WO2020179514A1 - 酸化チタン微粒子混合物、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン微粒子分散液の製造方法 - Google Patents

酸化チタン微粒子混合物、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン微粒子分散液の製造方法 Download PDF

Info

Publication number
WO2020179514A1
WO2020179514A1 PCT/JP2020/007165 JP2020007165W WO2020179514A1 WO 2020179514 A1 WO2020179514 A1 WO 2020179514A1 JP 2020007165 W JP2020007165 W JP 2020007165W WO 2020179514 A1 WO2020179514 A1 WO 2020179514A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide fine
fine particles
fine particle
component
Prior art date
Application number
PCT/JP2020/007165
Other languages
English (en)
French (fr)
Inventor
学 古舘
友博 井上
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to AU2020232530A priority Critical patent/AU2020232530A1/en
Priority to CN202080018288.9A priority patent/CN113518763A/zh
Priority to US17/432,856 priority patent/US20220168708A1/en
Priority to KR1020217031263A priority patent/KR20210134714A/ko
Publication of WO2020179514A1 publication Critical patent/WO2020179514A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles

Definitions

  • transition metal component that enhances the visible light response it can be selected from vanadium, chromium, manganese, niobium, molybdenum, rhodium, tungsten, cerium, etc. Among them, molybdenum, tungsten, vanadium are selected. Is preferred.
  • the tungsten component may be derived from a tungsten compound, for example, a tungsten metal alone (W) or an oxide (WO). 3 ), hydroxides, chlorides (WCl 4 , WCl 6 ), nitrates, sulfates, halogen (Br, I) compounds, tungstic acid and oxoacid salts (H 2 WO 4 , Na 2 WO 4 , K 2 WO). 4 ), complex compounds and the like, and these may be used alone or in combination of two or more.
  • oxides (WO 3), chloride (WCl 4, WCl 6) it is preferable to use the oxo acid salt (Na 2 WO 4, K 2 WO 4).
  • the content of the vanadium component in the first titanium oxide fine particles is 1 to 10,000, preferably 10 to 10,000, and more preferably 100 to 10,000 in terms of molar ratio (Ti/V) to titanium. .. This is because if the molar ratio is less than 1, the titanium oxide content may decrease and the photocatalytic effect may not be sufficiently exhibited, and if it exceeds 10,000, the visible light responsiveness may become insufficient. is there.
  • oxides Fe 2 O 3, Fe 3 O 4
  • oxyhydroxide FeO (OH)
  • chloride FeCl 2, FeCl 3
  • nitrate Fe (NO) 3
  • sulfate It is preferable to use FeSO 4 , Fe 2 (SO 4 ) 3 ).
  • the content of the tungsten component in the second titanium oxide fine particles is 1 to 10,000, preferably 5 to 5,000, and more preferably 20 to 1,000 in terms of molar ratio (Ti / W) with titanium. .. This is because if the molar ratio is less than 1, the titanium oxide content may decrease and the photocatalytic effect may not be sufficiently exhibited, and if it exceeds 10,000, the visible light responsiveness may become insufficient. is there.
  • the volume-based 90% cumulative distribution diameter (hereinafter, may be referred to as D 90 ) is preferably 5 to 100 nm, and more preferably 5 to 80 nm. This is because if D 90 is less than 5 nm, the photocatalytic activity may be insufficient, and if it exceeds 100 nm, the dispersion may become opaque.
  • the device for measuring D 50 and D 90 of the first titanium oxide fine particles and the second titanium oxide fine particles in the titanium oxide fine particle mixture is, for example, ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.)
  • a truck UPA-EX150 manufactured by Nikkiso Co., Ltd.
  • LA-910 manufactured by Horiba, Ltd.
  • a first titanium oxide fine particle dispersion and a second titanium oxide fine particle dispersion are respectively produced, and the first titanium oxide fine particle dispersion and the second titanium oxide are produced. It is prepared by mixing with a fine particle dispersion.
  • transition metal component and tin component-containing peroxotitanic acid After obtaining the transition metal component and tin component-containing peroxotitanic acid in this way, it is possible to obtain titanium oxide fine particles in which the various metals are dissolved in titanium oxide by subjecting them to the hydrothermal reaction in the step (2) described later. it can.
  • the cell was filled with acetaldehyde gas having an initial concentration adjusted to a humidity of 50%, and light was emitted from a light source installed above the cell.
  • the acetaldehyde gas is decomposed by the photocatalyst on the thin film, the acetaldehyde gas concentration in the cell decreases. Therefore, the amount of acetaldehyde gas decomposition can be determined by measuring the concentration.
  • the acetaldehyde gas concentration was measured using a photoacoustic multi-gas monitor (trade name "INNOVA1412", manufactured by LumaSense), and the time required to reduce the acetaldehyde gas concentration from the initial concentration to 1 ppm was measured. The test was carried out for 24 hours from the start of light irradiation.
  • Preparation Example 1-9 ⁇ Preparation of titanium oxide fine particle dispersion> A 36% by mass titanium (IV) chloride aqueous solution is diluted 10-fold with pure water, and then 10% by mass of aqueous ammonia is gradually added for neutralization and hydrolysis to obtain a titanium hydroxide precipitate. It was The pH at this time was 8.5. The obtained precipitate was deionized by repeating addition of pure water and decantation. After this deionization treatment, 35 mass% hydrogen peroxide solution was added to the titanium hydroxide precipitate so that the H 2 O 2 /Ti (molar ratio) was 8, and then the mixture was stirred at 60° C. for 2 hours to be sufficiently mixed. To obtain a transparent orange peroxotitanium acid solution (1i).
  • Table 3 summarizes the mixing ratio of the titanium oxide fine particle dispersion liquid, the dispersed particle diameter (D 50 , D 90 ), and the acetaldehyde gas decomposition test results when the titanium oxide fine particles (1A) are used as the first titanium oxide fine particles.
  • the dispersed particle size was measured by a dynamic light scattering method using a laser beam (ELSZ-2000ZS (manufactured by Otsuka Electronics Co., Ltd.).
  • the first titanium oxide fine particles in which a tin component and a transition metal component (a molybdenum component, a tungsten component or a vanadium component) that enhances visible light responsiveness are solid-dissolved and a second titanium solution in which an iron component and a silicon component are solid-dissolved
  • a tin component and a transition metal component a molybdenum component, a tungsten component or a vanadium component
  • a second titanium solution in which an iron component and a silicon component are solid-dissolved

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)

Abstract

光触媒活性、特に可視光領域での光触媒活性が高い酸化チタン微粒子混合物の提供。 第1の酸化チタン微粒子と第2の酸化チタン微粒子とを含有する酸化チタン微粒子混合物であって、 第2の酸化チタン微粒子が少なくとも鉄成分及びケイ素成分を固溶したものであり、 第1の酸化チタン微粒子が鉄及びケイ素成分以外の成分を固溶してもよい酸化チタン微粒子である、酸化チタン微粒子混合物。

Description

酸化チタン微粒子混合物、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン微粒子分散液の製造方法
 本発明は、酸化チタン微粒子混合物、その分散液、分散液を用いて形成される光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン微粒子分散液の製造方法に関し、更に詳細には、可視光(波長400~800nm)のみでも光触媒活性を発現する、透明性の高い光触媒薄膜を簡便に作製することができる可視光応答型光触媒酸化チタン微粒子混合物等に関する。
 光触媒は、基材表面の清浄化、脱臭、抗菌等の用途に多用されている。光触媒反応とは、光触媒が光を吸収することによって生じた励起電子及び正孔が起こす反応のことをいう。光触媒による有機物の分解は、主として次の〔1〕、〔2〕の機構で起きていると考えられている。
〔1〕生成した励起電子及び正孔が光触媒表面に吸着している酸素や水と酸化還元反応を行い、該酸化還元反応により発生した活性種が有機物を分解する。
〔2〕生成した正孔が、光触媒表面に吸着している有機物を直接酸化して分解する。
 最近、上述のような光触媒作用の適用は、紫外線が利用できる屋外での使用のみならず、蛍光灯のように可視領域の光(波長400~800nm)が大部分を占める光源で照らされた室内空間でも利用できるようにする検討が行われている。例えば、可視光応答型光触媒として、酸化タングステン光触媒体(特開2009-148700号公報:特許文献1)が開発されたが、タングステンは希少元素であるため、汎用元素であるチタンを利用した光触媒の可視光活性向上が望まれている。
 酸化チタンを利用した光触媒の可視光活性向上方法としては、酸化チタン微粒子や金属をドープした酸化チタン微粒子の表面に、鉄や銅を担持させる方法(例えば、特開2012-210632号公報:特許文献2、特開2010-104913号公報:特許文献3、特開2011-240247号公報:特許文献4、特開平7-303835号公報:特許文献5)、スズと可視光活性を高める遷移金属を固溶(ドープ)した酸化チタン微粒子と銅を固溶した酸化チタン微粒子とをそれぞれ準備した後混合して用いる方法(国際公開第2014/045861号:特許文献6)、スズと可視光応答性を高める遷移金属を固溶した酸化チタン微粒子と鉄族元素を固溶した酸化チタン微粒子とをそれぞれ準備した後混合して用いる方法(国際公開第2016/152487号:特許文献7)などが知られている。
 後者(特許文献7)のスズと可視光活性を高める遷移金属を固溶した酸化チタン微粒子と鉄族元素を固溶した酸化チタン微粒子とをそれぞれ準備した後、混合して得られる可視光応答型光触媒酸化チタン微粒子分散液を用いて製膜した光触媒膜を用いると、可視領域の光のみの条件下ではこれまで難しかった分解基質が低濃度である場合においても高い分解活性が得られるものであるが、実環境下において十分な効果を実感するために更なる可視光活性の向上が求められている。
特開2009-148700号公報 特開2012-210632号公報 特開2010-104913号公報 特開2011-240247号公報 特開平7-303835号公報 国際公開第2014/045861号 国際公開第2016/152487号
 従って、本発明は、従来よりも更に高い光触媒活性、特に可視光活性を得られる酸化チタン微粒子混合物、その分散液、分散液を用いて形成される光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン微粒子分散液の製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため、酸化チタン微粒子に固溶させる金属元素やその組み合わせ、金属元素を固溶した酸化チタンの組み合わせ、混合比などを更に詳細に検討した結果、光触媒(特に、特定の金属を固溶した酸化チタン微粒子)に、鉄成分及びケイ素成分を固溶した酸化チタン微粒子を混合することによって光触媒活性、特に可視光活性が飛躍的に向上することを見出し、本発明を完成した。
 従って、本発明は、下記に示す酸化チタン微粒子混合物、その分散液、分散液を用いて形成される光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン微粒子分散液の製造方法を提供するものである。
〔1〕
 第1の酸化チタン微粒子と第2の酸化チタン微粒子とを含有する酸化チタン微粒子混合物であって、
 第2の酸化チタン微粒子が少なくとも鉄成分及びケイ素成分を固溶したものであり、
 第1の酸化チタン微粒子が鉄及びケイ素成分以外の成分を固溶してもよい酸化チタン微粒子である、酸化チタン微粒子混合物。
〔2〕
 第1の酸化チタン微粒子と第2の酸化チタン微粒子の混合比が、それぞれの質量比[(第1の酸化チタン微粒子)/(第2の酸化チタン微粒子)]で99~0.01である〔1〕に記載の酸化チタン微粒子混合物。
〔3〕
 第1の酸化チタン微粒子が、スズ成分及び可視光応答性を高める遷移金属成分を固溶したものである、〔1〕又は〔2〕に記載の酸化チタン微粒子混合物。
〔4〕
 第1の酸化チタン微粒子に固溶されたスズ成分の含有量がチタンとのモル比(Ti/Sn)で1~1,000である〔3〕に記載の酸化チタン微粒子混合物。
〔5〕
 第1の酸化チタン微粒子に固溶された遷移金属成分が、バナジウム、クロム、マンガン、ニオブ、モリブデン、ロジウム、タングステン及びセリウムから選ばれる少なくとも1種である〔3〕又は〔4〕に記載の酸化チタン微粒子混合物。
〔6〕
 第1の酸化チタン微粒子に固溶された遷移金属成分が、モリブデン、タングステン及びバナジウムから選ばれる少なくとも1種である〔5〕に記載の酸化チタン微粒子混合物。
〔7〕
 第1の酸化チタン微粒子に固溶されたモリブデン、タングステン及びバナジウム成分それぞれの含有量が、チタンとのモル比(Ti/MoまたはTi/WまたはTi/V)で1~10,000である〔6〕に記載の酸化チタン微粒子混合物。
〔8〕
 第2の酸化チタン微粒子に固溶された鉄成分及びケイ素成分それぞれの含有量が、チタンとのモル比(Ti/FeまたはTi/Si)で1~1,000である〔1〕~〔7〕のいずれか1項に記載の酸化チタン微粒子混合物。
〔9〕
 第2の酸化チタン微粒子が更にモリブデン、タングステン及びバナジウムから選ばれる少なくとも1種の成分を固溶したものである〔1〕~〔8〕のいずれか1項に記載の酸化チタン微粒子混合物。
〔10〕
 水性分散媒中に、〔1〕~〔9〕のいずれか1項に記載の酸化チタン微粒子混合物が分散されている酸化チタン微粒子分散液。
〔11〕
 更に、バインダーを含有する〔10〕に記載の酸化チタン微粒子分散液。
〔12〕
 バインダーがケイ素化合物系バインダーである〔11〕に記載の酸化チタン微粒子分散液。
〔13〕
 〔1〕~〔9〕のいずれか1項に記載の酸化チタン微粒子混合物を含む光触媒薄膜。
〔14〕
 更に、バインダーを含有する〔13〕に記載の光触媒薄膜。
〔15〕
 基材表面に〔13〕又は〔14〕の光触媒薄膜が形成された部材。
〔16〕
 下記工程(1)~(5)を有する酸化チタン微粒子分散液の製造方法。
 (1)原料チタン化合物、スズ化合物、遷移金属化合物、塩基性物質、過酸化水素及び水性分散媒から、スズ成分及び遷移金属成分含有ペルオキソチタン酸溶液を製造する工程
 (2)上記(1)の工程で製造したスズ成分及び遷移金属成分含有ペルオキソチタン酸溶液を、圧力制御の下、80~250℃で加熱し、スズ成分及び遷移金属成分含有酸化チタン微粒子分散液を得る工程
 (3)原料チタン化合物、鉄化合物、ケイ素化合物、塩基性物質、過酸化水素及び水性分散媒から、鉄成分及びケイ素成分含有ペルオキソチタン酸溶液を製造する工程
 (4)上記(3)の工程で製造した鉄成分及びケイ素成分含有ペルオキソチタン酸溶液を、圧力制御の下、80~250℃で加熱し、鉄成分及びケイ素成分含有酸化チタン微粒子分散液を得る工程
 (5)上記(2)、(4)の工程で製造した2種類の酸化チタン微粒子分散液を混合する工程
 本発明の酸化チタン微粒子混合物は、光触媒活性、特に可視光(波長400~800nm)のみでも高い光触媒活性を有する。また、該酸化チタン微粒子混合物の分散液から透明性の高い光触媒薄膜を簡便に作製することができる。したがって、本発明の酸化チタン微粒子混合物は、蛍光灯や白色LEDのような可視光が大部分を占める光源で照らされた室内空間で利用する部材に有用である。
 以下、本発明について詳細に説明する。
<酸化チタン微粒子混合物>
 本発明の酸化チタン微粒子混合物は、互いに組成の異なる酸化チタン微粒子である第1の酸化チタン微粒子と第2の酸化チタン微粒子とを含有する酸化チタン微粒子混合物であり、特に該混合物は、分散液として使用することが望ましい。
<酸化チタン微粒子分散液>
 本発明の酸化チタン微粒子分散液は、水性分散媒中に、互いに組成の異なる酸化チタン微粒子である第1の酸化チタン微粒子と第2の酸化チタン微粒子とが分散されているものであり、第1の酸化チタン微粒子は鉄及びケイ素成分以外の成分を固溶してもよい酸化チタン微粒子であり、好ましくはスズ成分及び可視光応答性を高める鉄以外の遷移金属成分を固溶した酸化チタン微粒子であり、第2の酸化チタン微粒子は少なくとも鉄成分及びケイ素成分を固溶した酸化チタン微粒子である。
 ここで、本明細書において、固溶体とは、ある一つの結晶相の格子点にある原子が別の原子と置換するか、格子間隙に別の原子が入り込んだ相、即ち、ある結晶相に他の物質が溶け込んだとみなされる混合相を有するものをいい、結晶相としては均一相であるものをいう。格子点にある溶媒原子が溶質原子と置換したものを置換型固溶体、格子間隙に溶質原子が入ったものを侵入型固溶体というが、本明細書では、このいずれをも指すものとする。
 本発明の酸化チタン微粒子において、第1の酸化チタン微粒子は鉄原子及びケイ素原子以外の原子と固溶体を形成する場合があり、特にスズ原子及び可視光応答性を高める鉄原子以外の遷移金属原子と固溶体を形成する場合があり、第2の酸化チタン微粒子は鉄原子及びケイ素原子と固溶体を形成していることを特徴とする。固溶体としては、置換型であっても侵入型であってもよい。酸化チタンの置換型固溶体は、酸化チタン結晶のチタンサイトが各種金属原子に置換されて形成されるものであり、酸化チタンの侵入型固溶体は、酸化チタン結晶の格子間隙に各種金属原子が入って形成されるものである。酸化チタンに各種金属原子が固溶されると、X線回折などにより結晶相を測定した際、酸化チタンの結晶相のピークのみが観測され、添加した各種金属原子由来の化合物のピークは観測されない。
 金属酸化物結晶に異種金属を固溶する方法は特に限定されるものではないが、気相法(CVD法、PVD法など)、液相法(水熱法、ゾル・ゲル法など)、固相法(高温焼成法など)などを挙げることができる。
 酸化チタン微粒子の結晶相としては、通常、ルチル型、アナターゼ型、ブルッカイト型の3つが知られているが、前記第1又は第2の酸化チタン微粒子は、主としてルチル型又はアナターゼ型を利用することが好ましい。特に、第1の酸化チタン微粒子は、主としてルチル型が好ましく、第2の酸化チタン微粒子は、主としてアナターゼ型が好ましい。なお、ここでいう「主として」とは、酸化チタン微粒子全体のうち、当該結晶相の酸化チタン微粒子を50質量%以上含有することを意味し、好ましくは70質量%以上、更に好ましくは90質量%以上であり、100質量%であってもよい。
 また、分散液の分散媒は、通常水性溶媒が使用され、水を用いることが好ましいが、水と任意の割合で混合される親水性有機溶媒と水との混合溶媒を用いてもよい。水としては、例えば、ろ過水、脱イオン水、蒸留水、純水等の精製水が好ましい。また、親水性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、エチレングリコール等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコール-n-プロピルエーテル等のグリコールエーテル類が好ましい。混合溶媒を用いる場合には、混合溶媒中の親水性有機溶媒の割合が0質量%より多く、50質量%以下であることが好ましく、より好ましくは20質量%以下、更に好ましくは10質量%以下である。
 第1の酸化チタン微粒子としては、光触媒として使用される酸化チタンを用いることができ、酸化チタン微粒子;白金、金、パラジウム、鉄、銅、ニッケルなどの金属成分を担持した酸化チタン微粒子;金属成分を固溶した酸化チタン微粒子のいずれでもよいが、好ましくは鉄及びケイ素成分以外の成分を固溶した酸化チタン微粒子であり、より好ましくはスズ成分及び可視光応答性を高める鉄成分以外の遷移金属成分を固溶した酸化チタンの微粒子である。
 第1の酸化チタン微粒子が、スズ成分と可視光応答性を高める鉄成分以外の遷移金属成分を固溶する場合の遷移金属は、周期表第3族~第11族の中から選ばれる元素であり、可視光応答性を高める遷移金属成分としては、バナジウム、クロム、マンガン、ニオブ、モリブデン、ロジウム、タングステン、セリウムなどから選択することができるが、その中でもモリブデン、タングステン、バナジウムが選択されることが好ましい。
 第1の酸化チタン微粒子に固溶するスズ成分は、光触媒薄膜の可視光応答性を高めるためのものであるが、スズ化合物から誘導されるものであればよく、例えば、スズの金属単体(Sn)、酸化物(SnO、SnO2)、水酸化物、塩化物(SnCl2、SnCl4)、硝酸塩(Sn(NO32)、硫酸塩(SnSO4)、ハロゲン(Br、I)化物、オキソ酸塩(Na2SnO3、K2SnO3)、錯化合物等が挙げられ、これらの1種又は2種類以上を組み合わせて使用したものでもよい。その中でも酸化物(SnO、SnO2)、塩化物(SnCl2、SnCl4)、硫酸塩(SnSO4)、オキソ酸塩(Na2SnO3、K2SnO3)を使用することが好ましい。
 第1の酸化チタン微粒子中のスズ成分の含有量は、チタンとのモル比(Ti/Sn)で1~1,000、好ましくは5~500、より好ましくは5~100である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、1,000超過の場合、可視光応答性が不十分となることがあるためである。
 第1の酸化チタン微粒子に固溶される遷移金属成分は、当該遷移金属化合物から誘導されるものであればよく、金属、酸化物、水酸化物、塩化物、硝酸塩、硫酸塩、ハロゲン(Br、I)化物、オキソ酸塩、各種錯化合物等が挙げられ、これらの1種又は2種以上が用いられる。
 第1の酸化チタン微粒子中の遷移金属成分の含有量は、遷移金属成分の種類に応じて適宜選定し得るが、チタンとのモル比(Ti/遷移金属)で1~10,000であることが好ましい。
 第1の酸化チタン微粒子に固溶される遷移金属成分にモリブデンを選択する場合、モリブデン成分はモリブデン化合物から誘導されるものであればよく、例えば、モリブデンの金属単体(Mo)、酸化物(MoO2、MoO3)、水酸化物、塩化物(MoCl3、MoCl5)、硝酸塩、硫酸塩、ハロゲン(Br、I)化物、モリブデン酸及びオキソ酸塩(H2MoO4、Na2MoO4、K2MoO4)、錯化合物等が挙げられ、これらの1種又は2種以上を組み合わせて使用したものでもよい。その中でも、酸化物(MoO2、MoO3)、塩化物(MoCl3、MoCl5)、オキソ酸塩(H2MoO4、Na2MoO4、K2MoO4)を使用することが好ましい。
 第1の酸化チタン微粒子中のモリブデン成分の含有量は、チタンとのモル比(Ti/Mo)で1~10,000、好ましくは5~5,000、より好ましくは20~1,000である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、可視光応答性が不十分となることがあるためである。
 第1の酸化チタン微粒子に固溶される遷移金属成分にタングステンを選択する場合、タングステン成分はタングステン化合物から誘導されるものであればよく、例えば、タングステンの金属単体(W)、酸化物(WO3)、水酸化物、塩化物(WCl4、WCl6)、硝酸塩、硫酸塩、ハロゲン(Br、I)化物、タングステン酸及びオキソ酸塩(H2WO4、Na2WO4、K2WO4)、錯化合物等が挙げられ、これらの1種又は2種以上を組み合わせて使用したものでもよい。その中でも、酸化物(WO3)、塩化物(WCl4、WCl6)、オキソ酸塩(Na2WO4、K2WO4)を使用することが好ましい。
 第1の酸化チタン微粒子中のタングステン成分の含有量は、チタンとのモル比(Ti/W)で1~10,000、好ましくは5~5,000、より好ましくは20~2,000である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、可視光応答性が不十分となることがあるためである。
 第1の酸化チタン微粒子に固溶される遷移金属成分にバナジウムを選択する場合、バナジウム成分はバナジウム化合物から誘導されるものであればよく、例えば、バナジウムの金属単体(V)、酸化物(VO、V23、VO2、V25)、水酸化物、塩化物(VCl5)、オキシ塩化物(VOCl3)、硝酸塩、硫酸塩、オキシ硫酸塩(VOSO4)、ハロゲン(Br、I)化物、オキソ酸塩(Na3VO4、K3VO4、KVO3)、錯化合物等が挙げられ、これらの1種又は2種以上を組み合わせて使用したものでもよい。その中でも、酸化物(V23、V25)、塩化物(VCl5)、オキシ塩化物(VOCl3)、オキシ硫酸塩(VOSO4)、オキソ酸塩(Na3VO4、K3VO4、KVO3)を使用することが好ましい。
 第1の酸化チタン微粒子中のバナジウム成分の含有量は、チタンとのモル比(Ti/V)で1~10,000、好ましくは10~10,000、より好ましくは100~10,000である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、可視光応答性が不十分となることがあるためである。
 第1の酸化チタン微粒子に固溶される遷移金属成分として、モリブデン、タングステン、バナジウムの中から複数を選択することもできる。その際の各成分量は上記範囲より選択することができる。但し、各成分量の合計とチタンとのモル比[Ti/(Mo+W+V)]は、1以上10,000より小さい。
 第1の酸化チタン微粒子は、1種で用いてもよいし、2種以上を組み合わせて使用してもよい。異なる可視光応答性を持つ2種以上を組み合わせた場合、可視光活性が高まる効果が得られることがある。
 第2の酸化チタン微粒子は、第1の酸化チタン微粒子と異なる組成を持ち、特徴的には鉄成分及びケイ素成分が固溶されている。
 第2の酸化チタン微粒子には鉄成分及びケイ素成分に加えて、更に可視光応答性を高める成分として第1の酸化チタン微粒子と同様の遷移金属成分であるモリブデン、タングステン、バナジウムを固溶させてもよい。
 第2の酸化チタン微粒子に固溶される鉄成分は、鉄化合物から誘導されるものであればよく、例えば、鉄の金属単体(Fe)、酸化物(Fe23、Fe34)、水酸化物、オキシ水酸化物(FeO(OH))、塩化物(FeCl2、FeCl3)、硝酸塩(Fe(NO)3)、硫酸塩(FeSO4、Fe2(SO43)、ハロゲン(Br、I)化物、錯化合物等が挙げられ、これらの1種又は2種以上を組み合わせて使用してもよい。その中でも、酸化物(Fe23、Fe34)、オキシ水酸化物(FeO(OH))、塩化物(FeCl2、FeCl3)、硝酸塩(Fe(NO)3)、硫酸塩(FeSO4、Fe2(SO43)を使用することが好ましい。
 第2の酸化チタン微粒子中の鉄成分の含有量は、チタンとのモル比(Ti/Fe)で1~1,000、好ましくは2~200、より好ましくは5~100である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、1,000超過の場合、可視光応答性が不十分となることがあるためである。
 第2の酸化チタン微粒子に固溶されるケイ素成分は、ケイ素化合物から誘導されるものであればよく、例えば、ケイ素の金属単体(Si)、酸化物(SiO、SiO2)、アルコキシド(Si(OCH34、Si(OC254、Si(OCH(CH324)、ケイ酸塩(ナトリウム塩、カリウム塩)等が挙げられ、これらの1種又は2種類以上を組み合わせて使用してもよい。その中でも、ケイ酸塩(ケイ酸ナトリウム)を使用することが好ましい。
 第2の酸化チタン微粒子中のケイ素成分の含有量は、チタンとのモル比(Ti/Si)で1~1,000、好ましくは2~200、より好ましくは3~100である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、1,000超過の場合、可視光応答性が不十分となることがあるためである。
 第2の酸化チタン微粒子に遷移金属成分を固溶させる場合、遷移金属成分の含有量は、遷移金属成分の種類に応じて適宜選定し得るが、チタンとのモル比(Ti/遷移金属)で1~10,000であることが好ましい。
 第2の酸化チタン微粒子に固溶される遷移金属成分にモリブデンを選択する場合、モリブデン成分は第1の酸化チタン微粒子と同様のモリブデン化合物から誘導されるものであればよい。
 第2の酸化チタン微粒子中のモリブデン成分の含有量は、チタンとのモル比(Ti/Mo)で1~10,000、好ましくは5~5,000、より好ましくは20~1,000である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、可視光応答性が不十分となることがあるためである。
 第2の酸化チタン微粒子に固溶される遷移金属成分にタングステンを選択する場合、タングステン成分は第1の酸化チタン微粒子と同様のタングステン化合物から誘導されるものであればよい。
 第2の酸化チタン微粒子中のタングステン成分の含有量は、チタンとのモル比(Ti/W)で1~10,000、好ましくは5~5,000、より好ましくは20~1,000である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、可視光応答性が不十分となることがあるためである。
 第2の酸化チタン微粒子に固溶される遷移金属成分にバナジウムを選択する場合、バナジウム成分は第1の酸化チタン微粒子と同様のバナジウム化合物から誘導されるものであればよい。
 第2の酸化チタン微粒子中のバナジウム成分の含有量は、チタンとのモル比(Ti/V)で1~10,000、好ましくは10~10,000、より好ましくは100~10,000である。これは、モル比が1未満の場合、酸化チタンの含有割合が低下し光触媒効果が十分発揮されないことがあり、10,000超過の場合、可視光応答性が不十分となることがあるためである。
 第2の酸化チタン微粒子に固溶される遷移金属成分として、モリブデン、タングステン、バナジウムの中から複数を選択することもできる。その際の各成分量は上記範囲より選択することができる。但し、各成分量の合計とチタンとのモル比[Ti/(Mo+W+V)]は、1以上10,000より小さい。
 第2の酸化チタン微粒子は、1種で用いてもよいし、2種以上を組み合わせて使用してもよい。異なる可視光応答性を持つ2種以上を組み合わせた場合、可視光活性が高まる効果が得られることがある。
 なお、上記に挙げた金属が固溶すれば、特に制限はないが、好ましい固溶する金属成分の組み合わせとして、Ti-Sn、Ti-Mo、Ti-W、Ti-V、Ti-Sn-Mo、Ti-Sn-W、Ti-Sn-V、Ti-Mo-W、Ti-Mo-V、Ti-W-V、Ti-Sn-Mo-W、Ti-Sn-Mo-V、Ti-Sn-W-V、Ti-Sn-Mo-W-Vなどが挙げられる。
 酸化チタン微粒子混合物中の第1の酸化チタン微粒子及び第2の酸化チタン微粒子は、レーザー光を用いた動的光散乱法により測定される体積基準の50%累積分布径(以下、D50と表記することがある)が、それぞれ5~30nmであることが好ましく、より好ましくは5~20nmである。D50が、5nm未満の場合、光触媒活性が不十分になることがあり、30nm超過の場合、分散液が不透明となることがあるためである。
 また、体積基準の90%累積分布径(以下、D90と表記することがある)は、それぞれ5~100nmであることが好ましく、より好ましくは5~80nmである。D90が、5nm未満の場合、光触媒活性が不十分になることがあり、100nm超過の場合、分散液が不透明となることがあるためである。
 なお、上記酸化チタン微粒子混合物中の第1の酸化チタン微粒子及び第2の酸化チタン微粒子のD50及びD90を測定する装置としては、例えば、ELSZ-2000ZS(大塚電子(株)製)、ナノトラックUPA-EX150(日機装(株)製)、LA-910(堀場製作所(株)製)等を使用することができる。
 酸化チタン微粒子混合物中に含まれる第1の酸化チタン微粒子及び第2の酸化チタン微粒子の混合比は、それぞれの質量比[(第1の酸化チタン微粒子)/(第2の酸化チタン微粒子)]で99~0.01であることが好ましく、より好ましくは99~0.1、更に好ましくは19~1である。これは、上記質量比が99超過もしくは0.01未満の場合、可視光活性が不十分となることがあるためである。
 光触媒酸化チタン微粒子分散液中の第1の酸化チタン微粒子及び第2の酸化チタン微粒子の合計の濃度は、所要の厚さの光触媒薄膜の作製し易さの点で、0.01~20質量%が好ましく、特に0.5~10質量%が好ましい。
 更に、酸化チタン微粒子分散液には、後述する各種部材表面に該分散液を塗布し易くすると共に該微粒子を接着し易いようにする目的でバインダーを添加してもよい。バインダーとしては、例えば、ケイ素、アルミニウム、チタン、ジルコニウム等を含む金属化合物系バインダーやフッ素系樹脂、アクリル系樹脂、ウレタン系樹脂等を含む有機樹脂系バインダー等が挙げられる。
 バインダーと酸化チタンの質量比[酸化チタン/バインダー]としては、99~0.01、より好ましくは9~0.1、更に好ましくは2.5~0.4の範囲で添加して使用することが好ましい。これは、上記質量比が99超過の場合、各種部材表面への酸化チタン微粒子の接着が不十分となり、0.01未満の場合、可視光活性が不十分となることがあるためである。
 中でも、光触媒作用及び透明性の高い優れた光触媒薄膜を得るためには、特にケイ素化合物系バインダーを質量比(酸化チタン/ケイ素化合物系バインダー)99~0.01、より好ましくは9~0.1、更に好ましくは2.5~0.4の範囲で添加して使用することが好ましい。ここで、ケイ素化合物系バインダーとは、固体状又は液体状のケイ素化合物を水性分散媒中に含んでなるケイ素化合物の、コロイド分散液、溶液、又はエマルジョンであって、具体的には、コロイダルシリカ(好ましい粒径1~150nm);シリケート等のケイ酸塩類溶液;シラン、シロキサン加水分解物エマルジョン;シリコーン樹脂エマルジョン;シリコーン-アクリル樹脂共重合体、シリコーン-ウレタン樹脂共重合体等のシリコーン樹脂と他の樹脂との共重合体のエマルジョン等を挙げることができる。
<酸化チタン微粒子分散液の製造方法>
 本発明の酸化チタン微粒子分散液の製造方法は、第1の酸化チタン微粒子分散液と第2の酸化チタン微粒子分散液とをそれぞれ製造し、第1の酸化チタン微粒子分散液と第2の酸化チタン微粒子分散液とを混合することにより調製される。
 第1の酸化チタン微粒子がスズ成分及び可視光応答性を高める遷移金属成分を固溶したものである場合の酸化チタン微粒子分散液の製造方法として、具体的には、下記工程(1)~(5)を有する製造方法を挙げることができる。

(1)原料チタン化合物、スズ化合物、遷移金属化合物、塩基性物質、過酸化水素及び水性分散媒から、スズ及び遷移金属成分含有ペルオキソチタン酸溶液を製造する工程

(2)上記(1)の工程で製造したスズ及び遷移金属成分含有ペルオキソチタン酸溶液を、圧力制御の下、80~250℃で加熱し、スズ及び遷移金属成分含有酸化チタン微粒子分散液を得る工程

(3)原料チタン化合物、鉄化合物、ケイ素化合物、塩基性物質、過酸化水素及び水性分散媒から、鉄及びケイ素成分含有ペルオキソチタン酸溶液を製造する工程

(4)上記(3)の工程で製造した鉄及びケイ素成分含有ペルオキソチタン酸溶液を、圧力制御の下、80~250℃で加熱し、鉄及びケイ素成分含有酸化チタン微粒子分散液を得る工程

(5)上記(2)及び(4)の工程でそれぞれ製造した2種類の酸化チタン微粒子分散液を混合する工程
 工程(1)~(2)が第1の酸化チタン微粒子分散液を得る工程であり、工程(3)~(4)が第2の酸化チタン微粒子分散液を得る工程であり、そして、工程(5)が最終的に第1の酸化チタン微粒子と第2の酸化チタン微粒子を含有する分散液を得る工程である。
 既に述べたように、工程(1)で用いられる遷移金属化合物としては、モリブデン化合物、タングステン化合物、バナジウム化合物のうち、少なくとも1つを用いることが好ましいので、以下その前提で各工程について詳細に説明する。
・工程(1):
 工程(1)では、原料チタン化合物、遷移金属化合物、スズ化合物、塩基性物質及び過酸化水素を水性分散媒中で反応させることにより、遷移金属成分及びスズ成分含有ペルオキソチタン酸溶液を製造する。
 反応方法としては、下記i)~iii)の方法のいずれでもよい。

i)水性分散媒中の原料チタン化合物及び塩基性物質に対して、遷移金属化合物及びスズ化合物を添加して溶解させてから、遷移金属成分及びスズ成分含有水酸化チタンとし、含有する金属イオン以外の不純物イオンを除去し、過酸化水素を添加して遷移金属成分及びスズ成分含有ペルオキソチタン酸とする方法

ii)水性分散媒中の原料チタン化合物に塩基性物質を添加して水酸化チタンとし、含有する金属イオン以外の不純物イオンを除去した後に遷移金属化合物及びスズ化合物を添加し、次いで過酸化水素を添加することで遷移金属成分及びスズ成分含有ペルオキソチタン酸とする方法

iii)水性分散媒中の原料チタン化合物に塩基性物質を添加して水酸化チタンとし、含有する金属イオン以外の不純物イオンを除去し、過酸化水素を添加してペルオキソチタン酸とした後に遷移金属化合物及びスズ化合物を添加して、遷移金属成分及びスズ成分含有ペルオキソチタン酸とする方法

 なお、i)の方法の前段において、「水性分散媒中の原料チタン化合物及び塩基性物質」を、「原料チタン化合物を分散させた水性分散媒」と「塩基性物質を分散させた水性分散媒」のように2液の水性分散媒に分けて、遷移金属化合物及びスズ化合物のそれぞれの化合物の当該2液への溶解性に従って、それぞれの化合物を当該2液のいずれか一方又は両方へ溶解させた後に、両者を混合してもよい。
 このように遷移金属成分及びスズ成分含有ペルオキソチタン酸を得たのち、後述の工程(2)の水熱反応に供することにより、酸化チタンに当該各種金属を固溶した酸化チタン微粒子を得ることができる。
 ここで、原料チタン化合物としては、例えば、チタンの塩化物、硝酸塩、硫酸塩等の無機酸塩、蟻酸、クエン酸、蓚酸、乳酸、グリコール酸等の有機酸塩、これらの水溶液にアルカリを添加して加水分解することにより析出させた水酸化チタン等が挙げられ、これらの1種又は2種以上を組み合わせて使用してもよい。その中でも、チタンの塩化物(TiCl3、TiCl4)を使用することが好ましい。
 遷移金属化合物、スズ化合物、及び水性分散媒としては、それぞれ前述のものが、前述の配合となるように使用される。なお、原料チタン化合物と水性分散媒とから形成される原料チタン化合物水溶液の濃度は、60質量%以下、特に30質量%以下であることが好ましい。濃度の下限は適宜選定されるが、通常1質量%以上であることが好ましい。
 塩基性物質は、原料チタン化合物をスムーズに水酸化チタンにするためのもので、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属又はアルカリ土類金属の水酸化物、アンモニア、アルカノールアミン、アルキルアミン等のアミン化合物が挙げられ、その中でも特にアンモニアを使用することが好ましく、原料チタン化合物水溶液のpHを7以上、特にpH7~10になるような量で添加して使用される。なお、塩基性物質は、上記水性分散媒と共に適当な濃度の水溶液にして使用してもよい。
 過酸化水素は、上記原料チタン化合物又は水酸化チタンをペルオキソチタン、つまりTi-O-O-Ti結合を含む酸化チタン化合物に変換させるためのものであり、通常、過酸化水素水の形態で使用される。過酸化水素の添加量は、Ti、遷移金属及びSnの合計物質量の1.5~20倍モルとすることが好ましい。また、過酸化水素を添加して原料チタン化合物又は水酸化チタンをペルオキソチタン酸にする反応において、反応温度は5~80℃とすることが好ましく、反応時間は30分~24時間とすることが好ましい。
 こうして得られる遷移金属成分及びスズ成分を含有するペルオキソチタン酸溶液は、pH調整等のため、アルカリ性物質又は酸性物質を含んでいてもよい。ここでいう、アルカリ性物質としては、例えば、アンモニア、水酸化ナトリウム、水酸化カルシウム、アルキルアミン等が挙げられ、酸性物質としては、例えば、硫酸、硝酸、塩酸、炭酸、リン酸、過酸化水素等の無機酸及び蟻酸、クエン酸、蓚酸、乳酸、グリコール酸等の有機酸が挙げられる。この場合、得られた遷移金属成分及びスズ成分を含有するペルオキソチタン酸溶液のpHは、1~9、特に4~7であることが取り扱いの安全性の点で好ましい。
・工程(2):
 工程(2)では、上記工程(1)で得られた遷移金属成分及びスズ成分含有ペルオキソチタン酸溶液を、圧力制御の下、80~250℃、好ましくは100~250℃の温度において0.01~24時間水熱反応に供する。反応温度は、反応効率と反応の制御性の観点から80~250℃が適切であり、その結果、遷移金属成分及びスズ成分含有ペルオキソチタン酸は、遷移金属及びスズ成分含有酸化チタン微粒子に変換されていく。なお、ここで圧力制御の下とは、反応温度が分散媒の沸点を超える場合には、反応温度が維持できるように、適宜加圧を行い、反応温度を維持することをいい、分散媒の沸点以下の温度とする場合に大気圧で制御する場合を含む。ここで用いる圧力は、通常0.12~4.5MPa程度、好ましくは0.15~4.5MPa程度、より好ましくは0.20~4.5MPa程度である。反応時間は、1分~24時間であることが好ましい。この工程(2)により、第1の酸化チタン微粒子である遷移金属成分及びスズ成分含有酸化チタン微粒子分散液が得られる。
 ここで得られる酸化チタン微粒子の粒子径は、既に述べた通りの範囲のものが好ましいが、反応条件を調整することで粒子径を制御することが可能であり、例えば、反応時間や昇温時間を短くすることによって粒子径を小さくすることができる。
・工程(3):
 工程(3)では、上記工程(1)~(2)とは別に、原料チタン化合物、鉄化合物、ケイ素化合物、塩基性物質及び過酸化水素を水性分散媒中で反応させることにより、鉄成分及びケイ素成分含有ペルオキソチタン酸溶液を製造する。反応方法としては、上記工程(1)における遷移金属化合物及びスズ化合物に代えて、鉄化合物及びケイ素化合物を使用する以外は全く同様の方法で行うことができる。
 即ち、出発材料としての、原料チタン化合物(第1の酸化チタンの原料チタン化合物と同じ)、鉄化合物、ケイ素化合物、水性分散媒、塩基性物質、及び過酸化水素は、それぞれ上述のものが、上述の配合となるように使用され、上述の温度及び時間のもとで反応に供される。
 こうして得られる鉄成分及びケイ素成分含有ペルオキソチタン酸溶液も、pH調整等のため、アルカリ性物質又は酸性物質を含んでいてもよく、ここでいう、アルカリ性物質及び酸性物質、そしてpH調整も前述と同様に取り扱うことができる。
・工程(4):
 工程(4)では、上記工程(3)で得られた鉄成分及びケイ素成分含有ペルオキソチタン酸溶液を、圧力制御の下、80~250℃、好ましくは100~250℃の温度において0.01~24時間水熱反応に供する。反応温度は、反応効率と反応の制御性の観点から80~250℃が適切であり、その結果、鉄及びケイ素成分含有ペルオキソチタン酸は、鉄及びケイ素成分含有酸化チタン微粒子に変換されていく。なお、ここで圧力制御の下とは、反応温度が分散媒の沸点を超える場合には、反応温度が維持できるように、適宜加圧を行い、反応温度を維持することをいい、分散媒の沸点以下の温度とする場合に大気圧で制御する場合を含む。ここで用いる圧力は、通常0.12~4.5MPa程度、好ましくは0.15~4.5MPa程度、より好ましくは0.20~4.5MPa程度である。反応時間は、1分~24時間であることが好ましい。この工程(4)により、第2の酸化チタン微粒子である鉄及びケイ素成分含有酸化チタン微粒子分散液が得られる。
 ここで得られる酸化チタン微粒子の粒子径も、既に述べた通りの範囲のものが好ましいが、反応条件を調整することで粒子径を制御することが可能であり、例えば、反応時間や昇温時間を短くすることによって粒子径を小さくすることができる。
・工程(5):
 工程(5)では、工程(1)~(2)で得られた第1の酸化チタン微粒子分散液と工程(3)~(4)で得られた第2の酸化チタン微粒子分散液とを混合する。混合方法は特に限定されず、攪拌機で撹拌する方法でも、超音波分散機で分散させる方法でもよい。混合時の温度は20~100℃、時間は1分~3時間であることが好ましい。混合比については、それぞれの酸化チタン微粒子分散液中の酸化チタン微粒子の質量比が、既に述べた通りの質量比になるように混合すればよい。
 それぞれの酸化チタン微粒子分散液に含まれる酸化チタン微粒子の質量は、それぞれの酸化チタン微粒子分散液の質量と濃度から算出できる。なお、酸化チタン微粒子分散液の濃度の測定方法は、酸化チタン微粒子分散液の一部をサンプリングし、105℃で3時間加熱して溶媒を揮発させた後の不揮発分(酸化チタン微粒子)の質量とサンプリングした酸化チタン微粒子分散液の質量から、次式に従い算出することができる。
 酸化チタン微粒子分散液の濃度(%)=〔不揮発分質量(g)/酸化チタン微粒子分散液質量(g)〕×100
 こうして調製された酸化チタン微粒子分散液中の第1の酸化チタン微粒子及び第2の酸化チタン微粒子の合計の濃度は、上述した通り、所要の厚さの光触媒薄膜の作製し易さの点で、0.01~20質量%が好ましく、特に0.5~10質量%が好ましい。濃度調整については、濃度が所望の濃度より高い場合には、水性溶媒を添加して希釈することで濃度を下げることができ、所望の濃度より低い場合には、水性溶媒を揮発もしくは濾別することで濃度を上げることができる。なお、濃度は、上述のように算出することができる。
 また、上述した膜形成性を高めるバインダーを添加する場合には、上述したバインダーの溶液(水性バインダー溶液)を、混合した後に所望の濃度となるよう、上述のように濃度調整を行った酸化チタン微粒子分散液に対して添加することが好ましい。
<光触媒薄膜を表面に有する部材>
 本発明の酸化チタン微粒子分散液は、各種部材の表面に光触媒膜を形成させるために使用することができる。ここで、各種部材は、特に制限されないが、部材の材料としては、例えば、有機材料、無機材料が挙げられる。これらは、それぞれの目的、用途に応じた様々な形状を有することができる。
 有機材料としては、例えば、塩化ビニル樹脂(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、アクリル樹脂、ポリアセタール、フッ素樹脂、シリコーン樹脂、エチレン-酢酸ビニル共重合体(EVA)、アクリロニトリル-ブタジエンゴム(NBR)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリビニルブチラール(PVB)、エチレン-ビニルアルコール共重合体(EVOH)、ポリイミド樹脂、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、ポリエーテルエーテルイミド(PEEI)、ポリエーテルエーテルケトン(PEEK)、メラミン樹脂、フェノール樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂等の合成樹脂材料、天然ゴム等の天然材料、又は上記合成樹脂材料と天然材料との半合成材料が挙げられる。これらは、フィルム、シート、繊維材料、繊維製品、その他の成型品、積層体等の所要の形状、構成に製品化されていてもよい。
 無機材料としては、例えば、非金属無機材料、金属無機材料が包含される。非金属無機材料としては、例えば、ガラス、セラミック、石材等が挙げられる。これらは、タイル、硝子、ミラー、壁、意匠材等の様々な形に製品化されていてもよい。金属無機材料としては、例えば、鋳鉄、鋼材、鉄、鉄合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、亜鉛ダイキャスト等が挙げられる。これらは、上記金属無機材料のメッキが施されていてもよいし、上記有機材料が塗布されていてもよいし、上記有機材料又は非金属無機材料の表面に施すメッキであってもよい。
 本発明の酸化チタン微粒子分散液は、上記各種部材の中でも、特に、PET等の高分子フィルム上に透明な光触媒薄膜を作製するのに有用である。
 各種部材表面への光触媒薄膜の形成方法としては、酸化チタン微粒子分散液を、例えば、上記部材表面に、スプレーコート、ディップコート等の公知の塗布方法により塗布した後、遠赤外線乾燥、IH乾燥、熱風乾燥等の公知の乾燥方法により乾燥させればよく、光触媒薄膜の厚さも種々選定され得るが、通常、10nm~10μmの範囲が好ましい。
 これにより、上述した酸化チタン微粒子混合物の被膜が形成される。この場合、上記分散液に上述した量でバインダーが含まれている場合は、酸化チタン微粒子混合物とバインダーとを含む被膜が形成される。
 このようにして形成される光触媒薄膜は、透明であり、従来のように紫外領域の光(波長10~400nm)において良好な光触媒作用を与えるばかりでなく、従来の光触媒では十分な光触媒作用を得ることができなかった可視領域の光(波長400~800nm)でも優れた光触媒作用が得られるものであり、該光触媒薄膜が形成された各種部材は、酸化チタンの光触媒作用により表面に吸着した有機物を分解することから、該部材表面の清浄化、脱臭、抗菌等の効果を発揮することができるものである。
 以下に、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。本発明における各種の測定は次のようにして行った。
(1)分散液中の酸化チタン微粒子の50%及び90%累積分布径(D50及びD90
 分散液中の酸化チタン微粒子のD50及びD90は、粒度分布測定装置(ELSZ-2000ZS(大塚電子(株)製))を使用して、レーザー光を用いた動的光散乱法により測定される体積基準の50%及び90%累積分布径として算出した。
(2)光触媒薄膜のアセトアルデヒドガス分解性能試験
 分散液を塗布、乾燥することで作製した光触媒薄膜の活性を、アセトアルデヒドガスの分解反応により評価した。評価はバッチ式ガス分解性能評価法により行った。

 具体的には、容積5Lの石英ガラス窓付きステンレス製セル内にA4サイズ(210mm×297mm)のPETフィルム上の全面に乾燥質量として約20mg分の光触媒微粒子を含む光触媒薄膜を形成した評価用サンプルを設置したのち、該セルを湿度50%に調湿した初期濃度のアセトアルデヒドガスで満たし、該セル上部に設置した光源で光を照射した。薄膜上の光触媒によりアセトアルデヒドガスが分解すると、該セル中のアセトアルデヒドガス濃度が低下する。そこで、その濃度を測定することで、アセトアルデヒドガス分解量を求めることができる。アセトアルデヒドガス濃度は光音響マルチガスモニタ(商品名“INNOVA1412”、LumaSense社製)を用いて測定し、アセトアルデヒドガス濃度を初期濃度から1ppmまで低減させるのに要した時間を測定した。試験は光照射開始から24時間まで実施した。
 紫外線照射下での光触媒活性評価において、光源にはUV蛍光ランプ(商品型番“FL10 BLB”、東芝ライテック(株))を使用し、放射照度が0.5mW/cm2の条件で紫外線を照射した。このとき、セル内のアセトアルデヒド初期濃度は20ppmとした。
 また、可視光照射下での光触媒活性評価において、光源にはLED(商品型番“TH-211×200SW”、シーシーエス(株)、分光分布:400~800nm)を使用し、照度30,000Lxの条件で可視光を照射した。このとき、セル内のアセトアルデヒド初期濃度は5ppmとした。
(3)酸化チタン微粒子の結晶相の同定
 酸化チタン微粒子の結晶相は、得られた酸化チタン微粒子の分散液を105℃、3時間乾燥させて回収した酸化チタン微粒子粉末の粉末X線回折(商品名“卓上型X線回折装置D2 PHASER”、ブルカー・エイエックスエス(株))を測定することで同定した。
(4)第1の酸化チタン微粒子分散液の調製
[調製例1-1]
<スズ及びモリブデンが固溶された酸化チタン微粒子分散液の調製>
 36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が20となるように添加・溶解し、これを純水で10倍に希釈した後、10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、スズを含有する水酸化チタンの沈殿物を得た。このときのpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の、スズを含有する水酸化チタン沈殿物に、前記の塩化チタン(IV)水溶液中のTi成分に対してTi/Mo(モル比)が250となるようモリブデン(VI)酸ナトリウムを添加した。H22/(Ti+Sn+Mo)(モル比)が10となるように35質量%過酸化水素水を添加し、その後60℃で2時間撹拌して十分に反応させ、橙色透明のスズ及びモリブデン含有ペルオキソチタン酸溶液(1a)を得た。
 容積500mLのオートクレーブに、スズ及びモリブデン含有ペルオキソチタン酸溶液(1a)400mLを仕込み、これを150℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、スズ及びモリブデンが固溶された酸化チタン微粒子(1A)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(1A)の粉末X線回折測定を行ったところ、観測されるピークはルチル型酸化チタンのもののみであり、スズ及びモリブデンが酸化チタンに固溶されていることが分かった。
[調製例1-2]
<スズ、モリブデン及びタングステンが固溶された酸化チタン微粒子分散液の調製>
 Ti/Sn(モル比)が10となるように塩化スズ(IV)を、脱イオン処理後のスズを含有する水酸化チタン沈殿物にTi/Mo(モル比)が100となるようにモリブデン(VI)酸ナトリウムとTi/W(モル比)が250となるようにタングステン(VI)酸ナトリウムを添加したことと、水熱処理時間を120分間としたこと以外は調製例1-1と同様にして、スズ、モリブデン及びタングステンが固溶された酸化チタン微粒子(1B)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(1B)の粉末X線回折測定を行ったところ、観測されるピークはルチル型酸化チタンのもののみであり、スズ、モリブデン及びタングステンが酸化チタンに固溶されていることが分かった。
[調製例1-3]
<スズ、モリブデン及びバナジウムが固溶された酸化チタン微粒子分散液の調製>
 36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が33となるように添加・溶解し、これを純水で10倍に希釈した後、この水溶液に、バナジン(V)酸ナトリウムが前記の塩化チタン(IV)水溶液中のTi成分に対してTi/V(モル比)が2,000となるよう添加・溶解した10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、スズ及びバナジウムを含有する水酸化チタンの沈殿物を得た。このときのpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の、スズ及びバナジウムを含有する水酸化チタン沈殿物にTi/Mo(モル比)が500となるようにモリブデン(VI)酸ナトリウムを添加してから、H22/(Ti+Sn+Mo+V)(モル比)が10となるように35質量%過酸化水素水を添加し、その後50℃で3時間撹拌して十分に反応させ、橙色透明のスズ、モリブデン及びバナジウム含有ペルオキソチタン酸溶液(1c)を得た。
 容積500mLのオートクレーブに、スズ、モリブデン及びバナジウム含有ペルオキソチタン酸溶液(1c)400mLを仕込み、これを160℃の条件下、60分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、スズ、モリブデン及びバナジウムが固溶された酸化チタン微粒子(1C)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(1C)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンとルチル型酸化チタンのものであり、スズ、モリブデン及びバナジウムが酸化チタンに固溶されていることが分かった。
[調製例1-4]
<スズ及びモリブデンが固溶された酸化チタン微粒子分散液の調製>
 36質量%の塩化チタン(IV)水溶液に塩化スズ(IV)をTi/Sn(モル比)が20となるように添加・溶解し、これを純水で10倍に希釈した後、10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、スズを含有する水酸化チタンの沈殿物を得た。このときのpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の、スズを含有する水酸化チタン沈殿物に、前記の塩化チタン(IV)水溶液中のTi成分に対してTi/Mo(モル比)が50となるようモリブデン(VI)酸ナトリウムを添加した。H22/(Ti+Sn+Mo)(モル比)が12となるように35質量%過酸化水素水を添加し、その後60℃で2時間撹拌して十分に反応させ、橙色透明のスズ及びモリブデン含有ペルオキソチタン酸溶液(1d)を得た。
 容積500mLのオートクレーブに、スズ及びモリブデン含有ペルオキソチタン酸溶液(1d)400mLを仕込み、これを150℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、スズ及びモリブデンが固溶された酸化チタン微粒子(1D)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(1D)の粉末X線回折測定を行ったところ、観測されるピークはルチル型酸化チタンのもののみであり、スズ及びモリブデンが酸化チタンに固溶されていることが分かった。
[調製例1-5]
<スズ及びタングステンが固溶された酸化チタン微粒子分散液の調製>
 Ti/Sn(モル比)が50となるように塩化スズ(IV)を、脱イオン処理後のスズを含有する水酸化チタン沈殿物にTi/W(モル比)が33となるようにタングステン(VI)酸ナトリウムを添加したこと以外は調製例1-1と同様にして、スズ及びタングステンが固溶された酸化チタン微粒子(1E)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(1E)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンとルチル型酸化チタンのもののみであり、スズ及びタングステンが酸化チタンに固溶されていることが分かった。
[調製例1-6]
 <スズが固溶された酸化チタン微粒子分散液の調製>
 モリブデン(VI)酸ナトリウムを添加しなかったこと以外は調製例1-1と同様にして、スズが固溶された酸化チタン微粒子(1F)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(1F)の粉末X線回折測定を行ったところ、観測されるピークはルチル型酸化チタンのもののみであり、スズが酸化チタンに固溶されていることが分かった。
[調製例1-7]
 <モリブデンが固溶された酸化チタン微粒子分散液の調製>
 塩化スズ(IV)を添加しなかったこと以外は調製例1-1と同様にして、モリブデンが固溶された酸化チタン微粒子(1G)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(1G)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであり、モリブデンが酸化チタンに固溶されていることが分かった。
[調製例1-8]
 <タングステンが固溶された酸化チタン微粒子分散液の調製>
 塩化スズ(IV)を添加しなかったことと、脱イオン処理後の水酸化チタン沈殿物にTi/W(モル比)が100となるようにタングステン(VI)酸ナトリウムを添加したこと以外は調製例1-5と同様にして、タングステンが固溶された酸化チタン微粒子(1H)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(1H)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであり、タングステンが酸化チタンに固溶されていることが分かった。
[調製例1-9]
<酸化チタン微粒子分散液の調製>
 36質量%の塩化チタン(IV)水溶液を純水で10倍に希釈した後、10質量%のアンモニア水を徐々に添加して中和、加水分解することにより、水酸化チタンの沈殿物を得た。このときのpHは8.5であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の、水酸化チタン沈殿物にH22/Ti(モル比)が8となるように35質量%過酸化水素水を添加し、その後60℃で2時間撹拌して十分に反応させ、橙色透明のペルオキソチタン酸溶液(1i)を得た。
 容積500mLのオートクレーブに、ペルオキソチタン酸溶液(1i)400mLを仕込み、これを130℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、酸化チタン微粒子(1I)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(1I)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであった。
[調製例1-10]
 <モリブデン成分が表面に吸着(=担持)されたスズ固溶酸化チタン微粒子分散液の調製>
 調製例1-6で調製したスズが固溶された酸化チタン微粒子(1F)の分散液(固形分濃度1質量%)に、酸化チタン微粒子中のTi成分に対してTi/Mo(モル比)が250となるようモリブデン(VI)酸ナトリウムを添加し、酸化チタン微粒子分散液(1J)を得た。
(5)第2の酸化チタン微粒子分散液の調製
[調製例2-1]
<鉄及びケイ素が固溶された酸化チタン微粒子分散液の調製>
 36質量%の塩化チタン(IV)水溶液に塩化鉄(III)をTi/Fe(モル比)が10となるように添加し、これを純水で10倍に希釈した後、この水溶液に、前記の塩化チタン(IV)水溶液中のTi成分に対してTi/Si(モル比)が10となるようケイ酸ナトリウムを添加・溶解した10質量%のアンモニア水を徐々に添加して中和、加水分解することにより鉄及びケイ素を含有する水酸化チタンの沈殿物を得た。このときのpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の鉄及びケイ素を含有する水酸化チタン沈殿物にH22/(Ti+Fe+Si)(モル比)が12となるように35質量%過酸化水素水を添加し、その後50℃で2時間撹拌して十分に反応させ、橙色透明の鉄及びケイ素含有ペルオキソチタン酸溶液(2a)を得た。
 容積500mLのオートクレーブに、鉄及びケイ素含有ペルオキソチタン酸溶液(2a)400mLを仕込み、これを130℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、鉄及びケイ素が固溶された酸化チタン微粒子(2A)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(2A)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであり、鉄及びケイ素が酸化チタンに固溶されていることが分かった。
[調製例2-2]
<鉄、ケイ素及びタングステンが固溶された酸化チタン微粒子分散液の調製>
 36質量%の塩化チタン(IV)水溶液に塩化鉄(III)をTi/Fe(モル比)が5となるように添加し、これを純水で10倍に希釈した後、この水溶液に、前記の塩化チタン(IV)水溶液中のTi成分に対してTi/Si(モル比)が5となるようケイ酸ナトリウムを添加・溶解した10質量%のアンモニア水を徐々に添加して中和、加水分解することにより鉄及びケイ素を含有する水酸化チタンの沈殿物を得た。このときのpHは8であった。得られた沈殿物を、純水の添加とデカンテーションを繰り返して脱イオン処理した。この脱イオン処理後の鉄及びケイ素を含有する水酸化チタン沈殿物にTi/W(モル比)が200となるようにタングステン(VI)酸ナトリウムを添加してから、H22/(Ti+Fe+Si+W)(モル比)が15となるように35質量%過酸化水素水を添加し、その後50℃で2時間撹拌して十分に反応させ、橙色透明の鉄、ケイ素及びタングステン含有ペルオキソチタン酸溶液(2b)を得た。
 容積500mLのオートクレーブに、鉄、ケイ素及びタングステン含有ペルオキソチタン酸溶液(2b)400mLを仕込み、これを130℃の条件下、120分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、鉄、ケイ素及びタングステンが固溶された酸化チタン微粒子(2B)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(2B)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであり、鉄、ケイ素及びタングステンが酸化チタンに固溶されていることが分かった。
[調製例2-3]
<鉄及びケイ素が固溶された酸化チタン微粒子分散液の調製>
 塩化鉄(III)をTi/Fe(モル比)が5、ケイ酸ナトリウムをTi/Si(モル比)が20となるよう添加したこと以外は調製例2-1と同様にして、橙色透明のペルオキソチタン酸溶液(2c)を得た。
 容積500mLのオートクレーブに、ペルオキソチタン酸溶液(2c)400mLを仕込み、これを130℃の条件下、90分間水熱処理し、その後、純水を添加して濃度調整を行うことにより、酸化チタン微粒子(2C)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(2C)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのものであった。
(6)比較例用酸化チタン微粒子分散液の調製
[調製例3-1]
<鉄が固溶された酸化チタン微粒子分散液の調製>
 ケイ酸ナトリウムを添加しなかったこと以外は調製例2-1と同様にして、鉄が固溶された酸化チタン微粒子(3A)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(3A)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであり、鉄が酸化チタンに固溶されていることが分かった。
[調製例3-2]
<ケイ素が固溶された酸化チタン微粒子分散液の調製>
 塩化鉄(III)を添加しなかったこと以外は調製例2-1と同様にして、ケイ素が固溶された酸化チタン微粒子(3B)の分散液(固形分濃度1質量%)を得た。酸化チタン微粒子(3B)の粉末X線回折測定を行ったところ、観測されるピークはアナターゼ型酸化チタンのもののみであり、ケイ素が酸化チタンに固溶されていることが分かった。
[調製例3-3]
 <ケイ素成分が表面に吸着(=担持)された鉄固溶酸化チタン微粒子分散液の調製>
 調製例3-1で調製した鉄が固溶された酸化チタン微粒子(3A)の分散液(固形分濃度1質量%)に、酸化チタン微粒子中のTi成分に対してTi/Si(モル比)が10となるようケイ酸ナトリウムを添加し、酸化チタン微粒子分散液(3C)を得た。
[調製例3-4]
 <鉄成分が表面に吸着(=担持)されたケイ素固溶酸化チタン微粒子分散液の調製>
 調製例3-2で調製したケイ素が固溶された酸化チタン微粒子(3B)の分散液(固形分濃度1質量%)に、酸化チタン微粒子中のTi成分に対してTi/Fe(モル比)が10となるよう塩化鉄を添加し、酸化チタン微粒子分散液(3D)を得た。酸化チタン微粒子分散液(3D)中の酸化チタン微粒子は凝集して沈殿していた。
 表1に、各調製例で調製した酸化チタン微粒子の原料比、水熱処理条件、分散粒子径(D50、D90)をまとめて示す。分散粒子径はレーザー光を用いた動的光散乱法(ELSZ-2000ZS(大塚電子(株)製)により測定した。
Figure JPOXMLDOC01-appb-T000001
(7)酸化チタン微粒子分散液の調製
[実施例1]
 酸化チタン微粒子(1A)と酸化チタン微粒子(2A)が質量比で(1A):(2A)=80:20となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(E-1)を得た。
[実施例2]
 酸化チタン微粒子(1A)と酸化チタン微粒子(2A)が質量比で(1A):(2A)=60:40となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(E-2)を得た。
[実施例3]
 酸化チタン微粒子(1B)と酸化チタン微粒子(2A)が質量比で(1B):(2A)=80:20となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(E-3)を得た。
[実施例4]
 酸化チタン微粒子(1C)と酸化チタン微粒子(2A)が質量比で(1C):(2A)=80:20となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(E-4)を得た。
[実施例5]
 酸化チタン微粒子(1A)と酸化チタン微粒子(2B)が質量比で(1A):(2B)=80:20となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(E-5)を得た。
[実施例6]
 酸化チタン微粒子(1D)と酸化チタン微粒子(2A)が質量比で(1D):(2A)=70:30となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(E-6)を得た。
[実施例7]
 酸化チタン微粒子(1E)と酸化チタン微粒子(2A)が質量比で(1E):(2A)=60:40となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(E-7)を得た。
[実施例8]
 酸化チタン微粒子(1A)と酸化チタン微粒子(2C)が質量比で(1A):(2C)=90:10となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(E-8)を得た。
[実施例9]
 酸化チタン微粒子分散液(E-1)にケイ素化合物系(シリカ系)のバインダー(コロイダルシリカ、商品名:スノーテックス20、日産化学工業(株)製)をTiO2/SiO2(質量比)が1.5となるように添加し、混合することで、バインダーを含有する酸化チタン微粒子分散液(E-9)を得た。
[実施例10]
 酸化チタン微粒子(1F)と酸化チタン微粒子(2A)が質量比で(1F):(2A)=80:20となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(E-10)を得た。
[実施例11]
 酸化チタン微粒子(1J)と酸化チタン微粒子(2A)が質量比で(1J):(2A)=80:20となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(E-11)を得た。
[比較例1]
 酸化チタン微粒子(1A)と酸化チタン微粒子(3A)が質量比で(1A):(3A)=80:20となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(C-1)を得た。
[比較例2]
 酸化チタン微粒子(1A)と酸化チタン微粒子(3B)が質量比で(1A):(3B)=80:20となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(C-2)を得た。
[比較例3]
 酸化チタン微粒子(1A)のみから酸化チタン微粒子分散液(C-3)を得た。
[比較例4]
 酸化チタン微粒子(2A)のみから酸化チタン微粒子分散液(C-4)を得た。
[比較例5]
 酸化チタン微粒子(1A)と酸化チタン微粒子(3C)が質量比で(1A):(3C)=80:20となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(C-5)を得た。
[比較例6]
 酸化チタン微粒子(1A)と酸化チタン微粒子(3D)が質量比で(1A):(3D)=80:20となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(C-6)を得た。
[比較例7]
 酸化チタン微粒子(1A)と酸化チタン微粒子(1I)が質量比で(1A):(1I)=80:20となるようにそれぞれの分散液を混合することで、酸化チタン微粒子分散液(C-7)を得た。
[比較例8]
 酸化チタン微粒子(1A)に酸化チタン微粒子(2A)を加えなかったこと以外は実施例9と同様にして酸化チタン微粒子分散液(C-8)を得た。
[比較例9]
 酸化チタン微粒子(1B)のみから酸化チタン微粒子分散液(C-9)を得た。
[比較例10]
 酸化チタン微粒子(1C)のみから酸化チタン微粒子分散液(C-10)を得た。
[比較例11]
 酸化チタン微粒子(1D)のみから酸化チタン微粒子分散液(C-11)を得た。
[比較例12]
 酸化チタン微粒子(1E)のみから酸化チタン微粒子分散液(C-12)を得た。
[比較例13]
 酸化チタン微粒子(1F)のみから酸化チタン微粒子分散液(C-13)を得た。
(8)光触媒薄膜を有するサンプル部材の作製
 上記実施例又は比較例で調製した各酸化チタン微粒子分散液を、#7のワイヤーバーコーターによってA4サイズのPETフィルムに20mgの光触媒酸化チタン微粒子を含む光触媒薄膜(厚さ約80nm)を形成するよう塗工し、80℃に設定したオーブンで1時間乾燥させて、アセトアルデヒドガス分解性能評価用サンプル部材を得た。
[UV照射下での光触媒性能試験]
 実施例1、実施例8、実施例9、比較例3、比較例7及び比較例8の光触媒薄膜を有するサンプル部材に対し、UV蛍光ランプ照射下でアセトアルデヒド分解試験を行なった。アセトアルデヒド初期濃度の20ppmから1ppmまで低減させるのに要する時間に基づき、評価した。
 表2に、酸化チタン微粒子分散液の混合比、分散粒子径(D50、D90)、アセトアルデヒドガス分解試験結果をまとめて示す。分散粒子径はレーザー光を用いた動的光散乱法(ELSZ-2000ZS(大塚電子(株)製)により測定した。
Figure JPOXMLDOC01-appb-T000002
 実施例1、8と比較例3の結果から、酸化チタン微粒子(1A)に対して、鉄成分及びケイ素成分が固溶した酸化チタン微粒子(2A)又は(2C)を混合することにより、酸化チタン微粒子(1A)単独の光触媒活性よりも活性が向上することが分かった。また、比較例7の結果から、この活性向上は、鉄及びケイ素を固溶しない酸化チタン微粒子(1I)を混合した場合よりも優れることがわかった。
 同様に、実施例9と比較例8の結果から、バインダーを含む光触媒薄膜においても、酸化チタン微粒子(1A)に対して、鉄成分及びケイ素成分が固溶した酸化チタン微粒子(2A)を混合することにより、酸化チタン微粒子(1A)単独の光触媒活性よりも活性が大幅に向上することが分かった。
[可視光照射下での光触媒性能試験]
 実施例及び比較例の光触媒薄膜を有するサンプル部材に対し、LEDによる可視光照射下でアセトアルデヒド分解試験を行なった。アセトアルデヒド初期濃度の5ppmから1ppmまで低減させるのに要する時間に基づき、評価した。
 なお、24時間以内に1ppmまで低減しなかった場合、表3及び表4において「1ppmまで分解するのに要した時間」の欄には「-」と表示し、「24時間後の濃度」の欄に当該濃度を表示した。
 表3に、第1の酸化チタン微粒子として酸化チタン微粒子(1A)を用いた場合の、酸化チタン微粒子分散液の混合比、分散粒子径(D50、D90)、アセトアルデヒドガス分解試験結果をまとめて示す。分散粒子径はレーザー光を用いた動的光散乱法(ELSZ-2000ZS(大塚電子(株)製)により測定した。
Figure JPOXMLDOC01-appb-T000003
 スズ及びモリブデンを固溶した酸化チタン微粒子(1A)に、鉄のみを固溶した酸化チタン微粒子を混合した場合(比較例1)、ケイ素のみを固溶した酸化チタン微粒子を混合した場合(比較例2)又は金属成分を固溶しない酸化チタン微粒子を混合した場合(比較例7)に比べて、鉄及びケイ素を固溶した酸化チタン微粒子を混合した場合(実施例1)、可視光照射下でアセトアルデヒドの分解が良好であり、本発明の酸化チタン微粒子混合物は、可視光下で光触媒として優れることがわかった。
 また、実施例9と比較例8の結果から、バインダーを含む光触媒薄膜においても、酸化チタン微粒子(1A)に対して、鉄成分及びケイ素成分を固溶した酸化チタン微粒子(2A)を混合することにより、酸化チタン微粒子(1A)単独の光触媒活性よりも可視光照射下での活性が大幅に向上することが分かった。
 比較例3、4の結果から分かるように、第1の酸化チタン微粒子及び第2の酸化チタン微粒子は、それぞれ単独では可視光照射下での光触媒活性が十分ではなかった。
 比較例5の結果から分かるように、第2の酸化チタン微粒子に含まれるケイ素成分は、酸化チタン微粒子表面に担持されているだけでは、本発明の酸化チタン微粒子混合物と比べて可視光照射下での光触媒活性が十分ではなかった。
 更に、比較例6の結果から分かるように、鉄成分を酸化チタン微粒子に固溶しない場合、鉄成分は分散液中の酸化チタン微粒子の凝集・沈殿を起こし、得られる光触媒膜が不透明になる可能性がある。
 以上より、本発明の鉄成分及びケイ素成分の両成分を固溶した酸化チタン微粒子を含む酸化チタン微粒子混合物において、光触媒性能が優れることが確認された。
 さらに、第1の酸化チタン微粒子として、種々の酸化チタン微粒子を用いた場合の酸化チタン微粒子分散液の混合比、粒子径(D50、D90)、アセトアルデヒドガス分解試験結果をまとめて表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4より、スズ成分及び可視光応答性を高める遷移金属成分(モリブデン成分、タングステン成分又はバナジウム成分)を固溶した第1の酸化チタン微粒子と、鉄成分及びケイ素成分を固溶した第2の酸化チタン微粒子との酸化チタン微粒子混合物の分散液から製造された光触媒薄膜は、光触媒が少量で、可視光のみ発光するLED照射下でも、アセトアルデヒドの分解が良好であった。
 本発明の酸化チタン微粒子分散液は、ガラス、金属等の無機物質、及び高分子フィルム(PETフィルム等)等の有機物質からなる種々の基材に施与して光触媒薄膜を作製するのに有用であり、特に高分子フィルム上に透明な光触媒薄膜を作製するのに有用である。

Claims (16)

  1.  第1の酸化チタン微粒子と第2の酸化チタン微粒子とを含有する酸化チタン微粒子混合物であって、
     第2の酸化チタン微粒子が少なくとも鉄成分及びケイ素成分を固溶したものであり、
     第1の酸化チタン微粒子が鉄及びケイ素成分以外の成分を固溶してもよい酸化チタン微粒子である、酸化チタン微粒子混合物。
  2.  第1の酸化チタン微粒子と第2の酸化チタン微粒子の混合比が、それぞれの質量比[(第1の酸化チタン微粒子)/(第2の酸化チタン微粒子)]で99~0.01である請求項1に記載の酸化チタン微粒子混合物。
  3.  第1の酸化チタン微粒子が、スズ成分及び可視光応答性を高める遷移金属成分を固溶したものである請求項1又は2に記載の酸化チタン微粒子混合物。
  4.  第1の酸化チタン微粒子に固溶されたスズ成分の含有量がチタンとのモル比(Ti/Sn)で1~1,000である請求項3に記載の酸化チタン微粒子混合物。
  5.  第1の酸化チタン微粒子に固溶された遷移金属成分が、バナジウム、クロム、マンガン、ニオブ、モリブデン、ロジウム、タングステン及びセリウムから選ばれる少なくとも1種である請求項3又は4に記載の酸化チタン微粒子混合物。
  6.  第1の酸化チタン微粒子に固溶された遷移金属成分が、モリブデン、タングステン及びバナジウムから選ばれる少なくとも1種である請求項5に記載の酸化チタン微粒子混合物。
  7.  第1の酸化チタン微粒子に固溶されたモリブデン、タングステン及びバナジウム成分それぞれの含有量が、チタンとのモル比(Ti/MoまたはTi/WまたはTi/V)で1~10,000である請求項6に記載の酸化チタン微粒子混合物。
  8.  第2の酸化チタン微粒子に固溶された鉄成分及びケイ素成分それぞれの含有量が、チタンとのモル比(Ti/FeまたはTi/Si)で1~1,000である請求項1~7のいずれか1項に記載の酸化チタン微粒子混合物。
  9.  第2の酸化チタン微粒子が更にモリブデン、タングステン及びバナジウムから選ばれる少なくとも1種の成分を固溶したものである請求項1~8のいずれか1項に記載の酸化チタン微粒子混合物。
  10.  水性分散媒中に、請求項1~9のいずれか1項に記載の酸化チタン微粒子混合物が分散されている酸化チタン微粒子分散液。
  11.  更に、バインダーを含有する請求項10に記載の酸化チタン微粒子分散液。
  12.  バインダーがケイ素化合物系バインダーである請求項11に記載の酸化チタン微粒子分散液。
  13.  請求項1~9のいずれか1項に記載の酸化チタン微粒子混合物を含む光触媒薄膜。
  14.  更に、バインダーを含有する請求項13に記載の光触媒薄膜。
  15.  基材表面に請求項13又は14の光触媒薄膜が形成された部材。
  16.  下記工程(1)~(5)を有する酸化チタン微粒子分散液の製造方法。
     (1)原料チタン化合物、スズ化合物、遷移金属化合物、塩基性物質、過酸化水素及び水性分散媒から、スズ成分及び遷移金属成分含有ペルオキソチタン酸溶液を製造する工程
     (2)上記(1)の工程で製造したスズ成分及び遷移金属成分含有ペルオキソチタン酸溶液を、圧力制御の下、80~250℃で加熱し、スズ成分及び遷移金属成分含有酸化チタン微粒子分散液を得る工程
     (3)原料チタン化合物、鉄化合物、ケイ素化合物、塩基性物質、過酸化水素及び水性分散媒から、鉄成分及びケイ素成分含有ペルオキソチタン酸溶液を製造する工程
     (4)上記(3)の工程で製造した鉄成分及びケイ素成分含有ペルオキソチタン酸溶液を、圧力制御の下、80~250℃で加熱し、鉄成分及びケイ素成分含有酸化チタン微粒子分散液を得る工程
     (5)上記(2)、(4)の工程で製造した2種類の酸化チタン微粒子分散液を混合する工程
PCT/JP2020/007165 2019-03-04 2020-02-21 酸化チタン微粒子混合物、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン微粒子分散液の製造方法 WO2020179514A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2020232530A AU2020232530A1 (en) 2019-03-04 2020-02-21 Titanium oxide fine particle mixture, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on surface, and method for producing titanium oxide fine particle dispersion
CN202080018288.9A CN113518763A (zh) 2019-03-04 2020-02-21 氧化钛微粒混合物、其分散液及其制造方法、光催化剂薄膜、具有光催化剂薄膜的构件
US17/432,856 US20220168708A1 (en) 2019-03-04 2020-02-21 Titanium oxide fine particle mixture, dispersion liquid thereof, photocatalyst thin film, member having photocatalyst thin film on surface, and method for producing titanium oxide fine particle dispersion liquid
KR1020217031263A KR20210134714A (ko) 2019-03-04 2020-02-21 산화티타늄 미립자 혼합물, 그의 분산액, 광촉매 박막, 광촉매 박막을 표면에 갖는 부재 및 산화티타늄 미립자 분산액의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-038447 2019-03-04
JP2019038447A JP7088082B2 (ja) 2019-03-04 2019-03-04 酸化チタン微粒子混合物、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン微粒子分散液の製造方法

Publications (1)

Publication Number Publication Date
WO2020179514A1 true WO2020179514A1 (ja) 2020-09-10

Family

ID=72338016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007165 WO2020179514A1 (ja) 2019-03-04 2020-02-21 酸化チタン微粒子混合物、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン微粒子分散液の製造方法

Country Status (7)

Country Link
US (1) US20220168708A1 (ja)
JP (1) JP7088082B2 (ja)
KR (1) KR20210134714A (ja)
CN (1) CN113518763A (ja)
AU (1) AU2020232530A1 (ja)
TW (1) TW202102442A (ja)
WO (1) WO2020179514A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102632587B1 (ko) * 2021-12-06 2024-02-01 주식회사 제이치글로벌 단열 및 정화 특성이 우수한 페인트 도료 조성물의 제조방법
CN115228396B (zh) * 2022-07-26 2024-02-02 宣城市晶和环保新材料科技有限公司 一种纳米铈溶胶的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152487A1 (ja) * 2015-03-23 2016-09-29 信越化学工業株式会社 可視光応答型光触媒酸化チタン微粒子分散液、その製造方法、及び光触媒薄膜を表面に有する部材
WO2018047694A1 (ja) * 2016-09-12 2018-03-15 信越化学工業株式会社 可視光応答型光触媒酸化チタン微粒子混合物、その分散液、分散液の製造方法、光触媒薄膜、及び光触媒薄膜を表面に有する部材
CN109126794A (zh) * 2018-08-08 2019-01-04 天津德天助非晶纳米科技有限公司 Fe、Si共掺杂纳米TiO2复合粉末及复合涂层的制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW431908B (en) * 1994-02-07 2001-05-01 Ishihara Sangyo Kaisha Titanium oxide photocatalyst
JP2909403B2 (ja) 1994-02-07 1999-06-23 石原産業株式会社 光触媒用酸化チタンおよびその製造方法
JP3802335B2 (ja) * 2000-11-24 2006-07-26 株式会社村上開明堂 複合素子およびその製造方法
JP5055271B2 (ja) 2006-04-28 2012-10-24 石原産業株式会社 光触媒及びその製造方法並びにそれを用いた光触媒コート剤、光触媒分散体、光触媒体
JP5161555B2 (ja) 2007-12-20 2013-03-13 住友化学株式会社 酸化タングステン光触媒体の製造方法
JP5498009B2 (ja) 2008-10-30 2014-05-21 国立大学法人 東京大学 光触媒材料、有機物分解方法、内装部材、空気清浄装置、酸化剤製造装置
JP5447178B2 (ja) 2010-05-18 2014-03-19 信越化学工業株式会社 可視光応答型酸化チタン系微粒子分散液及びその製造方法
KR101868674B1 (ko) * 2012-09-19 2018-06-18 신에쓰 가가꾸 고교 가부시끼가이샤 가시광 응답형 광촉매 미립자 분산액, 그의 제조 방법, 및 광촉매 박막을 표면에 갖는 부재

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152487A1 (ja) * 2015-03-23 2016-09-29 信越化学工業株式会社 可視光応答型光触媒酸化チタン微粒子分散液、その製造方法、及び光触媒薄膜を表面に有する部材
WO2018047694A1 (ja) * 2016-09-12 2018-03-15 信越化学工業株式会社 可視光応答型光触媒酸化チタン微粒子混合物、その分散液、分散液の製造方法、光触媒薄膜、及び光触媒薄膜を表面に有する部材
CN109126794A (zh) * 2018-08-08 2019-01-04 天津德天助非晶纳米科技有限公司 Fe、Si共掺杂纳米TiO2复合粉末及复合涂层的制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAILS KARVINEN: "The effects of trace elements on the crystal properties of Ti02", SOLID STATE SCIENCES, vol. 5, no. 5, 31 May 2003 (2003-05-31), pages 811 - 819, XP027112798, ISSN: 1293-2558, DOI: 10.1016/s1293-2558(03)00082-7 *
WEI DU, QIN XU ,DANGQIN JINC, XIAOYU WANG, YUN SHU, LIMING KONG , XIAOYA HU: "Visible-light-induced photo-Fenton process for the facile degradation of metronidazole by Fe/Si codoped TiO2", RSC ADVANCES, vol. 8, no. 70, 30 November 2018 (2018-11-30), pages 40022 - 40034, XP055736674, ISSN: 2046-2069, DOI: 10.1039/C8RA08114J *

Also Published As

Publication number Publication date
JP7088082B2 (ja) 2022-06-21
US20220168708A1 (en) 2022-06-02
AU2020232530A1 (en) 2021-10-07
JP2020142935A (ja) 2020-09-10
KR20210134714A (ko) 2021-11-10
TW202102442A (zh) 2021-01-16
CN113518763A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
JP6394788B2 (ja) 可視光応答型光触媒酸化チタン微粒子分散液、その製造方法、及び光触媒薄膜を表面に有する部材
JP6652196B2 (ja) 可視光応答型光触媒酸化チタン微粒子分散液、分散液の製造方法、光触媒薄膜、及び光触媒薄膜を表面に有する部材
WO2020179514A1 (ja) 酸化チタン微粒子混合物、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン微粒子分散液の製造方法
WO2020179517A1 (ja) 酸化チタン微粒子、その分散液、及び分散液の製造方法
CN109477337B (zh) 具备具有可见光响应型光催化活性的表面层的内装材料及其制造方法
WO2022059512A1 (ja) 酸化チタン粒子、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン粒子分散液の製造方法
JP7362224B2 (ja) 酸化チタン粒子、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン粒子分散液の製造方法
JP7466993B2 (ja) 酸化チタン粒子、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン粒子分散液の製造方法
WO2022059520A1 (ja) 酸化チタン粒子、その分散液、光触媒薄膜、光触媒薄膜を表面に有する部材及び酸化チタン粒子分散液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031263

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020232530

Country of ref document: AU

Date of ref document: 20200221

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20766082

Country of ref document: EP

Kind code of ref document: A1