WO2020177357A1 - 空调器及压缩机 - Google Patents

空调器及压缩机 Download PDF

Info

Publication number
WO2020177357A1
WO2020177357A1 PCT/CN2019/114765 CN2019114765W WO2020177357A1 WO 2020177357 A1 WO2020177357 A1 WO 2020177357A1 CN 2019114765 W CN2019114765 W CN 2019114765W WO 2020177357 A1 WO2020177357 A1 WO 2020177357A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
variable volume
volume control
compressor
storage cavity
Prior art date
Application number
PCT/CN2019/114765
Other languages
English (en)
French (fr)
Inventor
胡艳军
阙沛祯
向柳
翟元彬
苗旺
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to EP19918466.4A priority Critical patent/EP3933203B1/en
Priority to US17/312,215 priority patent/US11953008B2/en
Publication of WO2020177357A1 publication Critical patent/WO2020177357A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • F04C28/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/804Accumulators for refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor

Definitions

  • the present disclosure relates to the technical field of air conditioners, in particular to an air conditioner and a compressor.
  • the compressor is used to compress the refrigerant and is an important part of the air conditioner.
  • the compressor is set as a multi-cylinder, and one of the cylinders is used as a variable capacity cylinder.
  • the variable-capacity cylinder can optionally be in a working state to provide a larger output together with other cylinders, or the variable-capacity cylinder can optionally be in an idling state to enable the compressor to provide a smaller output.
  • variable displacement cylinder includes a cylinder block, a rotor, and a sliding plate.
  • the cylinder body is provided with a compression chamber and a first sliding plate groove communicating with the compression chamber.
  • the rotor is rotatably arranged in the compression chamber, and the sliding plate is slidably arranged in the compression chamber.
  • the first sliding vane groove is in contact with the rotor, and the end of the sliding vane close to the outer peripheral surface of the cylinder and the inner wall of the first sliding vane groove is enclosed to form a variable volume control cavity.
  • the volume of the variable volume cavity at the tail of the sliding vane follows the sliding vane
  • the reciprocating movement in the first sliding plate groove of the variable volume cylinder is large and small.
  • the change of the volume of the variable volume control cavity will cause the pressure of the cavity to fluctuate, causing the contact force between the sliding plate and the roller to change.
  • the contact force is too large, not only the power consumption of the compressor will increase, but also the roller and the sliding The film is abnormally worn.
  • the compressor includes:
  • the first cylinder assembly includes a first cylinder body and a first sliding plate.
  • the first cylinder body is provided with a first compression cavity, a variable volume control cavity, and a first sliding plate groove.
  • the first sliding plate groove is configured as Connected between the first compression cavity and the variable volume control cavity;
  • the variable volume control assembly includes a voltage stabilizing element; the voltage stabilizing element is configured to have a storage cavity and a pressure input port, the pressure input port communicates between the outside and the storage cavity, the storage cavity and the variable volume Control cavity is connected;
  • the first sliding piece can slide back and forth between the first compression cavity and the variable volume control cavity along the first sliding piece groove to change the volume of the variable volume control cavity;
  • the refrigerant in the variable volume control cavity flows between the variable volume control cavity and the storage cavity as the volume of the variable volume control cavity changes.
  • the volume of the variable volume control chamber will change accordingly.
  • the pressure in the variable volume control cavity increases, and the refrigerant in the variable volume control cavity flows to the storage cavity under the action of the pressure difference, buffering the change of the refrigerant pressure in the variable volume control cavity and slowing down the pressure increase Large, to prevent large fluctuations in refrigerant pressure in the variable volume control cavity.
  • the pressure in the variable volume control cavity decreases, and the refrigerant in the storage cavity flows to the variable volume control cavity under the action of the pressure difference to buffer the change in the pressure of the refrigerant in the variable volume control cavity , Slow down the pressure decrease, and prevent the refrigerant pressure in the variable volume control cavity from fluctuating greatly.
  • the refrigerant in the variable volume control cavity adaptively flows to the storage cavity, or the refrigerant in the storage cavity is adaptively supplemented into the variable volume control cavity to buffer the volume of the variable volume control cavity.
  • the pressure change prevents the pressure in the variable volume control chamber from violently fluctuating, thereby preventing abnormal wear between the sliding vane and the first roller after being subjected to greater pressure, protecting the sliding vane and the first roller, and improving the overall performance of the compressor .
  • the compressor includes:
  • the first cylinder assembly includes a first cylinder body and a first sliding plate.
  • the first cylinder body is provided with a first compression cavity, a variable volume control cavity, and a first sliding plate groove.
  • the first sliding plate groove communicates with the first sliding plate.
  • the first compression cavity and the variable volume control cavity, the first sliding piece is slidably arranged in the first sliding piece groove, and a part of the first sliding piece can extend into the first sliding piece In the compression cavity, another part can extend into the variable volume control cavity;
  • the variable volume control assembly includes a voltage stabilizing element; the voltage stabilizing element is configured to have a storage cavity for containing a refrigerant in the storage cavity, and the storage cavity is in communication with the variable volume control cavity;
  • the first sliding piece is configured to change the size of the part extending into the variable volume control cavity during the sliding process along the first sliding piece groove, so that the size of the variable volume control cavity is changed.
  • the volume changes accordingly; as the volume of the variable volume control cavity changes, the refrigerant flows between the variable volume control cavity and the storage cavity.
  • the effective volume of the storage cavity is Va
  • the volume of the variable volume control cavity is Vb
  • the maximum value of Vb that changes with the sliding of the first sliding piece is Vbmax, which is between Va and Vbmax Meet the relationship between: Va>5Vbmax.
  • variable volume control assembly further includes a control pipe that communicates with the storage cavity and the variable volume control cavity.
  • the minimum cross-sectional area of the control pipe is S
  • the maximum sliding speed of the first sliding piece is Cmax
  • the thickness of the first sliding piece is b
  • the height of the first compression cavity is H, S>(1.57 ⁇ 10 -5 )bHCmax.
  • the relationship between S and bHCmax is satisfied: S>(3.15 ⁇ 10 -5 )bHCmax.
  • the pressure stabilizing element has an inlet flow passage communicating between the storage cavity and the pressure input port, and the plane where the inlet flow passage communicates with the storage cavity is a first The boundary surface, the plane where the end of the control pipe communicates with the storage cavity is the second boundary surface, and the volume in the storage cavity between the first boundary surface and the second boundary surface is The effective volume.
  • variable volume control assembly further includes a control pipe that communicates with the storage cavity and the variable volume control cavity;
  • variable volume control assembly further includes an inlet flow path, the inlet flow path including a pressure input port for passing refrigerant, and an outlet communicating with the storage cavity;
  • the plane where the outlet is located is a first boundary surface
  • the plane where the end of the control pipe communicating with the storage cavity is located is a second boundary surface.
  • the storage cavity is located between the first boundary surface and the first boundary surface.
  • the volume between the two boundary surfaces is the effective volume of the storage cavity.
  • one end of the control pipe extends into the storage cavity and protrudes from the bottom wall of the storage cavity.
  • one end of the control pipe extends into the storage cavity through the bottom of the storage cavity, and extends into the storage cavity.
  • the compressor further includes a second cylinder assembly
  • the second cylinder assembly includes a second cylinder block, a second roller, an upper flange, and a partition plate
  • the second cylinder block has a second compression chamber
  • the second roller is rotatably arranged in the second compression chamber
  • the partition is arranged between the first cylinder and the second cylinder
  • the upper flange is arranged at The side of the second cylinder away from the partition;
  • the first cylinder assembly further includes a first roller rotatably arranged in the first compression chamber, the gap between the first roller and the partition plate is ⁇ a, and the second The gap between the roller and the upper flange is ⁇ b, ⁇ a> ⁇ b.
  • an air conditioner includes the aforementioned compressor.
  • Fig. 1 is a structural schematic diagram of a compressor provided according to some embodiments of the present disclosure from a perspective;
  • Fig. 2 is a schematic structural diagram of the compressor shown in Fig. 1 when the first sliding vane reaches the maximum;
  • FIG. 3 is a schematic diagram of the structure when the first sliding vane in the compressor shown in FIG. 1 extends at a minimum;
  • FIG. 4 is a schematic structural diagram of the first cylinder assembly in the compressor shown in FIG. 1 when it is in an idling state;
  • Fig. 5 is a schematic structural diagram of the compressor shown in Fig. 1 from another perspective;
  • Fig. 6 is a schematic structural diagram of a variable capacity control assembly in the compressor shown in Fig. 5;
  • Figure 7 is a graph showing the relationship between the extension of the first sliding vane and the crank angle of the compressor shown in Figure 1;
  • Figure 8 is a graph showing the relationship between the pressure fluctuation rate in the variable capacity control chamber and Va/Vbmax in the compressor shown in Figure 1;
  • Fig. 9 is a graph showing the relationship between the moving speed of the first sliding vane and the crank angle in the compressor shown in Fig. 1;
  • Fig. 10 is a graph showing the relationship between pressure fluctuation rate and S/bHCmax in the variable volume control chamber of the compressor shown in Fig. 1;
  • Fig. 11 is a partial enlarged schematic diagram of L in the compressor shown in Fig. 5;
  • Fig. 12 is a partial enlarged schematic diagram of N in the compressor shown in Fig. 5;
  • Fig. 13 is a graph showing the relationship between the gap ⁇ a and the power consumption Wa and the cooling capacity loss Qa in the compressor shown in Fig. 1.
  • the present disclosure provides a compressor with less wear between the sliding plate and the roller.
  • a compressor 100 is provided.
  • the compressor 100 includes a housing 10, a first cylinder assembly 30, and a second cylinder assembly 50.
  • the first cylinder assembly 30 and the second cylinder assembly 50 are arranged in the housing 10.
  • the first cylinder assembly 30 is a variable displacement cylinder
  • the component 50 is a non-variable volume cylinder.
  • the first cylinder assembly 30 can be selectively in the working state or the idling state (that is, the roller rotates eccentrically with the crankshaft, but does not compress the gas).
  • the compressor 100 can obtain a smaller output.
  • the compressor The engine 100 can obtain a relatively large output. In this way, by adjusting the state of the first cylinder 32 to adjust the overall output of the compressor 100, more precise temperature control, energy saving and consumption reduction are realized.
  • the first cylinder assembly 30 includes a first cylinder block 32, a first roller 34, and a first sliding plate 36.
  • the first cylinder block 32 is provided with a first compression chamber 321 and a variable volume control chamber. 323 and the first slide groove, the first slide groove communicates with the first compression chamber 321 and the variable volume control chamber 323.
  • the first sliding piece 36 is slidably disposed in the first sliding piece groove, and one part of the first sliding piece 36 can extend into the first compression cavity 321 and the other part can extend into the variable volume control cavity 323.
  • the first sliding piece 36 can slide reciprocally between the first compression cavity 321 and the variable volume control cavity 323 along the first sliding piece groove to change the volume of the variable volume control cavity 323; that is, the first sliding piece 36 moves along the first When a sliding plate groove slides, it will expand and contract in the variable volume control cavity 323 connected with the first sliding plate groove and change the volume of the variable volume control cavity 323.
  • the first roller 34 is rotatably arranged in the first compression chamber 321 and can abut the first sliding piece 36.
  • the first roller 34 rotates eccentrically in the first compression cavity 321, the first sliding piece is pushed 36 reciprocally slides along the first sliding plate groove.
  • the first sliding piece 36 is configured to change the size of the part extending into the variable volume control cavity 323 during the sliding process along the first sliding piece groove, so that the volume of the variable volume control cavity 323 changes accordingly; As the volume of the variable volume control cavity 323 changes, the refrigerant flows between the variable volume control cavity 323 and the storage cavity 42.
  • high pressure refrigerant or low pressure refrigerant can be selectively introduced into the variable volume control cavity 323 through the pressure input port 44.
  • the first sliding plate 36 escapes the limiting member under the action of the high pressure and abuts against the first roller 34, and the compressor 100 is double-cylinder Operation;
  • the first sliding plate 36 is fixed under the action of the limiting member and separated from the first roller 34, and the first cylinder assembly 30 is idling State, the compressor 100 is operating in a single cylinder.
  • the compressor 100 further includes a variable capacity control assembly 40, which includes a voltage stabilizing member 41.
  • the voltage stabilizing member 41 has a storage cavity 42 and a pressure input port 44.
  • the pressure input port 44 is connected to Between the outside and the storage cavity 42, the storage cavity 42 is in communication with the variable volume control cavity 323.
  • the relatively large pressure of refrigerant After a relatively large pressure of refrigerant is input to the storage cavity 42 through the pressure input port 44, the relatively large pressure of refrigerant enters the variable volume control cavity 323 of the first cylinder 32 from the storage cavity 42, and the first sliding plate 36 is in the variable volume control cavity.
  • the release limiter Under the action of the high-pressure refrigerant in the 323, the release limiter abuts against the first roller 34, and separates the first compression chamber 321 into a suction chamber and an outlet chamber, so that the first cylinder assembly 30 enters the working state and compresses the refrigerant .
  • the refrigerant with a lower pressure When a refrigerant with a lower pressure is input to the storage chamber 42 through the pressure input port 44, the refrigerant with a lower pressure enters the variable volume control chamber 323 of the first cylinder 32 from the storage chamber 42, and the pressure in the variable volume control chamber 323 is lower
  • the refrigerant allows the limiting member to cooperate with the first sliding piece 36 to fix the first sliding piece 36 in the initial position and separate from the first roller 34.
  • the first sliding piece 36 cannot separate the first compression cavity 321 into a suction cavity And the air outlet cavity prevents the first roller 34 from compressing air, and the first cylinder assembly 30 is in an idling state.
  • the first sliding piece 36 abuts against the first roller 34, and when the first roller 34 rotates, the first sliding piece 36 is pushed to reciprocate in the first sliding piece groove As the first sliding plate 36 moves back and forth, the volume of the variable volume control cavity 323 will change accordingly.
  • the extension of the first sliding piece 36 relative to the first sliding piece groove is related to the rotation angle of the crankshaft 11 and the first roller 34.
  • the first sliding piece The extension of 36 first increases and then decreases, and the volume of the variable volume control cavity 323 also first increases and then decreases, and so on.
  • variable volume control cavity 323 when the volume of the variable volume control cavity 323 becomes smaller, the pressure in the variable volume control cavity 323 increases, and the refrigerant in the variable volume control cavity 323 flows to the storage cavity 42 under the action of the pressure difference, and the buffer variable volume control cavity 323 The change in the pressure of the refrigerant slows down the pressure increase and prevents the pressure of the refrigerant in the variable volume control cavity 323 from fluctuating significantly.
  • variable volume control cavity 323 when the volume in the variable volume control cavity 323 becomes larger, the pressure in the variable volume control cavity 323 decreases, and the refrigerant in the storage cavity 42 flows to the variable volume control cavity 323 under the action of the pressure difference, and the buffer variable volume control cavity The pressure change of the refrigerant in the 323 slows down the pressure decrease and prevents the pressure of the refrigerant in the variable volume control cavity 323 from fluctuating significantly.
  • the refrigerant in the variable volume control cavity 323 adaptively flows to the storage cavity 42, or the refrigerant in the storage cavity 42 is adaptively supplemented into the variable volume control cavity 323 to balance
  • the pressure in the variable volume control cavity 323 prevents the pressure in the variable volume control cavity 323 from violently fluctuating, thereby preventing abnormal wear between the sliding plate and the first roller 34 after being subjected to greater pressure, and protecting the sliding plate and the first roller. Sub 34, improve the overall performance of the compressor 100.
  • the variable volume control assembly 40 also includes a control pipe 43 that communicates with the storage cavity 42 and the variable volume control cavity 323.
  • the control pipe 43 transports refrigerant between the storage cavity 42 and the variable volume control cavity 323 to balance the variable volume control cavity 323. Pressure fluctuations caused by changes in internal volume.
  • the effective volume of the storage cavity 42 is Va
  • the volume of the variable volume control cavity 323 is Vb
  • the maximum value of Vb that changes with the sliding of the sliding plate is Vbmax
  • Va >5Vbmax the relationship between Va and Vbmax is satisfied: Va >5Vbmax, to ensure that the effective volume Va of the storage cavity 42 is large enough to provide enough refrigerant to buffer the pressure change in the variable volume control cavity 323.
  • the pressure fluctuation rate refers to the ratio of the difference between the maximum and minimum pressures in the variable volume control chamber 323 and the average pressure.
  • Va>10Vbmax ensuring that the effective volume of the storage cavity 42 is large enough to provide sufficient refrigerant to buffer the pressure in the variable volume control cavity 323 Variety.
  • variable volume control assembly 40 further includes an inlet flow passage 43, and the inlet flow passage 43 includes a pressure input port 44 for passing the refrigerant and an outlet communicating with the storage cavity 42.
  • the refrigerant flows from the inlet flow passage 45 into the storage cavity 42.
  • the plane where the connection between the inlet flow channel 45 and the storage cavity 42 (the outlet of the inlet flow channel 45) is located is the first boundary surface 411
  • the plane where the end of the control pipe 43 communicates with the storage cavity 42 is the second boundary surface. 413.
  • the volume in the storage cavity 42 between the first boundary surface 411 and the second boundary surface 413 is the effective volume Va.
  • the refrigerant When the refrigerant enters the area where the effective volume is located, the refrigerant can enter the storage cavity 42 through the control pipe 43, and the refrigerant in the effective volume is reliably used to buffer pressure fluctuations in the variable volume control cavity 323.
  • One end of the control pipe 43 extends into the storage cavity 42 through the bottom of the storage cavity 42 and extends into the storage cavity 42.
  • one end of the control pipe 43 extends into the storage cavity 42 and protrudes from the bottom wall of the storage cavity 42, and one end of the control pipe 43 in the storage cavity 42 protrudes to facilitate the refrigerant in the storage compartment 412 and the control pipe 43. Flow between.
  • the first cylinder block 32 is also provided with an intake passage 325 communicating with the variable volume control chamber 323, and one end of the control pipe 43 is in communication with the intake passage 325 through the intake passage 325 communicates with the variable volume control assembly 40 and the variable volume control cavity 323.
  • the pressure fluctuation in the variable volume control cavity 323 is not only related to the effective volume Va of the storage chamber 42, but also related to the moving speed of the first sliding plate 36. If the moving speed of the first sliding plate 36 is too fast, the refrigerant cannot be controlled in time. Flow between the cavity 323 and the storage cavity 42, and the pressure fluctuation in the variable volume control cavity 323 cannot be effectively alleviated.
  • the moving speed of the first slide 36 can be calculated by the following formula:
  • R is the inner radius of the first cylinder 32 in mm
  • is the ratio of the eccentricity e of the crankshaft eccentric part located in the first cylinder block 32 to R (i.e. );
  • f is the operating frequency of compressor 100, in Hz;
  • crank angle the unit is radians, the angle is 0 at the position shown in Figure 3.
  • the inner diameter of the first cylinder 32 has almost no effect on the moving speed of the first sliding plate 36.
  • the range of crankshaft eccentricity is generally relatively small, and the moving speed of the sliding plate is not large.
  • the moving speed of the first sliding plate 36 has a greater influence on the operating frequency f of the compressor 100.
  • the speed of the first sliding piece 36 changes with the change of the rotation angle under different operating frequencies.
  • the maximum value of the moving speed of the first sliding piece 36 at a certain frequency is defined as Cmax, and the unit is mm/s.
  • the minimum cross-sectional area of the control pipe 43 is defined as S (cross-sectional area: the circulation area perpendicular to the flow direction of the refrigerant in the channel), the thickness of the sliding plate is b, and the height of the first compression chamber 321 is H.
  • the minimum cross-sectional area S satisfies the following relationship: S>(1.57 ⁇ 10 -5 )bHCmax, which ensures that the cross-sectional area of the control pipe 43 is large enough. Even if the first sliding plate 36 moves faster, the refrigerant can still be stored through the control pipe 43 There is flow between the cavity 42 and the variable volume control cavity 323, and the control pipe 43 can allow the refrigerant to flow in time, preventing large pressure fluctuations in the variable volume control cavity 323.
  • the pressure fluctuation rate in the variable volume control chamber 323 is less than ⁇ 5%; furthermore, S>( At 3.15 ⁇ 10 -5 ) bHCmax, the pressure fluctuation rate in the variable volume control chamber 323 is ⁇ 1%, and the pressure fluctuation is smaller.
  • the pressure fluctuation rate refers to the ratio of the difference between the maximum and minimum pressures in the variable volume control chamber 323 and the average pressure.
  • the second cylinder assembly 50 includes a second cylinder 52, a second roller 54 and a second sliding piece 56.
  • the second cylinder 52 is provided with a second compression chamber 53 and a second compression chamber 53.
  • the second sliding piece groove (not shown) is connected, the second roller 54 is rotatably arranged in the second compression chamber 53, and the second sliding piece 56 is slidably arranged in the second sliding piece groove and is always connected to the first sliding piece groove.
  • the two rollers 54 abut against each other, and the second compression chamber 53 is always divided into two sub-chambers by the second sliding piece 56.
  • the refrigerant can always be compressed when the second roller 54 rotates. That is, when the crankshaft fitted with the second roller 54 is in a rotating state, the second cylinder assembly 50 is in a working state, and the second cylinder assembly 50 is not in an idling state.
  • the second cylinder assembly 50 further includes a partition 56 and an upper flange 58.
  • the partition 56 is arranged between the first cylinder block 32 and the second cylinder block 52 to separate the first cylinder assembly 30 and the second cylinder assembly 50.
  • the upper flange 58 is arranged on a side of the second cylinder 52 away from the partition 56, and the opening at the top of the second cylinder 52 is closed by the upper flange 58 to form a sealed second compression chamber 53.
  • the gap between the first roller 34 and the partition 56 is ⁇ a
  • the gap between the second roller 54 and the upper flange 58 is ⁇ b, so that ⁇ a> ⁇ b, avoiding the first
  • the gap ⁇ a between the roller 34 and the partition 56 is too small to reduce the power consumption of the first cylinder assembly 30 when idling.
  • ⁇ a> ⁇ b+4 ⁇ m the power consumption is smaller.
  • the gap ⁇ a between the first roller 34 and the partition 56 and the gap between the second roller 54 and the upper flange 58 will affect the cooling loss of the compressor 100.
  • the cooling loss Qa is proportional to the third power of the gap ⁇ a.
  • the size of the gap ⁇ a is proportional to the cooling loss Qa, and the size of the gap ⁇ a is inversely proportional to the power consumption Wb caused by friction.
  • the power consumption Wa and the cooling capacity loss Qa are lower, and the performance of the compressor 100 is in an optimal state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机(100)及空调器,压缩机(100)包括:第一气缸组件(30),包括第一缸体(32)及第一滑片(36),变容控制组件(40),包括稳压件(41);稳压件(41)具有存储腔(42),存储腔(42)与变容控制腔(323)连通;第一滑片(36)可沿第一滑片槽于第一压缩腔(321)与变容控制腔(323)之间往复滑动,以改变变容控制腔(323)的容积;通入变容控制腔(323)内的冷媒,随着变容控制腔(323)容积的变化于变容控制腔(323)和存储腔(42)之间流动。当变容控制腔(323)内的容积发生变化时,变容控制腔(323)内的冷媒适应性地流向存储腔(42),或者存储腔(42)内的冷媒适应性地补充入变容控制腔(323),缓冲变容控制腔(323)内的压力变化,防止第一滑片(36)受到较大的压力后与第一滚子(54)之间产生异常磨损。

Description

空调器及压缩机
相关申请的交叉引用
本申请是以CN申请号为201910154316.9,申请日为2019年3月1日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及空调技术领域,特别是涉及一种空调器及压缩机。
背景技术
压缩机用于压缩冷媒,是空调器中的重要部件。一般地,为了降低压缩机的最小输出量,实现更精准的温度控制和节能降耗,将压缩机设置为多缸,使其中一个气缸作为变容缸。变容缸可选择地处于工作状态与其他气缸一起提供较大的输出量,或者变容缸可选择地处于空转状态以使压缩机提供较小的输出量。
并且,变容缸包括缸体、转子及滑片,缸体上开设有压缩腔及与压缩腔连通的第一滑片槽,转子可转动地设于压缩腔内,滑片可滑动地设于第一滑片槽内且可与转子抵接,滑片靠近缸体外周面的一端与第一滑片槽内壁之间围合形成变容控制腔,滑片尾部的变容腔容积随滑片在变容缸第一滑片槽内往复运动而时大时小。变容控制腔容积的变化将导致该腔压力出现波动,使得滑片与滚子间的接触力发生变化,当接触力过大时,不仅增加了压缩机功耗,而且会导致滚子与滑片异常磨损。
发明内容
依据本公开的一些实施例的一个方面,压缩机包括:
第一气缸组件,包括第一缸体及第一滑片,所述第一缸体上开设有第一压缩腔、变容控制腔以及第一滑片槽,所述第一滑片槽构造为连通于所述第一压缩腔与所述变容控制腔之间;
变容控制组件,包括稳压件;所述稳压件构造为具有存储腔及压力输入口,所述压力输入口连通于外部与所述存储腔之间,所述存储腔与所述变容控制腔连通;
其中,所述第一滑片可沿所述第一滑片槽于所述第一压缩腔与所述变容控制腔之间往复滑动,以改变所述变容控制腔的容积;且通入所述变容控制腔内的冷媒,随着 所述变容控制腔容积的变化于所述变容控制腔和所述存储腔之间流动。
上述压缩机中,随着第一滑片的往复移动,变容控制腔的容积会随之变化。当变容控制腔的容积变小时,变容控制腔内的压力增大,变容控制腔内的冷媒在压差作用下流向存储腔,缓冲变容控制腔内冷媒压力的变化,减缓压力增大,防止变容控制腔内冷媒压力大幅波动。同样地,当变容控制腔的容积变大时,变容控制腔内的压力减小,存储腔内的冷媒在压差作用下流向变容控制腔,缓冲变容控制腔内冷媒压力的变化,减缓压力减小,防止变容控制腔内冷媒压力大幅波动。如此,变容控制腔的体积发生变化时,变容控制腔内的冷媒适应性地流向存储腔,或者存储腔内的冷媒适应性地补充入变容控制腔,以缓冲变容控制腔内的压力变化,防止变容控制腔内的压力剧烈波动,进而防止滑片受到较大的压力后与第一滚子之间产生异常磨损,保护滑片和第一滚子,提高压缩机的整体性能。
依据本公开的一些实施例的一个方面,压缩机包括:
第一气缸组件,包括第一缸体及第一滑片,所述第一缸体上开设有第一压缩腔、变容控制腔以及第一滑片槽,所述第一滑片槽连通所述第一压缩腔与所述变容控制腔,所述第一滑片可滑动地设于所述第一滑片槽内,且所述第一滑片的一部位可伸入所述第一压缩腔内,另一部位可伸入所述变容控制腔内;
变容控制组件,包括稳压件;所述稳压件被构造为具有存储腔,所述存储腔内用于容纳冷媒,所述存储腔与所述变容控制腔连通;
其中,所述第一滑片被配置为在沿所述第一滑片槽的滑动过程中,伸入所述变容控制腔内的部位的尺寸发生变化,以使所述变容控制腔的容积随之发生变化;随着所述变容控制腔容积的变化,冷媒在所述变容控制腔和所述存储腔之间流动。
在一些实施例中,所述存储腔的有效容积为Va,所述变容控制腔的容积为Vb,且Vb随着所述第一滑片滑动而变化的最大值为Vbmax,Va与Vbmax之间满足关系式:Va>5Vbmax。
在一些实施例中,Va与Vbmax之间满足关系式:Va>10Vbmax。
在一些实施例中,所述变容控制组件还包括控制管道,所述控制管道连通所述存储腔与所述变容控制腔。
在一些实施例中,所述控制管道的最小截面积为S,所述第一滑片的最大滑动速度为Cmax,所述第一滑片的厚度为b,所述第一压缩腔的高度为H,S>(1.57╳10 -5)bHCmax。
在一些实施例中,S与bHCmax之间满足关系式:S>(3.15╳10 -5)bHCmax。
在一些实施例中,所述稳压件具有连通于所述存储腔与所述压力输入口之间的入口流道,所述入口流道与所述存储腔的连通处所在的平面为第一边界面,所述控制管道与所述存储腔连通的端部所在的平面为第二边界面,所述存储腔内位于所述第一边界面与所述第二边界面之间的容积为所述有效容积。
在一些实施例中,所述变容控制组件还包括控制管道,所述控制管道连通所述存储腔与所述变容控制腔;
所述变容控制组件还包括入口流道,所述入口流道包括用于通入冷媒的压力输入口,以及与所述存储腔连通的出口;
所述出口所在的平面为第一边界面,所述控制管道与所述存储腔连通的端部所在的平面为第二边界面,所述存储腔内位于所述第一边界面与所述第二边界面之间的容积为所述存储腔的有效容积。
在一些实施例中,所述控制管道的一端伸入所述存储腔并凸出所述存储腔的底壁。
在一些实施例中,所述控制管道的一端经所述存储腔的底部伸入所述存储腔,并向所述存储腔的内部延伸。
在一些实施例中,压缩机还包括第二气缸组件,所述第二气缸组件包括第二缸体、第二滚子、上法兰及隔板,所述第二缸体具有第二压缩腔,所述第二滚子可转动地设于所述第二压缩腔内,且所述隔板设于所述第一缸体与所述第二缸体之间,所述上法兰设于所述第二缸体远离所述隔板的一侧;
其中,所述第一气缸组件还包括可转动地设于所述第一压缩腔内的第一滚子,所述第一滚子与所述隔板之间的间隙为δa,所述第二滚子与所述上法兰之间的间隙为δb,δa>δb。
在一些实施例中,δa>δb+4μm。
在一些实施例中,20μm<δa<30μm。
在一些实施例中,22μm<δa<26μm。
依据本公开的一些实施例的另一个方面,空调器包括上述压缩机。
附图说明
图1为根据本公开一些实施例提供的压缩机一个视角的结构示意图;
图2为图1所示压缩机中第一滑片伸出量最大时的结构示意图;
图3为图1所示压缩机中第一滑片伸出量最小时的结构示意图;
图4为图1所示压缩机中第一气缸组件处于空转状态时的结构示意图;
图5为图1所示压缩机另一视角的结构示意图;
图6为图5所示压缩机中变容控制组件的结构示意图;
图7为图1所示压缩机中第一滑片伸出量与曲轴转角之间的关系曲线图;
图8为图1所示压缩机中变容控制腔内压力波动率与Va/Vbmax之间的关系曲线图;
图9为图1所示压缩机中第一滑片移动速度与曲轴转角之间的关系曲线图;
图10为图1所示压缩机中变容控制腔内压力波动率与S/bHCmax之间的关系曲线图;
图11为图5所示压缩机中L处的局部放大示意图;
图12为图5所示压缩机中N处的局部放大示意图;
图13为图1所示压缩机中间隙δa与功耗Wa及冷量损失Qa之间的关系曲线图。
具体实施方式
下面将结合本公开实施例中的附图,对实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
针对变容缸中滑片与滚子异常磨损的问题,本公开提供一种滑片与滚子之间磨损较小的压缩机。
如图1所示,本公开一些实施例中,提供一种压缩机100。压缩机100包括外壳10、第一气缸组件30和第二气缸组件50,第一气缸组件30和第二气缸组件50设置于外壳10内,且第一气缸组件30为变容缸,第二气缸组件50为非变容缸。第二气缸组件50处于工作状态时,第一气缸组件30可选择地处于工作状态或者空转状态(即 滚子随曲轴一起偏心旋转,但不对气体进行压缩)。当第一气缸组件30处于空转状态、第二气缸组件50处于工作状态时,压缩机100可以得到较小的输出量,当第一气缸组件30和第二气缸组件50均处于工作状态时,压缩机100可以得到较大的输出量,如此通过调节第一缸体32的状态调节压缩机100整体的输出量,实现更精准的温度控制和节能降耗。
如图2-4所示,第一气缸组件30包括第一缸体32、第一滚子34及第一滑片36,第一缸体32上开设有第一压缩腔321、变容控制腔323及第一滑片槽,第一滑片槽连通第一压缩腔321和变容控制腔323。
第一滑片36可滑动地设于第一滑片槽内,且第一滑片36的一部位可伸入第一压缩腔321内,另一部位可伸入变容控制腔323内。
第一滑片36可沿第一滑片槽于第一压缩腔321与变容控制腔323之间往复滑动,以改变变容控制腔323的容积;也就是说,第一滑片36沿第一滑片槽滑动时,会在与第一滑片槽连通的变容控制腔323内伸缩并改变变容控制腔323的容积。
第一滚子34可转动地设于第一压缩腔321内,且可与第一滑片36抵接,当第一滚子34在第一压缩腔321内做偏心转动时推动第一滑片36沿第一滑片槽往复滑动。
第一滑片36被配置为在沿第一滑片槽的滑动过程中,伸入变容控制腔323内的部位的尺寸发生变化,以使变容控制腔323的容积随之发生变化;随着变容控制腔323容积的变化,冷媒在变容控制腔323和存储腔42之间流动。
其中,通过压力输入口44向变容控制腔323内可选择地通入高压冷媒或低压冷媒。如图2-3所示,当导入变容控制腔323内的冷媒为高压时,第一滑片36在高压作用下脱离限位件并与第一滚子34抵接,压缩机100双缸运行;如图4所示,当导入变容控制腔323内的冷媒为低压时,第一滑片36在限位件作用下固定并与第一滚子34分离,第一气缸组件30处于空转状态,压缩机100单缸运行。
如图5-6所示,压缩机100还包括变容控制组件40,变容控制组件40包括稳压件41,稳压件41具有存储腔42及压力输入口44,压力输入口44连通于外部与存储腔42之间,存储腔42与变容控制腔323连通。
通过压力输入口44向存储腔42输入较大压力的冷媒后,较大压力的冷媒从存储腔42进入第一缸体32的变容控制腔323内,第一滑片36在变容控制腔323内较大压力冷媒的作用下脱离限位件与第一滚子34抵接,并将第一压缩腔321分隔为吸气腔和出气腔,使第一气缸组件30进入工作状态,压缩冷媒。
通过压力输入口44向存储腔42输入较小压力的冷媒时,较小压力的冷媒从存储腔42进入第一缸体32的变容控制腔323内,在变容控制腔323内较小压力的冷媒允许限位件与第一滑片36配合,将第一滑片36固定于初始位置并与第一滚子34分离,第一滑片36无法将第一压缩腔321分隔为吸气腔和出气腔,使第一滚子34无法压缩空气,第一气缸组件30处于空转状态。
进一步地,当第一气缸组件30处于工作状态时,第一滑片36与第一滚子34抵接,且第一滚子34转动时推动第一滑片36在第一滑片槽内往复移动,随着第一滑片36的往复移动,变容控制腔323的容积会随之变化。
如图7所示,第一滑片36相对第一滑片槽的伸出量与曲轴11及第一滚子34的转动角度有关,在第一滚子34的转动过程中,第一滑片36的伸出量先增大后减小,变容控制腔323的容积亦随之先增大后减小,如此不断循环。
具体地,当变容控制腔323的容积变小时,变容控制腔323内的压力增大,变容控制腔323内的冷媒在压差作用下流向存储腔42,缓冲变容控制腔323内冷媒压力的变化,减缓压力增大,防止变容控制腔323内冷媒的压力大幅波动。
同样地,当变容控制腔323内的容积变大时,变容控制腔323内的压力减小,存储腔42内的冷媒在压差作用下流向变容控制腔323,缓冲变容控制腔323内冷媒压力的变化,减缓压力减小,防止变容控制腔323内冷媒的压力大幅波动。
如此,变容控制腔323内的容积发生变化时,变容控制腔323内的冷媒适应性地流向存储腔42,或者存储腔42内的冷媒适应性地补充入变容控制腔323,以平衡变容控制腔323内的压力,防止变容控制腔323内的压力剧烈波动,进而防止滑片受到较大的压力后与第一滚子34之间产生异常磨损,保护滑片和第一滚子34,提高压缩机100的整体性能。
变容控制组件40还包括控制管道43,控制管道43连通存储腔42与变容控制腔323,通过控制管道43在存储腔42与变容控制腔323之间输送冷媒,平衡变容控制腔323内容积变化引起的压力波动。
在一些实施例中,存储腔42的有效容积为Va,变容控制腔323的容积为Vb,且Vb随着滑片滑动而变化的最大值为Vbmax,Va与Vbmax之间满足关系式:Va>5Vbmax,保证存储腔42的有效容积Va足够大,以能够提供足够的冷媒用于缓冲变容控制腔323内的压力变化。
如图8所示,从Va与Vbmax的关系曲线可以看出,当Va>5Vbmax时,变容控 制腔323内的压力波动率小于5%,波动幅度较小。其中,压力波动率指变容控制腔323内最大、最小压力的差值与平均压力的比值。
进一步地,在另一些实施例中,Va与Vbmax之间满足关系式:Va>10Vbmax,保证存储腔42的有效容积足够大,以能够提供足够的冷媒用于缓冲变容控制腔323内的压力变化。
如图8所示,从Va与Vbmax的关系曲线可以看出,当Va>10Vbmax时,变容控制腔323内的压力波动率小于1%,波动幅度较小。
如图6所示,变容控制组件40还包括入口流道43,入口流道43包括用于通入冷媒的压力输入口44,以及与存储腔42连通的出口。
冷媒从入口流道45流向存储腔42内。并且,入口流道45与存储腔42的连通处(入口流道45的出口)所在的平面为第一边界面411,控制管道43与存储腔42连通的端部所在的平面为第二边界面413,存储腔42内位于第一边界面411和第二边界面413之间的容积为有效容积Va。
当冷媒进入有效容积所在的区域时,冷媒可以通过控制管道43进入存储腔42,有效容积内的冷媒可靠地用于缓冲变容控制腔323内的压力波动。
控制管道43的一端经存储腔42的底部伸入存储腔42,并向存储腔42的内部延伸。
可选地,控制管道43的一端伸入存储腔42并凸出存储腔42的底壁,将控制管道43在存储腔42内的一端凸出设置,便于冷媒在存储仓412和控制管道43之间流动。
如图2及图5所示,具体地,第一缸体32上还开设有与变容控制腔323连通的进气通道325,控制管道43的一端与进气通道325连通,通过进气通道325连通变容控制组件40与变容控制腔323。
变容控制腔323内的压力波动除了与存储腔42的有效容积Va有关,还与第一滑片36的移动速度有关,若第一滑片36移动速度过快,冷媒无法及时在变容控制腔323与存储腔42之间流动,变容控制腔323内的压力波动也无法得到有效缓解。第一滑片36移动速度可由如下公式进行计算:
Figure PCTCN2019114765-appb-000001
式中,R为第一缸体32的内半径,单位为mm;
ε为位于第一缸体32内的曲轴偏心部的偏心量e与R的比值(即
Figure PCTCN2019114765-appb-000002
);
f为压缩机100的运行频率,单位为Hz;
Figure PCTCN2019114765-appb-000003
为曲轴转角,单位为弧度,图3所示位置时转角为0。
上式中,第一缸体32的内径对第一滑片36移动速度几乎无影响,受设计结构的影响,曲轴偏心量的范围一般比较小,其对滑片移动速度也不大,因此对第一滑片36移动速度影响较大的是压缩机100的运行频率f。
如图9所示,第一滑片36的速度在不同运行频率下随转角的变化而变化,定义第一滑片36在某一频率下移动速度的最大值为Cmax,单位为mm/s。
进一步地,定义控制管道43的最小截面积为S(截面积:在该通道内,与冷媒流动方向垂直的流通面积),滑片的厚度为b,第一压缩腔321的高度为H。最小截面积S满足以下关系式:S>(1.57╳10 -5)bHCmax,保证控制管道43的截面积足够大,即使第一滑片36移动速度较快,冷媒仍然可以通过控制管道43在存储腔42与变容控制腔323之间流动,控制管道43可以允许冷媒及时流动,防止变容控制腔323内产生较大的压力波动。
如图10所示,第一气缸组件30处于工作状态时,若S>(1.57╳10 -5)bHCmax,变容控制腔323内的压力波动率小于<5%;更进一步地,S>(3.15╳10 -5)bHCmax时,变容控制腔323内的压力波动率<1%,压力波动更小。其中,压力波动率指变容控制腔323内最大、最小压力的差值与平均压力的比值。
如图1所示,第二气缸组件50包括第二缸体52、第二滚子54及第二滑片56,第二缸体52上开设有第二压缩腔53及与第二压缩腔53连通的第二滑片槽(图未示),第二滚子54可转动地设于第二压缩腔53内,第二滑片56可滑动地设于第二滑片槽内且始终与第二滚子54抵接,第二压缩腔53始终被第二滑片56分隔为两个子腔室,可在第二滚子54转动时始终压缩冷媒。也就是说,当装配第二滚子54的曲轴处于旋转状态时,第二气缸组件50便处于工作状态,第二气缸组件50没有空转状态。
第二气缸组件50还包括隔板56和上法兰58,隔板56设于第一缸体32和第二缸体52之间,隔开第一气缸组件30和第二气缸组件50。上法兰58设于第二缸体52远离隔板56的一侧,通过上法兰58封闭第二缸体52顶部的开口,形成密封的第二压缩腔53。当第一气缸组件30卸载处于空转状态、第二气缸组件50处于工作状态时,第一气缸组件30不压缩空气,但是第一气缸组件30内的第一滚子34随着曲轴在第一压缩腔321内转动,转动的第一滚子34与隔板56接触摩擦会消耗一定的功耗(Wb),该功耗与第一滚子34与隔板56之间的间隙成反比,间隙越大,功耗越小。
如图11-12所示,其中,第一滚子34与隔板56之间的间隙为δa,第二滚子54与上法兰58之间的间隙为δb,使δa>δb,避免第一滚子34与隔板56之间的间隙δa过小,减小第一气缸组件30空转时的功耗。可选地,δa>δb+4μm,功耗更小。
并且,当第一气缸组件30卸载处于空转状态、第二气缸组件50处于工作状态时,第一滚子34与隔板56之间的间隙δa及第二滚子54与上法兰58之间的间隙δb会对压缩机100的冷量损失产生影响。
第一气缸组件30卸载处于空转状态时,第一滚子34两侧会存在压差,冷媒会从第一滚子34的高压侧通过间隙δa泄露出第一压缩腔321,造成冷量损失Qa,进而影响压缩机100整体对冷媒的压缩性能。
冷量损失Qa与间隙δa的3次方成正比,间隙δa越大泄漏量越大,冷量损失Qa越大。间隙δa的大小与冷量损失Qa成正比,间隙δa的大小与摩擦产生的功耗Wb成反比。
因此,如图13所示,为了同时降低功耗Wa和冷量损失Qa,应满足:20μm<δa<30μm,该范围内的δa使功耗Wa和冷量损失Qa均处于较低值附近,可以同时满足功耗Wa和冷量损失Qa的设计需求。
可选地,22μm<δa<26μm时,功耗Wa和冷量损失Qa更低,压缩机100性能处于最优状态。
在本公开的描述中,需要理解的是,使用“第一”、“第二”、“第三”等词语来限定零部件,仅仅是为了便于对上述零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (13)

  1. 一种压缩机(100),包括:
    第一气缸组件(30),包括第一缸体(32)及第一滑片(36),所述第一缸体(32)上开设有第一压缩腔(321)、变容控制腔(323)以及第一滑片槽,所述第一滑片槽连通所述第一压缩腔(321)与所述变容控制腔(323),所述第一滑片(36)可滑动地设于所述第一滑片槽内,且所述第一滑片(36)的一部位可伸入所述第一压缩腔(321)内,另一部位可伸入所述变容控制腔(323)内;以及
    变容控制组件(40),包括稳压件(41);所述稳压件(41)被构造为具有存储腔(42),所述存储腔(42)内用于容纳冷媒,所述存储腔(42)与所述变容控制腔(323)连通;
    其中,所述第一滑片(36)被配置为在沿所述第一滑片槽的滑动过程中,伸入所述变容控制腔(323)内的部位的尺寸发生变化,以使所述变容控制腔(323)的容积随之发生变化;随着所述变容控制腔(323)容积的变化,冷媒在所述变容控制腔(323)和所述存储腔(42)之间流动。
  2. 根据权利要求1所述的压缩机(100),其中,所述存储腔(42)的有效容积为Va,所述变容控制腔(323)的容积为Vb,且Vb随着所述第一滑片(36)滑动而变化的最大值为Vbmax,Va与Vbmax之间满足关系式:Va>5Vbmax。
  3. 根据权利要求2所述的压缩机(100),其中,Va与Vbmax之间满足关系式:Va>10Vbmax。
  4. 根据权利要求1所述的压缩机(100),其中,所述变容控制组件(40)还包括控制管道(43),所述控制管道(43)连通所述存储腔(42)与所述变容控制腔(323)。
  5. 根据权利要求4所述的压缩机(100),其中,所述控制管道(43)的最小截面积为S,所述第一滑片(36)的最大滑动速度为Cmax,所述第一滑片(36)的厚度为b,所述第一压缩腔(321)的高度为H,S>(1.57╳10 -5)bHCmax。
  6. 根据权利要求5所述的压缩机(100),其中,S与bHCmax之间满足关系式:S>(3.15╳10 -5)bHCmax。
  7. 根据权利要求2所述的压缩机(100),其中,所述变容控制组件(40)还包括控制管道(43),所述控制管道(43)连通所述存储腔(42)与所述变容控制腔(323);
    所述变容控制组件(40)还包括入口流道(43),所述入口流道(43)包括用于 通入冷媒的压力输入口(44),以及与所述存储腔(42)连通的出口;
    所述出口所在的平面为第一边界面(411),所述控制管道(43)与所述存储腔(42)连通的端部所在的平面为第二边界面(413),所述存储腔(42)内位于所述第一边界面(411)与所述第二边界面(413)之间的容积为所述存储腔(42)的有效容积。
  8. 根据权利要求7所述的压缩机(100),其中,所述控制管道(43)的一端经所述存储腔(42)的底部伸入所述存储腔(42),并向所述存储腔(42)的内部延伸。
  9. 根据权利要求1所述的压缩机(100),还包括第二气缸组件(50),所述第二气缸组件(50)包括第二缸体(52)、第二滚子(54)、上法兰(58)及隔板(56),所述第二缸体(52)具有第二压缩腔(53),所述第二滚子(54)可转动地设于所述第二压缩腔(53)内,且所述隔板(56)设于所述第一缸体(32)与所述第二缸体(52)之间,所述上法兰(58)设于所述第二缸体(52)远离所述隔板(56)的一侧;
    其中,所述第一气缸组件(50)还包括可转动地设于所述第一压缩腔(321)内的第一滚子(54),所述第一滚子(34)与所述隔板(56)之间的间隙为δa,所述第二滚子(54)与所述上法兰(58)之间的间隙为δb,δa>δb。
  10. 根据权利要求9所述的压缩机(100),其中,δa>δb+4μm。
  11. 根据权利要求9或10所述的压缩机(100),其中,20μm<δa<30μm。
  12. 根据权利要求11所述的压缩机(100),其中,22μm<δa<26μm。
  13. 一种空调器,包括上述权利要求1-12任意一项所述的压缩机(100)。
PCT/CN2019/114765 2019-03-01 2019-10-31 空调器及压缩机 WO2020177357A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19918466.4A EP3933203B1 (en) 2019-03-01 2019-10-31 Air conditioner and compressor
US17/312,215 US11953008B2 (en) 2019-03-01 2019-10-31 Air conditioner and compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910154316.9 2019-03-01
CN201910154316.9A CN109723641B (zh) 2019-03-01 2019-03-01 空调器及压缩机

Publications (1)

Publication Number Publication Date
WO2020177357A1 true WO2020177357A1 (zh) 2020-09-10

Family

ID=66300090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114765 WO2020177357A1 (zh) 2019-03-01 2019-10-31 空调器及压缩机

Country Status (4)

Country Link
US (1) US11953008B2 (zh)
EP (1) EP3933203B1 (zh)
CN (1) CN109723641B (zh)
WO (1) WO2020177357A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109723641B (zh) * 2019-03-01 2024-06-18 珠海格力节能环保制冷技术研究中心有限公司 空调器及压缩机
CN114087180B (zh) * 2021-12-08 2024-07-02 珠海格力电器股份有限公司 泵体组件、压缩机、空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201982A (ja) * 2002-01-08 2003-07-18 Sanyo Electric Co Ltd ロータリコンプレッサ
JP2006214445A (ja) * 2006-03-31 2006-08-17 Sanyo Electric Co Ltd ロータリコンプレッサ
KR20100010294A (ko) * 2008-07-22 2010-02-01 엘지전자 주식회사 용량가변형 로터리 압축기
CN101839240A (zh) * 2009-03-20 2010-09-22 上海日立电器有限公司 一种叶片背压柔性变化的转子式压缩机
CN109723641A (zh) * 2019-03-01 2019-05-07 珠海格力节能环保制冷技术研究中心有限公司 空调器及压缩机
CN209724653U (zh) * 2019-03-01 2019-12-03 珠海格力节能环保制冷技术研究中心有限公司 空调器及压缩机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108489B2 (en) * 2003-04-15 2006-09-19 Tecumseh Products Company Terminal block assembly for a hermetic compressor
CN100554695C (zh) * 2004-12-13 2009-10-28 大金工业株式会社 旋转式压缩机
JP4806552B2 (ja) * 2005-09-27 2011-11-02 東芝キヤリア株式会社 密閉型圧縮機および冷凍サイクル装置
JP5043382B2 (ja) 2006-08-07 2012-10-10 空研冷機株式会社 冷却塔用送風機
KR101116215B1 (ko) * 2007-02-14 2012-03-06 삼성전자주식회사 회전압축기
CN201779016U (zh) 2010-09-02 2011-03-30 广东美芝制冷设备有限公司 变容式旋转压缩机
CN102644596B (zh) * 2011-02-16 2014-09-10 广东美芝制冷设备有限公司 容量控制式旋转压缩机
CN103256223B (zh) * 2012-02-17 2015-12-23 珠海格力节能环保制冷技术研究中心有限公司 变容压缩机及其控制方法、具有其的空调器和热泵热水器
CN104595195B (zh) * 2014-12-04 2016-06-29 广东美芝制冷设备有限公司 低背压旋转式压缩机
CN207004813U (zh) * 2017-02-06 2018-02-13 广东美芝制冷设备有限公司 旋转式压缩机以及具有它的制冷系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201982A (ja) * 2002-01-08 2003-07-18 Sanyo Electric Co Ltd ロータリコンプレッサ
JP2006214445A (ja) * 2006-03-31 2006-08-17 Sanyo Electric Co Ltd ロータリコンプレッサ
KR20100010294A (ko) * 2008-07-22 2010-02-01 엘지전자 주식회사 용량가변형 로터리 압축기
CN101839240A (zh) * 2009-03-20 2010-09-22 上海日立电器有限公司 一种叶片背压柔性变化的转子式压缩机
CN109723641A (zh) * 2019-03-01 2019-05-07 珠海格力节能环保制冷技术研究中心有限公司 空调器及压缩机
CN209724653U (zh) * 2019-03-01 2019-12-03 珠海格力节能环保制冷技术研究中心有限公司 空调器及压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3933203A4 *

Also Published As

Publication number Publication date
US11953008B2 (en) 2024-04-09
EP3933203B1 (en) 2024-07-31
EP3933203A1 (en) 2022-01-05
EP3933203A4 (en) 2022-04-20
US20220049701A1 (en) 2022-02-17
CN109723641B (zh) 2024-06-18
CN109723641A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2020177357A1 (zh) 空调器及压缩机
US10458410B2 (en) Low-backpressure rotary compressor
WO2020088152A1 (zh) 泵体组件、变容压缩机、空气调节系统
WO2022116577A1 (zh) 泵体组件及具有其的流体机械
KR101983495B1 (ko) 편심부 급유를 위한 그루브가 구비된 로터리 압축기
CN107061276B (zh) 旋转压缩机
CN111322240B (zh) 旋转式压缩机和具有其的制冷系统
WO2024041002A1 (zh) 变容压缩机和空调系统
CN109058107B (zh) 一种密封型旋转压缩机及其控制方法
CN110821831B (zh) 单缸压缩机及热交换工作设备
CN110785566A (zh) 旋转式压缩机
KR102186604B1 (ko) 2단 로터리 압축기
CN109340112B (zh) 压缩机和空调器
CN209540462U (zh) 涡旋式油泵、压缩机
CN209724653U (zh) 空调器及压缩机
CN109668041B (zh) 涡旋式油泵、压缩机
KR20120090529A (ko) 압축기의 밸브플레이트 조립체
KR102004090B1 (ko) 누설 저감 구조가 적용된 로터리 압축기
KR102608742B1 (ko) 로터리 압축기
EP3933204A1 (en) Screw compressor
CN111287968B (zh) 压缩机及制冷设备
WO2022077754A1 (zh) 压缩机和制冷系统
CN112444012A (zh) 储液器、压缩机组件和制冷系统
JP4092040B2 (ja) スクリュ圧縮機
CN218376898U (zh) 气缸、压缩机构、压缩机以及制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019918466

Country of ref document: EP