphoric acid, metaphosphoric acid, salts thereof (for example, sodium phosphate or calcium phosphate), and mixtures thereof can be used.
  • the concentration thereof may be, for example, 50 to 90% by mass.
  • the mass ratio (phosphoric acid / shavings) of the phosphoric acid contained in the dried phosphoric acid compound to the dried shavings is preferably 1.4 to 2.2, more preferably 1. Mix so that it becomes 0.5 to 2.0.
  • the mixing may be performed using a general stirrer so as to be uniform.
  • the temperature of the mixture at the time of mixing is not particularly limited, and may or may not be accompanied by heating. In the case of heating, the mixture may be mixed while heating so that the temperature of the mixture becomes, for example, 30 to 100 ° C.
  • the phosphoric acid concentration of the phosphoric acid compound aqueous solution is measured, and the mass of phosphoric acid contained in the aqueous solution calculated from the concentration is taken as the mass of phosphoric acid in a dry state. ..
  • the phosphoric acid concentration in the phosphoric acid compound solution is measured and calculated from the concentration, and is contained in the solution.
  • the mass of phosphoric acid present is the mass of phosphoric acid in a dry state.
  • the phosphoric acid compound is used as a solution other than the solution, for example, when the (I) phosphoric acid compound is used as a solid and the phosphoric acid compound is a hydrate (that is, a phosphoric acid compound containing water), the phosphoric acid to be used Weigh a certain amount of the same substance as the compound, dissolve it in water to make an aqueous solution, measure the phosphoric acid concentration of the phosphoric acid compound aqueous solution, and calculate the mass of phosphoric acid per fixed amount of phosphoric acid compound from the concentration. , Calculate the mass of phosphoric acid in the phosphoric acid compound to be used from the calculated value, and use that value as the mass of phosphoric acid in the dry state.
  • the phosphoric acid to be used Weigh a certain amount of the same substance as the compound, dissolve it in water to make an aqueous solution, measure the phosphoric acid concentration of the phosphoric acid compound aqueous solution, and calculate the mass of phosphoric acid per fixed amount of
  • the phosphoric acid compound when used as a solid, the phosphoric acid compound.
  • the phosphoric acid compound when does not contain water, for example, when the phosphoric acid compound is a phosphate such as calcium phosphate, the value obtained by subtracting the mass of the salt portion from the mass of the phosphate is defined as the mass of the phosphoric acid in the dry state.
  • the mass of sawdust in a dry state refers to the mass of sawdust (alone) in a dry state at 115 ° C. ⁇ 5 ° C. until the mass becomes constant (totally dry state). It should be noted that if the change in the decrease in mass over time due to drying is less than 0.5% by mass in 2 hours, the mass may be regarded as constant.
  • any device can be used as long as it does not cause extreme temperature spots in the mixture and cause a large bias in mass reduction.
  • Examples of such devices include circulating dryers, ovens or rotary kilns.
  • the mixture may be heated with appropriate agitation.
  • dehydration condensation of cellulose or lignin in the sawdust occurs, so that the mass is reduced as compared with the case where each of them is heated and dried alone. If the heating temperature is too low, the dehydration condensation reaction of sawdust with the phosphoric acid compound required to form a predetermined amount of carbonaceous structure of sawdust will not be promoted, and the resulting reactant will not be low density and suitable for molding.
  • the heating temperature is preferably 110 to 180 ° C., more preferably 110 to 180 ° C., from the viewpoint that the reaction can be easily and uniformly and efficiently proceeded, and the carbonaceous structure of sawdust can be easily adjusted to an amount suitable for molding in the step (iii) described later. It is 115 to 175 ° C, particularly preferably 140 to 175 ° C.
  • the mixture obtained in step (i) is heated in step (ii) at the same time as an independent step between step (ii) and step (iii) or in step (iii). Knead just before molding.
  • the kneading crushes the sawdust and promotes homogenization of the mixture.
  • a general kneader can be used for kneading.
  • the temperature of the mixture at the time of kneading is not particularly limited. When kneading at the same time as heating in step (ii), the heating temperature may be as described above.
  • kneading is performed in a state where the temperature is lowered after the heat treatment of step (ii) (for example, at a temperature lower than the heating temperature or at room temperature). This may be carried out, or after the temperature has dropped after the heat treatment, the mixture may be heated again and kneaded at a temperature higher than room temperature.
  • the kneading immediately before molding in the step (iii) include kneading using a kneading extrusion granulator or the like.
  • Step (iii) The mixture is then shaped.
  • a general extrusion granulator or tablet molding machine can be used for the molding.
  • molding may be performed in multiple stages. From the viewpoint of easily obtaining excellent adsorption performance, desorption performance, air permeability or low fine powder property, it is preferable that the molded product is in the form of a granule having a uniform size, particularly in the form of pellets.
  • the dimensions when the activated carbon is in the form of pellets are as described in the above section [Activated carbon].
  • the molded product obtained is heated in the presence of oxygen to be oxidized.
  • a general heating device such as a rotary kiln or a heat treatment furnace can be used for the oxidation.
  • Air can be used as the oxygen-containing gas to be circulated in the heating device.
  • the circulating gas is circulated at a ratio of, for example, 5 to 75 mL / min, preferably 10 to 50 mL / min, per 1 g of the molded product.
  • the oxidation temperature is, for example, 180 to 450° C., preferably 225 to 350° C.
  • the oxidation time is usually 0.5 to 4 hours, preferably 1 to 3.5 hours, depending on the oxidation temperature and the like.
  • the mass reduction rate in step (ii) is 5% by mass or more, preferably 8% by mass or more, more preferably 10% by mass or more, particularly preferably 11% by mass or more, based on the above criteria, and 20% from the above criteria. It is mass% or less, preferably 19 mass% or less, more preferably 18 mass% or less, particularly preferably 17 mass% or less, and is larger than the heating mass reduction rate in Patent Documents 2 and 3. In these patent documents, those having water content or volatile components that volatilize to a certain extent when heated are molded, or water is added to enhance moldability when the heating mass reduction rate is increased.
  • the final shape can be retained by the oxidation step of contacting with oxygen at a high temperature to some extent without adding water.
  • the heating step (ii) with a large mass reduction rate and the oxidation step (iv) as described above it is possible to obtain pore characteristics that are compatible with both high butane adsorption performance and low butane residue increase rate. You can get the activated carbon that you have.
  • the oxidized molding is fired in an atmosphere of an inert gas or a gas that does not react with the oxidized molding at the firing temperature.
  • the gas to be circulated is oxidized from an oxygen-containing gas to an inert gas (for example, nitrogen, argon and a mixture thereof) or at a firing temperature.
  • an inert gas for example, nitrogen, argon and a mixture thereof
  • the oxidation step (iv) can be continuously performed, and this method is preferable from the viewpoint of productivity.
  • firing can also be carried out using a general heating device different from the heating device used in the oxidation step (iv).
  • Calcination is preferably carried out at a temperature of 450 to 550° C. for 1 to 2.5 hours.
  • the temperature inside the heating device is increased at a temperature rising rate of, for example, 1 to 10°C/min (eg 4°C/min). The temperature may be raised and the firing may be performed.
  • the phosphoric acid compound is removed by washing the molded product after firing with water. If necessary, washing with boiling water can promote the removal of the phosphoric acid compound. Finally, the washing with water is repeated so that the pH of the water after washing with water becomes 6 or more.
  • the activated carbon of the present invention can be obtained by drying the molded product after washing with water.
  • the drying method is not particularly limited, and the drying may be performed using a general dryer in an atmosphere of air, an inert gas (for example, nitrogen) or a mixture thereof.
  • the drying temperature is usually 60 to 150 ° C, preferably 70 to 140 ° C.
  • the drying time depends on the drying temperature and the like, but is usually 0.1 to 36 hours, preferably 0.5 to 24 hours.
  • the activated carbon of the present invention thus obtained has a specific BET specific surface area (A) and a specific pore volume ratio (B)/(C), it has a high butane saturation adsorption rate and adsorption/desorption cycle. It is possible to have a low butane residual amount even after repeating the above.
  • BET specific surface area (A) obtained from adsorption isotherm of carbon dioxide For each activated carbon, a gas adsorption measuring device (AUTOSORB-iQ MP-XR manufactured by Quantachrome) was used to absorb and desorb carbon dioxide at 273K at a relative pressure (p / p 0 ) from 0.00075 to 0.030. By measuring, an adsorption isotherm was obtained. The obtained adsorption isotherm was analyzed by the BET method using the data with (p/p 0 ) of 0.0247 to 0.0285, and the BET specific surface area (A) was calculated.
  • AUTOSORB-iQ MP-XR manufactured by Quantachrome a gas adsorption measuring device
  • Pore volume (D) Pore volume (B) at a pore diameter of 0.4 to 0.7 nm, pore volume (C) at a pore diameter of 0.7 to 1.1 nm, and fine volume at a pore diameter of 0.6 to 0.7 nm] Pore volume (D)]
  • "CO 2 at 273 K on carbon” was applied as a calculation model to analyze the Grand Canonical Monte Carlo method, and the pore size distribution was obtained.
  • the pore volumes (B) to (D) in the pore diameter range were calculated.
  • BET specific surface area (E) obtained from adsorption isotherm of nitrogen For each activated carbon, by measuring the adsorption of nitrogen at 77K at a relative pressure (p / p 0 ) from 0.001 to 0.95 using a gas adsorption measuring device (BELSORP 28SA manufactured by Nippon Bell Co., Ltd.). , The adsorption isotherm was obtained. The obtained adsorption isotherm was analyzed by the BET method using the data with (p/p 0 ) of 0.05 to 0.15, and the BET specific surface area (E) was calculated.
  • BELSORP 28SA gas adsorption measuring device
  • Packing density was measured according to ASTM D2854.
  • butane saturated adsorption rate The butane saturated adsorption rate was measured according to ASTM D5228.
  • the difference in total mass (W 2- W 1 ) corresponds to the amount of butane adsorbed in the first cycle.
  • switch to desorb the gas flow path from the adsorption at a temperature of 25 ° C., from the port P 2 of the canister container is circulated desorption gas (air) at 2.6 L / min, was desorption of adsorbed butane. It was measured on the total mass W 3 of the canister container and activated carbon at the time the finished shed 300 bed volumes amount of desorbed gas.
  • the difference in total mass (W 3- W 1 ) corresponds to the residual amount of butane in the first cycle.
  • the adsorption / desorption cycle was carried out up to 100 cycles, with the step from adsorption to desorption including the above-mentioned total mass measurement as one cycle.
  • the desorption performance of activated carbon was evaluated by the rate of increase in the amount of residual butane obtained by the following formula.
  • the butane adsorption amount reduction rate calculated by the following formula was also determined.
  • the sawdust was crushed and became uniform, and when the binding property came out, the sawdust was molded into pellets using an extrusion granulator.
  • the obtained pellets were put into a rotary kiln, and the temperature was raised up to 300° C. at 4° C./min while circulating 25 mL/min of air per 1 g of pellets, and the mixture was held for 3 hours for oxidation.
  • the flow gas was switched from air to nitrogen, the temperature was raised to 500 ° C. at 4 ° C./min while flowing 25 mL / min of nitrogen per 1 g of pellets, and the mixture was held for 2 hours for firing.
  • Activated carbon was obtained by washing the pellet after firing with water and drying.
  • Examples 2-7 and Comparative Examples 1-2 Activated carbon was obtained in the same manner as in Example 1 except that the heating temperature at the time of mass reduction, the mass reduction rate and/or the oxidation temperature were changed to those described in Table 1.
  • Comparative Example 3 Activated carbon was obtained in the same manner as in Example 1 except that the mass ratio of phosphoric acid to sawdust, the heating temperature at the time of mass reduction, and the mass reduction rate were changed to those shown in Table 1. Since the mass is not reduced from the standard mass by heating, the mass reduction rate from the standard is shown as a minus.
  • Comparative Example 4 As activated carbon, phosphoric acid activated wood-based granular activated carbon "BAX-1500" manufactured by Westvaco Corporation was used.
  • activated carbons (Examples 1-7) having a specific BET specific surface area (A) and a specific pore volume ratio (B) / (C) have high butane saturation adsorption rates. It also had a low butane residual amount (butane residual amount increase rate) even after repeating the adsorption / desorption cycle.
  • activated carbons having no specific BET specific surface area (A) or specific pore volume ratio (B) / (C) (Comparative Examples 1 to 4) have a lower butane saturation adsorption rate and a lower butane saturation adsorption rate than the activated carbons of Examples. It had a high rate of increase in butane residue.
  • the activated carbon of the present invention Since the activated carbon of the present invention has a high butane saturation adsorption rate and a low butane residual amount increase rate, it is excellent in desorption performance in addition to adsorption performance. Therefore, it is useful as an adsorbent for gas adsorption. Further, the activated carbon of the present invention is particularly useful as an adsorbent for automobile canisters because it is excellent in desorption performance even after repeating the adsorption / desorption cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本発明は、二酸化炭素の吸着等温線から求めたBET比表面積(A)が1250~1800m2/gであり、二酸化炭素の吸脱着等温線にグランドカノニカルモンテカルロシミュレーションを行うことによって求めた細孔直径0.4~0.7nmにおける細孔容積(B)mL/gと細孔直径0.7~1.1nmにおける細孔容積(C)mL/gとの比率(B)/(C)が0.640以下である、活性炭に関する。

Description

活性炭およびその製造方法
 本発明は、活性炭およびその製造方法に関する。
 例えば自動車には、車両の燃料タンクからの蒸散燃料の外部への放出を防止するために、蒸散燃料の吸着および脱着が可能なキャニスタが用いられている。キャニスタには一般に吸着材として活性炭が使用されており、活性炭は、停車中には燃料タンクからの蒸散燃料を一時的に吸着または捕集し、運転中には吸着された蒸散燃料を吸気したフレッシュエアーにより置換することで脱着する。そして、脱着された蒸散燃料は、内燃機関にて燃焼される。
 このようなキャニスタで使用される活性炭としては、蒸散燃料を吸着するための微細な細孔を有するものが広く用いられる。
 そのような活性炭として、例えば特許文献1には、リグノセルロースから生成され、15~25g/100cmのブタン処理能を有し、直径が1.8~50nmのポアの全ポア容積に対する有孔率が50%以上、直径が50nmを超えるポアの全ポア容積に対する有孔率が20%以下の高活性かつ高密度の活性炭が開示されている。同文献には、当該活性炭が、炭素質材料の水分率や加熱温度を調整した後、押出成型機およびピンミキサでペレット化し、加熱焼成することにより製造できることが記載されている。しかし、特許文献1に記載の製造方法では、生産性を高く維持した状態で品質の安定した活性炭を製造することが困難であるため、この課題を解決するために、特許文献2には、活性炭の製造方法であって、木質材料とリン酸化合物との混合物を、一軸または二軸押出混練機にて混錬・加熱条件下に140℃、30分での加熱減量が10質量%を超えて25質量%未満になるまで可塑化、圧密化した炭素質材料を得る可塑化・圧密化工程と、可塑化・圧密化工程を経た炭素質材料を、140℃、30分での加熱減量が3質量%を超えて12質量%未満になるまで加熱処理した炭素質材料を得る調整工程と、調整工程を経た炭素質材料を400℃以上600℃以下の加熱条件で賦活する賦活処理工程とを含む方法、および当該製造方法から製造される活性炭が開示されている。
 また、特許文献3には、0.25~0.6g/cmの充填密度、0.5~1.2cm/gの細孔容積、0.25~0.4cm/cmの充填密度×細孔容積、1000m/g以上の表面積、400m/cm以上の充填密度×表面積、18~35Åの平均細孔径および5.0~15g/100mLのブタン有効吸着量を有し、疎水性有機化合物の吸脱着に適する、薬品賦活成型活性炭が開示されている。
特開平6-56416号公報 国際公開第2018/21246号パンフレット 特開平2-167809号公報
 キャニスタ用活性炭には、発生する蒸散燃料をトラップできる高い吸着性能が求められる。しかし、特許文献2および3における活性炭のブタン飽和吸着性能は十分なものでなく、より高い吸着性能が求められていた。
 また、キャニスタ用活性炭には、脱着後に蒸散燃料の残留量が少ないことも求められる。特に、吸脱着サイクルの初期に不可逆的に吸着された残留分よりも、吸脱着サイクルを繰り返す中で残留した残留分の方が、気温の変化または吸着置換(蒸散燃料と残留分との置換)などによって大気に放出されやすいため、優れた脱着性能を評価する指標として、繰り返しの吸脱着サイクルの後であっても低いブタン残留量に、本発明者らは着目した。
 従って、本発明は、高いブタン飽和吸着率と、吸脱着サイクルを繰り返した後であっても低いブタン残留量とを併せ持つ活性炭、およびその製造方法を提供することを課題とする。
 本発明者らは、鋭意検討した結果、特定のBET比表面積(A)と特定の細孔容積の比率(B)/(C)とが特定の値である活性炭によって上記課題が解決できることを見出し、本発明を完成するに至った。
 本発明は、以下の好適な態様を包含する。
[1]二酸化炭素の吸着等温線から求めたBET比表面積(A)が1250~1800m/gであり、二酸化炭素の吸脱着等温線にグランドカノニカルモンテカルロシミュレーションを行うことによって求めた細孔直径0.4~0.7nmにおける細孔容積(B)mL/gと細孔直径0.7~1.1nmにおける細孔容積(C)mL/gとの比率(B)/(C)が0.640以下である、活性炭。
[2]BET比表面積(A)、細孔容積(B)および細孔容積(C)の関係が下記式:(A)×(B)/(C)≦1050を満たす、上記[1]に記載の活性炭。
[3]細孔容積(B)が0.135mL/g以下である、上記[1]または[2]に記載の活性炭。
[4]二酸化炭素の吸脱着等温線にグランドカノニカルモンテカルロシミュレーションを行うことによって求めた細孔直径0.6~0.7nmにおける細孔容積(D)が0.050mL/g以下である、上記[1]~[3]のいずれかに記載の活性炭。
[5]ペレット状である、上記[1]~[4]のいずれかに記載の活性炭。
[6]リン酸賦活活性炭である、上記[1]~[5]のいずれかに記載の活性炭。
[7](i)おが屑とリン酸化合物とを混合する工程、
(ii)得られた混合物を加熱し、その混合物中のリン酸およびおが屑の質量を、リン酸およびおが屑の乾燥状態の合計質量を基準として5~20質量%減少させる工程、
(iii)質量を減少させた混合物を成形する工程、
(iv)得られた成形物を酸素の存在下で加熱し、酸化する工程、
(v)酸化した成形物を不活性ガスまたは焼成温度において酸化した成形物と反応しないガスの雰囲気中で焼成する工程、および
(vi)焼成した成形物を水洗した後、乾燥する工程
を含む、上記[6]に記載の活性炭の製造方法。
[8]工程(i)で得た混合物を、工程(ii)における加熱と同時に、工程(ii)と工程(iii)との間の独立した工程で、または工程(iii)における成形の直前に混練する、上記[7]に記載の方法。
[9]自動車のキャニスタ用の活性炭である、上記[1]~[6]のいずれかに記載の活性炭。
 本発明によれば、高いブタン飽和吸着率と、吸脱着サイクルを繰り返した後であっても低いブタン残留量とを併せ持つ活性炭、およびその製造方法を提供することができる。
 以下、本発明の実施態様について、詳細に説明する。なお、本発明の範囲はここで説明する実施態様に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。
[活性炭]
 本発明の活性炭において、二酸化炭素の吸着等温線から求めたBET比表面積(A)〔本明細書では、単に「BET比表面積(A)」と称することもある〕は1250~1800m/gであり、二酸化炭素の吸脱着等温線にグランドカノニカルモンテカルロシミュレーションを行うことによって求めた細孔直径0.4~0.7nmにおける細孔容積(B)mL/gと細孔直径0.7~1.1nmにおける細孔容積(C)mL/gとの比率(B)/(C)は0.640以下である。
 本発明の活性炭は、二酸化炭素の吸着等温線から求めた特定のBET比表面積(A)と特定の細孔容積の比率(B)/(C)とを有することにより、高いブタン飽和吸着率と、吸脱着サイクルを繰り返した後であっても低いブタン残留量とを併せ持つことができる。
 ここで、二酸化炭素の吸脱着等温線を用いた解析に本発明者らが着目した理由について説明する。
 高いブタン吸着性能(ブタン飽和吸着率)を得るためには、活性炭の細孔の中でもミクロ細孔を発達させることが重要である。その一方で、非常に小さなミクロ細孔(ウルトラミクロ孔と呼ばれる、細孔直径が0.7nm以下の細孔)が発達した活性炭では、キャニスタに使用した際に蒸散燃料が活性炭から脱離しにくくなる。従って、所望のブタン吸着性能に加えて所望のブタン脱着性能を実現するためには、ウルトラミクロ孔の形成を抑えつつ、ミクロ細孔を発達させることが必要である。そのため、ミクロ細孔、特に1nm以下の細孔を評価する方法として、二酸化炭素の吸脱着等温線を用いた解析に着目した。
 次に、本発明における吸脱着サイクル後のブタン残留量について説明する。
 本発明では、後述の実施例に記載の通り、ブタンを活性炭に吸着させた後に脱着させる工程を1サイクルとして100サイクルまで吸脱着サイクルを実施し、第2~第6サイクルまでの平均値と、第96~第100サイクルまでの平均値とを用いて(下記式参照)、当該活性炭の吸脱着サイクル後のブタン残留量の増加率を求める。このブタン残留量増加率が低いことは、活性炭が優れた脱着性能を有することを意味する。
Figure JPOXMLDOC01-appb-M000001

 第1サイクルにおける吸脱着挙動は通常、第2サイクル以降のサイクルにおける吸脱着挙動とは大きく異なるため、キャニスタ用活性炭の評価に用いるのは適切でないと考えられる。従って、本発明では、第1サイクルを除くサイクル初期(第2~第6サイクル)のブタン残留量の平均値に対して、第96~第100サイクルのサイクル終期では平均してどの程度ブタン残留量が増加したのかに着目した。また、測定誤差を低減するために、サイクル初期およびサイクル終期における各1サイクルのブタン残留量ではなく、サイクル初期およびサイクル終期における各5サイクルのブタン残留量の平均値を用いた。
 例えば引用文献2に記載されているように吸着性能低下率により活性炭を評価した場合、当該吸着性能低下率が等しくてもブタン残留量は異なる場合がある。また、同文献における評価方法は、第2サイクル以降のサイクルにおけるガソリン吸着性能とは異なるガソリン吸着性能初期値(第1サイクル時の値)に対する、200サイクル後のガソリン吸着性能値によって評価する方法である。
 本発明の評価方法は引用文献2に記載の評価方法とは異なり、活性炭について、より正確な吸脱着性能を評価できる。
 本発明の活性炭の二酸化炭素の吸着等温線から求めたBET比表面積(A)は1250~1800m/gである。
 BET比表面積(A)が1250m/gよりかなり小さいと、ブタンが吸着できる細孔が少なく、十分な吸着性能を得ることはできない。BET比表面積(A)が1250m/gに近接する方向に増加するとブタンが吸着できる細孔も増加するが、BET比表面積(A)が1250m/gより小さいと、吸着したブタンが細孔内に固定化しやすい(すなわち脱着しにくい)細孔が発達していると考えられ、ブタン残留量が増加する。また、吸脱着サイクルを繰り返すと残留ブタンにより閉塞されてしまう細孔が有意な量で存在すると考えられ、その結果、後続のサイクルにおけるブタン吸着量も減少する。
 一方、二酸化炭素の吸着等温線から求めたBET比表面積(A)が1800m/gより大きい場合は、上記したような吸着ブタンが脱着しにくい小さな細孔がかなり発達してBET比表面積(A)の増加に寄与していると考えられ、その結果、ブタン残留量は増加し、吸脱着サイクルを繰り返した後のブタン吸着量も減少する。また、充填密度が過度に低下することにより、高いブタン作業能力(Butane Working Capacity、以下において「BWC」と称することもある)の確保が困難になることから、キャニスタ用活性炭として好ましくない。
 BET比表面積(A)は好ましくは1275m/g以上、より好ましくは1300m/g以上、さらに好ましくは1400m/g以上である。また、BET比表面積(A)は好ましくは1775m/g以下、より好ましくは1750m/g以下である。BET比表面積(A)が前記範囲内であると、所望の吸着性能、脱着性能および充填密度を得やすい。
 本発明の活性炭の細孔直径0.4~0.7nmにおける細孔容積(B)mL/gと細孔直径0.7~1.1nmにおける細孔容積(C)mL/gとの比率(B)/(C)は0.640以下である。
 細孔容積の比率(B)/(C)が0.640より大きいことは、細孔容積(B)が大きすぎるかまたは細孔容積(C)が小さすぎることを意味し、その場合は所望の脱着性能を得ることができない。細孔容積の比率(B)/(C)は好ましくは0.600以下、より好ましくは0.570以下である。細孔容積の比率(B)/(C)が前記上限値以下であると、ブタンを良好に吸着して脱着する細孔が発達する一方で、吸着ブタンが脱着しにくい細孔の発達が抑制されるため、ブタン残留量の増加および吸脱着サイクルを繰り返した後のブタン吸着量の減少が抑制されやすい。
 細孔容積の比率(B)/(C)は好ましくは0.450以上、より好ましくは0.470以上である。細孔容積の比率(B)/(C)が小さいことは、細孔容積(B)が小さいかまたは細孔容積(C)が大きいことを意味する。細孔容積の比率(B)/(C)が前記下限値以上であると、所望の吸着性能を得やすい。
 BET比表面積(A)、細孔容積の比率(B)/(C)、並びに後述の細孔容積(B)、(C)および(D)は、例えば、後述の活性炭の製造方法の工程(i)におけるリン酸化合物とおが屑との質量比、工程(ii)における質量減少率および/または工程(iv)における酸化条件を調整することにより所望の値に調整できる。特に、後述の活性炭の製造方法において、特定の質量減少率と特定の酸化条件とを満たすことにより、本発明における特定のBET比表面積(A)と特定の細孔容積の比率(B)/(C)とを得ることができる。BET比表面積(A)、細孔容積の比率(B)/(C)、並びに後述の細孔容積(B)、(C)および(D)は、後述の実施例に記載の方法により求めることができる。
 好ましい一態様において、BET比表面積(A)、細孔容積(B)および細孔容積(C)の関係は下記式:(A)×(B)/(C)≦1050を満たす。(A)×(B)/(C)の値は、好ましくは1000以下、より好ましくは950以下である。この値が前記上限値以下であると、ブタンが残留する細孔が少ないと考えられ、吸脱着サイクル後であっても低いブタン残留量増加率を得やすい。(A)×(B)/(C)の値は、好ましくは800以上、より好ましくは825以上である。この値が前記下限値以上であると、所望の吸着量を得やすい。
 細孔直径0.4~0.7nmにおける細孔容積(B)は、好ましくは0.135mL/g以下、より好ましくは0.125mL/g以下、特に好ましくは0.120mL/g以下である。細孔容積(B)が前記値以下であると、吸着ブタンが脱着しにくい細孔の過度の発達が抑制されると考えられ、ブタン残留量の増加および吸脱着サイクルを繰り返した後のブタン吸着量の減少が抑制される傾向にある。
 細孔容積(B)は、好ましくは0.100mL/g以上、より好ましくは0.110mL/g以上である。細孔容積(B)が前記値以上であると、所望のブタン吸着量を得やすい。
 細孔直径0.7~1.1nmにおける細孔容積(C)の増加に伴い、ブタンを良好に吸着して脱着する細孔が増加する傾向にある。しかし、大きすぎる細孔容積(C)は細孔径分布のより大きい側へのシフトおよび細孔容積(B)の減少を意味し、細孔容積の比率(B)/(C)は低下する。その結果、所望の吸着性能を得にくい。また、細孔容積(C)が大きすぎるとBET比表面積(A)も低下し、充填密度も低下する。充填密度の過度の低下はBWCの低下を招き、これはキャニスタ用活性炭として好ましくない。
 細孔直径0.6~0.7nmにおける細孔容積(D)は、好ましくは0.050mL/g以下、より好ましくは0.047mL/g以下、特に好ましくは0.045mL/g以下である。細孔容積(D)は、例えば0.030mL/g以上、好ましくは0.035mL/g以上、より好ましくは0.040mL/g以上である。
 本発明の活性炭が特定のBET比表面積(A)と細孔容積の比率(B)/(C)とを有することに加えて前記上限値以下の細孔容積(D)を有すると、吸脱着サイクルを繰り返す過程でブタン残留量の増加を招く細孔がより少ないと考えられ、低いブタン残留量増加率を得やすい。
 活性炭の軽量化の観点から、本発明の活性炭の充填密度は、好ましくは0.330g/mL以下、より好ましくは0.315g/mL以下、さらに好ましくは0.300g/mL以下である。活性炭の強度の観点から、充填密度は、好ましくは0.220g/mL以上である。充填密度は、後述の活性炭の製造方法の工程(ii)における質量減少率、工程(iii)における成形圧力条件、および/または工程(iv)における酸化条件を調整することにより、前記した上限値以下および下限値以上の値に調整できる。充填密度は、ASTM D2854に準拠して測定できる。
 本発明の活性炭の形状は特に限定されず、破砕状、グラニュール状、またはペレット状(例えば球状、柱状若しくは板状)などのいずれの形状であってもよいし、異なった形状のブレンドであってもよい。優れた吸着性能、脱着性能、通気性または低微粉性を得やすい観点から、ペレット状が好ましい。従って、本発明の好ましい一態様において、活性炭はペレット状である。活性炭がペレット状である場合の寸法は、好ましい通気性および充填密度を得やすい観点から、活性炭が球状の場合はその平均粒径が1~9mmであることが好ましく、2~7mmであることがより好ましく、活性炭が円柱状である場合はその平均柱外径および平均柱長さが各々1~9mmおよび2~12mmであることが好ましく、2~7mmおよび4~10mmであることがより好ましい。平均粒径、平均柱外径および平均柱長さは、一般的な方法(例えばノギスによる測定方法)で測定できる。
 本発明の一態様において、本発明の活性炭は、リン酸化合物を用いて賦活することにより得られる活性炭である。従って、この態様において、活性炭はリン酸賦活活性炭である。リン酸化合物を用いた賦活については、後述の[活性炭の製造方法]の項において述べる。
 本発明の活性炭のブタン飽和吸着率は、ASTM D5228によるブタン吸着性能(Butane Activity、単位:質量%)を指し、ASTM D5228に準拠して測定できる。ブタン飽和吸着率は、好ましくは63.5%以上、より好ましくは68.0%以上である。ブタン飽和吸着率の前記値以上への調整は、例えば、製造方法におけるリン酸化合物とおが屑との質量比、質量減少率、酸化条件または賦活度などの調整によって達成できる。本発明の活性炭は高いブタン飽和吸着率を有する。これにより、低い充填密度でもキャニスタ充填時にキャニスタの重さを軽くしつつ十分な吸着容量を得ることができる。
 本発明の活性炭のブタン残留量増加率は、好ましくは15.0%以下、より好ましくは10.0%以下である。ブタン残留量増加率が低い程、脱着性能に優れることを意味しており、本発明では好ましい。ブタン残留量増加率の前記値以下への調整は、例えば、製造方法におけるリン酸化合物とおが屑との質量比、質量減少率、酸化条件または賦活度などの調整によって達成できる。ブタン残留量増加率は、後述の実施例に記載の方法で求めることができる。
 このように、本発明の活性炭は、高いブタン飽和吸着率と、繰り返しの吸脱着サイクルの後であっても低いブタン残留量増加率とを併せ持つ。よって、本発明の活性炭は、自動車のキャニスタ用の活性炭として好適に使用できる。従って、一態様において、本発明の活性炭は自動車のキャニスタ用の活性炭である。なお、本発明の活性炭は、種々の蒸散燃料、例えば、一般的な自動車燃料である通常のガソリンだけでなく、アルコールを含有するガソリンなども対象とすることができる。
[活性炭の製造方法]
 本発明の活性炭は、例えば、
(i)おが屑とリン酸化合物とを混合する工程、
(ii)得られた混合物を加熱し、その混合物中のリン酸およびおが屑の質量を、リン酸およびおが屑の乾燥状態の合計質量を基準として5~20質量%減少させる工程、
(iii)質量を減少させた混合物を成形する工程、
(iv)得られた成形物を酸素の存在下で加熱し、酸化する工程、
(v)酸化した成形物を不活性ガスまたは焼成温度において酸化した成形物と反応しないガスの雰囲気中で焼成する工程、および
(vi)焼成した成形物を水洗した後、乾燥する工程
を含む製造方法によって製造できる。
〔工程(i)〕
 おが屑としては、ケヤキなどの広葉樹のおが屑、杉若しくは松などの針葉樹のおが屑、また竹のおが屑などを使用することができる。また、これらのおが屑を混合して用いてもよい。おが屑の含水率については、水分を蒸発させた乾燥おが屑から、水分を含むおが屑、例えば含水率60%程度のおが屑まで、幅広く使用することができる。
 リン酸化合物としては、リン酸、ポリリン酸、ピロリン酸、メタリン酸、それらの塩(例えば、リン酸ナトリウムまたはリン酸カルシウムなど)、およびこれらの混合物を使用できる。リン酸化合物としてリン酸を用いる場合、リン酸水溶液を用いることができ、その濃度は例えば50~90質量%であってよい。
 リン酸化合物とおが屑とは、乾燥状態のリン酸化合物中に含まれるリン酸と乾燥状態のおが屑との質量比(リン酸/おが屑)が好ましくは1.4~2.2、より好ましくは1.5~2.0となるように混合する。混合は、一般的な撹拌機を用いて均一になるように実施すればよい。混合の際の混合物の温度は特に限定されず、加熱を伴っても伴わなくてもよい。加熱する場合は、混合物の温度が例えば30~100℃となるように加熱しながら混合してよい。
〔工程(ii)〕
 次いで、得られた混合物を加熱し、その混合物中のリン酸およびおが屑の質量を、リン酸およびおが屑の乾燥状態の合計質量(すなわち、乾燥状態のリン酸と乾燥状態のおが屑との合計の質量)を基準として、基準から5質量%以上、好ましくは8質量%以上、より好ましくは10質量%以上、特に好ましくは11質量%以上、また、基準から20質量%以下、好ましくは19質量%以下、より好ましくは18質量%以下、特に好ましくは17質量%以下の質量減少率で減少させる。
 ここで、リン酸およびおが屑が乾燥状態であるときの質量について説明する。リン酸化合物を水溶液として使用する場合は、リン酸化合物水溶液のリン酸濃度を測定し、その濃度から計算した、水溶液中に含まれているリン酸の質量を乾燥状態のリン酸の質量とする。アルコールなどの水以外の溶媒を用いたリン酸溶液としてリン酸化合物を使用する場合も同様に、リン酸化合物溶液中のリン酸濃度を測定し、その濃度から計算した、溶液中に含まれているリン酸の質量を乾燥状態のリン酸の質量とする。リン酸化合物を溶液以外として使用する場合、例えば、(I)リン酸化合物を固体として使用する場合でリン酸化合物が水和物(すなわち水分を含むリン酸化合物)の場合は、使用するリン酸化合物と同じ物質を一定量秤取し、水に溶解して水溶液とし、そのリン酸化合物水溶液のリン酸濃度を測定し、その濃度から一定量のリン酸化合物あたりのリン酸の質量を計算し、その計算値から使用するリン酸化合物中のリン酸の質量を計算し、その値を乾燥状態のリン酸の質量とし、例えば、(II)リン酸化合物を固体として使用する場合でリン酸化合物が水分を含まない場合、例えばリン酸化合物がリン酸カルシウムといったリン酸塩の場合は、リン酸塩の質量から塩の部分の質量を差し引いた値を乾燥状態のリン酸の質量とする。乾燥状態のおが屑の質量とは、おが屑を(単独で)115℃±5℃で質量一定(全乾状態)になるまで乾燥した状態での質量を指す。なお、乾燥による経時的な質量減少の変化が、2時間の間に0.5質量%未満であれば質量一定とみなしてよい。
 加熱装置としては、混合物において極端な温度斑が発生して質量減少に大きな偏りが生じないような加熱装置であればいずれの装置でも使用できる。そのような装置の例としては、循環式乾燥機、オーブンまたはロータリーキルンなどが挙げられる。均一な加熱のために、混合物を適宜撹拌しながら加熱してもよい。リン酸化合物とおが屑とを混合して加熱することにより、おが屑内のセルロースまたはリグニンの脱水縮合が起こるため、それぞれを単独で加熱乾燥させた場合よりも質量が減少することになる。
 加熱温度が低すぎると、おが屑の炭素質構造の所定量の形成に必要なリン酸化合物によるおが屑の脱水縮合反応が促進されず、得られる反応物が低密度な、成形に適したものにならないため好ましくない。また、質量減少に時間を要し、生産効率が低い。一方、加熱温度が高すぎると、加熱斑が発生しやすく、また過度の質量減少が起こりやすくなる。従って、反応を均一かつ効率的に進めやすく、またおが屑の炭素質構造を後述の工程(iii)の成形に適した量にしやすい観点から、加熱温度は、好ましくは110~180℃、より好ましくは115~175℃、特に好ましくは140~175℃である。
 本発明の一態様では、工程(i)で得た混合物を、工程(ii)における加熱と同時に、工程(ii)と工程(iii)との間の独立した工程で、または工程(iii)における成形の直前に混練する。
 混練により、おが屑が粉砕され、混合物の均質化が促進される。混練には一般的な混練機を使用できる。混練の際の混合物の温度は特に限定されない。工程(ii)における加熱と同時に混練する場合は、加熱温度は上述の通りであってよい。工程(ii)と工程(iii)との間の独立した工程で混練する場合は、工程(ii)の加熱処理の後に温度が下がった状態で(例えば、加熱温度より低い温度若しくは常温で)混練を行ってもよいし、加熱処理後に温度が下がってから再度加熱して常温より高い温度で混練してもよい。工程(iii)における成形の直前の混練としては、例えば混練押出造粒機などを用いた混練が挙げられる。
〔工程(iii)〕
 次いで、混合物を成形する。成形には、一般的な押出造粒機または打錠成型機を使用することができる。成形物の内部に空隙を作らず均一に成形するために、多段階での成形を行ってもよい。優れた吸着性能、脱着性能、通気性または低微粉性を得やすい観点から、成形物が大きさ一様のグラニュール状であること、特にペレット状であることが好ましい。活性炭がペレット状である場合の寸法は、先の[活性炭]の項において述べた通りである。
〔工程(iv)〕
 得られた成形物を酸素の存在下で加熱し、酸化する。酸化には、ロータリーキルンまたは熱処理炉などの一般的な加熱器具を使用できる。加熱器具内に流通させる酸素含有ガスとしては空気を使用できる。流通ガスは、成形物1gに対して例えば5~75mL/分、好ましくは10~50mL/分の割合で流通させる。酸化温度は、例えば180~450℃、好ましくは225~350℃であり、酸化時間は、酸化温度などに依存するが、通常0.5~4時間、好ましくは1~3.5時間である。
 本発明では、工程(ii)における質量減少率は上記基準から5質量%以上、好ましくは8質量%以上、より好ましくは10質量%以上、特に好ましくは11質量%以上、また、上記基準から20質量%以下、好ましくは19質量%以下、より好ましくは18質量%以下、特に好ましくは17質量%以下であって、特許文献2および3における加熱質量減少率より大きい。これらの特許文献では、加熱すると一定程度揮発する水分または揮発分を有しているものを成型したり、加熱質量減少率を大きくした場合には成型性を高めるために水の添加を行ったりしているが、本発明では水の添加を行わなくても、ある程度高温で酸素と接触させる酸化工程を経ることで最終的な形状を保持できる。また、質量減少率の大きい加熱工程(ii)と、上記したような酸化工程(iv)とを組み合わせることにより、高いブタン吸着性能と低いブタン残留量増加率との両立が可能な細孔特性を持つ活性炭を得ることができる。
〔工程(v)〕
 酸化した成形物を、不活性ガスまたは焼成温度において酸化した成形物と反応しないガスの雰囲気中で焼成する。焼成工程(v)は、酸化工程(iv)を実施したロータリーキルンなどの加熱器具において、流通させるガスを酸素含有ガスから不活性ガス(例えば、窒素、アルゴンおよびそれらの混合物など)または焼成温度において酸化した成形物と反応しないガス(例えば、二酸化炭素、一酸化炭素およびそれらの混合物など)に切り替えることにより、酸化工程(iv)から続けて実施でき、生産性の観点からこの手法が好ましい。焼成はもちろん、酸化工程(iv)で用いた加熱器具とは別の一般的な加熱器具を用いて実施することもできる。焼成は好ましくは、450~550℃の温度で1~2.5時間実施する。酸化工程と焼成工程とを同じ加熱器具で行う場合で酸化温度より焼成温度が高い場合は、例えば1~10℃/分(例えば4℃/分)の昇温速度で加熱器具内の温度を昇温させ、焼成を実施すればよい。焼成終了後、不活性ガスまたは焼成温度において酸化した成形物と反応しないガスの雰囲気中で放熱し、加熱器具内の温度が100℃以下になってから成形物を取り出す。
〔工程(vi)〕
 焼成後の成形物を水洗することにより、リン酸化合物を除去する。必要ならば煮沸水洗を行うことにより、リン酸化合物の除去を促進できる。最終的に水洗後の水のpHが6以上となるように水洗を繰り返し行う。
 水洗後の成形物を乾燥することにより、本発明の活性炭を得ることができる。乾燥方法は特に限定されず、空気、不活性ガス(例えば窒素)またはそれらの混合物の雰囲気下で、一般的な乾燥機を用いて乾燥してよい。生産効率および安全性の観点から、乾燥温度は、通常60~150℃、好ましくは70~140℃である。乾燥時間は、乾燥温度などに依存するが、通常0.1~36時間、好ましくは0.5~24時間である。
 このようにして得た本発明の活性炭は、特定のBET比表面積(A)および特定の細孔容積の比率(B)/(C)を有することから、高いブタン飽和吸着率と、吸脱着サイクルを繰り返した後であっても低いブタン残留量とを併せ持つことができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はかかる実施例により何ら限定されるものではない。なお、それぞれの実施例および比較例で得られた活性炭の特性または性能は、以下のようにして求めた。
[二酸化炭素の吸着等温線より求めたBET比表面積(A)]
 各活性炭について、ガス吸着測定装置(Quantachrome社製、AUTOSORB-iQ MP-XR)を用い、273Kでの二酸化炭素の吸脱着を0.00075から0.030までの相対圧(p/p)で測定することにより、吸脱着等温線を得た。得られた吸着等温線に対し、(p/p)が0.0247から0.0285の間のデータを用いてBET法による解析を行い、BET比表面積(A)を算出した。
[細孔直径0.4~0.7nmにおける細孔容積(B)、細孔直径0.7~1.1nmにおける細孔容積(C)、および細孔直径0.6~0.7nmにおける細孔容積(D)]
 上記のように得た吸脱着等温線に対し、Calculation modelとして「CO at 273K on carbon」を適用してグランドカノニカルモンテカルロ(Grand Canonical Monte Carlo)法の解析を行い、細孔径分布を求め、各細孔直径範囲における細孔容積(B)~(D)を算出した。
[窒素の吸着等温線より求めたBET比表面積(E)]
 各活性炭について、ガス吸着測定装置(日本ベル株式会社製、BELSORP 28SA)を用い、77Kでの窒素の吸着を0.001から0.95までの相対圧(p/p)で測定することにより、吸着等温線を得た。得られた吸着等温線に対し、(p/p)が0.05から0.15の間のデータを用いてBET法による解析を行い、BET比表面積(E)を算出した。
[充填密度]
 充填密度は、ASTM D2854に準拠して測定した。
[ブタン飽和吸着率]
 ブタン飽和吸着率は、ASTM D5228に準拠して測定した。
[ブタン残留量増加率およびブタン吸着量減少率]
 ASTM D2854によって測定した活性炭の充填密度を用いて250mL分の活性炭を秤取した。秤取した活性炭を、直径Dに対する長さLの比率L/Dが3.5のキャニスタ容器に充填し、活性炭とキャニスタ容器との合計質量Wを測定した。その後、25℃の温度で、キャニスタ容器のポートPから吸着ガス(n-ブタンの体積割合が50%のn-ブタンと空気の混合ガス)を300mL/分で流通させ、吸着ガスを活性炭に吸着させた。ポートPの反対側のポートPからの排気ブタン濃度が5000ppmになった時点で吸着ガスを停止し、吸着操作後の活性炭とキャニスタ容器との合計質量Wを測定した。合計質量の差(W-W)が第1サイクルのブタン吸着量に相当する。
 次いで、ガス流路を吸着から脱着に切り替えて、25℃の温度で、キャニスタ容器のポートPから脱着ガス(空気)を2.6L/分で流通させ、吸着したブタンの脱着を行った。300ベッドボリューム分の脱着ガスを流し終わった時点でキャニスタ容器と活性炭との合計質量Wを測定した。合計質量の差(W-W)が第1サイクルのブタン残留量に相当する。
 上記したような合計質量測定を含む吸着から脱着までの工程を1サイクルとして、100サイクルまで吸脱着サイクルを行った。活性炭の脱着性能を、下記式により求められるブタン残留量増加率により評価した。
Figure JPOXMLDOC01-appb-M000002

 また、下記式により求められるブタン吸着量減少率も求めた。
Figure JPOXMLDOC01-appb-M000003
実施例1
 576.9g(乾燥固形分質量で100質量部)の松のおが屑(水分率48質量%)と、564.7g〔乾燥固形分質量(濃度100質量%)で160質量部〕のリン酸水溶液(濃度85質量%)とを混合した〔リン酸とおが屑との質量比(リン酸/おが屑)=1.6〕。混合物を、175℃に設定した循環式乾燥機で、基準となる固形分質量(100質量部+160質量部=260質量部)からの質量減少率が16.0質量%となるように加熱した。加熱は、1時間おきに撹拌しながら約5時間実施した。
 質量を減少させた混合物を混練した。混練によっておが屑が粉砕されて均一になり、結着性が出てきた段階で押出造粒機を用いてペレット状に成形した。
 得られたペレットをロータリーキルンに投入し、ペレット1gあたり25mL/分の空気を流通させながら温度を300℃まで4℃/分で昇温し、3時間保持することにより酸化を行った。
 次いで、流通ガスを空気から窒素に切り替え、ペレット1gあたり25mL/分の窒素を流通させながら500℃まで4℃/分で昇温し、2時間保持することにより焼成を行った。
 焼成後のペレットを水で洗浄し、乾燥することにより、活性炭を得た。
実施例2~7および比較例1~2
 質量減少時の加熱温度、質量減少率および/または酸化温度を表1に記載のものに変更したこと以外は実施例1と同様にして、活性炭を得た。
比較例3
 リン酸とおが屑との質量比、質量減少時の加熱温度および質量減少率を表1に記載のものに変更したこと以外は実施例1と同様にして、活性炭を得た。加熱により基準となる質量よりも質量を減少させていないため、基準からの質量減少率はマイナス表記となっている。
比較例4
 活性炭として、ウェストヴァコ・コーポレイション製のリン酸賦活された木質系粒状活性炭「BAX-1500」を用いた。
Figure JPOXMLDOC01-appb-T000004
 表1に示されているとおり、特定のBET比表面積(A)および特定の細孔容積の比率(B)/(C)を有する活性炭(実施例1~7)は、高いブタン飽和吸着率と、吸脱着サイクルを繰り返した後であっても低いブタン残留量(ブタン残留量増加率)とを併せ持っていた。
 一方、特定のBET比表面積(A)または特定の細孔容積の比率(B)/(C)を有さない活性炭(比較例1~4)は、実施例の活性炭より低いブタン飽和吸着率および高いブタン残留量増加率を有していた。
 本発明の活性炭は、高いブタン飽和吸着率と低いブタン残留量増加率とを有することから、吸着性能に加えて脱着性能に優れている。従って、ガス吸着用の吸着材として有用である。また、本発明の活性炭は、特に吸脱着サイクルを繰り返した後であっても脱着性能に優れることから、例えば自動車のキャニスタ用などの吸着材として有用である。

Claims (9)

  1.  二酸化炭素の吸着等温線から求めたBET比表面積(A)が1250~1800m/gであり、二酸化炭素の吸脱着等温線にグランドカノニカルモンテカルロシミュレーションを行うことによって求めた細孔直径0.4~0.7nmにおける細孔容積(B)mL/gと細孔直径0.7~1.1nmにおける細孔容積(C)mL/gとの比率(B)/(C)が0.640以下である、活性炭。
  2.  BET比表面積(A)、細孔容積(B)および細孔容積(C)の関係が下記式:
       (A)×(B)/(C)≦1050
    を満たす、請求項1に記載の活性炭。
  3.  細孔容積(B)が0.135mL/g以下である、請求項1または2に記載の活性炭。
  4.  二酸化炭素の吸脱着等温線にグランドカノニカルモンテカルロシミュレーションを行うことによって求めた細孔直径0.6~0.7nmにおける細孔容積(D)が0.050mL/g以下である、請求項1~3のいずれかに記載の活性炭。
  5.  ペレット状である、請求項1~4のいずれかに記載の活性炭。
  6.  リン酸賦活活性炭である、請求項1~5のいずれかに記載の活性炭。
  7.  (i)おが屑とリン酸化合物とを混合する工程、
     (ii)得られた混合物を加熱し、その混合物中のリン酸およびおが屑の質量を、リン酸およびおが屑の乾燥状態の合計質量を基準として5~20質量%減少させる工程、
     (iii)質量を減少させた混合物を成形する工程、
     (iv)得られた成形物を酸素の存在下で加熱し、酸化する工程、
     (v)酸化した成形物を不活性ガスまたは焼成温度において酸化した成形物と反応しないガスの雰囲気中で焼成する工程、および
     (vi)焼成した成形物を水洗した後、乾燥する工程
    を含む、請求項6に記載の活性炭の製造方法。
  8.  工程(i)で得た混合物を、工程(ii)における加熱と同時に、工程(ii)と工程(iii)との間の独立した工程で、または工程(iii)における成形の直前に混練する、請求項7に記載の方法。
  9.  自動車のキャニスタ用の活性炭である、請求項1~6のいずれかに記載の活性炭。
PCT/JP2020/008740 2019-03-06 2020-03-02 活性炭およびその製造方法 WO2020179745A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2021010687A MX2021010687A (es) 2019-03-06 2020-03-02 Carbono activado y metodo para producir el mismo.
CA3130076A CA3130076A1 (en) 2019-03-06 2020-03-02 Activated carbon and method for producing the same
US17/435,087 US20220135410A1 (en) 2019-03-06 2020-03-02 Activated carbon and method for producing the same
BR112021016013-2A BR112021016013A2 (pt) 2019-03-06 2020-03-02 Carbono ativado e método para a produção do mesmo
KR1020217027407A KR20210133223A (ko) 2019-03-06 2020-03-02 활성탄 및 그 제조 방법
CN202080018766.6A CN113474287A (zh) 2019-03-06 2020-03-02 活性炭及其制造方法
EP20767364.1A EP3936478A4 (en) 2019-03-06 2020-03-02 ACTIVATED CARBON, AND METHOD FOR MAKING THE SAME
JP2021504089A JPWO2020179745A1 (ja) 2019-03-06 2020-03-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-040787 2019-03-06
JP2019040787 2019-03-06

Publications (1)

Publication Number Publication Date
WO2020179745A1 true WO2020179745A1 (ja) 2020-09-10

Family

ID=72338737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008740 WO2020179745A1 (ja) 2019-03-06 2020-03-02 活性炭およびその製造方法

Country Status (9)

Country Link
US (1) US20220135410A1 (ja)
EP (1) EP3936478A4 (ja)
JP (1) JPWO2020179745A1 (ja)
KR (1) KR20210133223A (ja)
CN (1) CN113474287A (ja)
BR (1) BR112021016013A2 (ja)
CA (1) CA3130076A1 (ja)
MX (1) MX2021010687A (ja)
WO (1) WO2020179745A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167809A (ja) 1988-09-07 1990-06-28 Takeda Chem Ind Ltd 薬品賦活成型活性炭並びにその製造法及び用途
JPH069208A (ja) * 1992-02-21 1994-01-18 Westvaco Corp 活性炭
JPH0656416A (ja) 1992-08-11 1994-03-01 Westvaco Corp 活性炭の製造方法
JPH11349320A (ja) * 1998-06-04 1999-12-21 Mitsubishi Chemical Corp 活性炭の製造方法
JP2000313611A (ja) * 1999-04-26 2000-11-14 Mitsubishi Chemicals Corp 活性炭及びその製造方法
JP2001240407A (ja) * 1999-12-24 2001-09-04 Kuraray Chem Corp 活性炭及びその製造方法
WO2004110928A1 (ja) * 2003-06-13 2004-12-23 Kuraray Chemical Co., Ltd 活性炭シート成型体及び燃料蒸気の蒸散防止装置用エレメント
JP2005021750A (ja) * 2003-06-30 2005-01-27 Nissan Motor Co Ltd 水素吸蔵材料、水素貯蔵装置、水素貯蔵システム、燃料電池車両、及び水素吸蔵材料の製造方法
JP2006213544A (ja) * 2005-02-02 2006-08-17 Kuraray Chem Corp 粒状活性炭とその製造方法
JP2013530114A (ja) * 2010-05-17 2013-07-25 エスゲーエル カーボン ソシエタス ヨーロピア 二重層キャパシタ用の高い体積比容量を有する多孔質炭素
WO2018021246A1 (ja) 2016-07-25 2018-02-01 大阪ガスケミカル株式会社 活性炭の製造方法及び活性炭及びキャニスタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3282238B2 (ja) * 1992-10-15 2002-05-13 三菱化学株式会社 薬品賦活活性炭の製造方法
JPH11349318A (ja) * 1998-06-04 1999-12-21 Mitsubishi Chemical Corp 活性炭の製造方法
CA2669223A1 (en) * 2006-11-15 2008-05-22 Energ2, Llc Electric double layer capacitance device
JP2017135154A (ja) * 2016-01-25 2017-08-03 Jxtgエネルギー株式会社 活性炭およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167809A (ja) 1988-09-07 1990-06-28 Takeda Chem Ind Ltd 薬品賦活成型活性炭並びにその製造法及び用途
JPH069208A (ja) * 1992-02-21 1994-01-18 Westvaco Corp 活性炭
JPH0656416A (ja) 1992-08-11 1994-03-01 Westvaco Corp 活性炭の製造方法
JPH11349320A (ja) * 1998-06-04 1999-12-21 Mitsubishi Chemical Corp 活性炭の製造方法
JP2000313611A (ja) * 1999-04-26 2000-11-14 Mitsubishi Chemicals Corp 活性炭及びその製造方法
JP2001240407A (ja) * 1999-12-24 2001-09-04 Kuraray Chem Corp 活性炭及びその製造方法
WO2004110928A1 (ja) * 2003-06-13 2004-12-23 Kuraray Chemical Co., Ltd 活性炭シート成型体及び燃料蒸気の蒸散防止装置用エレメント
JP2005021750A (ja) * 2003-06-30 2005-01-27 Nissan Motor Co Ltd 水素吸蔵材料、水素貯蔵装置、水素貯蔵システム、燃料電池車両、及び水素吸蔵材料の製造方法
JP2006213544A (ja) * 2005-02-02 2006-08-17 Kuraray Chem Corp 粒状活性炭とその製造方法
JP2013530114A (ja) * 2010-05-17 2013-07-25 エスゲーエル カーボン ソシエタス ヨーロピア 二重層キャパシタ用の高い体積比容量を有する多孔質炭素
WO2018021246A1 (ja) 2016-07-25 2018-02-01 大阪ガスケミカル株式会社 活性炭の製造方法及び活性炭及びキャニスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3936478A4

Also Published As

Publication number Publication date
CA3130076A1 (en) 2020-09-10
BR112021016013A2 (pt) 2021-10-05
CN113474287A (zh) 2021-10-01
US20220135410A1 (en) 2022-05-05
EP3936478A1 (en) 2022-01-12
EP3936478A4 (en) 2022-12-28
JPWO2020179745A1 (ja) 2020-09-10
KR20210133223A (ko) 2021-11-05
MX2021010687A (es) 2021-09-28

Similar Documents

Publication Publication Date Title
EP2183186B1 (en) Method for preparing chemically activated carbon
JP2618581B2 (ja) 活性炭
JP2618583B2 (ja) 活性炭の製造方法
CA2134160C (en) Highly microporous carbons and process of manufacture
US5726118A (en) Activated carbon for separation of fluids by adsorption and method for its preparation
US5206207A (en) Preparation for high activity high density carbon
CN105148843B (zh) 一种活性炭颗粒及其制备方法及碳罐
JP6062916B2 (ja) コンクリートにおいて燃料排ガス水銀を封鎖する組成物および方法
KR20160003337A (ko) 복합 첨가제 물질
US5736481A (en) Shaped lignocellulosic-based activated carbon
US5736485A (en) Shaped lignocellulosic-based activated carbon
JPWO2009011287A1 (ja) 吸着剤及びキャニスタ
CA3120955A1 (en) Pelletized activated carbon and methods of production
JP6628885B2 (ja) 活性炭の製造方法及び活性炭及びキャニスタ
WO2020179745A1 (ja) 活性炭およびその製造方法
WO2008044587A1 (fr) Charbon actif et réservoir à charbon actif et filtre à air d'admission utilisant celui-ci
JP5312357B2 (ja) 一酸化窒素用吸着材の製造方法
KR101176587B1 (ko) 요오드 및 황화수소의 흡착제거가 우수한 구형 활성탄의 제조방법 및 그로부터 제조된 구형활성탄
RU2449948C1 (ru) Способ получения активного угля
KR100193377B1 (ko) 담배필터용 입상 복합 분자체 조성물의 제조방법
RU2412112C1 (ru) Способ получения активного угля
JP2021171691A (ja) 吸着材
JP2021171692A (ja) 吸着材
JP2005262157A (ja) 調湿、脱臭材とその製造方法
JPS61251507A (ja) 木材系原料を用いた分子篩炭素材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3130076

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021504089

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021016013

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021016013

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210813

ENP Entry into the national phase

Ref document number: 2020767364

Country of ref document: EP

Effective date: 20211006