WO2020177603A1 - 邻氨基吡啶炔类化合物及其制备方法和用途 - Google Patents

邻氨基吡啶炔类化合物及其制备方法和用途 Download PDF

Info

Publication number
WO2020177603A1
WO2020177603A1 PCT/CN2020/076870 CN2020076870W WO2020177603A1 WO 2020177603 A1 WO2020177603 A1 WO 2020177603A1 CN 2020076870 W CN2020076870 W CN 2020076870W WO 2020177603 A1 WO2020177603 A1 WO 2020177603A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
substituted
group
alkyl
unsubstituted
Prior art date
Application number
PCT/CN2020/076870
Other languages
English (en)
French (fr)
Inventor
胡有洪
丁健
唐炜
谢华
谢志铖
童林江
任文明
高远卓
Original Assignee
中国科学院上海药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海药物研究所 filed Critical 中国科学院上海药物研究所
Publication of WO2020177603A1 publication Critical patent/WO2020177603A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/73Unsubstituted amino or imino radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4412Non condensed pyridines; Hydrogenated derivatives thereof having oxo groups directly attached to the heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/80Acids; Esters in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the invention relates to a small molecule CSF-1R inhibitor, in particular to an o-aminopyridine alkyne compound and a preparation method and application thereof.
  • Colony stimulating factor receptor (Colony stimulating factor 1 receptor kinase, CSF-1R) is a type I single transmembrane protein produced by the expression of c-FMS gene. It is a receptor for cytokine CSF-1 and a receptor for tyrosine. An important member of the acid kinase (Receptor Tyrosine Kinase, RTKs) family. CSF-1R is expressed at a low level in hematopoietic stem cells, and is highly expressed in monocytes, macrophages, myeloid dendritic cells, glial cells and osteoclasts.
  • RTKs Receptor Tyrosine Kinase
  • CSF-1R binds to CSF-1, it activates downstream signaling pathways through processes such as aggregation and autophosphorylation, thereby participating in many basic biological processes, such as regulating the proliferation and differentiation of monocytes/macrophages, the body’s immune response, and Embryo growth and development, etc.
  • the excessive activation of the CSF-1/CSF-1R signal axis can cause a variety of diseases in the body, such as tumors, inflammation, and immune system diseases.
  • CSF-1R is closely related to the occurrence and development of a variety of malignant tumors. Tumor cells can attract more macrophages into the tumor microenvironment by secreting CSF-1, and CSF-1R can induce these tumor-associated macrophages (TAM) Further promote the development and metastasis of tumors. In addition, the expression of CSF-1 and the presence of CSF-1R + macrophages in tumors are associated with the poor prognosis of various solid tumors and hematomas. Studies have shown that the up-regulation of CSF-1 and/or CSF-1R expression can be detected in patients with breast cancer, ovarian cancer, colorectal cancer, pancreatic cancer, and Hodgkin’s lymphoma.
  • the expression of CSF-1 in the serum of patients with metastatic breast cancer is increased, especially in advanced patients, the level of CSF-1 is increased by 10 times; 58% of breast cancer patients express CSF-1R, and at least 85% of patients with invasive breast cancer CSF-1R is expressed; in addition, about 36% of breast cancer patients co-express CSF-1 and CSF-1R, and the co-expression of CSF-1 and CSF-1R is related to the poor prognosis and recurrence of patients.
  • Most ovarian cancer cells express CSF-1, and the degree of expression is related to the invasion ability.
  • CSF-1 can be detected in about 76% of primary ovarian cancer, and about 70% of metastases.
  • CSF-1R is expressed in about 90% of primary ovarian cancer and about 80% in metastases. Among patients with acute leukemia and lymphoma, the proportion of significantly elevated CSF-1 levels accounted for 83.5%. Glioma cells highly express CSF-1 and activate CSF-1R and its downstream physiological processes by interacting with CSF-1R on the surface of astrocytes (resident macrophages in the brain), thereby promoting glioma Invasion and metastasis. CSF-1 secreted by lung cancer can lead to poor prognosis. CSF-1 secreted by lung cancer cells acts on tumor-promoting TAMs, and enhances tumor expansion by increasing the production of VEGF, IL-10, TNF- ⁇ and other pro-angiogenic factors. Increase angiogenesis ability. The epithelial cells of pancreatic ductal adenomas highly express CSF-1, which stimulates M1 and M2 macrophages to produce cytokines that promote tumor cell invasion and metastasis.
  • CSF-1 and CSF-1R are also related to various clinical symptoms such as inflammatory diseases, immune system diseases, and bone diseases.
  • CSF-1 also plays an important role in the pathogenesis of AIDs and AIDs-induced diseases (such as HIV-1 related dementia, HIV-1 related nephropathy, HIV-1 osteoporosis).
  • the impaired CSF-1 signal inhibits the differentiation of dendritic cells, which in turn leads to immune damage.
  • the infection of mononuclear macrophages by HIV will increase the expression of CSF-1, and the presence of CSF-1 will enhance virus replication.
  • CSF-1R kinase The level of CSF-1 in the cerebrospinal fluid of patients with Alzheimer's disease is about 5 times that of normal, and the expression of CSF-1R kinase in the brain tissue of patients is significantly increased, which indicates that the pathophysiology of Alzheimer's disease is related to CSF-1 There is an important correlation between CSF-1R kinase.
  • small molecule inhibitors targeting CSF-1R kinase provide an important approach for the treatment of cancer, inflammatory diseases and Alzheimer's disease.
  • CSF-1R small molecule inhibitors have been in various stages of research, such as the oral small molecule inhibitor Pexidatinib (PLX-3397), BLZ-945, PLX7486, ARRY-382 and JNJ-40346527 are in clinical research stage. .
  • Pexidatinib PLX-3397
  • BLZ-945 the oral small molecule inhibitor
  • PLX7486 the oral small molecule inhibitor
  • ARRY-382 ARRY-382
  • JNJ-40346527 are in clinical research stage.
  • CSF-1R small molecule inhibitor Unfortunately, there is still no marketed CSF-1R small molecule inhibitor.
  • the present invention Based on the effectiveness of the CSF-1R target in tumors, inflammations, immune system diseases and other diseases and clinical needs, the present invention provides a powerful small molecule CSF-1R inhibitor with a novel structure.
  • the present invention provides an o-aminopyridine alkyne compound, a preparation method thereof, and use in the preparation of CSF-1R inhibitors.
  • One aspect of the present invention provides a compound of formula (I), its deuterated compound, its pharmaceutically acceptable salt or prodrug
  • R 1 is selected from -H, halogen, -NH 2 , -OH, cyano, mono- or di-C1-C4 alkylamino, mono- or di-C3-C6 cycloalkylaminoacyl, C3-C6 cycloalkylamido, C3-C6 cycloalkyloxy acyl group, C1-C4 alkyloxy acyl group, C1-C4 alkyl amide group, 4-6 membered heterocycloalkoxy group, 4-6 membered heterocycloalkanoyl group, C3-C6 ring Alkoxy, carboxyl, unsubstituted or C2-C4 alkenyl amide substituted with mono or di C1-C4 alkylamino, aminoacyl, aminoacyl substituted with C1-C4 alkyl, unsubstituted or substituted C1-C6 Alkyl, unsubstituted or substituted C1-C6 alkoxy, un
  • R 2 is selected from -H, halogen, unsubstituted or substituted C1-C6 alkyl; wherein, said substitution refers to one or more substituents selected from the following: halogen, hydroxy, C1-C4 alkoxy Group, C3-C6 cycloalkyl, amino, carboxy, amido, 5-7 membered heteroaryl, 4-6 membered heterocyclic group;
  • R 3 is 1 to 2 substituents on M, each independently selected from -H, halogen, cyano, -NH 2 , -OH, unsubstituted or substituted C1-C4 alkyl, unsubstituted or substituted C1 -C4 alkoxy; wherein, the substitution refers to one or more substituents selected from the group consisting of halogen, hydroxy, C1-C4 alkoxy, C3-C6 cycloalkyl, amino, carboxy, amide Group, 5-7 membered heteroaryl, 4-6 membered heterocyclic group;
  • L is a linking group, selected from -CON(Q1)-, -N(Q1)CO-, -C(Q2)(Q3)N(Q1)-, -C(Q2)(Q3)O-, -N (Q1)C(Q2)(Q3)-, -OC(Q2)(Q3)-;
  • said Q1 is selected from -H, unsubstituted or substituted C1-C6 alkyl;
  • said Q2, Q3 are each independently selected From -H, -NH 2 , -OH, unsubstituted or substituted C1-C6 alkyl, or Q2, Q3 and the C atom to which they are attached together form a C3-C6 cycloalkyl or 4-6 membered heterocyclic group;
  • the substitution refers to substitution by one or more substituents selected from the group consisting of halogen, hydroxyl, C1-C4 alkoxy, C3-C6 cycloalkyl, amino, carboxy, amide,
  • M is selected from phenyl or 5-7 membered heteroaryl; when M is phenyl, Not for
  • R 4 is selected from -(CH 2 )nN(R 5 )(R 6 ), -NHR 7 , -OR 7 or substituted C1-C4 alkyl; R 5 , R 6 and the connected N atom together form 4-6 Membered heterocyclic group; the n is an integer of 0-3; R 7 is selected from -H, 5-7 membered aryl or 5-7 membered heteroaryl; the substituted C1-C4 alkyl means selected From halogen, hydroxy, C1-C4 alkoxy, C3-C6 cycloalkyl, amino, carboxy, amide, 5-7 membered heteroaryl, 4-6 membered heterocyclic group of one or more substituents Substituted C1-C4 alkyl;
  • R 1 is selected from one or more of -H, halogen, cyano, unsubstituted or optionally halogen, hydroxy, C1-C4 alkoxy, trifluoromethoxy, mono- or di-C1-C4 alkylamino Substituted C1-C4 alkyl, unsubstituted or optionally substituted by one or more of halogen, hydroxy, C1-C4 alkoxy, amino, mono or di C1-C4 alkylamino, C1-C4 alkoxy , Amino, mono or di C1-C4 alkylamino, C1-C4 alkyl amide, C3-C6 cycloalkyl amide, unsubstituted or substituted by mono or di C1-C4 alkylamino, C2-C4 alkenyl amide Group, carboxyl group, unsubstituted or substituted by C1-C4 alkyl group, mono- or di-C3-C6
  • R 1 is selected from -H, halogen, hydroxyl, cyano, methyl, trifluoromethyl, methoxy, trifluoromethoxy, cyclopropyl, cyclopropyloxy, epoxybutyl Oxy,
  • R 2 is selected from -H, C1-C4 alkyl, halogen; preferably H, methyl, fluorine or chlorine;
  • R 3 is selected from -H, halogen, cyano, unsubstituted or substituted C1-C4 alkyl, unsubstituted or substituted C1-C4 alkoxy; preferably H, methyl, fluorine, chlorine, Trifluoromethyl, methoxy or trifluoromethoxy;
  • L is selected from -CONH-, -NHCO-;
  • M is selected from benzene ring, pyridine ring and pyrimidine ring.
  • the halogen is selected from F, Cl, Br, I;
  • the alkyl group is a saturated aliphatic linear or branched alkyl group, such as methyl, ethyl, propyl, isopropyl or tert-butyl;
  • the aryl group is a monocyclic or fused bicyclic aryl group, such as phenyl;
  • the heteroaryl group is a monocyclic or condensed bicyclic aryl group containing 1 to 3 heteroatoms selected from N, O, and S on the ring, such as pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, Pyrrolyl, furyl, thienyl;
  • the cycloalkyl group is a saturated or unsaturated cycloalkyl group, such as cyclopropanyl, cyclobutanyl, cyclopentyl, and cyclohexane;
  • the heterocyclic group is a heterocyclic group containing 1 to 3 heteroatoms selected from N, O and S on the ring, such as imidazolyl, piperidinyl, tetrahydropyrrolyl, tetrahydrofuranyl, tetrahydropyridine Nanji.
  • the compound of formula I may be a compound of formula II below:
  • R 1 , R 2 , R 3 and L are as defined above, A 1 to A 4 are each independently selected from C and N, and at most two of A 1 to A 4 are N.
  • the compound of formula II may be selected from the following compounds of formula III:
  • R 1 , R 2 , R 3 and L are as defined in formula II, and A 2 and A 4 are each independently selected from C and N.
  • the compound of formula III may be selected from the following compounds:
  • R 1 , R 2 , R 3 , A 2 and A 4 are as defined in Formula III.
  • the compound of formula II may be selected from compounds of the following formula:
  • R 1 and R 3 are as defined in formula I, and A 2 and A 4 are each independently selected from C and N.
  • the compound of formula I may be selected from compounds of the following formula:
  • R 3 is defined as described in formula I, A 2 and A 4 are each independently selected from C and N,
  • R is selected from: -H, C1-C4 alkoxy, C3-C6 cycloalkyl, amino, mono or di C1-C4 alkylamino, carboxy, amide, C1-C4 alkyl amide, C3-C6 ring Alkylamide group, 4-6 membered heterocyclic group, C1-C6 alkyl group, C1-C4 alkylaminoacyl group substituted by dimethylamino group, 4-6 membered heterocyclic group, aminoacyl C1-C4 alkyl group One or more substituted C1-C6 alkyl groups in the substituted 4-6 membered heterocyclic group.
  • the compound of formula (I) is selected from the following formulae:
  • the pharmaceutically acceptable salt is not particularly limited, for example, it can be: hydrochloride, sulfate, phosphate, methanesulfonate, maleate, etc.
  • the prodrug can be of formula (I ) Ester compound, amide compound, carbon amide compound, etc. of the compound.
  • the present invention also provides a method for preparing the above-mentioned compound of formula (I) or its deuterated compound or its pharmaceutically acceptable salt or prodrug, comprising the following steps: the compound of formula (1) and the compound of formula (2) are in palladium In the presence of a metal catalyst and a copper metal catalyst, a coupling reaction is carried out in the presence of a base to obtain a compound of formula (I).
  • R 1 , R 2 , R 3 , L and M are each independently as defined above; TMS is -Si(CH 3 ) 3 ;
  • the palladium metal catalyst includes one or more of Pd(PPh 3 ) 2 Cl 2 , Pd(OAc) 2 , and Pd(PPh 3 ) 4 ; preferably, the copper metal catalyst includes CuI and / Or CuCl; preferably, the base includes one or more of CsF, Cs 2 CO 3 , KF, K 2 CO 3 , triethylamine, diisopropylethylamine, and DMAP;
  • the coupling reaction is carried out in the presence of a solvent, and the solvent includes one or more of acetonitrile, 1,4-dioxane, and DMF.
  • the method includes the following steps: the compound of formula (1) and the compound of formula (2) are carried out in the presence of cesium fluoride, Pd(PPh 3 ) 2 Cl 2 , CuI and triethylamine in an acetonitrile solvent The coupling reaction yields the compound of formula (I).
  • the method includes one selected from the following synthetic routes I or II:
  • Synthetic Route I includes the following steps:
  • Step 1 Mix compound I-1, I-2 and Et 3 N, add palladium metal catalyst and copper metal catalyst, and react (for example, at room temperature) to obtain compound I-3;
  • Step 2 After mixing compound I-4, HATU, DIPEA and DMF (for example, stirring at room temperature for 30-60 minutes), add compound I-5, and react (for example, at room temperature for 12-18 hours) to obtain compound I-6 ;
  • Step 3 Mix compound I-6, I-3, base and MeCN, add palladium metal catalyst, copper metal catalyst, and react (for example, in the case of iodine substitution, reaction at room temperature, but in the case of Br substitution , React at 80°C for a reaction time of 2-6 hours) to obtain compound I-7;
  • Step 4 Mix compound I-7, I-8, base and solvent, add palladium metal catalyst, and react (for example, the temperature is 80-120°C, the reaction is 30-60 minutes) to obtain compound I-9;
  • Steps 1, 3, and 4 are reacted in an argon atmosphere
  • the palladium metal catalyst in steps 1 and 3 is Pd(PPh 3 ) 2 Cl 2 , and the copper metal catalyst is CuI;
  • the base in step 3 is cesium fluoride and/or triethylamine
  • the solvent in step 4 is one or more of toluene, ethanol, ethylene glycol dimethyl ether and water;
  • the palladium metal catalyst is Pd(PPh 3 ) 4 ;
  • the alkali is K 2 CO 3 , Cs 2 CO 3 , any one of NaHCO 3 and Na 2 CO 3 ;
  • synthetic route I includes the following steps:
  • Step 1 Add compound I-1, I-2 and Et 3 N to a round bottom flask, replace oxygen with argon, add Pd(PPh 3 ) 2 Cl 2 , CuI, repeat the operation of removing oxygen, and react at room temperature After 3 hours of reaction, compound I-3 can be obtained by purification; wherein, the equivalents of compound I-1, I-2, Pd(PPh 3 ) 2 Cl 2 and CuI can be about 1.0, 1.0 ⁇ 1.5, 0.05 ⁇ respectively 0.1,0.1 ⁇ 0.2.
  • Step 2 Add compound I-4, HATU, DIPEA and DMF to a round bottom flask, stir at room temperature for 30 minutes, add compound I-5, and react at room temperature; after 12 hours of reaction, the compound I- can be obtained after purification. 6;
  • the equivalents of compounds I-4, I-5, HATU and DIPEA can be about 1.0, 1.0-1.2, 1.0-1.5, 2.0-4.0, respectively.
  • Step 3 Add compound I-6, I-3, Et3N, CsF and MeCN to the round bottom flask, replace oxygen with argon, add Pd(PPh 3 ) 2 Cl 2 , CuI, repeat the operation of removing oxygen at room temperature or Heat to 80°C for reaction. After 3 hours of reaction, compound I-7 can be obtained after purification; compound I-6, I-3, cesium fluoride, Pd(PPh 3 ) 2 Cl 2 , CuI and Et 3 N can be They are about 1.0, 1.0 to 1.5, 2.5 to 3.0, 0.05 to 0.1, 0.1 to 0.2, 2.5 to 3.0, respectively.
  • Step 4 Add compound I-7, I-8, K 2 CO 3 , toluene, ethanol and water to the round bottom flask, replace oxygen with argon, add Pd(PPh 3 ) 4 , repeat the operation of removing oxygen, microwave
  • the reaction in the reactor the reaction temperature is 100 °C, the reaction is completed in 30 minutes, the target compound I-9 can be obtained after purification;
  • the equivalents of compounds I-7, I-8, K 2 CO 3 , and Pd(PPh 3 ) 4 can be respectively It is about 1.0, 1.0-3.0, 2.5-5.0, 0.05-0.1; the volume ratio of toluene:ethanol:water is about 2:1:1.
  • Synthetic Route II includes the following steps:
  • Step 1 Mix compound I-1, I-2 and Et 3 N, add palladium metal catalyst and copper metal catalyst, and react (for example, at room temperature) to obtain compound I-3;
  • Step 2 After mixing compound II-4, HATU, DIPEA and DMF (for example, stirring at room temperature for 30-60 minutes), add compound II-5, and react (for example, at room temperature for 12-18 hours) to obtain compound II-6 ;
  • Step 3 Mix compound II-6, I-3, base and MeCN, add palladium metal catalyst, copper metal catalyst, and react (for example, in the case of iodine substitution, reaction at room temperature, but in the case of Br substitution , React at 80°C for a reaction time of 2-6 hours) to obtain compound II-7;
  • Step 4 Mix compound II-7, I-8, base and solvent, add palladium metal catalyst, and react (for example, the temperature is 80-120°C, the reaction is 30-60 minutes) to obtain compound II-9;
  • Steps 1, 3, and 4 are reacted in an argon atmosphere
  • the palladium metal catalyst in steps 1 and 3 is Pd(PPh 3 ) 2 Cl 2 , and the copper metal catalyst is CuI;
  • the base in step 3 is cesium fluoride and/or triethylamine
  • the solvent in step 4 is one or more of toluene, ethanol, ethylene glycol dimethyl ether and water;
  • the palladium metal catalyst is Pd(PPh 3 ) 4 ;
  • the alkali is K 2 CO 3 , Cs 2 CO 3 , any one of NaHCO 3 and Na 2 CO 3 ;
  • synthetic route II includes the following steps:
  • Step 1 Add compound I-1, I-2 and Et 3 N to a round bottom flask, replace oxygen with argon, add Pd(PPh 3 ) 2 Cl 2 , CuI, repeat the operation of removing oxygen, and react at room temperature After 3 hours of reaction, compound I-3 can be obtained by purification; the equivalents of compound I-1, I-2, Pd(PPh 3 ) 2 Cl 2 and CuI can be about 1.0, 1.0 ⁇ 1.5, 0.05 ⁇ 0.1, respectively. 0.1 ⁇ 0.2.
  • Step 2 Add compound II-4, HATU, DIPEA and DMF into a round bottom flask, stir at room temperature for 30 minutes, add compound II-5, and react at room temperature; after 12 hours of reaction, compound II- can be obtained after purification. 6;
  • the equivalents of compounds II-4, II-5, HATU and DIPEA can be about 1.0, 1.0-1.2, 1.0-1.5, 2.0-4.0, respectively.
  • Step 3 Add compound II-6, I-3, Et3N, CsF and MeCN to the round bottom flask, replace oxygen with argon, add Pd(PPh 3 ) 2 Cl 2 , CuI, repeat the operation of removing oxygen at room temperature or Heat to 80°C for reaction. After 3 hours of reaction, compound II-7 can be obtained after purification; the equivalents of compound II-6, II-3, cesium fluoride, Pd(PPh 3 ) 2 Cl 2 , CuI and Et 3 N can be They are about 1.0, 1.0 to 1.5, 2.5 to 3.0, 0.05 to 0.1, 0.1 to 0.2, 2.5 to 3.0, respectively.
  • Step 4 Add compound II-7, I-8, K 2 CO 3 , toluene, ethanol and water to the round bottom flask, replace oxygen with argon, add Pd(PPh 3 ) 4 , repeat the operation of removing oxygen, microwave
  • the equivalents of compounds II-7, I-8, K 2 CO 3 , and Pd(PPh 3 ) 4 can be respectively It is about 1.0, 1.0-3.0, 2.5-5.0, 0.05-0.1; the volume ratio of toluene:ethanol:water is 2:1:1.
  • R 1 , R 2 , R 3 and M are each independently as described above.
  • the present invention also provides a pharmaceutical composition characterized by comprising one or more of the above-mentioned compound of formula (I) or its deuterated compound or its pharmaceutically acceptable salt or prodrug and a pharmaceutically acceptable Of accessories.
  • the present invention also provides the use of the above-mentioned compound of formula (I) or its deuterated compound or its pharmaceutically acceptable salt or prodrug or the above-mentioned pharmaceutical composition in the preparation of a CSF-1R inhibitor.
  • the present invention also provides the compound of the above formula (I) or its deuterated compound or its pharmaceutically acceptable salt or prodrug or the above-mentioned pharmaceutical composition for preparing and treating tumors, inflammatory diseases, autoimmune diseases, neurological diseases Use in medicine for diseases.
  • the compound of formula (I) of the present invention has the advantage of high CSF-1R inhibitory activity.
  • the anti-inflammatory activity data at the cellular level indicates that the diaryl acetylenic compound has significant anti-inflammatory activity.
  • Figure 1 shows the effects of representative compounds on the inhibition of activation of the CSF1R signaling pathway in Raw264.7
  • Figure 2 shows the cytotoxicity and TNFF- ⁇ release inhibitory effects of representative compounds on RAW264.7 cells.
  • Step 1 Add 2-amino-3-iodopyridine (1.0g, 4.55mmol), trimethylsilylacetylene (535.7mg, 5.45mmol) and Et 3 N (50mL) to a round bottom flask, and replace oxygen with argon , Add Pd(PPh 3 ) 2 Cl 2 (159.5mg, 0.23mmol), CuI (86.6mg, 0.45mmol), repeat the operation of removing oxygen, and react at room temperature for 6 hours; after the reaction, add 50mL ethyl acetate to dilute the reaction Liquid, filtered to obtain the product 2-amino-3-trimethylethynylpyridine 870mg (yield: 100%).
  • Step 2 Add the compound 4-methyl-3 iodobenzoic acid (2.0g, 7.63mmol), HATU (3.8g, 9.92mmol), DIPEA (2.5g, 19.08mmol) and DMF (40mL) into the round bottom flask, After stirring for 30 minutes at room temperature, compound 3,5-dimethoxyaniline (1.3g, 8.40mmol) was added and reacted at room temperature for 12 hours; after the reaction was over, ethyl acetate (50mL ⁇ 3) and water (40mL) were extracted and reacted.
  • Step 3 Add the compound N-(3,5-dimethoxyphenyl)-3-iodo-4-methylbenzamide (150.0mg, 0.38mmol), 2-amino-3- Trimethylsilylethynylpyridine (93.4mg, 0.49mmol), Et 3 N (114.6mg, 1.13mmol), CsF (172.1mg, 1.13mmol) and MeCN (20mL), replace the oxygen with argon, add Pd( PPh 3 ) 2 Cl 2 (13.2 mg, 0.019 mmol), CuI (7.2 mg, 0.038 mmol), repeat the operation of removing oxygen, and react for 3 hours at room temperature.
  • the synthesis method is as in Example 1, except that 2-amino-5-chloro-3-iodopyridine is used instead of 2-amino-3-iodopyridine.
  • the synthesis method is as in Example 1, except that 5-methoxy-2-amino-3-iodopyridine is used instead of 2-amino-3-iodopyridine.
  • the synthesis method is as in Example 1, except that 5-cyclopropyloxy-2-amino-3-iodopyridine is used instead of 2-amino-3-iodopyridine.
  • the synthesis method is as in Example 1, except that 5-carboxy-2-amino-3-iodopyridine is used instead of 2-amino-3-iodopyridine.
  • the synthesis method is as in Example 1, except that 5-carbamoyl-2-amino-3-iodopyridine is used instead of 2-amino-3-iodopyridine.
  • the synthesis method is as in Example 1, except that 5-methylcarbamoyl-2-amino-3-iodopyridine is used instead of 2-amino-3-iodopyridine.
  • the synthesis method is the same as in Example 1, except that 5-isopropylcarbamoyl-2-amino-3-iodopyridine is used instead of 2-amino-3-iodopyridine.
  • Step 1 Add 2-amino-5-bromo-3-iodopyridine (1.0g, 3.35mmol), trimethylsilylacetylene (427.2mg, 4.35mmol) and Et 3 N (50mL) to a round bottom flask.
  • Step 2 Add the compound 4-methyl-3 iodobenzoic acid (2.0g, 7.63mmol), HATU (3.8g, 9.92mmol), DIPEA (2.5g, 19.08mmol) and DMF (40mL) into the round bottom flask, After stirring for 30 minutes at room temperature, compound 3,5-dimethoxyaniline (1.3g, 8.40mmol) was added and reacted at room temperature for 12 hours; after the reaction was over, ethyl acetate (50mL ⁇ 3) and water (40mL) were extracted and reacted.
  • Step 3 Add the compound N-(3,5-dimethoxyphenyl)-3-iodo-4-methylbenzamide (150.0mg, 0.38mmol), 2-amino-5- Bromo-3-trimethylsilylethynylpyridine (132.2mg, 0.49mmol), Et 3 N (114.6mg, 1.13mmol), CsF (172.1mg, 1.13mmol) and MeCN (20mL), replace oxygen with argon , Pd(PPh 3 ) 2 Cl 2 (13.2 mg, 0.019 mmol) and CuI (7.2 mg, 0.038 mmol) were added, the operation of removing oxygen was repeated, and the reaction was carried out at room temperature for 3 hours.
  • Step 4 Add the compound 3-(2-aminopyridyl-5-bromo-3-ethynyl)-N-(3,5-dimethoxyphenyl)-4-methylbenzamide to the round bottom flask (80.0mg, 0.17mmol), 3,5-dimethylisoxazole-4-boronic acid pinacol ester (95.7mg, 0.43mmol), K 2 CO 3 (71.1mg, 0.51mmol), toluene (2mL) , Ethanol (1mL) and water (1mL), replace oxygen with argon, add Pd(PPh 3 ) 4 (19.8mg, 0.017mmol), repeat the operation of removing oxygen, in a microwave reactor, react at 100°C for 30 minutes, react After the end, the solvent was evaporated under reduced pressure, and column chromatography was purified to obtain the target product 3-((2-amino-5-(3,5-dimethyl-4-isoxazolyl)pyridinyl-3-ethynyl)
  • the synthesis method is as in Example 18 except that 3,5-dimethylisoxazole-4-boronic acid pinacol ester is used instead of 3,5-dimethylisoxazole-4-boronic acid pinacol ester.
  • the synthesis method is the same as in Example 18 except that 1H-pyrazole-4-boronic acid pinacol ester is used instead of 3,5-dimethylisoxazole-4-boronic acid pinacol ester.
  • the synthesis method is as in Example 18 except that 3,5-dimethylpyrazole-4-boronic acid pinacol ester is used instead of 3,5-dimethylisoxazole-4-boronic acid pinacol ester.
  • the synthesis method is the same as in Example 18 except that N-methylpyrazole-4-boronic acid pinacol ester is used instead of 3,5-dimethylisoxazole-4-boronic acid pinacol ester.
  • the synthesis method is the same as in Example 18 except that N-isopropylpyrazole-4-boronic acid pinacol ester is used instead of 3,5-dimethylisoxazole-4-boronic acid pinacol ester.
  • the synthesis method is as in Example 18 except that N-(3-azacyclohexyl)pyrazole-4-boronic acid pinacol ester is used instead of 3,5-dimethylisoxazole-4-boronic acid pinacol ester.
  • Step 1 Add 2-amino-5-bromo-3-iodopyridine (1.0g, 3.35mmol), trimethylsilylacetylene (427.2mg, 4.35mmol) and Et 3 N (50mL) to a round bottom flask.
  • Step 2 Add the compounds benzoic acid (2.0g, 16.38mmol), HATU (8.1g, 21.29mmol), DIPEA (5.29g, 40.94mmol) and DMF (60mL) into a round bottom flask, and after stirring for 30 minutes at room temperature, Compound 4-methyl-3-iodoaniline (4.20 g, 18.01 mmol) was added, and the reaction was carried out at room temperature for 12 hours. After the reaction, the reaction solution was extracted with ethyl acetate (60mL ⁇ 3) and water (50mL). The organic phase was washed with tap water (40mL ⁇ 3), saturated NaCl solution (40mL ⁇ 3), and dried with anhydrous sodium sulfate. The solvent was evaporated to dryness, and column chromatography was separated to obtain 5.2 g of N-(4-methyl-3-iodophenyl)benzamide (yield: 94.2%).
  • Step 3 Add the compound N-(4-methyl-3-iodophenyl)benzamide (150.0mg, 0.44mmol), 2-amino-5-bromo-3-trimethylsilyl group to the round bottom flask Ethynylpyridine (155.7mg, 0.58mmol), Et 3 N (135.1mg, 1.33mmol), CsF (202.7mg, 1.33mmol) and MeCN (30mL), replace oxygen with argon, add Pd(PPh 3 ) 2 Cl 2 (15.6mg, 0.022mmol), CuI (8.5mg, 0.044mmol), repeat the operation of removing oxygen, and react for 3 hours at room temperature.
  • Step 4 Add the compound N-(3-(2-aminopyridyl-5-bromo-3-ethynyl)-4-methyl)phenylbenzamide (80.0mg, 0.20mmol) into the round bottom flask, N-methylpyrazole-4-boronic acid pinacol ester (102.4mg, 0.49mmol), K 2 CO 3 (81.6mg, 0.59mmol), toluene (2mL), ethanol (1mL) and water (1mL), use Replace oxygen with argon, add Pd(PPh 3 ) 4 (22.8mg, 0.020mmol), repeat the operation of removing oxygen, in a microwave reactor, react at 100°C for 30 minutes, after the reaction, evaporate the solvent under reduced pressure, and column chromatography Purified to obtain the target product N-(3-(2-aminopyridyl-5-(1-methyl-4-pyrazolyl)3-ethynyl)-4-methyl)phenylbenzamide 76.9mg (product Rate: 95
  • the synthesis method is as in Example 84 except that 3,5-dimethoxybenzoic acid is used instead of benzoic acid.
  • the synthesis method is the same as in Example 84 except that 4-isopropoxybenzoic acid is used instead of benzoic acid.
  • the synthesis method is as in Example 84 except that 4-chlorobenzoic acid is used instead of benzoic acid.
  • Step 1 Add 2-amino-3-iodopyridine (1.0g, 4.55mmol), trimethylsilylacetylene (535.7mg, 5.45mmol) and Et 3 N (50mL) to a round bottom flask, and replace oxygen with argon , Add Pd(PPh 3 ) 2 Cl 2 (159.5mg, 0.23mmol), CuI (86.6mg, 0.45mmol), repeat the operation of removing oxygen, and react at room temperature for 6 hours; after the reaction, add 50mL ethyl acetate to dilute the reaction Liquid, filtered to obtain the product 2-amino-3-trimethylethynylpyridine 870mg (yield: 100%).
  • Step 2 Add compound 4-chlorobenzoic acid (2.0g, 12.77mmol), HATU (6.3g, 16.61mmol), DIPEA (5.0g, 38.32mmol) and DMF (60mL) to a round bottom flask, and stir at room temperature for 30 Minutes later, the compound 4-methyl-3-iodoaniline (3.3 g, 14.05 mmol) was added and reacted at room temperature for 12 hours. After the reaction, the reaction solution was extracted with ethyl acetate (60mL ⁇ 3) and water (50mL). The organic phase was washed with tap water (40mL ⁇ 3), saturated NaCl solution (40mL ⁇ 3), and dried with anhydrous sodium sulfate. The solvent was evaporated to dryness, and column chromatography was separated to obtain 4.5 g of N-(4-methyl-3-iodophenyl)-4-chlorobenzamide (yield: 94.8%).
  • Step 3 Add the compound N-(4-methyl-3-iodophenyl)-4-chlorobenzamide (150.0mg, 0.40mmol), 2-amino-3-trimethylsilyl group to the round bottom flask Ethynylpyridine (98.9mg, 0.52mmol), Et 3 N (122.5mg, 1.21mmol), CsF (184.0mg, 1.21mmol) and MeCN (30mL), replace oxygen with argon, add Pd(PPh 3 ) 2 Cl 2 (14.2mg, 0.020mmol), CuI (7.7mg, 0.040mmol), repeat the operation of removing oxygen, and react for 3 hours at room temperature.
  • the synthesis method is as in Example 91 except that 2-amino-5-chloro-3-iodopyridine is used instead of 2-amino-3-iodopyridine.
  • the synthesis method is the same as in Example 91 except that 2-amino-5-carbamoyl-3-iodopyridine is used instead of 2-amino-3-iodopyridine.
  • the synthesis method is the same as in Example 91 except that N-(4-piperidinyl)pyrazole-4-boronic acid pinacol ester is used instead of N-methylpyrazole-4-boronic acid pinacol ester.
  • the synthesis method is the same as in Example 1, except that 4-chloroaniline is used instead of 3,5-dimethoxyaniline.
  • the synthesis method is as in Example 18 except that p-chloroaniline is used instead of 3,5-dimethoxyaniline.
  • the synthesis method is the same as in Example 1, except that p-chloroaniline is used instead of 3,5-dimethoxyaniline and 5-carbamoyl-3-iodopyridine is used instead of 2-aminopyridine.
  • the synthesis method is the same as in Example 1, except that 2-methyl-4-chloroaniline is used instead of 3,5-dimethoxyaniline and 5-carbamoyl-3-iodopyridine is used instead of 2-aminopyridine.
  • Test Example 1 CSF1R molecular level enzyme activity inhibition experiment
  • the activity of CSF-1R at the kinase level was evaluated by enzyme-linked immunosorbent assay (ELISA).
  • the enzyme reaction substrate Poly(Glu, Tyr) 4:1 was diluted to 20 ⁇ g/mL with potassium-free PBS (10mM sodium phosphate buffer, 150mM NaCl, pH 7.2-7.4), and 125 ⁇ L/well was coated on the ELISA plate. React at 37°C for 12-16 hours. Discard the liquid in the hole. Wash the plate, wash the plate three times with T-PBS (containing 0.1% Tween-20 in potassium ion-free PBS, 200 ⁇ L/well), and dry the plate in an oven at 37° C. for 1-2 hours.
  • T-PBS containing 0.1% Tween-20 in potassium ion-free PBS, 200 ⁇ L/well
  • reaction buffer 50mM HEPES pH 7.4, 50mM MgCl 2 , 0.5mM MnCl 2 , 0.2mM Na 3 VO 4 , 1mM DTT
  • Test compound compound well
  • DMSO DMSO containing corresponding concentration
  • antibody PY99 diluent (antibody is diluted 1:500 with T-PBS containing BSA 5mg/mL), 100 ⁇ L/well, shake for 0.5 hours at 37°C, discard the liquid in the well, and wash the plate three times with T-PBS .
  • the protein is transferred to the nitrocellulose membrane with a semi-dry electrotransfer system, and the nitrocellulose membrane is placed in the blocking solution (5% skimmed milk powder diluted in 0.1% Tween 20 TBS) was blocked at room temperature for 2 hours, and then the membranes were placed in the primary antibody solution (1:500 diluted in TBS containing 0.1% Tween 20) and incubated overnight at 4°C. Wash three times with TBS containing 0.1% Tween 20, each for 15 minutes. The membrane was placed in the secondary antibody solution (horseradish peroxidase-labeled goat anti-rabbit IgG, diluted 1:2000 in TBS containing 0.1% Tween 20) and reacted for 1 hour at room temperature. After washing the membrane three times as above, use ECL plus reagent to develop color, and take pictures with ImageQuant LAS 4000. The results are shown in Figure 1.
  • Experimental example 3 Evaluation experiment of anti-inflammatory activity at the cellular level
  • Tumor necrosis factor- ⁇ is an important inflammatory mediator in the development of inflammation, autoimmune diseases and other diseases. It is mainly produced by activated monocytes/macrophages. It can mediate the occurrence of various inflammatory reactions and accelerate the progression of the disease.
  • Mouse monocyte/macrophage leukemia cell line RAW 264.7 cell is one of the commonly used inflammatory cell models. After bacterial lipopolysaccharide (LPS) is induced and activated, it can release tumor necrosis factor- ⁇ and other inflammatory mediators. Detecting the secretion of tumor necrosis factor- ⁇ can reflect the anti-inflammatory activity of the compound.
  • LPS bacterial lipopolysaccharide
  • cytotoxicity of the test compound on RAW 264.7 cells was detected by the CCK-8 method.
  • Mouse RAW 264.7 cells were purchased from American Type Culture Collection (Manassas, VA, USA) and cultured in cells containing 10 % Fetal bovine serum (Hyclone, South Logan, UT, USA) in DMEM medium (Hyclone, South Logan, UT, USA), collect and count the cells before use, (1 ⁇ 10 5 /well) inoculate in 96 wells In the plate (Corning, NY, USA), after the cells were incubated for 24 hours, different concentrations of compounds were added, and the corresponding vehicle control and culture medium background control were set up, the total volume was 200 ⁇ l.
  • RAW 264.7 cells (1 ⁇ 10 5 /well) were seeded in a 96-well plate, after 24 hours of incubation, different concentrations of compounds were added and incubated for 30 min at 1 ⁇ g/well. Under the stimulation of ml LPS (L5886, Sigma, St. Louis, MO, USA), incubate for 4 hours at 37°C in a 5% CO2 incubator. In addition, there are no stimulant background control and stimulation control wells, with a total volume of 200 ⁇ l.
  • ml LPS L5886, Sigma, St. Louis, MO, USA
  • the culture supernatant was collected by centrifugation, and the secretion level of tumor necrosis factor- ⁇ in the culture supernatant was detected by enzyme-linked immunosorbent assay.
  • the tumor necrosis factor- ⁇ detection kit was purchased from BD Pharmingen (San Diego, CA, USA).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Transplantation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了邻氨基吡啶炔类化合物及其制备方法和用途,具体公开了一种式(I)化合物、其氘代化合物、其药学上可接受的盐或前药、其制备方法及用途。所述用途包括式(I)化合物或其氘代化合物或其药学上可接受的盐或前药或者上述的药物组合物在制备CSF-1R抑制剂中的用途,以及在制备治疗肿瘤、炎症性疾病、自身免疫性疾病、神经系统性疾病的药物中的用途。本发明所述的式(I)化合物具有CSF-1R抑制活性高的优点。细胞水平的抗炎活性数据表明所述含二芳基炔类化合物具有显著的抗炎活性。

Description

邻氨基吡啶炔类化合物及其制备方法和用途 技术领域
本发明涉及小分子CSF-1R抑制剂,具体涉及邻氨基吡啶炔类化合物及其制备方法和用途。
背景技术
集落刺激因子受体(Colony stimulating factor 1 receptor kinase,CSF-1R)是由c-FMS基因表达产生的I型单次跨膜蛋白,是细胞因子CSF-1的受体,同时是受体酪氨酸激酶(Receptor Tyrosine Kinase,RTKs)家族中重要的一员。CSF-1R在造血干细胞中有较低水平的表达,而高表达于单核细胞、巨噬细胞、髓样树突状细胞、神经胶质细胞及破骨细胞等。CSF-1R在与CSF-1结合后,通过聚集和自磷酸化等过程激活下游信号通路,从而参与许多基本的生物学过程,如调控单核/巨噬细胞的增殖、分化,机体免疫反应以及胚胎的生长发育等。然而CSF-1/CSF-1R信号轴的过度活化会引发机体的多种疾病,如肿瘤、炎症、免疫系统疾病等。
CSF-1R与多种恶性肿瘤的发生发展密切相关,肿瘤细胞可通过分泌CSF-1,吸引更多巨噬细胞进入肿瘤微环境,而CSF-1R又可诱导这些肿瘤相关巨噬细胞(TAM)进一步促进肿瘤的发展和转移。此外,CSF-1表达及瘤内存在CSF-1R +巨噬细胞与多种实体瘤及血液瘤的不良预后相关。研究表明,在乳腺癌、卵巢癌、结直肠癌、胰腺癌以及霍奇金淋巴瘤等患者体内均可检测到CSF-1和(或)CSF-1R表达上调。例如在转移性乳腺癌患者血清中CSF-1表达升高,尤其在晚期患者中CSF-1水平升高10倍;58%的乳腺癌患者表达CSF-1R,浸润性乳腺癌患者中至少85%表达CSF-1R;此外,约36%的乳腺癌患者共同表达CSF-1及CSF-1R,而CSF-1与CSF-1R的共表达与患者的不良预后及复发相关。大多数卵巢癌细胞表达CSF-1,表达程度与侵袭能力相关。在原发性卵巢癌中,约76%可检测出CSF-1,转移灶中约70%。CSF-1R在原发卵巢癌中表达约90%,转移灶中约80%。在急性白血病及淋巴瘤患者中,CSF-1水平显著升高的比例占到83.5%。脑胶质瘤细胞高表达CSF-1,通过与星形胶质细胞(脑中的居民巨噬细胞)表面的CSF-1R作用而激活CSF-1R及其下游生理过程,进而促进脑胶质瘤的侵袭及转移。肺癌部位分泌的CSF-1会导致不良预后,肺癌细胞所分泌的CSF-1作用于促瘤的TAMs,通过增加VEGF、IL-10、TNF-α等促血管生成因子的生成而增强肿瘤的扩增及血管生成能力。胰腺导管腺瘤的上皮细胞会高表达CSF-1,后者会刺激M1及M2巨噬细胞产生促进肿瘤细胞侵袭及转移的细胞因子。
CSF-1及CSF-1R除与肿瘤密切相关外,还与炎症性疾病、免疫系统性疾病、骨疾病等多种临床症状相关。多种自身免疫性疾病,如克罗恩疾病、结节病,狼疮肾炎、同种异 体移植物排斥反应和关节炎等的一个共同的发病机制均是因为体内CSF-1水平的升高。例如在类风湿关节炎患者的关节液中CSF-1水平较高。胶原诱发性关节炎小鼠实验中,病程的发展可被CSF-1抗体所抑制,提示CSF-1/CSF-1R信号途径对炎症的影响。CSF-1在AIDs及AIDs诱导的疾病(如:HIV-1相关痴呆症、HIV-1相关肾病、HIV-1骨质疏松)发病进程中同样具有重要作用。CSF-1受损信号抑制树突细胞的分化,进而导致免疫损伤。单核巨噬细胞被HIV感染后会导致CSF-1表达的增加,而CSF-1的存在会增强病毒的复制。阿尔茨海默病患者脑脊液中CSF-1的水平是正常的5倍左右,且CSF-1R激酶在患者脑组织内的表达明显升高,这表明阿尔茨海默病的病理生理与CSF-1及CSF-1R激酶之间有重要的相关性。综上所述,以CSF-1R激酶为靶标的小分子抑制剂为癌症、炎症性疾病和阿尔茨海默病等的治疗提供一种重要的途径。
目前,一些CSF-1R小分子抑制剂已处于各个研究阶段,如可以口服的小分子抑制剂Pexidatinib(PLX-3397),BLZ-945,PLX7486,ARRY-382及JNJ-40346527均已处于临床研究阶段。但遗憾的是,目前仍然没有一个上市的CSF-1R小分子抑制剂。
发明内容
基于CSF-1R该靶点在肿瘤、炎症及免疫系统疾病等多种疾病的有效性及临床的需求,本发明提供一种结构新颖的强效小分子CSF-1R抑制剂。
本发明提供一种邻氨基吡啶炔类化合物,及其制备方法和在制备CSF-1R抑制剂中的用途。
本发明一方面提供了一种式(I)化合物、其氘代化合物、其药学上可接受的盐或前药
Figure PCTCN2020076870-appb-000001
其中:
R 1选自-H,卤素、-NH 2,-OH,氰基,单或二C1-C4烷基氨基,单或二C3-C6环烷基氨基酰基,C3-C6环烷基酰胺基,C3-C6环烷基氧基酰基,C1-C4烷基氧基酰基,C1-C4烷基酰胺基,4-6元杂环烷氧基,4-6元杂环烷酰基,C3-C6环烷氧基,羧基,未取代或被单或二C1-C4烷基氨基取代的C2-C4烯基酰胺基,氨基酰基,被C1-C4烷基取代的氨基酰基,未取代或取代的C1-C6烷基,未取代或取代的C1-C6烷氧基,未取代或取代的5-7元芳基,未取代或取代的4-6元杂环基,未取代或取代的5-7元杂芳基,未取代或取代的酰胺基;其中,所述取代是指选自如下的一种或多种取代基所取代:卤素,羟基,C1-C4烷氧基,C3-C6环烷基,氨基,单或二C1-C4烷基氨基,羧基,酰胺基,C1-C4烷基酰胺基,C3-C6环烷基酰胺基,4-6元杂环基、C1-C6烷基,被选自二甲氨基取代的 C1-C4烷基氨基酰基、4-6元杂环基、氨基酰基C1-C4烷基取代的4-6元杂环基中一种或多种取代的C1-C6烷基;
R 2选自-H,卤素,未取代或取代的C1-C6烷基;其中,所述取代是指选自如下的一种或多种取代基所取代:卤素,羟基,C1-C4烷氧基,C3-C6环烷基,氨基,羧基,酰胺基,5-7元杂芳基,4-6元杂环基;
R 3为M上的1~2个取代基,各自独立地选自-H,卤素,氰基,-NH 2,-OH,未取代或取代的C1-C4烷基,未取代或取代的C1-C4烷氧基;其中,所述取代是指选自如下的一种或多种取代基所取代:卤素,羟基,C1-C4烷氧基,C3-C6环烷基,氨基,羧基,酰胺基,5-7元杂芳基,4-6元杂环基;
L为连接基团,选自-CON(Q1)-,-N(Q1)CO-,-C(Q2)(Q3)N(Q1)-,-C(Q2)(Q3)O-,-N(Q1)C(Q2)(Q3)-,-OC(Q2)(Q3)-;所述Q1选自-H,未取代或取代的C1-C6烷基;所述Q2、Q3各自独立地选自-H,-NH 2,-OH,未取代或取代的C1-C6烷基,或Q2、Q3与它们所连的C原子共同形成C3-C6环烷基或4-6元杂环基;其中,所述取代是指选自如下的一种或多种取代基所取代:卤素,羟基,C1-C4烷氧基,C3-C6环烷基,氨基,羧基,酰胺基,5-7元杂芳基,4-6元杂环基;
M选自苯基或5-7元杂芳基;当M为苯基时,
Figure PCTCN2020076870-appb-000002
不为
Figure PCTCN2020076870-appb-000003
R 4选自-(CH 2)nN(R 5)(R 6)、-NHR 7、-OR 7或取代的C1-C4烷基;R 5、R 6与相连的N原子共同形成4-6元杂环基;所述n为0-3的整数;R 7选自-H、5-7元芳基或5-7元杂芳基;所述取代的C1-C4烷基是指被选自卤素,羟基,C1-C4烷氧基,C3-C6环烷基,氨基,羧基,酰胺基,5-7元杂芳基,4-6元杂环基的一种或多种取代基所取代的C1-C4烷基;
优选地,上述式(I)中:
R 1选自-H,卤素,氰基,未取代或任选被卤素、羟基、C1-C4烷氧基、三氟甲氧基、单或二C1-C4烷基氨基中一种或多种取代的C1-C4烷基,未取代或任选被卤素、羟基、C1-C4烷氧基、氨基、单或二C1-C4烷基氨基中一种或多种取代的C1-C4烷氧基,氨基,单或二C1-C4烷基氨基,C1-C4烷基酰胺基,C3-C6环烷基酰胺基,未取代或被单或二C1-C4烷基氨基取代的C2-C4烯基酰胺基,羧基,未取代或被C1-C4烷基取代的氨基酰基,单或二C3-C6环烷基氨基酰基,C1-C4烷基氧基酰基,C3-C6环烷氧基,4-6元杂环烷氧基,4-6元杂环烷酰基,C3-C6环烷基氧基酰基,咪唑基,取代的或未取代C1-C6烷基取代的咪唑基,4-6元杂环基取代的咪唑基、C3-C6环烷基取代的咪唑基,吡唑基,取代的或未取代的C1-C6烷基取代的吡唑基,吡唑基,4-6元杂环基取代的吡唑基、C3-C6环烷基取代的吡唑基,噁唑基,取代的或未取代的C1-C6烷基取代的噁唑基,4-6元杂环基取代的咪噁唑基、C3-C6环烷基取代的噁唑基、异噁唑基,取代的或未取代的C1-C6烷基取代的异噁唑基,4-6元杂环基取代的异噁唑基、C3-C6环烷基取代的异噁唑基,噻唑基,取代的或未取代的C1-C6烷基取代的噻唑基,4-6元杂环基取代的噻唑基、C3-C6 环烷基取代的噻唑基;其中,所述取代的C1-C6烷基是指被选自二甲氨基取代的C1-C4烷基氨基酰基、4-6元杂环基、氨基酰基C1-C4烷基取代的4-6元杂环基中的一种或多种所取代的C1-C6烷基;
更优选地,R 1选自-H、卤素、羟基、氰基、甲基、三氟甲基、甲氧基、三氟甲氧基、环丙基、环丙基氧基、环氧丁基氧基、
Figure PCTCN2020076870-appb-000004
Figure PCTCN2020076870-appb-000005
R 2选自-H、C1-C4烷基、卤素;优选H、甲基、氟或氯;
R 3选自-H、卤素、氰基、未取代或被卤素取代的C1-C4烷基、未取代或被卤素取代的C1-C4烷氧基;优选为H、甲基、氟、氯、三氟甲基、甲氧基或三氟甲氧基;
L选自-CONH-、-NHCO-;
M选自苯环、吡啶环、嘧啶环。
本发明中,
所述卤素选自F、Cl、Br、I;
所述烷基为饱和脂肪族直链或支链的烷基,比如:甲基、乙基、丙基、异丙基或叔丁基;
所述芳基为单环或稠合双环芳基,比如苯基;
所述杂芳基为环上含有1~3个选自N、O、S中杂原子的单环或稠合双环芳基,比如吡唑基、噁唑基、异噁唑基、噻唑基、吡咯基、呋喃基、噻吩基;
所述环烷基为饱和或不饱和的环烷基,比如:环丙烷基、环丁烷基、环戊烷基、环己烷基;
所述杂环基为环上含有选自1~3个选自N、O、S中杂原子的杂环基,比如:咪唑基,哌啶基,四氢吡咯基,四氢呋喃基,四氢吡喃基。
在一个实施方式中,所述式I的化合物可以为下面式II的化合物:
Figure PCTCN2020076870-appb-000006
其中,R 1、R 2、R 3和L的定义如上所述,A 1至A 4各自独立地选自C和N,且A 1至A 4中至多两个为N。
在一个实施方式中,所述式II的化合物可以选自下式III的化合物:
Figure PCTCN2020076870-appb-000007
其中,R 1、R 2、R 3和L的定义如式II中所述,A 2和A 4各自独立地选自C和N。
在一个实施方式中,所述式III的化合物可以选自下列化合物:
Figure PCTCN2020076870-appb-000008
其中,R 1、R 2、R 3、A 2和A 4的定义如式III中所述。
在一个实施方式中,所述式II的化合物可以选自下式的化合物:
Figure PCTCN2020076870-appb-000009
Figure PCTCN2020076870-appb-000010
其中,R 1和R 3的定义如式I中所述,A 2和A 4各自独立地选自C和N。
在一个实施方式中,所述式I的化合物可以选自下式的化合物:
Figure PCTCN2020076870-appb-000011
其中,R 3的定义如式I中所述,A 2和A 4各自独立地选自C和N,
R选自:-H,C1-C4烷氧基,C3-C6环烷基,氨基,单或二C1-C4烷基氨基,羧基,酰胺基,C1-C4烷基酰胺基,C3-C6环烷基酰胺基,4-6元杂环基、C1-C6烷基,被选自二甲氨基取代的C1-C4烷基氨基酰基、4-6元杂环基、氨基酰基C1-C4烷基取代的4-6元杂环基中一种或多种取代的C1-C6烷基。
进一步优选地,所述式(I)化合物选自下式化合物:
Figure PCTCN2020076870-appb-000012
Figure PCTCN2020076870-appb-000013
Figure PCTCN2020076870-appb-000014
Figure PCTCN2020076870-appb-000015
Figure PCTCN2020076870-appb-000016
Figure PCTCN2020076870-appb-000017
Figure PCTCN2020076870-appb-000018
Figure PCTCN2020076870-appb-000019
Figure PCTCN2020076870-appb-000020
Figure PCTCN2020076870-appb-000021
Figure PCTCN2020076870-appb-000022
Figure PCTCN2020076870-appb-000023
Figure PCTCN2020076870-appb-000024
Figure PCTCN2020076870-appb-000025
优选地,所述药学上可接受的盐没有特别限制,例如可以为:盐酸盐、硫酸盐、磷酸盐、甲磺酸盐、马来酸盐等,所述前药可以为:式(I)化合物的酯化合物、酰胺化合物、碳酰胺化合物等。
本发明还提供一种制备上述的式(I)化合物或其氘代化合物或其药学上可接受的盐 或前药的方法,包括如下步骤:式(1)化合物与式(2)化合物在钯金属催化剂和铜金属催化剂存在下,在碱存在下进行偶联反应得到式(I)化合物。
Figure PCTCN2020076870-appb-000026
其中,R 1、R 2、R 3、L及M的定义各自独立地如上述所述;TMS为-Si(CH 3) 3
优选地,所述钯金属催化剂包括Pd(PPh 3) 2Cl 2、Pd(OAc) 2、和Pd(PPh 3) 4中的一种或多种;优选地,所述铜金属催化剂包括CuI和/或CuCl;优选地,所述碱包括CsF、Cs 2CO 3、KF、K 2CO 3、三乙胺、二异丙基乙胺、DMAP中的一种或者两种以上;
优选地,所述偶联反应在溶剂存在下进行,所述的溶剂包括乙腈、1,4-二氧六环、DMF中的一种或两种以上。
进一步优选地,所述方法包括如下步骤:式(1)化合物与式(2)化合物在氟化铯、Pd(PPh 3) 2Cl 2、CuI和三乙胺的存在下,在乙腈溶剂中进行偶联反应得到式(I)化合物。
进一步优选地,所述方法包括选自如下合成路线I或II中的一种:
Figure PCTCN2020076870-appb-000027
当R 1≠Br时,则还包括如下步骤:
Figure PCTCN2020076870-appb-000028
合成路线I
合成路线I包括如下步骤:
步骤1:将化合物I-1、I-2和Et 3N混合,加入钯金属催化剂、铜金属催化剂,反应(例如在室温条件下)得到化合物I-3;
步骤2:将化合物I-4、HATU、DIPEA和DMF混合(例如,室温下搅拌30~60分钟)后,加入化合物I-5,反应(例如室温下反应12~18小时)得到化合物I-6;
步骤3:将化合物I-6、I-3、碱和MeCN混合,加入钯金属催化剂、铜金属催化剂,反应(例如在碘取代的情况下,在室温条件下反应,而在Br取代的情况下,在80℃反应,反应时间例如2~6小时)得到化合物I-7;
步骤4:将化合物I-7、I-8、碱、溶剂混合,加入钯金属催化剂,反应(例如温度为80~120℃,反应30~60分钟)得化合物I-9;
优选地,
步骤1、3、4在氩气环境下进行反应;
步骤1、3所述的钯金属催化剂为Pd(PPh 3) 2Cl 2,铜金属催化剂为CuI;
步骤3所述碱为氟化铯和/或三乙胺;
步骤4所述溶剂为甲苯、乙醇、乙二醇二甲醚和水中的一中或多种;所述钯金属催化剂为Pd(PPh 3) 4;所述碱为K 2CO 3,Cs 2CO 3,NaHCO 3和Na 2CO 3中的任意一种;
进一步优选地,合成路线I包括如下步骤:
步骤1:向圆底烧瓶中加入化合物I-1、I-2和Et 3N,用氩气置换氧气,加入Pd(PPh 3) 2Cl 2、CuI,重复除氧气的操作,室温条件下反应,反应3小时结束,纯化即可得到化合物I-3;其中,化合物I-1、I-2、Pd(PPh 3) 2Cl 2和CuI的当量可以分别约为1.0,1.0~1.5,0.05~0.1,0.1~0.2。
步骤2:向圆底烧瓶中加入化合物I-4、HATU、DIPEA和DMF,室温下搅拌30分钟后,加入化合物I-5,室温下进行反应;反应12小时结束,纯化即可得到化合物I-6;化合物I-4、I-5、HATU和DIPEA的当量可以分别约为1.0,1.0~1.2,1.0~1.5,2.0~4.0。
步骤3:向圆底烧瓶中加入化合物I-6、I-3、Et3N、CsF和MeCN,用氩气置换氧气,加入Pd(PPh 3) 2Cl 2、CuI,重复除氧气的操作,室温或加热至80℃反应,反应3小时结束,纯化即可得到化合物I-7;化合物I-6、I-3、氟化铯、Pd(PPh 3) 2Cl 2、CuI和Et 3N的当量可以分别约为1.0,1.0~1.5,2.5~3.0,0.05~0.1,0.1~0.2,2.5~3.0。
步骤4:向圆底烧瓶中加入化合物I-7、I-8、K 2CO 3、甲苯、乙醇和水,用氩气置换氧气,加入Pd(PPh 3) 4,重复除氧气的操作,微波反应器中反应,反应温度为100℃,反应30分钟结束,纯化即可得目标化合物I-9;化合物I-7、I-8、K 2CO 3、Pd(PPh 3) 4的当量可以分别约为1.0,1.0~3.0,2.5~5.0,0.05~0.1;甲苯:乙醇:水的体积比约为2:1:1。
Figure PCTCN2020076870-appb-000029
当R 1≠Br时,则还包括如下步骤:
Figure PCTCN2020076870-appb-000030
合成路线II
合成路线II包括如下步骤:
步骤1:将化合物I-1、I-2和Et 3N混合,加入钯金属催化剂、铜金属催化剂,反应(例如在室温条件下)得到化合物I-3;
步骤2:将化合物II-4、HATU、DIPEA和DMF混合(例如,室温下搅拌30~60分钟)后,加入化合物II-5,反应(例如室温下反应12~18小时)得到化合物II-6;
步骤3:将化合物II-6、I-3、碱和MeCN混合,加入钯金属催化剂、铜金属催化剂,反应(例如在碘取代的情况下,在室温条件下反应,而在Br取代的情况下,在80℃反应,反应时间例如2~6小时)得到化合物II-7;
步骤4:将化合物II-7、I-8、碱、溶剂混合,加入钯金属催化剂,反应(例如温度为80~120℃,反应30~60分钟)得化合物II-9;
优选地,
步骤1、3、4在氩气环境下进行反应;
步骤1、3所述的钯金属催化剂为Pd(PPh 3) 2Cl 2,铜金属催化剂为CuI;
步骤3所述碱为氟化铯和/或三乙胺;
步骤4所述溶剂为甲苯、乙醇、乙二醇二甲醚和水中的一中或多种;所述钯金属催化剂为Pd(PPh 3) 4;所述碱为K 2CO 3,Cs 2CO 3,NaHCO 3和Na 2CO 3中的任意一种;
进一步优选地,合成路线II包括如下步骤:
步骤1:向圆底烧瓶中加入化合物I-1、I-2和Et 3N,用氩气置换氧气,加入Pd(PPh 3) 2Cl 2、CuI,重复除氧气的操作,室温条件下反应,反应3小时结束,纯化即可得到化合物I-3;化合物I-1、I-2、Pd(PPh 3) 2Cl 2和CuI的当量可以分别约为1.0,1.0~1.5,0.05~0.1,0.1~0.2。
步骤2:向圆底烧瓶中加入化合物II-4、HATU、DIPEA和DMF,室温下搅拌30分钟后,加入化合物II-5,室温下进行反应;反应12小时结束,纯化即可得到化合物II-6;化合物II-4、II-5、HATU和DIPEA的当量可以分别约为1.0,1.0~1.2,1.0~1.5,2.0~4.0。
步骤3:向圆底烧瓶中加入化合物II-6、I-3、Et3N、CsF和MeCN,用氩气置换氧气,加入Pd(PPh 3) 2Cl 2、CuI,重复除氧气的操作,室温或加热至80℃反应,反应3小时结束,纯化即可得到化合物II-7;化合物II-6、II-3、氟化铯、Pd(PPh 3) 2Cl 2、CuI和Et 3N的当量可以分别约为1.0,1.0~1.5,2.5~3.0,0.05~0.1,0.1~0.2,2.5~3.0。
步骤4:向圆底烧瓶中加入化合物II-7、I-8、K 2CO 3、甲苯、乙醇和水,用氩气置换氧气,加入Pd(PPh 3) 4,重复除氧气的操作,微波反应器中反应,反应温度为100℃,反应30分钟结束,纯化即可得目标化合物II-9;化合物II-7、I-8、K 2CO 3、Pd(PPh 3) 4的当量可以分别约为1.0,1.0~3.0,2.5~5.0,0.05~0.1;甲苯:乙醇:水的体积比为2:1:1。
其中,R 1、R 2、R 3及M的定义各自独立地如上所述。
本发明还提供一种药物组合物,其特征在于,包括上述的式(I)化合物或其氘代化合物或其药学上可接受的盐或前药中的一种或多种以及药学上可接受的辅料。
本发明还提供上述的式(I)化合物或其氘代化合物或其药学上可接受的盐或前药或者上述的药物组合物在制备CSF-1R抑制剂中的用途。
本发明还提供上述的式(I)化合物或其氘代化合物或其药学上可接受的盐或前药或者上述的药物组合物在制备治疗肿瘤、炎症性疾病、自身免疫性疾病、神经系统性疾病的药物中的用途。
本发明所述的式(I)化合物具有CSF-1R抑制活性高的优点。细胞水平的抗炎活性数据表明所述含二芳基炔类化合物具有显著的抗炎活性。
附图说明
图1为代表性化合物对Raw264.7中CSF1R信号通路活化抑制的影响;
图2为代表性化合物对RAW264.7细胞的细胞毒作用及TNFF-α释放抑制效果。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于示例性地对本发明进行说明,并不用于限制本发明。
(一)化合物制备实施例
实施例1化合物1的制备
步骤1:向圆底烧瓶中加入2-氨基-3-碘吡啶(1.0g,4.55mmol)、三甲基硅乙炔(535.7mg,5.45mmol)和Et 3N(50mL),用氩气置换氧气,加入Pd(PPh 3) 2Cl 2(159.5mg,0.23mmol)、CuI(86.6mg,0.45mmol),重复除氧气的操作,室温条件下反应6小时;反应结束后加入50mL乙酸乙酯稀释反应液,过滤即可得到产物2-氨基-3-三甲基乙炔基吡啶870mg(产率:100%)。
步骤2:向圆底烧瓶中加入化合物4-甲基-3碘苯甲酸(2.0g,7.63mmol)、HATU(3.8g,9.92mmol)、DIPEA(2.5g,19.08mmol)和DMF(40mL),室温下搅拌30分钟后,加入化合物3,5-二甲氧基苯胺(1.3g,8.40mmol),室温反应12小时;反应结束后,乙酸乙酯(50mL×3)和水(40mL)萃取反应液,有机相分别用自来水洗(30mL×3),饱和NaCl溶液洗(30mL×3),无水硫酸钠干燥,减压蒸干溶剂,柱层析分离得N-(3,5-二甲氧基苯基)-3-碘-4-甲基苯甲酰胺3.0g(产率:99%)。
步骤3:向圆底烧瓶中加入化合物N-(3,5-二甲氧基苯基)-3-碘-4-甲基苯甲酰胺(150.0mg,0.38mmol)、2-氨基-3-三甲基硅基乙炔基吡啶(93.4mg,0.49mmol)、Et 3N(114.6mg,1.13mmol)、CsF(172.1mg,1.13mmol)和MeCN(20mL),用氩气置换氧气,加入Pd(PPh 3) 2Cl 2(13.2mg,0.019mmol)、CuI(7.2mg,0.038mmol),重复除氧气的操作,室温条件下反应3小时。反应结束后,乙酸乙酯和水萃取反应液,有机相用饱和NaCl溶液洗,经无水硫酸钠干燥后,减压蒸干溶剂,柱层析分离得化合物1 3-(2-氨基吡啶基-3-乙炔基)-N-(3,5-二甲氧苯基)-4-甲基苯甲酰胺109.0mg(产率:74.5%)
1H NMR(400MHz,DMSO)δ10.19(s,1H),8.23(d,J=1.8Hz,1H),8.01(s,1H),7.85(dd,J=8.0,1.9Hz,1H),7.65(dd,J=7.5,1.4Hz,1H),7.47(d,J=8.1Hz,1H),7.10(t,J=2.2Hz,2H),6.61(dd,J=7.4,4.9Hz,1H),6.32(s,2H),6.27(t,J=2.2Hz,1H),3.74(s,6H),2.54(s,3H).LR-MS(ESI)m/z 388.2(M+1).
实施例2化合物2的制备
除用5-甲基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ12.30(s,1H),8.34(d,J=2.9Hz,1H),7.88–7.74(m,2H),7.30(dd,J=9.0,7.7Hz,2H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),2.45(s,3H),2.23(s,3H).LR-MS(ESI)m/z 402.2(M+1).
实施例3化合物3的制备
除用2-氨基-5-氟-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.35(s,1H),8.34(d,J=1.5Hz,1H),7.82(dd,J=7.5,1.5Hz,1H),7.78(dd,J=7.9,1.4Hz,1H),7.60(dd,J=8.0,1.5Hz,1H),7.31(d,J=7.5Hz, 1H),7.01(d,J=1.5Hz,2H),6.89(s,2H),6.23(t,J=1.5Hz,1H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 406.5(M+1).
实施例4化合物4的制备
除用2-氨基-5-氯-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ11.32(s,1H),8.34(d,J=1.5Hz,1H),8.13(d,J=1.3Hz,1H),8.02(d,J=1.3Hz,1H),7.82(dd,J=7.5,1.5Hz,1H),7.31(d,J=7.5Hz,1H),7.01(d,J=1.5Hz,2H),6.89(s,2H),6.23(t,J=1.5Hz,1H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 422.1(M+1).
实施例5化合物5的制备
除用2-氨基-5-溴-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.34(d,J=1.5Hz,1H),8.19(d,J=1.3Hz,1H),7.82(dd,J=7.5,1.5Hz,1H),7.77(d,J=1.5Hz,1H),7.31(d,J=7.5Hz,1H),7.01(d,J=1.5Hz,2H),6.89(s,2H),6.23(t,J=1.5Hz,1H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 466.3(M+1).
实施例6化合物6的制备
除用5-甲氧基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.07(s,1H),8.34(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.1Hz,1H),7.64(d,J=3.1Hz,1H),7.40(d,J=3.1Hz,1H),7.31(d,J=15.0Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.83(s,3H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 418.5(M+1).
实施例7化合物7的制备
除用5-三氟甲氧基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.34(s,1H),8.34(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.1Hz,1H),7.64(d,J=2.9Hz,1H),7.48(d,J=2.9Hz,1H),7.31(d,J=15.0Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 472.1(M+1).
实施例8化合物8的制备
除用5-环丙基氧基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.29(s,1H),8.33(d,J=3.1Hz,1H),7.81(dd,J=15.0,3.0Hz,1H),7.63(d,J=3.1Hz,1H),7.39(d,J=2.9Hz,1H),7.30(d,J=15.0Hz,1H),7.00(d,J=3.1Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),3.32(p,J=16.4Hz,1H),2.45(s,3H),0.70–0.36(m,2H),0.19–-0.15(m,2H).LR-MS(ESI)m/z 443.3(M+1).
实施例9化合物9的制备
除用5-(环氧丁基-3-氧基)-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.34(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.1Hz,1H),7.64(d,J=3.1Hz,1H),7.31(d,J=15.0Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),δ4.77(dd,J=24.8,16.2Hz,2H),4.53(dd,J=24.8,16.0Hz,2H),3.81(s,6H),3.68(p,J=16.0Hz,1H),2.45(s,3H).LR-MS(ESI)m/z 460.2(M+1).
实施例10化合物10的制备
除用5-甲氧基甲酰基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.47(d,J=2.9Hz,1H),8.34(d,J=2.9Hz,1H),8.30(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.1Hz,1H),7.31(d,J=15.0Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.90(s,3H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 446.5(M+1).
实施例11化合物11的制备
除用5-羧基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ13.19(s,1H),10.30(s,1H),8.40(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.13(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 432.3(M+1).
实施例12化合物12的制备
除用5-氨基甲酰基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.28(s,1H),8.32(d,J=2.9Hz,1H),8.24(s,2H),7.80(dd,J=15.0,3.0Hz,1H),7.35–7.25(m,3H),7.00(d,J=3.1Hz,2H),6.88(s,2H),6.22(t,J=3.0Hz,1H),3.80(s,6H),2.44(s,3H).LR-MS(ESI)m/z 431.2(M+1).
实施例13化合物13的制备
除用5-甲氨基甲酰基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.70(s,1H),8.34(d,J=2.9Hz,1H),8.33(d,J=2.9Hz,1H),8.26(d,J=3.1Hz,1H),8.18(s,1H),7.82(dd,J=15.0,3.1Hz,1H),7.31(d,J=15.0Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),2.81(s,3H),2.45(s,3H).LR-MS(ESI)m/z 445.5(M+1).
实施例14化合物14的制备
除用5-异丙氨基甲酰基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.34(d,J=2.9Hz,2H),8.26(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.72(s,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),4.17(hept,J=12.0Hz,1H),3.81(s,6H),2.45(s,3H),1.15(d,J=12.0Hz,6H).LR-MS(ESI)m/z 473.4(M+1).
实施例15化合物15的制备
除用5-环丙氨基甲酰基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.14(s,1H),8.35(dd,J=5.7,3.0Hz,2H),8.26(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.72(s,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),2.75(p,J=17.8Hz,1H),2.45(s,3H),0.99–0.40(m,4H).LR-MS(ESI)m/z 471.6(M+1).
实施例16化合物16的制备
除用5-吗啉基-N-甲酰基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.36(s,1H),8.34(d,J=3.1Hz,1H),8.31–8.22(m,2H),7.82(dd,J=15.0,3.0Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),3.67–3.56(m,4H),3.55–3.42(m,4H),2.45(s,3H).LR-MS(ESI)m/z 501.6(M+1).
实施例17化合物17的制备
除用5-羟甲基-2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ11.30(s,1H),8.34(d,J=3.1Hz,1H),7.91(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.50(d,J=3.1Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),5.27(s,1H),4.61(s,2H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 418.2(M+1).
实施例18化合物18的制备
步骤1:向圆底烧瓶中加入2-氨基-5-溴-3-碘吡啶(1.0g,3.35mmol)、三甲基硅乙炔(427.2mg,4.35mmol)和Et 3N(50mL),用氩气置换氧气,加入Pd(PPh 3) 2Cl 2(117.4mg,0.17mmol)、CuI(63.7mg,0.33mmol),重复除氧气的操作,室温条件下反应6小时;反应结束后加入50mL乙酸乙酯稀释反应液,过滤即可得到产物2-氨基-5-溴-3-三甲基乙炔基吡啶900.0mg(产率:99.9%)。
步骤2:向圆底烧瓶中加入化合物4-甲基-3碘苯甲酸(2.0g,7.63mmol)、HATU(3.8g,9.92mmol)、DIPEA(2.5g,19.08mmol)和DMF(40mL),室温下搅拌30分钟后,加入化合物3,5-二甲氧基苯胺(1.3g,8.40mmol),室温反应12小时;反应结束后,乙酸乙酯(50mL×3)和水(40mL)萃取反应液,有机相分别用自来水洗(30mL×3),饱和NaCl溶液洗(30mL×3),无水硫酸钠干燥,减压蒸干溶剂,柱层析分离得N-(3,5-二甲氧基苯基)-3-碘-4-甲基苯甲酰胺3.0g(产率:99%)。
步骤3:向圆底烧瓶中加入化合物N-(3,5-二甲氧基苯基)-3-碘-4-甲基苯甲酰胺(150.0mg,0.38mmol)、2-氨基-5-溴-3-三甲基硅基乙炔基吡啶(132.2mg,0.49mmol)、Et 3N(114.6mg,1.13mmol)、CsF(172.1mg,1.13mmol)和MeCN(20mL),用氩气置换氧气,加入Pd(PPh 3) 2Cl 2(13.2mg,0.019mmol)、CuI(7.2mg,0.038mmol),重复除氧气的操作,室温条件下反应3小时。反应结束后,乙酸乙酯(30mL×3)和水(20mL)萃取反应液,有机相 用饱和NaCl溶液洗(10mL×3),经无水硫酸钠干燥后,减压蒸干溶剂,柱层析分离得产物3-(2-氨基吡啶基-5-溴-3-乙炔基)-N-(3,5-二甲氧苯基)-4-甲基苯甲酰胺121.3mg(产率:68.9%)。
步骤4:向圆底烧瓶中加入化合物3-(2-氨基吡啶基-5-溴-3-乙炔基)-N-(3,5-二甲氧苯基)-4-甲基苯甲酰胺(80.0mg,0.17mmol)、3,5-二甲基异恶唑-4-硼酸频哪醇酯(95.7mg,0.43mmol)、K 2CO 3(71.1mg,0.51mmol)、甲苯(2mL)、乙醇(1mL)和水(1mL),用氩气置换氧气,加入Pd(PPh 3) 4(19.8mg,0.017mmol),重复除氧气的操作,微波反应器中,100℃反应30分钟,反应结束后,减压蒸干溶剂,柱层析纯化得目标产物3-((2-氨基-5-(3,5-二甲基-4-异恶唑基)吡啶基-3-乙炔基)-N-(3,5-二甲氧基苯基)-4-甲基苯甲酰胺78.5mg(产率:94.8%)。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.34(t,J=3.1Hz,2H),8.12(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),2.47(d,J=11.8Hz,6H),2.25(s,3H).LR-MS(ESI)m/z 483.2(M+1).
实施例19化合物19的制备
除用异恶唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.38(d,J=2.9Hz,1H),8.37(s,1H),8.34(d,J=3.1Hz,1H),8.18(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 545.5(M+1).
实施例20化合物20的制备
除用1H-吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.16(d,J=2.9Hz,1H),7.88(s,2H),7.82(dd,J=15.0,3.0Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 454.2(M+1).
实施例21化合物21的制备
除用3,5-二甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ11.95(s,1H),10.30(s,1H),8.32(dd,J=12.7,3.0Hz,2H),8.10(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),2.45(s,3H),2.06(s,6H).LR-MS(ESI)m/z 482.2(M+1).
实施例22化合物22的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.10(s,1H),8.36(dd,J=14.2,3.0Hz,2H),8.18(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.53(d,J=3.1Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.94(s,3H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 468.5(M+1).
实施例23化合物23的制备
除用N-异丙基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.09(s,1H),8.36(dd,J=13.7,3.1Hz,2H),8.17(d,J=2.9Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.51(d,J=3.1Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),4.58(hept,J=12.1Hz,1H),3.81(s,6H),2.45(s,3H),1.37(d,J=12.2Hz,6H).LR-MS(ESI)m/z 496.6(M+1).
实施例24化合物24的制备
除用N-((N,N-二甲基-N-丙基)氨基甲酰基甲基)吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ11.30(s,1H),8.35(dd,J=9.0,3.0Hz,2H),8.17(d,J=2.9Hz,1H),8.01(s,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.62(d,J=2.9Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),5.60(s,2H),3.81(s,6H),3.42(t,J=10.0Hz,2H),2.45(s,3H),2.43–2.31(m,2H),2.15(s,6H),1.90–1.44(m,2H).LR-MS(ESI)m/z 596.3(M+1).
实施例25化合物25的制备
除用N-(氮杂环丁基-3-甲基)吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=2.9Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.56(d,J=2.9Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),4.32(d,J=46.5Hz,2H),3.81(s,6H),3.12(dd,J=24.5,15.1Hz,2H),2.74(dd,J=24.8,14.9Hz,2H),2.67–2.50(m,1H),2.45(s,3H).1.83(s,1H).LR-MS(ESI)m/z 523.6(M+1).
实施例26化合物26的制备
除用N-((N-氨基甲酰甲基)氮杂环丁基-3-甲基)吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.80(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=2.9Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.56(d, J=2.9Hz,1H),7.31(d,J=14.9Hz,1H),7.24(s,2H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),4.32(d,J=46.5Hz,2H),3.81(s,6H),3.32(s,2H),3.12(dd,J=24.5,15.1Hz,2H),2.74(dd,J=24.8,14.9Hz,2H),2.67–2.50(m,1H),2.45(s,3H).1.83(s,1H).LR-MS(ESI)m/z 580.3(M+1).
实施例27化合物27的制备
除用N-(3-氮杂环丁基)吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=2.9Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.56(d,J=2.9Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.81(s,6H),3.12(dd,J=24.5,15.1Hz,2H),2.74(dd,J=24.8,14.9Hz,2H),2.57–2.22(m,1H),2.15(s,3H),2.01(s,1H).LR-MS(ESI)m/z 509.7(M+1).
实施例28化合物28的制备
除用N-(3-氮杂环戊基)吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.29(s,1H),8.34(dd,J=6.5,3.0Hz,2H),8.14(d,J=2.9Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.49(d,J=3.1Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),4.69(tt,J=16.3,13.0Hz,1H),3.81(s,6H),2.99(ddt,J=36.7,24.8,12.5Hz,2H),2.86–2.77(m,2H),2.45(s,3H),2.29–2.05(m,1H),2.02–1.87(m,1H),1.86(s,1H).LR-MS(ESI)m/z 523.2(M+1).
实施例29化合物29的制备
除用N-(3-氮杂环己基)吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.34(dd,J=3.0,1.3Hz,2H),8.13(d,J=3.1Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.44(d,J=2.9Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),4.52(p,J=15.1Hz,1H),3.81(s,6H),3.31(dd,J=24.7,14.7Hz,1H),3.06(dd,J=24.8,14.8Hz,1H),2.90–2.61(m,2H),2.45(s,3H),2.10(ddt,J=23.8,15.4,11.8Hz,1H),1.96(s,1H),1.80–1.27(m,3H).LR-MS(ESI)m/z 537.6(M+1).
实施例30化合物30的制备
除用N-四氢吡喃基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.36(d,J=13.6Hz,2H),8.17(s,1H),7.97(s,1H),7.82(s,1H),7.56(s,1H),7.31(s,1H),7.01(s,2H),6.89(s,2H),6.23(s,1H),4.21(s, 1H),3.81(s,6H),3.62(d,J=40.0Hz,4H),2.45(s,3H),2.15(s,2H),1.90(s,2H).LR-MS(ESI)m/z 538.3(M+1).
实施例31化合物31的制备
除用N-六氢吡喃基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.38(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.16(d,J=2.9Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.55(d,J=3.1Hz,1H),7.31(d,J=14.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),4.22(p,J=15.4Hz,1H),3.81(s,6H),3.11–2.57(m,4H),2.45(s,3H),2.05–1.58(m,5H).LR-MS(ESI)m/z 537.2(M+1).
实施例32化合物32的制备
除用2-氨基-5-氨基甲酰基-3-碘吡啶代替2-氨基-3-碘吡啶及4-氯-3-碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.27(s,1H),8.31(d,J=3.1Hz,1H),8.24(q,J=3.1Hz,2H),7.86(dd,J=14.9,3.1Hz,1H),7.55(d,J=14.9Hz,1H),7.28(s,2H),6.99(d,J=2.9Hz,2H),6.87(s,2H),6.21(t,J=3.0Hz,1H),3.80(s,6H).LR-MS(ESI)m/z 451.1(M+1).
实施例33化合物33的制备
除用2-氨基-5-氨基甲酰基-3碘吡啶代替2-氨基-3-碘吡啶及4-氟-3-碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.23(s,1H),8.35(dd,J=10.0,3.0Hz,1H),8.23(s,2H),8.08(ddd,J=14.9,10.1,3.0Hz,1H),7.34(d,J=15.7Hz,1H),7.28(s,2H),6.99(d,J=3.1Hz,2H),6.87(s,2H),6.21(t,J=3.0Hz,1H),3.80(s,6H).LR-MS(ESI)m/z 435.1(M+1).
实施例34化合物34的制备
除用2-氨基-5-氨基甲酰基-3碘吡啶代替2-氨基-3-碘吡啶及3-碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.29(s,1H),8.38(t,J=3.0Hz,1H),8.30–8.19(m,2H),7.92(dt,J=14.7,3.1Hz,1H),7.78(dt,J=14.9,3.1Hz,1H),7.62(t,J=14.8Hz,1H),7.29(s,2H),7.00(d,J=3.0Hz,2H),6.88(s,2H),6.22(t,J=3.0Hz,1H),3.81(s,6H).LR-MS(ESI)m/z 417.1(M+1).
实施例35化合物35的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯-3-碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.38(d,J=3.1Hz,1H),8.33(d,J=3.1Hz,1H),8.17(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.88(dd,J=14.9,2.9Hz,1H),7.57(d,J=14.9Hz,1H),7.53(d,J=3.1Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.94(s,3H),3.81(s,6H).LR-MS(ESI)m/z 488.1(M+1).
实施例36化合物36的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氟-3-碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.40–8.34(m,2H),8.16(d,J=3.1Hz,1H),8.10(ddd,J=15.1,10.1,3.0Hz,1H),7.96(d,J=2.9Hz,1H),7.53(d,J=2.9Hz,1H),7.34(dd,J=15.9,15.0Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.94(s,3H),3.81(s,6H).LR-MS(ESI)m/z 472.2(M+1).
实施例37化合物37的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和3-碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.39(dd,J=6.7,3.1Hz,2H),8.17(d,J=3.1Hz,1H),7.98–7.88(m,2H),7.78(dt,J=15.1,3.2Hz,1H),7.63(t,J=14.8Hz,1H),7.50(d,J=2.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),3.94(s,3H),3.81(s,6H).LR-MS(ESI)m/z 454.1(M+1).
实施例38化合物38的制备
除用N-六氢吡啶基吡唑基-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯-3-碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.40(d,J=3.1Hz,1H),8.33(d,J=3.1Hz,1H),8.17(d,J=2.9Hz,1H),7.97(d,J=3.1Hz,1H),7.88(dd,J=14.9,2.9Hz,1H),7.57(d,J=14.9Hz,1H),7.54(d,J=2.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),4.21(p,J=15.3Hz,1H),3.81(s,6H),3.07–2.44(m,4H),2.19–1.36(m,5H).LR-MS(ESI)m/z 557.1(M+1).
实施例39化合物39的制备
除用N-六氢吡啶基吡唑基-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氟-3-碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.42–8.32(m,2H),8.16(d,J=3.1Hz,1H),8.10(ddd,J=15.1,10.1,3.0Hz,1H),7.97(d,J=3.1Hz,1H),7.56(d,J=3.1Hz,1H),7.34(dd,J=15.9,15.0Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H),6.23(t,J=3.0Hz,1H),4.22(p,J=15.4Hz,1H),3.81(s,6H),3.15–2.38(m,4H),2.17–1.32(m,5H).LR-MS(ESI)m/z 541.2(M+1).
实施例40化合物40的制备
除用N-六氢吡啶基吡唑基-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和3-碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.39(dd,J=6.3,3.1Hz,2H),8.16(d,J=3.1Hz,1H),7.97(d,J=3.1Hz,1H),7.93(dt,J=14.7,3.1Hz,1H),7.78(dt,J=15.1,3.2Hz,1H),7.63(t,J=14.8Hz,1H),7.53(d,J=2.9Hz,1H),7.01(d,J=2.9Hz,2H),6.89(s,2H), 6.23(t,J=3.0Hz,1H),4.03(p,J=15.3Hz,1H),3.81(s,6H),2.95–2.59(m,4H),2.12–1.56(m,5H).LR-MS(ESI)m/z 523.6(M+1).
实施例41化合物41的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.38(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.76–7.64(m,2H),7.53(d,J=3.1Hz,1H),7.39–7.25(m,3H),7.13–7.01(m,1H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 408.2(M+1).
实施例42化合物42的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和2-甲氧基苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ9.29(s,1H),8.38(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.18(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.74(dd,J=14.8,3.0Hz,1H),7.57(d,J=2.9Hz,1H),7.31(d,J=14.9Hz,1H),7.23–7.12(m,1H),7.08(dd,J=15.0,3.6Hz,1H),6.97(td,J=14.7,3.7Hz,1H),6.89(s,2H),3.94(s,3H),3.85(s,3H),2.45(s,3H).LR-MS(ESI)m/z 438.3(M+1).
实施例43化合物43的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和3-甲氧基苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.29(s,1H),8.38(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.18(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.56(d,J=2.9Hz,1H),7.47(dt,J=15.0,3.0Hz,1H),7.31(d,J=14.9Hz,1H),7.25–7.14(m,2H),6.89(s,2H),6.67(dt,J=14.8,3.0Hz,1H),3.94(s,3H),3.74(s,3H),2.45(s,3H).LR-MS(ESI)m/z 438.2(M+1).
实施例44化合物44的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-甲氧基苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.37(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.18(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.67–7.58(m,2H),7.56(d,J=2.9Hz,1H),7.31(d,J=14.9Hz,1H),6.97–6.90(m,2H),6.89(s,2H),3.94(s,3H),3.81(s,3H),2.45(s,3H).LR-MS(ESI)m/z 438.2(M+1).
实施例45化合物45的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和2-氟苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.31(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=2.9Hz,1H),8.02–7.88(m,2H),7.82(dd,J=15.0,3.0Hz,1H),7.55(d,J=3.1Hz,1H),7.31(d,J=14.9Hz,1H),7.25–7.14(m,1H),7.13–7.04(m,1H),7.04–6.94(m,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 426.1(M+1).
实施例46化合物46的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和3-氟苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.53(s,1H),8.38(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.72(dt,J=16.0,2.9Hz,1H),7.56(dt,J=15.0,3.0Hz,1H),7.53(d,J=3.1Hz,1H),7.40(td,J=15.0,10.0Hz,1H),7.31(d,J=14.9Hz,1H),6.96(ddt,J=15.9,15.0,3.0Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 426.2(M+1).
实施例47化合物47的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氟苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.38(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.65–7.57(m,2H),7.56(d,J=3.1Hz,1H),7.31(d,J=14.9Hz,1H),7.21–7.08(m,2H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 426.2(M+1).
实施例48化合物48的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和2-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.11(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.73(dd,J=14.8,3.2Hz,1H),7.57(dd,J=14.0,2.4Hz,1H),7.55(d,J=1.1Hz,1H),7.41(td,J=14.9,3.2Hz,1H),7.31(d,J=14.9Hz,1H),7.24(td,J=14.9,3.2Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 442.1(M+1).
实施例49化合物49的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和3-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.34(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=3.1Hz,1H),7.99(t,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.74(dt,J=14.9,3.1Hz,1H),7.55(d,J=3.1Hz,1H),7.39(t,J=14.9Hz,1H),7.31(d,J=14.9Hz,1H),7.16(dt,J=15.2,3.1Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 442.1(M+1).
实施例50化合物50的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.40(s,1H),8.26(dd,J=7.9,1.9Hz,2H),8.07(s,1H),7.86(dd,J=11.3,4.1Hz,3H),7.82(d,J=2.1Hz,2H),7.48(d,J=8.1Hz,1H),7.41(d,J=8.9Hz,2H),6.31(s,2H),3.84(s,3H),2.56(s,3H).LR-MS(ESI)m/z 442.1(M+1).
实施例51化合物51的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和2-三氟甲基苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ9.89(s,1H),8.38(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.71(dd,J=14.8,3.0Hz,1H),7.56(d,J=3.1Hz,1H),7.46(td,J=14.5,3.5Hz,1H),7.35–7.25(m,2H),7.22(dd,J=14.9,3.6Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 476.2(M+1).
实施例52化合物52的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和3-三氟甲基苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.58(s,1H),8.28(dd,J=4.0,2.0Hz,2H),8.25(s,1H),8.08(d,J=5.6Hz,2H),7.89(dd,J=8.0,1.7Hz,1H),7.85(d,J=2.2Hz,1H),7.82(s,1H),7.60(t,J=8.0Hz,1H),7.50(d,J=8.1Hz,1H),7.45(d,J=7.7Hz,1H),6.31(s,2H),3.84(s,3H),2.57(s,3H).LR-MS(ESI)m/z 476.2(M+1).
实施例53化合物53的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-三氟甲基苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.62(s,1H),8.28(s,2H),8.08(s,1H),8.02(d,J=8.5Hz,2H),7.89(d,J=9.3Hz,1H),7.85(s,1H),7.82(s,1H),7.73(d,J=8.6Hz,2H),7.50(d,J=8.1Hz,1H),6.32(s,2H),3.84(s,3H),2.57(s,3H).LR-MS(ESI)m/z 476.2(M+1).
实施例54化合物54的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和2-三氟甲氧基苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ9.29(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.18(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.74(dd,J=14.8,3.0Hz,1H),7.56(d,J=2.9Hz,1H),7.31(d,J=14.9Hz,1H),7.20(td,J=14.7,3.0Hz,1H),7.08(dd,J=14.9,3.4Hz,1H),6.97(td,J=14.7,3.3Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 492.2(M+1).
实施例55化合物55的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和3-三氟甲氧基苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.29(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.18(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.54(d,J=3.1Hz,1H),7.47(dt,J=14.9,2.9Hz,1H),7.33(t,J=3.0Hz,1H),7.31(d,J=12.7Hz,1H),7.22(t,J=15.0Hz,1H),6.89(s,2H),6.78(dt,J=14.9,3.1Hz,1H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 492.1(M+1).
实施例56化合物56的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-三氟甲氧基苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.36(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.64–7.55(m,2H),7.54(d,J=3.1Hz,1H),7.31(d,J=14.9Hz,1H),6.96–6.90(m,2H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 492.2(M+1).
实施例57化合物57的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和2,4-二氟苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.31(s,1H),8.36(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.16(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.69–7.55(m,1H),7.53(d,J=2.9Hz,1H),7.31(d,J=14.9Hz,1H),7.05–6.91(m,2H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 444.4(M+1).
实施例58化合物58的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和3,4-二氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.34(s,1H),8.37(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.93(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.60(dd,J=15.0,2.8Hz,1H),7.51(dd,J=8.9,6.0Hz,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 476.3(M+1).
实施例59化合物59的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和3-甲氧基-4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.29(s,1H),8.38(d,J=3.1Hz,1H),8.34(d,J=3.0Hz,1H),8.16(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.53(d,J=8.1Hz,1H),7.51(d,J=4.0Hz,1H),7.40(dd,J=15.0,3.0Hz,1H),7.31(d,J=14.9Hz,1H),7.23(d,J=2.9Hz,1H),6.89(s,2H),3.94(s,3H),3.88(s,3H),2.45(s,3H).LR-MS(ESI)m/z 472.1(M+1).
实施例60化合物60的制备
除用N-异丙基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.38(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.16(d,J=2.9Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.77–7.67(m,2H),7.54(d,J=2.9Hz,1H),7.44–7.34(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),4.60(hept,J=12.2Hz,1H),2.45(s,3H),1.37(d,J=12.2Hz,6H).LR-MS(ESI)m/z 470.4(M+1).
实施例61化合物61的制备
除用N-((N,N-二甲基-N-丙基)氨基甲酰基甲基)吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.35(dd,J=11.0,3.1Hz,2H),8.14(d,J=2.9Hz,1H),8.01(s,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.76–7.66(m,2H),7.49(d,J=2.9Hz,1H),7.43–7.35(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),5.60(s,2H),3.42(t,J=10.0Hz,2H),2.45(s,3H),2.43–2.31(m,2H),2.15(s,6H),1.91–1.56(m,2H).LR-MS(ESI)m/z 570.2(M+1).
实施例62化合物62的制备
除用N-(氮杂环丁基-3-甲基)吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.26(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.0Hz,1H),8.17(d,J=3.1Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.77–7.66(m,2H),7.54(d,J=3.1Hz,1H),7.44–7.35(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),4.31(d,J=50.4Hz,2H),3.12(dd,J=24.5,15.1Hz,2H),2.74(dd,J=24.8,14.9Hz,2H),2.55(s,3H),2.28–2.01(m,1H),1.83(s,1H).LR-MS(ESI)m/z 497.1(M+1).
实施例63化合物63的制备
除用N-(N-氨基甲酰基甲基氮杂环丁基-3-甲基)吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.31(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.0Hz,1H),8.17(d,J=3.1Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.77–7.66(m,2H),7.54(d,J=3.1Hz,1H),7.44–7.35(m,2H),7.31(d,J=14.9Hz,1H),7.24(s,2H),6.89(s,2H),4.31(d,J=50.4Hz,2H),3.32(s,2H),3.12(dd,J=24.5,15.1Hz,2H),2.74(dd,J=24.8,14.9Hz,2H),2.55(s,3H),2.28–2.01(m,1H).LR-MS(ESI)m/z 554.0(M+1).
实施例64化合物64的制备
除用N-氮杂环丁基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.26(s,1H),8.38(d,J=2.9Hz,1H),8.34(d,J=3.0Hz,1H),8.17(d,J=3.1Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.77–7.66(m,2H),7.54(d,J=3.1Hz,1H),7.44–7.35(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),3.12(dd,J=24.5,15.1Hz,2H),2.74(dd,J=24.8,14.9Hz,2H),2.55(s,3H),2.28–2.01(m,1H),1.83(s,1H).LR-MS(ESI)m/z 483.9(M+1).
实施例65化合物65的制备
除用N-(3-氮杂环戊基)吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.37(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=3.1Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.77–7.67(m,2H),7.58(d,J=2.9Hz,1H),7.44–7.35(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),4.73(tt,J=16.4,12.8Hz,1H),3.25–2.67(m,4H),2.45(s,3H),2.26–1.76(m,3H).LR-MS(ESI)m/z 497.7(M+1).
实施例66化合物66的制备
除用N-(3-氮杂环己基)吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.37(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=2.9Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=14.9,3.1Hz,1H),7.77–7.64(m,2H),7.58(d,J=2.9Hz,1H),7.47–7.35(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),4.61–4.09(m,1H),3.18(ddd,J=103.1,24.9,14.6Hz,2H),2.87–2.64(m,2H),2.45(s,3H),2.28–1.68(m,3H),1.67–1.14(m,2H).LR-MS(ESI)m/z 511.0(M+1).
实施例67化合物67的制备
除用N-四氢吡喃基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.37(d,J=3.1Hz,1H),8.34(d,J=2.9Hz,1H),8.17(d,J=2.9Hz,1H),7.97(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.76–7.67(m,2H),7.58(d,J=3.1Hz,1H),7.44–7.35(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),4.22(p,J=15.4Hz,1H),3.73-3.51(m,4H),2.45(s,3H),2.32–1.67(m,4H).LR-MS(ESI)m/z 512.2(M+1).
实施例68化合物68的制备
除用N-六氢吡啶基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯和4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.37(d,J=2.9Hz,1H),8.34(d,J=2.9Hz,1H),8.17(d,J=3.1Hz,1H),7.97(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.77–7.65(m,2H),7.57(d,J=2.9Hz,1H),7.44–7.35(m,2H),7.31(d,J=14.9Hz,1H),6.89(s, 2H),4.10(p,J=15.4Hz,1H),3.00–2.54(m,4H),2.45(s,3H),2.13–1.53(m,5H).LR-MS(ESI)m/z 511.2(M+1).
实施例69化合物69的制备
将化合物68 1.0g(1.89mmol)溶于无水甲醇,冰浴条件下滴入1M氯化氢的甲醇溶液1.89mL,室温反应10min后,旋干溶剂即得化合物69 1.07g(产率:100%)
1H NMR(400MHz,DMSO)δ10.18(s,1H),9.58(s,2H),8.36(d,J=2.9Hz,1H),8.32(d,J=2.9Hz,1H),8.20(d,J=3.1Hz,1H),7.95(d,J=3.1Hz,1H),7.81(dd,J=14.9,2.9Hz,1H),7.75–7.66(m,2H),7.60(d,J=3.1Hz,1H),7.43–7.33(m,2H),7.30(d,J=14.9Hz,1H),6.88(s,2H),4.12(p,J=15.6Hz,1H),3.46–3.16(m,4H),2.45(s,3H),2.44–2.02(m,4H).LR-MS(ESI)m/z 511.2(M+1).
实施例70化合物70的制备
除用N-六氢吡啶基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、4-氯苯胺代替3,5-二甲氧基苯胺及4-氟-3碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如
实施例18。
1H NMR(400MHz,DMSO)δ10.30(s,1H),8.34(d,J=1.5Hz,1H),7.82(dd,J=7.5,1.5Hz,1H),7.78(dd,J=7.9,1.4Hz,1H),7.60(dd,J=8.0,1.5Hz,1H),7.31(d,J=7.5Hz,1H),7.01(d,J=1.5Hz,2H),6.89(s,2H),6.23(t,J=1.5Hz,1H),3.81(s,6H),2.45(s,3H).LR-MS(ESI)m/z 515.1(M+1).
实施例71化合物71的制备
除用N-六氢吡啶基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、4-氯苯胺代替3,5-二甲氧基苯胺及4-氯-3碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如
实施例18。
1H NMR(400MHz,DMSO)δ10.18(s,1H),8.38(d,J=2.9Hz,1H),8.31(d,J=3.1Hz,1H),8.17(d,J=3.1Hz,1H),7.95(d,J=2.9Hz,1H),7.86(dd,J=14.9,2.9Hz,1H),7.75–7.65(m,2H),7.55(dd,J=9.0,6.1Hz,2H),7.43–7.31(m,2H),6.88(s,2H),4.04(p,J=15.3Hz,1H),3.09–2.48(m,4H),2.34–1.30(m,5H).LR-MS(ESI)m/z 531.3(M+1).
实施例72化合物72的制备
除用2-氨基-5-氨基甲酰基-3-碘吡啶代替2-氨基-3-碘吡啶及4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.36(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.26(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.76–7.66(m,2H),7.44–7.35(m,2H),7.35–7.26(m,3H),6.89(s,2H),2.45(s,3H).LR-MS(ESI)m/z 405.2(M+1).
实施例73化合物73的制备
除用1H-吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ15.43(s,1H),10.20(s,1H),8.38(d,J=2.8Hz,1H),8.34(d,J=2.8Hz,1H),8.17(d,J=3.1Hz,1H),7.82(dd,J=14.9,3.1Hz,1H),7.76–7.65(m,2H),7.44–7.35(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),2.45(s,3H).LR-MS(ESI)m/z 428.9(M+1).
实施例74化合物74的制备
除用5-氯2-氨基-3-碘吡啶代替2-氨基-3-碘吡啶及4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ15.43(s,1H),10.20(s,1H),8.34(d,J=3.1Hz,1H),8.13(d,J=2.9Hz,1H),7.99(d,J=3.1Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.76–7.64(m,2H),7.44–7.35(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),2.45(s,3H).LR-MS(ESI)m/z 396.0(M+1).
实施例75化合物75的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、2-氨基吡啶代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ11.17(s,1H),8.40(d,J=1.4Hz,1H),8.34(d,J=1.4Hz,1H),8.17(d,J=1.4Hz,1H),8.06(dd,J=7.6,1.5Hz,1H),7.96(d,J=1.4Hz,1H),7.82(dd,J=7.5,1.4Hz,1H),7.60(td,J=7.5,1.4Hz,1H),7.57(d,J=1.4Hz,1H),7.38(dd,J=7.5,1.4Hz,1H),7.31(d,J=7.5Hz,1H),7.19(td,J=7.5,1.4Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 409.5(M+1).
实施例76化合物76的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、3-氨基吡啶代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.37(s,1H),9.13–8.77(m,1H),8.40(d,J=3.1Hz,1H),8.33(dt,J=3.1,1.9Hz,2H),8.17(tt,J=6.0,3.0Hz,2H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.55(d,J=3.1Hz,1H),7.40(t,J=14.9Hz,1H),7.31(d,J=14.9Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 409.4(M+1).
实施例77化合物77的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、4-氨基吡啶代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.22(s,1H),8.46(d,J=15.1Hz,2H),8.40(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.18(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.56(d,J=3.1Hz,1H),7.36(d,J=14.9Hz,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 409.4(M+1).
实施例78化合物78的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、5-氨基嘧啶代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.21(s,1H),9.29(s,1H),9.10(s,2H),8.44(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.52(d,J=2.9Hz,1H),7.31(d,J=14.9Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 410.3(M+1).
实施例79化合物79的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、3-氨基-2-氯吡啶代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.37(s,1H),8.40(d,J=3.0Hz,1H),8.40–8.35(m,1H),8.34(d,J=3.1Hz,1H),8.28(d,J=3.0Hz,1H),8.17(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.52(d,J=2.9Hz,1H),7.31(d,J=14.9Hz,1H),7.26(d,J=14.9Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 443.8(M+1).
实施例80化合物80的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、2-氨基-5-氯吡啶代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ11.17(s,1H),8.40(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.28(d,J=2.9Hz,1H),8.16(d,J=3.1Hz,1H),8.00(dd,J=14.9,3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.70(d,J=14.9Hz,1H),7.52(d,J=3.1Hz,1H),7.31(d,J=14.9Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 443.8(M+1).
实施例81化合物81的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、3-氨基-6-三氟甲基吡啶代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.37(s,1H),8.40(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.55(d,J=2.9Hz,1H),7.36–7.27(m,2H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 477.2(M+1).
实施例82化合物82的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、3-氨基-6-甲氧基吡啶代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.37(s,1H),8.40(d,J=2.9Hz,1H),8.34(d,J=3.1Hz,1H),8.17(d,J=2.9Hz,1H),8.09(dd,J=15.0,3.0Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.54(d,J=3.1Hz,1H),7.31(d,J=14.9Hz,1H),7.18(d,J=3.1Hz,1H),6.89(s,2H),6.51(d,J=14.9Hz,1H),3.94(s,3H),3.73(s,3H),2.45(s,3H).LR-MS(ESI)m/z 439.5(M+1).
实施例83化合物83的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、2-甲基-5-氨基-嘧啶代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.21(s,1H),9.10(s,2H),8.44(d,J=3.1Hz,1H),8.34(d,J=3.1Hz,1H),8.16(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.82(dd,J=15.0,3.0Hz,1H),7.52(d,J=3.1Hz,1H),7.31(d,J=14.9Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H),2.18(s,3H).LR-MS(ESI)m/z 424.2(M+1).
实施例84化合物84的制备
步骤1:向圆底烧瓶中加入2-氨基-5-溴-3-碘吡啶(1.0g,3.35mmol)、三甲基硅乙炔(427.2mg,4.35mmol)和Et 3N(50mL),用氩气置换氧气,加入Pd(PPh 3) 2Cl 2(117.4mg,0.17mmol)、CuI(63.7mg,0.33mmol),重复除氧气的操作,室温条件下反应6小时;反应结束后加入50mL乙酸乙酯稀释反应液,过滤即可得到产物2-氨基-5-溴-3-三甲基乙炔基吡啶900.0mg(产率:99.9%)。
步骤2:向圆底烧瓶中加入化合物苯甲酸(2.0g,16.38mmol)、HATU(8.1g,21.29mmol)、DIPEA(5.29g,40.94mmol)和DMF(60mL),室温下搅拌30分钟后,加入化合物4-甲基-3-碘苯胺(4.20g,18.01mmol),室温反应12小时。反应结束后,乙酸乙酯(60mL×3)和水(50mL)萃取反应液,有机相分别用自来水洗(40mL×3),饱和NaCl溶液洗(40mL×3),无水硫酸钠干燥,减压蒸干溶剂,柱层析分离得N-(4-甲基-3-碘苯基)苯甲酰胺5.2g(产率:94.2%)。
步骤3:向圆底烧瓶中加入化合物N-(4-甲基-3-碘苯基)苯甲酰胺(150.0mg,0.44mmol)、2-氨基-5-溴-3-三甲基硅基乙炔基吡啶(155.7mg,0.58mmol)、Et 3N(135.1mg,1.33mmol)、CsF(202.7mg,1.33mmol)和MeCN(30mL),用氩气置换氧气,加入Pd(PPh 3) 2Cl 2(15.6mg,0.022mmol)、CuI(8.5mg,0.044mmol),重复除氧气的操作,室温条件下反应3小时。反应结束后,乙酸乙酯(30mL×3)和水(20mL)萃取反应液,有机相用饱和NaCl溶液洗(10mL×3),经无水硫酸钠干燥后,减压蒸干溶剂,柱层析分离得产物N-(3-(2-氨基吡啶基-5-溴-3-乙炔基)-4-甲基)苯基苯甲酰胺140.4mg(产率:77.7%)。
步骤4:向圆底烧瓶中加入化合物N-(3-(2-氨基吡啶基-5-溴-3-乙炔基)-4-甲基)苯基苯甲酰胺(80.0mg,0.20mmol)、N-甲基吡唑-4-硼酸频哪醇酯(102.4mg,0.49mmol)、K 2CO 3(81.6mg,0.59mmol)、甲苯(2mL)、乙醇(1mL)和水(1mL),用氩气置换氧气,加入Pd(PPh 3) 4(22.8mg,0.020mmol),重复除氧气的操作,微波反应器中,100℃反应30分钟,反应结束后,减压蒸干溶剂,柱层析纯化得目标产物N-(3-(2-氨基吡啶基-5-(1-甲基-4-吡唑基)3-乙炔基)-4-甲基)苯基苯甲酰胺76.9mg(产率:95.8%)。
1H NMR(400MHz,DMSO)δ10.32(s,1H),8.38(d,J=2.9Hz,1H),8.16(d,J=3.1Hz,1H),7.98–7.94(m,2H),7.76(d,J=2.9Hz,1H),7.69–7.58(m,1H),7.57–7.50(m,2H),7.46(dd,J=15.0,3.0Hz,1H),7.23(d,J=14.9Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 408.2(M+1).
实施例85化合物85的制备
除用4-甲氧基苯甲酸代替苯甲酸外,合成方法如实施例84。
1H NMR(400MHz,DMSO)δ10.32(s,1H),8.38(d,J=2.9Hz,1H),8.16(d,J=2.9Hz,1H),7.98–7.94(m,2H),7.76(d,J=2.9Hz,1H),7.50(d,J=3.1Hz,1H),7.46(dd,J=15.1,3.0Hz,1H),7.23(d,J=14.9Hz,1H),7.14–7.01(m,2H),6.89(s,2H),3.94(s,3H),3.81(s,3H),2.45(s,3H).LR-MS(ESI)m/z 438.2(M+1).
实施例86化合物86的制备
除用3,5-二甲氧基苯甲酸代替苯甲酸外,合成方法如实施例84。
1H NMR(400MHz,DMSO)δ10.32(s,1H),8.38(d,J=2.9Hz,1H),8.16(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.76(d,J=2.9Hz,1H),7.50(d,J=3.1Hz,1H),7.46(dd,J=15.0,3.0Hz,1H),7.23(d,J=14.9Hz,1H),6.89(s,2H),6.52–6.38(m,3H),3.94(s,3H),3.77(s,6H),2.45(s,3H).LR-MS(ESI)m/z 468.5(M+1).
实施例87化合物87的制备
除用4-三氟甲氧基苯甲酸代替苯甲酸外,合成方法如实施例84。
1H NMR(400MHz,DMSO)δ10.32(s,1H),8.37(d,J=2.9Hz,1H),8.16(d,J=3.1Hz,1H),8.10–7.99(m,2H),7.96(d,J=2.9Hz,1H),7.76(d,J=2.9Hz,1H),7.50(d,J=3.1Hz,1H),7.46(dd,J=15.1,3.0Hz,1H),7.23(d,J=14.9Hz,1H),7.15–7.01(m,2H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 492.2(M+1).
实施例88化合物88的制备
除用4-异丙氧基苯甲酸代替苯甲酸外,合成方法如实施例84。
1H NMR(400MHz,DMSO)δ10.32(s,1H),8.38(d,J=2.9Hz,1H),8.16(d,J=2.9Hz,1H),8.11–8.01(m,2H),7.96(d,J=2.9Hz,1H),7.76(d,J=2.9Hz,1H),7.51(d,J=2.9Hz,1H),7.46(dd,J=15.0,3.0Hz,1H),7.23(d,J=14.9Hz,1H),7.03–6.91(m,2H),6.89(s,2H),4.69(hept,J=11.2Hz,1H),3.94(s,3H),2.45(s,3H),1.29(d,J=11.2Hz,6H).LR-MS(ESI)m/z 466.3(M+1).
实施例89化合物89的制备
除用4-氯苯甲酸代替苯甲酸外,合成方法如实施例84。
1H NMR(400MHz,DMSO)δ10.32(s,1H),8.38(d,J=3.1Hz,1H),8.16(d,J=3.1Hz,1H),7.96(d,J=2.9Hz,1H),7.94–7.85(m,2H),7.76(d,J=2.9Hz,1H),7.60–7.52(m,2H),7.50(d,J=2.9Hz,1H),7.46(dd,J=15.0,3.0Hz,1H),7.23(d,J=14.9Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 442.1(M+1).
实施例90化合物90的制备
除用4-三氟甲基苯甲酸代替苯甲酸外,合成方法如实施例84。
1H NMR(400MHz,DMSO)δ10.32(s,1H),8.38(d,J=3.1Hz,1H),8.16(d,J=2.9Hz,1H),7.96(d,J=2.9Hz,1H),7.87–7.78(m,2H),7.76(d,J=2.9Hz,1H),7.70–7.60(m,2H),7.50(d,J=2.9Hz,1H),7.46(dd,J=15.0,3.0Hz,1H),7.23(d,J=14.9Hz,1H),6.89(s,2H),3.94(s,3H),2.45(s,3H).LR-MS(ESI)m/z 476.1(M+1).
实施例91化合物91的制备
步骤1:向圆底烧瓶中加入2-氨基-3-碘吡啶(1.0g,4.55mmol)、三甲基硅乙炔(535.7mg,5.45mmol)和Et 3N(50mL),用氩气置换氧气,加入Pd(PPh 3) 2Cl 2(159.5mg,0.23mmol)、CuI(86.6mg,0.45mmol),重复除氧气的操作,室温条件下反应6小时;反应结束后加入50mL乙酸乙酯稀释反应液,过滤即可得到产物2-氨基-3-三甲基乙炔基吡啶870mg(产率:100%)。
步骤2:向圆底烧瓶中加入化合物4-氯苯甲酸(2.0g,12.77mmol)、HATU(6.3g,16.61mmol)、DIPEA(5.0g,38.32mmol)和DMF(60mL),室温下搅拌30分钟后,加入化合物4-甲基-3-碘苯胺(3.3g,14.05mmol),室温反应12小时。反应结束后,乙酸乙酯(60mL×3)和水(50mL)萃取反应液,有机相分别用自来水洗(40mL×3),饱和NaCl溶液洗(40mL×3),无水硫酸钠干燥,减压蒸干溶剂,柱层析分离得N-(4-甲基-3-碘苯基)-4-氯苯甲酰胺4.5g(产率:94.8%)。
步骤3:向圆底烧瓶中加入化合物N-(4-甲基-3-碘苯基)-4-氯苯甲酰胺(150.0mg,0.40mmol)、2-氨基-3-三甲基硅基乙炔基吡啶(98.9mg,0.52mmol)、Et 3N(122.5mg,1.21mmol)、CsF(184.0mg,1.21mmol)和MeCN(30mL),用氩气置换氧气,加入Pd(PPh 3) 2Cl 2(14.2mg,0.020mmol)、CuI(7.7mg,0.040mmol),重复除氧气的操作,室温条件下反应3小时。反应结束后,乙酸乙酯(30mL×3)和水(20mL)萃取反应液,有机相用饱和NaCl溶液洗(10mL×3),经无水硫酸钠干燥后,减压蒸干溶剂,柱层析分离得产物N-(3-(2-氨基吡啶基-3-乙炔基)-4-甲基)苯基-4-氯苯甲酰胺114.4mg(产率:78.3%)。
1H NMR(400MHz,DMSO)δ10.32(s,1H),7.97(dd,J=14.9,2.9Hz,1H),7.94–7.82(m,2H),7.76(d,J=2.9Hz,1H),7.70(dd,J=14.9,3.1Hz,1H),7.62–7.50(m,2H),7.46(dd,J=15.0,3.0Hz,1H),7.23(d,J=14.9Hz,1H),6.89(s,2H),6.53(t,J=14.9Hz,1H),2.45(s,3H).LR-MS(ESI)m/z 462.4(M+1).
实施例92化合物92的制备
除用2-氨基-5-氯-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例91。
1H NMR(400MHz,DMSO)δ10.32(s,1H),8.13(d,J=2.9Hz,1H),7.99(d,J=3.1Hz,1H),7.94–7.84(m,2H),7.76(d,J=2.9Hz,1H),7.61–7.49(m,2H),7.46(dd,J=15.0,3.0Hz,1H),7.23(d,J=14.9Hz,1H),6.89(s,2H),2.45(s,3H).LR-MS(ESI)m/z 396.1(M+1).
实施例93化合物93的制备
除用2-氨基-5-氨基甲酰基-3-碘吡啶代替2-氨基-3-碘吡啶外,合成方法如实施例91。
1H NMR(400MHz,DMSO)δ10.32(s,1H),8.38(d,J=3.1Hz,1H),8.26(d,J=2.9Hz,1H),7.96–7.83(m,2H),7.76(d,J=2.9Hz,1H),7.61–7.50(m,2H),7.46(dd,J=15.0,3.0Hz,1H),7.30(s,2H),7.23(d,J=14.9Hz,1H),6.89(s,2H),2.45(s,3H).LR-MS(ESI)m/z 405.1(M+1).
实施例94化合物94的制备
除用N-(4-哌啶基)吡唑-4-硼酸频哪醇酯代替N-甲基吡唑-4-硼酸频哪醇酯外,合成方法如实施例91。
1H NMR(400MHz,DMSO)δ10.32(s,1H),8.38(d,J=2.9Hz,1H),8.15(d,J=3.1Hz,1H),7.97(d,J=2.9Hz,1H),7.94–7.84(m,2H),7.76(d,J=2.9Hz,1H),7.61–7.53(m,2H),7.51(d,J=2.9Hz,1H),7.46(dd,J=15.0,3.0Hz,1H),7.23(d,J=14.9Hz,1H),6.89(s,2H),4.02(p,J=15.4Hz,1H),3.19–2.52(m,4H),2.45(s,3H),2.19–1.27(m,5H).LR-MS(ESI)m/z 511.2(M+1).
实施例95化合物95的制备
将化合物73 1.0g(2.34mmol)溶于无水DMF,加入碳酸钾0.64g(4.67mmol),冰浴条件下加入氘代碘甲烷0.34g(2.34mmol),冰浴反应1h,纯化即得化合物95 0.8g。(产率:76.9%)。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.56(d,J=3.1Hz,1H),8.32(d,J=2.9Hz,1H),7.94(dd,J=14.9,2.9Hz,2H),7.88(d,J=3.1Hz,1H),7.79–7.65(m,2H),7.53(d,J=13.5Hz,1H),7.51(d,J=1.4Hz,1H),7.44–7.32(m,2H),6.39(s,2H),2.23(s,3H).LR-MS(ESI)m/z 421.2(M+1).
实施例96化合物96的制备
除用4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.40(s,1H),8.23(s,1H),8.00(d,J=3.3Hz,1H),7.86(d,J=8.4Hz,1H),7.82(d,J=8.9Hz,2H),7.65(d,J=5.9Hz,1H),7.48(d,J=8.1Hz,1H),7.42(d,J=8.8Hz,2H),6.60(dd,J=7.5,5.0Hz,1H),6.32(s,2H),2.54(s,3H).LR-MS(ESI)m/z 362.3(M+1).
实施例97化合物97的制备
除用N-环丙基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.42(s,1H),8.29(d,J=2.3Hz,1H),8.25(s,1H),8.19(s,1H),7.89–7.85(m,2H),7.85–7.80(m,3H),7.49(d,J=8.1Hz,1H),7.42(d,J=8.8Hz,2H),6.31(s,2H),3.78–3.63(m,1H),2.57(s,3H),1.07–1.02(m,2H),1.00–0.92(m,2H).LR-MS(ESI)m/z 468.2(M+1).
实施例98化合物98的制备
除用N-甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯、4-氟-3-碘苯甲酸代替4-甲基-3-碘苯甲酸、4-氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.50(s,1H),8.41(dd,J=6.8,2.1Hz,1H),8.30(d,J=2.2Hz,1H),8.10(s,1H),8.08–7.97(m,1H),7.84(dd,J=12.9,6.4Hz,4H),7.53(t,J=9.0Hz,1H),7.44(d,J=8.8Hz,2H),6.44(s,2H),3.85(s,3H).LR-MS(ESI)m/z 446.1(M+1).
实施例99化合物99的制备
除用对氯苯胺代替3,5-二甲氧基苯胺和3,5-二甲基吡唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ11.95(s,1H),10.20(s,1H),8.34(t,J=3.1Hz,2H),8.11(d,J=2.8Hz,1H),7.82(dd,J=14.9,3.1Hz,1H),7.78–7.66(m,2H),7.46–7.35(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),2.45(s,3H),2.06(s,6H).LR-MS(ESI)m/z 456.1(M+1).
实施例100化合物100的制备
除用对氯苯胺代替3,5-二甲氧基苯胺和异恶唑-4-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.38(d,J=3.1Hz,1H),8.35(s,1H),8.34(d,J=2.8Hz,1H),8.18(d,J=2.8Hz,1H),7.82(dd,J=14.9,3.1Hz,1H),7.79–7.65(m,2H),7.45–7.36(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),2.45(s,3H).LR-MS(ESI)m/z 429.0(M+1).
实施例101化合物101的制备
除用对氯苯胺代替3,5-二甲氧基苯胺外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.33(dd,J=4.1,2.9Hz,2H),8.10(d,J=2.8Hz,1H),7.82(dd,J=14.9,3.1Hz,1H),7.77–7.64(m,2H),7.47–7.35(m,2H),7.31(d,J=14.9Hz,1H),6.89(s,2H),2.48(s,3H),2.45(s,3H),2.25(s,3H).LR-MS(ESI)m/z 457.1(M+1).
实施例102化合物102的制备
除用对氯苯胺代替3,5-二甲氧基苯胺和1H-吡唑-3-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ12.51(s,1H),10.20(s,1H),8.39(d,J=2.8Hz,1H),8.34(d,J=2.8Hz,1H),8.21(d,J=3.1Hz,1H),7.82(dd,J=14.9,3.1Hz,1H),7.78–7.66(m,2H),7.54(d,J=14.9Hz,1H),7.45–7.35(m,2H),7.31(d,J=14.9Hz,1H),7.02(d,J=15.2Hz,1H),6.89(s,2H),2.45(s,3H).LR-MS(ESI)m/z 428.0(M+1).
实施例103化合物103的制备
除用对氯苯胺代替3,5-二甲氧基苯胺和1H-吡唑-5-硼酸频哪醇酯代替3,5-二甲基异恶唑-4-硼酸频哪醇酯外,合成方法如实施例18。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.37(d,J=3.1Hz,1H),8.34(d,J=2.8Hz,1H),8.19(dd,J=9.0,5.9Hz,2H),7.82(dd,J=14.9,3.1Hz,1H),7.77–7.65(m,2H),7.44–7.34(m,2H),7.31(d,J=14.9Hz,1H),6.95(d,J=14.9Hz,1H),6.89(s,2H),2.45(s,3H).LR-MS(ESI)m/z 428.0(M+1).
实施例104化合物104的制备
除用对氯苯胺代替3,5-二甲氧基苯胺和5-氨基甲酰基-3-碘吡啶代替2-氨基吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.36(d,J=3.1Hz,1H),8.34(d,J=2.8Hz,1H),8.26(d,J=2.8Hz,1H),7.82(dd,J=14.9,3.1Hz,1H),7.78–7.66(m,2H),7.45–7.35(m,2H),7.34–7.26(m,3H),6.89(s,2H),2.45(s,3H).LR-MS(ESI)m/z 404.9(M+1).
实施例105化合物105的制备
除用对氯苯胺代替3,5-二甲氧基苯胺,5-氨基甲酰基-3-碘吡啶代替2-氨基吡啶和4-氟-3-碘苯甲酸代替4-甲基-3-碘苯甲酸外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.20(s,1H),8.37(dd,J=10.0,3.0Hz,1H),8.26(s,2H),8.10(ddd,J=14.9,10.0,3.0Hz,1H),7.84–7.60(m,2H),7.43–7.36(m,2H),7.35(t,J=4.6Hz,1H),7.30(s,2H),6.89(s,2H).LR-MS(ESI)m/z 409.0(M+1).
实施例106化合物106的制备
除用2,4-二氯苯胺代替3,5-二甲氧基苯胺和5-氨基甲酰基-3-碘吡啶代替2-氨基吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ10.11(s,1H),8.34(d,J=2.8Hz,1H),8.32–8.23(m,2H),7.87–7.76(m,2H),7.69(d,J=3.1Hz,1H),7.48(dd,J=14.9,3.1Hz,1H),7.36–7.20(m,3H),6.89(s,2H),2.45(s,3H).LR-MS(ESI)m/z 439.3(M+1).
实施例107化合物107的制备
除用2-甲基-4-氯苯胺代替3,5-二甲氧基苯胺和5-氨基甲酰基-3-碘吡啶代替2-氨基吡啶外,合成方法如实施例1。
1H NMR(400MHz,DMSO)δ9.94(s,1H),8.37(d,J=2.8Hz,1H),8.34(d,J=3.1Hz,1H),8.26(d,J=2.8Hz,1H),7.82(dd,J=15.1,3.0Hz,1H),7.54(d,J=15.2Hz,1H),7.44(d,J=3.1Hz,1H),7.37–7.24(m,4H),6.89(s,2H),2.45(s,3H),2.13(s,3H).LR-MS(ESI)m/z 419.1(M+1).
(二)生物活性检测实施例
试验实施例一:CSF1R分子水平酶活抑制实验
通过酶联免疫吸附法(ELISA)评估CSF-1R在激酶水平的活性。酶反应底物Poly(Glu,Tyr) 4:1用无钾离子的PBS(10mM磷酸钠缓冲液,150mM NaCl,pH 7.2-7.4)稀释成20μg/mL,125μL/孔包被酶标板,置37℃反应12-16小时。弃去孔中液体。洗板,用T-PBS(含0.1%Tween-20的无钾离子的PBS,200μL/孔)洗板三次,于37℃烘箱中干燥酶标板1-2小时。
每孔加入以反应缓冲液(50mM HEPES pH 7.4,50mM MgCl 2,0.5mM MnCl 2,0.2mM Na 3VO 4,1mM DTT)稀释的ATP溶液49μL(终浓度为5μM),每孔中加入1μL待测试化合物(化合物孔)或含相应浓度的DMSO(阴性对照孔),再加入50μL以反应缓冲液稀释的激酶域重组蛋白启动反应,在37℃摇床反应1小时,弃去孔中液体,用T-PBS将板洗涤三次。
加入抗体PY99稀释液,(抗体用含BSA 5mg/mL的T-PBS 1:500稀释),100μL/孔,37℃摇床反应0.5小时,弃去孔中液体,用T-PBS将板洗涤三次。
加入辣根过氧化物酶标记的羊抗鼠二抗稀释液(抗体用含BSA 5mg/mL的T-PBS1:2000稀释),100μL/孔,37℃摇床反应0.5小时,弃去孔中液体,用T-PBS将板洗涤三次。
加入2mg/mL的OPD显色液100μL/孔(用含0.03%H 2O 2的0.1mol/L柠檬酸盐缓冲液稀释,pH 5.4),室温下避光反应1-10分钟。加入50μL/孔的2mol/L H 2SO 4终止反应,并使用可调波长式微孔板酶标仪VERSAmax读数测量A490。
本发明的化合物和阳性对照药PLX3397对CSF-1R酶活性数据见表1:
表1.化合物对CSF1R分子水平酶活的影响
Figure PCTCN2020076870-appb-000031
Figure PCTCN2020076870-appb-000032
实验结论:由表1可知,在生物活性评价中,本发明的二芳基炔类化合物对CSF-1R均具有较高的活性,其中有71个化合物的IC 50低于正在进行III临床阳性药物PLX-3397,特别是化合物68,IC 50较PLX-3397提高了45倍,体现出二芳基炔类化合物具有很好的CSF-1R抑制活性优势。
药理实验例二:CSF1R依赖的细胞水平抑制试验
免疫印迹杂交(Western Blot)检测代表性化合物12,化合物22及化合物50对巨噬细胞Raw264.7中CSF-1R信号通路活化抑制的影响。
使用常规Western Blot(免疫印迹法)进行检测。分别将处于对数生长期的Raw264.7细胞按一定数量种于6孔板,培养箱内培养过夜后,换无血清培养液饥饿6h,加入一定浓度的化合物作用2h,加入CSF-1R刺激因子50ng/mL作用15min,用裂解液裂解细胞收样。然后取适量样品进行SDS-PAGE电泳,电泳结束后用半干电转移系统将蛋白转移至硝酸纤维素膜,将硝酸纤维素膜置于封闭液(5%脱脂奶粉稀释于含0.1%Tween 20的TBS)中室温封闭2h,然后将膜分别置于一抗溶液(1:500稀释于含0.1%Tween 20的TBS)中4℃孵育过夜。用含0.1%Tween 20的TBS洗涤三次,每次15min。将膜置于二抗溶液(辣根过氧化物酶标记羊抗兔的IgG,1:2000稀释于含0.1%Tween 20的TBS)中室温反应1h。同上洗膜三次后,用ECL plus试剂发色,Image Quant LAS 4000拍照。结果见图1。
实验结论:化合物12,22及化合物50和阳性对照药PLX-3397抑制巨噬细胞CSF-1R磷酸化及下游信号通路结果见图1。在10nM条件下,化合物12,22及化合物50能明显抑制CSF-1引起的CSF-1R的磷酸化以及下游信号Akt的激活,且强于阳性药PLX3397。 由图1可知,本发明实施例的二芳基炔基类化合物在细胞水平上显著靶向抑制CSF-1R信号通路的活化。
实验例三:细胞水平的抗炎活性评价实验
肿瘤坏死因子-α作为炎症、自身免疫病等疾病发展过程中重要的炎症介质,主要由活化的单核/巨噬细胞产生,可介导多种炎症反应的发生,加速恶化疾病进程。小鼠单核/巨噬细胞白血病细胞株RAW 264.7细胞是常用的炎症细胞模型之一,在细菌脂多糖(LPS)诱导激活后,可释放肿瘤坏死因子-α等多种炎症介质的释放,通过检测肿瘤坏死因子-α的分泌可反映化合物的抗炎活性。
(1)化合物对RAW 264.7细胞毒性检测:受试化合物对RAW 264.7细胞的细胞毒性通过CCK-8法检测,小鼠RAW 264.7细胞购自American Type Culture Collection(Manassas,VA,USA)培养于含10%胎牛血清(Hyclone,South Logan,UT,USA)的DMEM培养液(Hyclone,South Logan,UT,USA)中,临用前收集细胞并计数,(1×10 5/孔)接种于96孔板(Corning,NY,USA)中,细胞孵育24h后,加入不同浓度的化合物,另设相应的溶媒对照及培养液本底对照,总体积为200μl。于37℃,5%CO 2培养箱中培养4h。培养结束前30min加入20μl CCK-8溶液(Dojindo,Kumamoto,Japan),至培养结束,于酶标仪(Molecular Devices,Sunnyvale,CA,USA)450nm(参比650nm)处测定吸光度OD值。化合物对RAW 264.7细胞的毒性作用以待测样品OD值除以细胞对照孔OD值计算,标记为细胞存活率(%)。
(2)化合物对RAW 264.7细胞肿瘤坏死因子-α分泌的抑制活性:RAW 264.7细胞(1×10 5/孔)接种于96孔板,孵育24h后,加入不同浓度的化合物孵育30min,在1μg/ml LPS(L5886,Sigma,St.Louis,MO,USA)刺激作用下,于37℃,5%CO2培养箱中培养4h。另设无刺激剂本底对照及刺激对照孔,总体积为200μl。离心收取培养上清,采用酶联免疫吸附法检测培养上清中肿瘤坏死因子-α的分泌水平,肿瘤坏死因子-α检测试剂盒购自BD Pharmingen(San Diego,CA,USA)。
实验结果:代表性化合物50,化合物68及阳性对照药PLX-3397对RAW264.7巨噬细胞的CC50值分别为30.1μM、1.4μM和1.8μM。进一步测试化合物对LPS-诱导RAW264.7巨噬细胞炎性因子TNF-α释放的抑制效果实验显示(如图2),化合物50,化合物68与PLX-3397对TNF-α释放抑制的IC50值分别为59nM、84nM和125nM。
实验结论:以上结果表明,二芳基炔类化合物对巨噬细胞的毒性显著弱于PLX-3397,而抑制TNF-α释放的活性高于PLX-3397,显示出该类化合物具有很好的抗炎活性优势。

Claims (10)

  1. 一种式(I)化合物、其氘代化合物、其药学上可接受的盐或前药,
    Figure PCTCN2020076870-appb-100001
    其中:
    R 1选自-H,卤素、-NH 2,-OH,氰基,单或二C1-C4烷基氨基,单或二C3-C6环烷基氨基酰基,C3-C6环烷基酰胺基,C3-C6环烷基氧基酰基,C1-C4烷基氧基酰基,C1-C4烷基酰胺基,4-6元杂环烷氧基,4-6元杂环烷酰基,C3-C6环烷氧基,羧基,未取代或被单或二C1-C4烷基氨基取代的C2-C4烯基酰胺基,氨基酰基,被C1-C4烷基取代的氨基酰基,未取代或取代的C1-C6烷基,未取代或取代的C1-C6烷氧基,未取代或取代的5-7元芳基,未取代或取代的4-6元杂环基,未取代或取代的5-7元杂芳基,未取代或取代的酰胺基;其中,所述取代是指选自如下的一种或多种取代基所取代:卤素,羟基,C1-C4烷氧基,C3-C6环烷基,氨基,单或二C1-C4烷基氨基,羧基,酰胺基,C1-C4烷基酰胺基,C3-C6环烷基酰胺基,4-6元杂环基、C1-C6烷基,被选自二甲氨基取代的C1-C4烷基氨基酰基、4-6元杂环基、氨基酰基C1-C4烷基取代的4-6元杂环基中一种或多种取代的C1-C6烷基;
    R 2选自-H,卤素,未取代或取代的C1-C6烷基;其中,所述取代是指选自如下的一种或多种取代基所取代:卤素,羟基,C1-C4烷氧基,C3-C6环烷基,氨基,羧基,酰胺基,5-7元杂芳基,4-6元杂环基;
    R 3为M上的1~2个取代基,各自独立地选自-H,卤素,氰基,-NH 2,-OH,未取代或取代的C1-C4烷基,未取代或取代的C1-C4烷氧基;其中,所述取代是指选自如下的一种或多种取代基所取代:卤素,羟基,C1-C4烷氧基,C3-C6环烷基,氨基,羧基,酰胺基,5-7元杂芳基,4-6元杂环基;
    L为连接基团,选自-CON(Q1)-,-N(Q1)CO-,-C(Q2)(Q3)N(Q1)-,-C(Q2)(Q3)O-,-N(Q1)C(Q2)(Q3)-,-OC(Q2)(Q3)-;所述Q1选自-H,未取代或取代的C1-C6烷基;所述Q2、Q3各自独立地选自-H,-NH 2,-OH,未取代或取代的C1-C6烷基,或Q2、Q3与它们所连的C原子共同形成C3-C6环烷基或4-6元杂环基;其中,所述取代是指选自如下的一种或多种取代基所取代:卤素,羟基,C1-C4烷氧基,C3-C6环烷基,氨基,羧基,酰胺基,5-7元杂芳基,4-6元杂环基;
    M选自苯基或5-7元杂芳基;当M为苯基时,
    Figure PCTCN2020076870-appb-100002
    不为
    Figure PCTCN2020076870-appb-100003
    R 4选自-(CH 2)nN(R 5)(R 6)、-NHR 7、-OR 7或取代的C1-C4烷基;R 5、R 6与相连的N原子共 同形成4-6元杂环基;所述n为0-3的整数;R 7选自-H、5-7元芳基或5-7元杂芳基;所述取代的C1-C4烷基是指选自如下的一种或多种取代基所取代:卤素,羟基,C1-C4烷氧基,C3-C6环烷基,氨基,羧基,酰胺基,5-7元杂芳基,4-6元杂环基。
  2. 如权利要求1所述的式(I)化合物、其氘代化合物、其药学上可接受的盐或前药,其中,
    R 1选自-H,卤素,氰基,未取代或任选被卤素、羟基、C1-C4烷氧基、三氟甲氧基、单或二C1-C4烷基氨基中一种或多种取代的C1-C4烷基,未取代或任选被卤素、羟基、C1-C4烷氧基、氨基、单或二C1-C4烷基氨基中一种或多种取代的C1-C4烷氧基,氨基,单或二C1-C4烷基氨基,C1-C4烷基酰胺基,C3-C6环烷基酰胺基,未取代或被单或二C1-C4烷基氨基取代的C2-C4烯基酰胺基,羧基,未取代或被C1-C4烷基取代的氨基酰基,单或二C3-C6环烷基氨基酰基,C1-C4烷基氧基酰基,C3-C6环烷氧基,4-6元杂环烷氧基,4-6元杂环烷酰基,C3-C6环烷基氧基酰基,咪唑基,取代的或未取代C1-C6烷基取代的咪唑基,4-6元杂环基取代的咪唑基、C3-C6环烷基取代的咪唑基,吡唑基,取代的或未取代的C1-C6烷基取代的吡唑基,吡唑基,4-6元杂环基取代的吡唑基、C3-C6环烷基取代的吡唑基,噁唑基,取代的或未取代的C1-C6烷基取代的噁唑基,4-6元杂环基取代的咪噁唑基、C3-C6环烷基取代的噁唑基、异噁唑基,取代的或未取代的C1-C6烷基取代的异噁唑基,4-6元杂环基取代的异噁唑基、C3-C6环烷基取代的异噁唑基,噻唑基,取代的或未取代的C1-C6烷基取代的噻唑基,4-6元杂环基取代的噻唑基、C3-C6环烷基取代的噻唑基;其中,所述取代的C1-C6烷基是指被选自二甲氨基取代的C1-C4烷基氨基酰基、4-6元杂环基、氨基酰基C1-C4烷基取代的4-6元杂环基中的一种或多种所取代。
  3. 如权利要求1所述的式(I)化合物、其氘代化合物、其药学上可接受的盐或前药,其中,
    R 1选自-H、卤素、羟基、氰基、甲基、三氟甲基、甲氧基、三氟甲氧基、环丙基、环丙基氧基、环氧丁基氧基、
    Figure PCTCN2020076870-appb-100004
    Figure PCTCN2020076870-appb-100005
    Figure PCTCN2020076870-appb-100006
    R 2选自-H、C1-C4烷基、卤素;优选H、甲基、氟或氯;
    R 3选自-H、卤素、氰基、未取代或被卤素取代的C1-C4烷基、未取代或被卤素取代的C1-C4烷氧基;优选为H、甲基、氟、氯、三氟甲基、甲氧基或三氟甲氧基;
    L选自-CONH-、-NHCO-;
    M选自苯环、吡啶环、嘧啶环。
  4. 如权利要求1-3中任一项所述的式(I)化合物、其氘代化合物、其药学上可接受的盐或前药,其中,所述式(I)化合物选自如下式(II)、(III)、(III-1)、(III-2)、(II-1)、(II-2)、(IV-1)、(IV-2)所示的化合物:
    Figure PCTCN2020076870-appb-100007
    式(II)中,R 1、R 2、R 3和L的定义如相应权利要求中所述,A 1至A 4各自独立地选自C和N,且A 1至A 4中至多两个为N;
    Figure PCTCN2020076870-appb-100008
    式(III)中,R 1、R 2、R 3和L的定义如相应权利要求中所述,A 2和A 4各自独立地选自C和N;
    Figure PCTCN2020076870-appb-100009
    Figure PCTCN2020076870-appb-100010
    式(III-1)和(III-2)中,R 1、R 2、R 3、A 2和A 4的定义如式(III)中所述;
    Figure PCTCN2020076870-appb-100011
    式(II-1)和(II-2)中,R 1和R 3的定义如式(II)中所述,A 2和A 4各自独立地选自C和N;
    Figure PCTCN2020076870-appb-100012
    式(IV-1)和(IV-2)中,R 3的定义如相应权利要求中所述,A 2和A 4各自独立地选自C和N;
    R选自:-H,C1-C4烷氧基,C3-C6环烷基,氨基,单或二C1-C4烷基氨基,羧基,酰胺基,C1-C4烷基酰胺基,C3-C6环烷基酰胺基,4-6元杂环基、C1-C6烷基,被选自二甲氨基取代的C1-C4烷基氨基酰基、4-6元杂环基、氨基酰基C1-C4烷基取代的4-6元杂环基中一种或多种取代的C1-C6烷基。
  5. 如权利要求1所述的式(I)化合物、其氘代化合物、其药学上可接受的盐或前药,其中,
    式(I)化合物选自下式化合物:
    Figure PCTCN2020076870-appb-100013
    Figure PCTCN2020076870-appb-100014
    Figure PCTCN2020076870-appb-100015
    Figure PCTCN2020076870-appb-100016
    Figure PCTCN2020076870-appb-100017
    Figure PCTCN2020076870-appb-100018
    Figure PCTCN2020076870-appb-100019
    Figure PCTCN2020076870-appb-100020
    Figure PCTCN2020076870-appb-100021
    Figure PCTCN2020076870-appb-100022
    Figure PCTCN2020076870-appb-100023
    Figure PCTCN2020076870-appb-100024
    Figure PCTCN2020076870-appb-100025
    Figure PCTCN2020076870-appb-100026
  6. 如权利要求1~5中任一项所述的式(I)化合物、其氘代化合物、其药学上可接受的盐或前药的制备方法,其包括如下步骤:
    式(1)化合物与式(2)化合物在钯金属催化剂和铜金属催化剂存在下,在碱存在下进行偶联反应得到式(I)化合物;
    Figure PCTCN2020076870-appb-100027
    其中,R 1、R 2、R 3、L及M的定义如相应的权利要求中所述;TMS为-Si(CH 3) 3
  7. 如权利要求6所述的制备方法,其中,所述制备方法选自如下合成路线I和II:
    Figure PCTCN2020076870-appb-100028
    当R 1≠Br时,则还包括如下步骤:
    Figure PCTCN2020076870-appb-100029
    合成路线I包括如下步骤:
    步骤1:将化合物I-1、I-2和Et 3N混合,加入钯金属催化剂、铜金属催化剂,反应得到化合物I-3;
    步骤2:将化合物I-4、HATU、DIPEA和DMF混合,加入化合物I-5,反应得到化合物I-6;
    步骤3:将化合物I-6、I-3、碱和MeCN混合,加入钯金属催化剂、铜金属催化剂,反应得到化合物I-7;
    步骤4:将化合物I-7、I-8、碱、溶剂混合,加入钯金属催化剂,反应得化合物I-9;
    Figure PCTCN2020076870-appb-100030
    当R 1≠Br时,则还包括如下步骤:
    Figure PCTCN2020076870-appb-100031
    合成路线II包括如下步骤:
    步骤1:将化合物I-1、I-2和Et 3N混合,加入钯金属催化剂、铜金属催化剂,反应得到化合物I-3;
    步骤2:将化合物II-4、HATU、DIPEA和DMF混合,加入化合物II-5,反应得到化合物II-6;
    步骤3:将化合物II-6、I-3、碱和MeCN混合,加入钯金属催化剂、铜金属催化剂,反应得到化合物II-7;
    步骤4:将化合物II-7、I-8、碱、溶剂混合,加入钯金属催化剂,反应得化合物II-9。
  8. 一种药物组合物,其包括权利要求1~5中任一项所述的式(I)化合物或其氘代化合物或其药学上可接受的盐或前药中的一种或多种以及药学上可接受的辅料。
  9. 权利要求1~5中任一项所述的式(I)化合物、其氘代化合物、其药学上可接受的盐或前药,或权利要求8所述的药物组合物在制备CSF-1R抑制剂中的用途。
  10. 权利要求1~5中任一项所述的式(I)化合物、其氘代化合物、其药学上可接受的盐或前药,或权利要求8所述的药物组合物在制备治疗选自肿瘤、炎症性疾病、自身免疫性疾病、神经系统性疾病中的疾病的药物中的用途。
PCT/CN2020/076870 2019-03-06 2020-02-27 邻氨基吡啶炔类化合物及其制备方法和用途 WO2020177603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910168754.0A CN111662227B (zh) 2019-03-06 2019-03-06 邻氨基吡啶炔类化合物及其制备方法和用途
CN201910168754.0 2019-03-06

Publications (1)

Publication Number Publication Date
WO2020177603A1 true WO2020177603A1 (zh) 2020-09-10

Family

ID=72337618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076870 WO2020177603A1 (zh) 2019-03-06 2020-02-27 邻氨基吡啶炔类化合物及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN111662227B (zh)
WO (1) WO2020177603A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114246865A (zh) * 2020-09-21 2022-03-29 中国科学院上海药物研究所 邻氨基吡啶炔基类化合物在制备抗过敏药物中的用途
CN116730978A (zh) * 2022-03-11 2023-09-12 中国科学院上海药物研究所 一类含杂芳环炔基化合物及其制备方法和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061236A2 (en) * 2006-11-16 2008-05-22 Allergan, Inc. Sulfoximines as kinase inhibitors
WO2010039238A1 (en) * 2008-10-01 2010-04-08 Synta Pharmaceuticals Corp. Compounds for inflammation and immune-related uses
US20160102081A1 (en) * 2014-10-09 2016-04-14 Allergan, Inc. Heterocycle-substituted Pyridyl Benzothiophenes as Kinase Inhibitors
CN105814021A (zh) * 2013-12-12 2016-07-27 阿勒根公司 作为激酶抑制剂的取代的烟酰胺衍生物
CN105916850A (zh) * 2013-12-12 2016-08-31 阿勒根公司 作为激酶抑制剂的取代的二烷基(氧撑)-λ4-硫烷亚基烟酰胺衍生物
WO2018149382A1 (zh) * 2017-02-20 2018-08-23 中国科学院上海药物研究所 含邻氨基杂芳环炔基的化合物及其制备方法和用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061236A2 (en) * 2006-11-16 2008-05-22 Allergan, Inc. Sulfoximines as kinase inhibitors
WO2010039238A1 (en) * 2008-10-01 2010-04-08 Synta Pharmaceuticals Corp. Compounds for inflammation and immune-related uses
CN105814021A (zh) * 2013-12-12 2016-07-27 阿勒根公司 作为激酶抑制剂的取代的烟酰胺衍生物
CN105916850A (zh) * 2013-12-12 2016-08-31 阿勒根公司 作为激酶抑制剂的取代的二烷基(氧撑)-λ4-硫烷亚基烟酰胺衍生物
US20160102081A1 (en) * 2014-10-09 2016-04-14 Allergan, Inc. Heterocycle-substituted Pyridyl Benzothiophenes as Kinase Inhibitors
WO2018149382A1 (zh) * 2017-02-20 2018-08-23 中国科学院上海药物研究所 含邻氨基杂芳环炔基的化合物及其制备方法和用途

Also Published As

Publication number Publication date
CN111662227A (zh) 2020-09-15
CN111662227B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
US20220218714A1 (en) Method of treating cancer
JP2020097615A (ja) 癌を治療する方法
US9776996B2 (en) Substituted 6,5-fused bicyclic heteroaryl compounds
JP2021506966A (ja) Nlrp3インフラマソーム調節剤としてのスルホニル尿素誘導体
CN113490495A (zh) Helios的小分子降解剂及其使用方法
JP2020529405A (ja) 選択的nlrp3インフラマソーム阻害剤
CA2692265A1 (en) Amide compounds
CN112585119A (zh) 经取代的吲哚及其使用方法
WO2020177603A1 (zh) 邻氨基吡啶炔类化合物及其制备方法和用途
JP2009500451A (ja) ピラノピリジン化合物
KR102581620B1 (ko) 화합물
WO2019206069A1 (zh) 一种二芳基巨环化合物、药物组合物以及其用途
CN115605475A (zh) 一种免疫抑制剂、其制备方法和应用
WO2021008491A1 (zh) 一种阻断pd-1/pd-l1相互作用的联苯基衍生物及其制备方法和应用
WO2022213980A1 (zh) Tyk2抑制剂及其用途
JP2021506791A (ja) TGF−βRI阻害剤の結晶形、塩形態及びその製造方法
US11712434B2 (en) Compound having anti-cancer effect, and preparation method therefor and use thereof
CN113666853B (zh) 可用作RORγ调节剂的联芳基类化合物
CN107849045B (zh) 嘌呤基-n-羟基嘧啶甲酰胺衍生物及其制备方法和用途
JP2002030083A (ja) N−(2−クロロ−4−{[6−メトキシ−7−(3−ピリジルメトキシ)−4−キノリル]オキシ}フェニル)−n’−プロピルウレアの二塩酸塩
JP2022518526A (ja) カルバメート誘導体およびその使用
CN107522641B (zh) 联芳基脲类衍生物或其盐及其制备方法和用途
TW201922700A (zh) 醯胺苯衍生物及其醫藥用途
US20160152607A1 (en) Maleic acid derivative, production method for same, and anti-cancer composition comprising same
CN108586432B (zh) 一种3-(吲哚-5-基)-吲唑衍生物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766613

Country of ref document: EP

Kind code of ref document: A1