WO2022077754A1 - 压缩机和制冷系统 - Google Patents

压缩机和制冷系统 Download PDF

Info

Publication number
WO2022077754A1
WO2022077754A1 PCT/CN2020/136129 CN2020136129W WO2022077754A1 WO 2022077754 A1 WO2022077754 A1 WO 2022077754A1 CN 2020136129 W CN2020136129 W CN 2020136129W WO 2022077754 A1 WO2022077754 A1 WO 2022077754A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
compressor
pressure
passage
port
Prior art date
Application number
PCT/CN2020/136129
Other languages
English (en)
French (fr)
Inventor
高斌
高强
彭延海
李盖敏
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to CA3156551A priority Critical patent/CA3156551A1/en
Publication of WO2022077754A1 publication Critical patent/WO2022077754A1/zh
Priority to US17/825,258 priority patent/US20220290672A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present application relates to the technical field of compressors, and in particular, to a compressor and a refrigeration system.
  • the pressure difference between the suction side and the exhaust side of the compressor can be restarted more reliably only when the pressure difference between the suction side and the exhaust side of the compressor reaches a certain required range.
  • the pressure difference must reach a small value, such as within 1kgf/cm 2 , otherwise the compressor will not be able to start, resulting in the temporary ineffective operation of the refrigeration device.
  • the throttling component is closed during shutdown, or the refrigeration unit is equipped with a shut-off valve on the suction side or the exhaust side of the compressor that is closed during shutdown, resulting in only the suction and exhaust sides of the compressor after shutdown. Equilibrium can be achieved gradually through the gap leakage inside the compressor. In this case, first, the equilibration time will be prolonged, which may not meet the time interval requirements for restarting the system after the system is shut down. Even due to the sealing effect of the lubricating oil, the pressure difference between the suction and discharge sides cannot be reached to be less than the balance pressure requirement for the compressor to start, resulting in difficulty in starting the compressor.
  • a starting component called hard start kit is used to increase the starting torque of the compressor when the pressure balance is not reached to help the compressor start, but there is still an upper limit requirement for the starting pressure difference.
  • the compressor is started with differential pressure, there is a big problem of starting mode and power consumption, which is not conducive to the reliable operation of the compressor and the system.
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the present application is to propose a compressor.
  • a second aspect of the present application is to propose a refrigeration system.
  • a compressor comprising: a casing, the casing includes an accommodating cavity; a cylinder assembly, disposed in the accommodating cavity, the cylinder assembly including a suction cavity and a pressure relief channel,
  • the pressure relief passage communicates with the suction chamber and the accommodating chamber, and the pressure relief passage has a pressure relief port;
  • the pressure relief device is connected with the cylinder assembly, and the pressure relief device moves along the axis direction of the pressure relief passage to open or close the pressure relief port;
  • the flow area of the pressure device satisfies: 0 ⁇ Sz ⁇ 0.8 ⁇ S, Sz represents the flow area of the pressure relief device, and S indicates the cross-sectional area of the pressure relief channel.
  • the compressor provided by the present application includes a housing, a cylinder assembly and a pressure relief device.
  • the cylinder assembly is provided with a suction chamber and a pressure relief channel.
  • the pressure relief port on the pressure relief passage can be closed or opened, so as to balance the pressure in the suction chamber of the cylinder assembly and the housing.
  • the flowing fluid is throttled, so that the pressure distribution of the fluid on both sides of the pressure relief device is beneficial to the stability of the pressure relief device. Therefore, the time for restarting the compressor after the compressor is stopped can be greatly shortened, so that the refrigeration system can be restarted again, and the effect of the refrigeration system can be improved.
  • the overall pressure difference adjustment efficiency of the compressor depends on the structure and quantity of the pressure relief channels, the actual pressure difference and the viscosity of the fluid and other parameters.
  • the areas of different sections of the pressure relief channel may be the same or different.
  • S is the minimum cross-sectional area of the pressure relief passage.
  • the area of the pressure relief port and the cross-sectional area of the pressure relief channel can be the same or different, and can be reasonably set according to the fluid flow requirements.
  • the pressure relief channel includes: a first pressure relief channel, the first end of the first pressure relief channel is communicated with the suction chamber; a second pressure relief channel, the first end of the second pressure relief channel It is communicated with the second end of the first pressure relief channel, and the second end of the second pressure relief channel is communicated with the accommodating cavity; wherein, the pressure relief device is located between the first pressure relief channel and the second pressure relief channel; the flow area satisfies : 0 ⁇ Sz ⁇ 0.8 ⁇ S1, Sz represents the flow area, and S1 represents the cross-sectional area of the first pressure relief channel.
  • the pressure relief device can be arranged at one end of the pressure relief passage connecting to the accommodating cavity, or in the middle of the pressure relief passage, so as to divide the pressure relief passage into high and low pressure relief passages.
  • the pressure relief passage when the pressure relief device is located in the middle of the pressure relief passage, the pressure relief passage includes a first pressure relief passage and a second pressure relief passage.
  • the first pressure relief passage is communicated with the suction chamber
  • the second pressure relief passage is communicated with the accommodating chamber
  • the first pressure relief passage and the second pressure relief passage are communicated through a pressure relief device.
  • the fluid flowing from the high pressure side to the low pressure side is throttled by defining the circumferential flow area, so that the pressure distribution of the fluid on both sides of the pressure relief device is beneficial to the stability of the pressure relief device. Therefore, the time for restarting the compressor after it is stopped can be greatly shortened, so as to realize the quick start function of the compressor and improve the effect of the refrigeration system.
  • the pressure relief device includes: a pressure relief piece, which is movably arranged on the pressure relief port on the side of the pressure relief passage accommodating cavity; an elastic piece, connected to the cylinder assembly and the pressure relief piece, elastically The piece is configured to drive movement of the pressure relief piece to open or close the pressure relief port.
  • the movement of the pressure relief member is controlled by the elastic member.
  • the pressure in the accommodating cavity pushes the pressure relief piece, and the pressure relief piece contacts the pressure relief port and closes the pressure relief passage.
  • the elastic piece pushes the pressure relief piece in the direction of the pressure relief piece away from the pressure relief port, and the pressure relief passage is opened.
  • the pressure piece is gradually moved away from the pressure relief port.
  • the pressure relief device further includes: a limiting member connected to the cylinder assembly, and the limiting member is used to limit the position of the pressure relief member along the axial direction of the pressure relief passage.
  • the second position can be determined according to the elastic force of the elastic member, or a limiting member can be provided on the cylinder assembly, and the pressure relief member can be limited along the axis direction of the pressure relief passage by the limiting member, thereby preventing The pressure relief piece and the elastic piece fly out to limit the displacement of the pressure relief piece, thereby ensuring the stability of the pressure relief device during the pressure relief process.
  • the limiting member may be a circlip structure or a limiting block structure.
  • At least one through-flow hole is formed on the pressure relief member.
  • the flow holes are arranged outside the contact portion of the pressure relief piece and the pressure relief port, and inside the contact portion of the pressure relief piece and the limiting piece.
  • the arrangement position of the flow hole can satisfy the requirements that, when the pressure relief piece closes the pressure relief passage, the area on the pressure relief piece that is not communicated with the pressure relief port, and when the pressure relief piece is in contact with the limiting piece, is not connected to the limiting piece. contact area.
  • the pressure relief channel is provided with a protruding structure that protrudes toward the accommodating cavity, and the protruding structure includes a platform facing the accommodating cavity, and the platform is provided with a pressure relief port.
  • the pressure relief port is protruded relative to the cylinder assembly by arranging a protruding structure on the pressure relief passage.
  • the pressure relief piece closes the pressure relief port, since the pressure relief port protrudes from the peripheral step, the pressure relief piece can effectively contact the pressure relief port, thereby preventing the pressure relief piece from tilting and affecting the effect of the pressure relief piece closing the pressure relief passage.
  • the height of the raised structure can be reasonably set according to production or pressure adjustment requirements.
  • the elastic member is compressed; the elastic force of the elastic member satisfies: 0 ⁇ Ft ⁇ a ⁇ m 2 , or 0 ⁇ Ft ⁇ b ⁇ (m+ n) 2 , where Ft represents the elastic force of the elastic member, m represents the diameter of the pressure relief port, n represents the diameter of the platform, the value of a ranges from 0.6 to 0.9, and the value of b ranges from 0.15 to 0.25.
  • the pressure relief member gradually approaches the pressure relief port until the pressure relief port is closed.
  • the elastic force Ft (unit: N) of the elastic piece satisfies: 0 ⁇ Ft ⁇ a ⁇ m 2 , where m represents the diameter of the pressure relief port (unit: mm), and the value of a ranges from 0.6 to 0.9; if the diameter of the pressure relief port is smaller than the diameter of the platform, and the pressure relief piece is in surface contact with the platform, then The elastic force Ft of the elastic member satisfies: 0 ⁇ Ft ⁇ b ⁇ (m+n) 2 , where m represents the diameter of the pressure relief port, n represents the diameter of the platform, and the value of b ranges from 0.15 to 0.25.
  • the pressure difference for controlling the pressure relief member to open the pressure relief channel that is, the pressure difference between the inner space of the accommodating cavity and the suction cavity.
  • the greater the pressure difference between the inner space of the accommodating chamber and the suction chamber the greater the elastic force of the elastic member needs to be designed.
  • the conditions that affect the elastic design also include factors such as the viscous force of the lubricating oil existing between the pressure relief piece and the platform when the pressure relief piece is in contact with the pressure relief port.
  • the elastic force design of the elastic member is larger, it also means that a larger pressure difference is required to make the pressure relief member close the pressure relief passage, that is, if the pressure difference of the compressor operating condition is smaller than the closing pressure of the pressure relief member.
  • the pressure relief part is also in an open state when the compressor is running, which will cause the compressor to communicate with high and low pressure, thereby affecting the operating efficiency of the compressor.
  • a can be set to 0.6, that is, the elastic force Ft of the elastic member can be set to 0 ⁇ Ft ⁇ 0.6 ⁇ m 2 , or b can be set to 0.15, that is, 0 ⁇ Ft ⁇ 0.15 ⁇ (m+n) 2 ; for compressors in normal operating conditions, a can be set to 0.9, that is, the elastic force Ft of the elastic element can be set to 0 ⁇ Ft ⁇ 0.9 ⁇ m 2 , or b Set to 0.25, that is, 0 ⁇ Ft ⁇ 0.25 ⁇ (m+n) 2 .
  • the displacement L of the pressure relief device satisfies: 0 ⁇ L ⁇ 1mm.
  • the casing is provided with a suction port;
  • the cylinder assembly includes: a cylinder and a bearing; the cylinder is arranged inside the accommodating cavity, the bearings are arranged on both sides of the cylinder, and the cylinder and the bearing are enclosed into a suction cavity , the suction chamber is communicated with the suction port; the pressure relief channel is arranged on the cylinder and the bearing; the pressure relief device is connected with the cylinder or the bearing.
  • the cylinder is installed in the accommodating cavity, the cylinder includes a cylinder main body, a sliding vane, a piston and an eccentric crankshaft, the piston is arranged in the cylinder main body, and the eccentric crankshaft passes through the cylinder main body.
  • Bearings are connected to both sides of the cylinder, and the eccentric crankshaft is supported by the bearings.
  • the air cylinder and the bearing enclose a suction chamber, and the suction chamber is communicated with the suction port on the casing, so as to discharge the refrigerant in the suction chamber to the outside of the casing.
  • the pressure relief device is connected to any one of the cylinder or the bearing, and the pressure relief device can be arranged on either side of the suction chamber, and can also be arranged on both sides of the suction chamber at the same time. Therefore, through the revolution of the piston and the reciprocating motion of the sliding vane, the air intake, compression and exhaust processes of the compressor are realized, that is, a working cycle is completed.
  • the piston stops at a certain position in the cylinder body, and the piston and the cylinder body are in clearance fit, so that the pressure at the accommodating cavity and the suction cavity can be affected by the gap between the piston and the cylinder body.
  • the refrigerant gas can leak from the gap to balance the pressure in the compressor, and the refrigerant gas leaks from the side with relatively high pressure to the side with relatively low pressure, so as to balance the pressure ; It can also be that the oil on the relatively high pressure side leaks to the relatively low pressure side, and the refrigerant dissolved in the oil escapes to increase the ambient pressure on the relatively low pressure side, so as to balance the compressor pressure. .
  • the cylinder assembly further includes: a muffler connected to the bearing, the muffler and the bearing enclose a muffler cavity; the pressure relief passage communicates with the suction cavity and the muffler cavity.
  • the muffler is arranged on the bearing, and the muffler can enclose a muffler cavity with the bearing.
  • a refrigeration system including the compressor proposed in the first aspect; and a heat exchanger connected to a suction chamber of the compressor. Therefore, the refrigeration system has all the beneficial effects of the compressor proposed in the first aspect, which will not be repeated here.
  • the refrigeration system further includes: a non-return member, the non-return member is configured to prevent the refrigerant in the suction chamber from being discharged out of the casing of the compressor through the suction port of the compressor.
  • the refrigeration system further includes a non-return piece, which prevents the refrigerant in the suction chamber from being discharged to the outside of the casing of the compressor through the suction port of the compressor, thereby preventing the pressure in the casing from passing through the suction
  • the outlet is discharged, which is conducive to maintaining the pressure, thereby facilitating the realization of the pressure regulating function of the compressor.
  • FIG. 1 shows a schematic structural diagram of a refrigeration system according to an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a cylinder assembly of a compressor according to an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a pressure relief device of a compressor according to an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a pressure relief device of a compressor according to another embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a pressure relief device of a compressor according to another embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a pressure relief device of a compressor according to another embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a pressure relief device of a compressor according to another embodiment of the present application.
  • a compressor 100 is proposed.
  • the compressor 100 includes a casing 110 , a cylinder assembly 120 and a pressure relief device 130 .
  • the housing 110 encloses the accommodating cavity 150 , and the housing 110 is provided with a suction port connected to the heat exchanger 200 .
  • the cylinder assembly 120 is located in the accommodating cavity 150 , and the cylinder assembly 120 is provided with a suction cavity 160 and a pressure relief passage 126 .
  • the suction chamber 160 is connected to the suction port to discharge the refrigerant in the suction chamber 160 to the outside of the casing 110 .
  • the pressure relief passage 126 communicates with the suction chamber 160 and the accommodating chamber 150 and has a pressure relief port.
  • the pressure relief device 130 is connected to the cylinder assembly 120 , and the pressure relief device 130 moves along the axis direction of the pressure relief passage 126 to have a first position and a second position.
  • the pressure relief device 130 If the pressure relief device 130 is in the first position, the pressure relief device 130 is in contact with the pressure relief port to block the pressure relief port. As the pressure relief device 130 moves from the first position to the second position, the pressure relief device 130 opens the pressure relief port. If the pressure relief device 130 is in the second position, the pressure relief device 130 moves the maximum displacement along the direction from the suction chamber 160 to the accommodating chamber 150 , that is, the second position is the farthest position where the pressure relief device 130 can move.
  • the circumferential flow area of the pressure relief device 130 is denoted as Sz
  • the cross-sectional area of the pressure relief channel 126 is denoted as S
  • the circumferential flow area Sz satisfies: 0 ⁇ Sz ⁇ 0.8 ⁇ S.
  • Z is the pressure relief perimeter of the mouth.
  • the compressor 100 includes a casing 110 , a cylinder assembly 120 and a pressure relief device 130 .
  • the pressure relief device 130 balances the pressure in the suction chamber 160 of the cylinder assembly 120 and the casing 110 , and defines a circumferential flow through the pressure relief device 130 .
  • the area throttles the fluid flowing from the high pressure side to the low pressure side, so that the pressure distribution of the fluid on both sides of the pressure relief device 130 is beneficial to the stability of the pressure relief device 130 . Therefore, the time for restarting the compressor 100 after being shut down can be greatly shortened, so that the refrigeration system can be restarted again, and the effect of the refrigeration system can be improved.
  • the overall pressure difference adjustment efficiency of the compressor 100 depends on parameters such as the structure and quantity of the pressure relief passages 126 , the actual pressure difference, and the viscosity of the fluid.
  • the areas of different sections of the pressure relief passage 126 may be the same or different.
  • the circumferential flow area is greater than zero and less than or equal to 0.8 times the minimum cross-sectional area of the pressure relief channel 126 .
  • the area of the pressure relief port and the cross-sectional area of the pressure relief channel 126 may be the same or different, and may be reasonably set according to fluid flow requirements.
  • the pressure relief passage 126 includes: a first pressure relief passage 1262 and a second pressure relief passage 1264 .
  • first end of the first pressure relief passage 1262 is communicated with the suction chamber 160
  • second end is communicated with the first end of the second pressure relief passage 1264
  • the second end of the second pressure relief channel 1264 is communicated with the accommodating cavity 150 .
  • the pressure relief device 130 is disposed between the first pressure relief passage 1262 and the second pressure relief passage 1264 to conduct or block the fluid in the first pressure relief passage 1262 and the second pressure relief passage 1264 .
  • the pressure relief device 130 If the pressure relief device 130 is in the second position, that is, the farthest position where the pressure relief device 130 can move, at this time, the pressure relief device 130 can completely open the pressure relief port at the second end of the first pressure relief passage 1262, and the second relief The high pressure in the pressure passage 1264 flows to the first pressure relief passage 1262 through the pressure relief port.
  • the pressure relief device 130 when the pressure relief device 130 is in the second position, the product of the circumference of the pressure relief port at the second end of the first pressure relief passage 1262 and the displacement of the pressure relief device 130 from the first position to the second position, that is, the pressure relief
  • the circumferential flow area Sz of the device 130 satisfies: 0 ⁇ Sz ⁇ 0.8 ⁇ S1 , where S1 represents the cross-sectional area of the first pressure relief channel 1262 .
  • the pressure relief device 130 may be arranged at one end of the pressure relief passage 126 connected to the accommodating cavity 150, or may be arranged in the middle of the pressure relief passage 126, so as to divide the pressure relief passage 126 into high and low pressure relief passages.
  • the pressure relief passage 126 when the pressure relief device 130 is located in the middle of the pressure relief passage 126 , the pressure relief passage 126 includes a first pressure relief passage 1262 and a second pressure relief passage 1264 .
  • the first pressure relief channel 1262 is communicated with the suction chamber 160
  • the second pressure relief channel 1264 is communicated with the accommodating chamber 150
  • the first pressure relief channel 1262 and the second pressure relief channel 1264 are communicated through the pressure relief device 130 .
  • the pressure relief device 130 can improve the ability of the compressor 100 to adjust the pressure difference between the two pressure relief passages 126 , so as to quickly realize the pressure balance of the compressor 100 , thereby meeting the requirement of restarting the rotary compressor 100 . Further, the fluid flowing from the high pressure side to the low pressure side is throttled by defining the circumferential flow area, so that the pressure distribution of the fluid on both sides of the pressure relief device 130 is beneficial to the stability of the pressure relief device 130 . Therefore, the time for restarting the compressor 100 after being shut down can be greatly shortened, so as to realize the quick start function of the compressor 100 and improve the effect of the refrigeration system.
  • the cross-sectional area of the first pressure relief passage 1262 and the cross-sectional area of the second pressure relief passage 1264 are the same or different, and can be set reasonably according to pressure adjustment requirements.
  • the pressure relief device 130 includes a pressure relief member 132 and an elastic member 134 .
  • the pressure relief member 132 is movably disposed on the pressure relief port of the pressure relief passage 126 .
  • the elastic member 134 is mounted on the cylinder assembly 120 and is connected with the pressure relief member 132 to drive the pressure relief member 132 to move along the axial direction of the pressure relief passage 126, thereby opening or closing the pressure relief port.
  • the movement of the pressure relief member 132 is controlled by the elastic member 134 .
  • the elastic member 134 pushes the pressure relief member 132 to the first position, and the pressure relief member 132 contacts the pressure relief port and closes the pressure relief channel 126.
  • the elastic member 134 pushes the pressure relief member 132 to move from the first position to the second position, and the pressure relief channel 126 is opened.
  • the pressure relief piece 132 gradually moves away from the pressure relief port. Therefore, the pressure of the accommodating chamber 150 and the pressure of the suction chamber 160 are quickly adjusted, so that the pressures of the two are balanced, so that the conditions for restarting the compressor 100 can be satisfied.
  • the second position may be determined according to the elastic force of the elastic member 134 , or a limiting member 136 may be provided on the cylinder assembly 120 to define the second position by the limiting member 136 , so that the pressure relief member 132 is moved along the pressure relief passage 126 . Limits in the axis direction.
  • the limiting member 136 may be a circlip structure as shown in FIG. 3 , or may be a limiting block structure as shown in FIG. 4 .
  • the limiting member 136 when configured as a retaining spring structure, it is assembled in the pre-machined retaining groove on the cylinder assembly 120, so as to prevent the pressure relief member 132 and the elastic member 134 from flying out, and pass the The positioning of the card slot can control the second position of the pressure relief member 132 .
  • FIG. 3 when the limiting member 136 is configured as a retaining spring structure, it is assembled in the pre-machined retaining groove on the cylinder assembly 120, so as to prevent the pressure relief member 132 and the elastic member 134 from flying out, and pass the The positioning of the card slot can control the second position of the pressure relief member 132 .
  • the limiter 136 when the limiter 136 is configured as a limiter block structure, the limiter block can be assembled in a pre-machined hole on the cylinder assembly 120 and fixed by interference fit or a threaded structure, so as to prevent pressure relief
  • the pressure relief piece 132 and the elastic piece 134 fly out, and the second position of the pressure relief piece 132 can be controlled through the structural design of the limiting block.
  • the number of the limiting members 136 may be one or a plurality of the limiting members 136 are arranged at intervals.
  • a seat body 140 for fixing the elastic member 134 can be provided at the pressure relief port, and the connection strength between the elastic member 134 and the cylinder assembly 120 can be strengthened through the seat body 140,
  • the stability of the pressure relief device 130 during the pressure relief process is ensured, which is conducive to quickly balancing the pressure difference between the suction chamber 160 and the accommodating chamber 150 .
  • the pressure relief member 132 when the pressure relief member 132 is in the second position, that is, when the pressure relief member 132 has a maximum displacement relative to the pressure relief port, the pressure relief member 132 reaches the limit member 136.
  • the contact of 136 makes it difficult to flow. Therefore, in order to ensure the unobstructed flow of the pressure relief channel 126 , one or more flow holes are provided on the pressure relief member 132 .
  • the flow holes are arranged outside the contact portion of the pressure relief member 132 and the pressure relief port, and inside the contact portion of the pressure relief member 132 and the limiting member 136 , that is, the setting positions of the flow holes are simultaneously satisfied, in the pressure relief member 132
  • the area on the pressure relief member 132 that is not in communication with the pressure relief port, and when the pressure relief member 132 is in contact with the limiting member 136 is the area that is not in contact with the limiting member 136 .
  • the features defined in any of the above embodiments are included, and further: the pressure relief channel 126 is provided with a protruding structure 1266 .
  • the pressure relief passage 126 is provided with a raised structure 1266 , and the raised structure 1266 is raised toward the direction from the suction chamber 160 to the accommodating chamber 150 , and the raised height (unit: mm) Denoted as A, a platform is formed on the side of the raised structure 1266 facing the accommodating cavity 150 , and the pressure relief port is provided on the platform.
  • the elastic member 134 may be a spring.
  • the pressure relief port is protruded relative to the cylinder assembly 120 by disposing the protruding structure 1266 on the pressure relief passage 126 .
  • the pressure relief member 132 can effectively contact the pressure relief port, thereby preventing the pressure relief member 132 from being inclined and affecting the pressure relief member 132 to close the pressure relief channel 126 effects.
  • the height A of the raised structure can be reasonably set according to production or pressure adjustment requirements.
  • the diameter of the pressure relief port is smaller than or equal to the diameter of the platform. As the high pressure side of the pressure relief device 130 compresses the elastic member 134, the pressure relief member 132 gradually approaches the pressure relief port until the pressure relief port is closed.
  • the elastic force of the elastic member 134 Ft (unit: N) satisfies: 0 ⁇ Ft ⁇ a ⁇ m 2 , where m represents the diameter of the pressure relief port (unit: mm), and the value of a ranges from 0.6 to 0.9; if the diameter of the pressure relief port is smaller than the platform
  • the elastic force Ft of the elastic member 134 satisfies: 0 ⁇ Ft ⁇ b ⁇ (m+n) 2 , where m represents the diameter of the pressure relief port, and n represents the diameter of the platform , the value of b ranges from 0.15 to 0.25.
  • the pressure difference (the pressure difference between the inner space of the accommodating chamber 150 and the suction chamber 160 ) for controlling the pressure relief member 132 to open the pressure relief passage 126 is fully considered.
  • the greater the pressure difference between the inner space of the accommodating chamber 150 and the suction chamber 160 the greater the elastic force of the elastic member 134 needs to be designed.
  • the conditions affecting the design of the elastic force also include factors such as the viscous force of the lubricating oil existing between the pressure relief member 132 and the platform when the pressure relief member 132 is in contact with the pressure relief port.
  • the pressure relief device 130 can meet the requirements of rapid pressure balance after the compressor 100 is shut down in various application situations of refrigeration and heating, so that the compressor 100 can adapt to the requirements of different application situations, and solve the problem after the shutdown. Reboot issue.
  • the elastic force design of the elastic member 134 is larger, it also means that a larger pressure difference is required to make the pressure relief member 132 close the pressure relief passage 126 , that is, if the pressure difference under the operating condition of the compressor 100 is When the pressure difference is smaller than the pressure difference when the pressure relief member 132 is closed, the pressure relief member 132 is also in an open state when the compressor 100 is running, which will cause the compressor 100 to communicate high and low pressure, thereby affecting the operating efficiency of the compressor 100 .
  • a can be set to 0.6, that is, the elastic force Ft of the elastic member 134 can be set to 0 ⁇ Ft ⁇ 0.6 ⁇ m 2 , or b can be set to 0.15, or That is, 0 ⁇ Ft ⁇ 0.15 ⁇ (m+n) 2 ;
  • a can be set to 0.9, that is, the elastic force Ft of the elastic member 134 can be set to 0 ⁇ Ft ⁇ 0.9 ⁇ m 2 , or b is set to 0.25, that is, 0 ⁇ Ft ⁇ 0.25 ⁇ (m+n) 2 .
  • the requirement that the pressure relief member 132 of the compressor 100 is in a closed state under most operating conditions can be satisfied, and the requirement that the high and low pressure sides of the compressor 100 are balanced within a specified period of time can also be satisfied after shutdown, so that the operating efficiency of the compressor 100 can be taken into account.
  • the need to balance with pressure can be satisfied, and the requirement that the high and low pressure sides of the compressor 100 are balanced within a specified period of time can also be satisfied after shutdown, so that the operating efficiency of the compressor 100 can be taken into account.
  • the pressure relief port has a diameter m when it is in contact with the pressure relief member 132. If the pressure relief port is non-circular, the area enclosed by the pressure relief port can also be converted into a circle of the same area. diameter of.
  • the features defined in any of the above embodiments are included, and further: the displacement L of the pressure relief device 130 , that is, the pressure relief device 130 moves from the first position The distance to the second position satisfies: 0 ⁇ L ⁇ 1mm.
  • the force of the elastic member 134 on the pressure relief member 132 will decrease as the displacement of the pressure relief member 132 increases. If the force changes too much, As a result, the pressure differentials required to close the pressure relief channel 126 when the pressure relief member 132 is in different positions are significantly different, resulting in unstable movement of the pressure relief member 132 , which in turn causes problems such as impact, wear and noise.
  • the displacement L of the pressure relief device 130 is set to satisfy: 0 ⁇ L ⁇ 1mm, to ensure the stability of the pressure relief member 132 during movement, so as to facilitate rapid pressure relief.
  • the displacement L can be reasonably set according to the design parameters of the elastic member 134 and the structural size of the compressor 100 .
  • the cylinder assembly 120 includes: a cylinder 122 , a bearing 124 and a muffler 128 .
  • the cylinder 122 is installed in the accommodating cavity 150, and the cylinder 122 includes a cylinder main body 1222, a sliding vane (not shown in the figure), a piston 1224 and an eccentric crankshaft 1226.
  • the piston 1224 is arranged in the cylinder main body 1222, and the eccentric crankshaft 1226 passes through on the cylinder body 1222.
  • the bearings 124 are connected to both sides of the cylinder 122 , and the eccentric crankshaft 1226 is supported by the bearings 124 .
  • the cylinder 122 and the bearing 124 enclose a suction chamber 160 , and the suction chamber 160 communicates with the suction port on the casing 110 to discharge the refrigerant in the suction chamber 160 to the outside of the casing 110 .
  • the pressure relief device 130 is connected to any one of the cylinder 122 or the bearing 124 , and the pressure relief device 130 can be arranged on either side of the suction chamber 160 , or can be arranged on both sides of the suction chamber 160 at the same time.
  • the sound-absorbing member 128 is disposed on the bearing 124 , and the sound-absorbing member 128 and the bearing 124 can enclose a sound-absorbing cavity.
  • the pressure relief passage 126 is disposed on the cylinder 122 and the bearing 124 , and two ends of the pressure relief passage 126 are respectively communicated with the suction chamber 160 and the muffler chamber.
  • the process of air intake, compression, and exhaust of the compressor 100 is realized through the revolving of the piston 1224 and the reciprocating motion of the sliding vane, that is, a working cycle is completed.
  • the muffler 128 to reduce the noise generated when the suction chamber 160 and the accommodating chamber 150 perform pressure adjustment, the discomfort caused to the user when the compressor 100 is used is reduced, and the practicability of the compressor 100 is improved.
  • the piston 1224 stops at a certain position in the cylinder main body 1222, and the piston 1224 and the cylinder main body 1222 are in clearance fit, so that the accommodating cavity can be connected to the accommodating cavity through the gap between the piston 1224 and the cylinder main body 1222.
  • 150 and the pressure at the suction chamber 160 are regulated.
  • the refrigerant gas can leak from the gap to balance the pressure in the compressor 100, and the refrigerant gas leaks from the side with relatively high pressure to the side with relatively low pressure, so that the pressure Balance; it can also be that the oil on the side with relatively high pressure leaks to the side with relatively low pressure, and the refrigerant dissolved in the oil escapes to increase the ambient pressure on the side with relatively low pressure, so that the compressor 100 pressure balance.
  • the main bearing includes a main bearing and an auxiliary bearing, and the main bearing and the auxiliary bearing are arranged on opposite sides of the cylinder 122 .
  • a main bearing muffler 128 is provided on the main bearing.
  • the auxiliary bearing is provided with the auxiliary bearing exhaust hole, the auxiliary bearing muffler 128 may be arranged on the auxiliary bearing.
  • the number of exhaust holes provided on the main bearing or the auxiliary bearing may be multiple.
  • the performance degradation rate when the pressure relief device 130 opens the pressure relief passage 126 is consistent, and at the same time, the risk of reliability caused by the rise of the exhaust gas temperature due to the backflow of the pressure relief device 130 can be avoided.
  • the first pressure relief passage 1262 may be opened on the cylinder 122 , as shown in FIGS. 3 and 4 .
  • the first pressure relief passage 1262 can also be opened on the cylinder 122 and the bearing 124 at the same time, wherein the part of the first pressure relief passage 1262 on the cylinder 122 and the part of the first pressure relief passage 1262 on the bearing 124 have the same cross-sectional area or different.
  • the second pressure relief channel 1264 may be opened on the bearing 124 , or may be opened on the cylinder 122 and the bearing 124 at the same time.
  • a rotary compressor 100 including: a casing 110, and a closed space (accommodating cavity 150) enclosed by the casing 110;
  • the mechanism part, the compression mechanism part is arranged in the casing 110, the compression mechanism part includes the cylinder 122, the main bearing, the auxiliary bearing, the pressure relief passage 126, the pressure relief device 130, the main bearing and the auxiliary bearing are arranged on opposite sides of the cylinder 122,
  • the cylinder 122 has a suction chamber 160 , and the suction chamber 160 communicates with the suction side space of the compressor 100 .
  • the cylinder 122 includes a cylinder main body 1222, a piston 1224 and a sliding vane arranged in the cylinder main body 1222, and an eccentric crankshaft 1226 connected with the cylinder main body 1222; an exhaust hole is provided on the main bearing, and a corresponding upper
  • the muffler 128 encloses an exhaust muffler cavity.
  • a lower muffler 128 is installed to form an exhaust muffler cavity.
  • the pressure relief passage 126 communicates with the suction chamber 160 and the space in the housing 110 , and the pressure relief device 130 has a valve plate (pressure relief member 132 ) and a spring (elastic member 134 ).
  • the pressure relief device 130 is configured to use the movement of the valve plate to open or close the pressure relief passage 126 .
  • the pressure relief device 130 can be arranged on one side of the main bearing, or on the side of the auxiliary bearing, or can be arranged on both sides at the same time.
  • the high pressure side pressure relief passage 126 (second pressure relief passage 1264 ) is connected to the inner space of the housing 110 , and the low pressure side pressure relief passage 126 (first pressure relief passage 1262 ) is connected to the suction chamber 160 .
  • the valve plate When the pressure relief passage 126 is closed, the valve plate is in close contact with the valve seat (seat body 140 ) at the top of the pressure relief passage 126 to close the flow from the high pressure relief passage 126 to the low pressure relief passage 126 .
  • the high-pressure side pressure relief passage 126 communicates with the high pressure in the high-pressure inner space of the housing 110
  • the low-pressure side pressure relief passage 126 communicates with the low pressure in the suction chamber 160
  • the valve plate is under the action of the pressure difference between the high and low pressure relief passages 126 .
  • the pressure relief passage 126 is closed against the valve seat.
  • the spring exerts a force on the valve plate which drives the valve plate away from the valve seat thereby opening the pressure relief passage 126 .
  • the valve plate moves away from the valve seat.
  • the valve seat in order to ensure that the valve sheet can effectively close the pressure relief channel 126, the valve seat needs to be designed to be relatively protruding.
  • the valve plate when the valve plate is in close contact with the valve seat, the valve plate is circumferentially designed with steps (protrusions) to prevent the valve plate from being inclined and affecting the effect of the valve plate in closing the pressure relief channel 126 . Therefore, the valve seat is set higher than the peripheral step, that is, the dimension A in FIG. 6 is set with A>0, so as to ensure the effective contact between the valve plate and the valve seat.
  • the force of the spring on the valve plate will decrease with the increase of the valve plate stroke. If the force changes too much, the closing pressure required by the valve plate in different positions will be caused. The difference is large, resulting in unstable operation of the valve plate, resulting in problems such as impact, wear and noise. Therefore, the stroke L of the valve plate should not be too large. Combined with the design parameters of the spring and the structure size of the rolling rotor compressor 100, setting the stroke 0 ⁇ L ⁇ 1mm has a better application effect.
  • the pressure relief device 130 can be pre-assembled on the cylinder 122 or the bearing 124 to become a part of the cylinder 122 or the bearing 124. In this case, the pressure relief device 130 will not be added due to the increase of the pressure relief device 130. This affects the assembly manufacturability of the compressor 100 .
  • a limiting device (limiting piece 136 ) is provided, and the valve plate and the spring are pre-assembled on the cylinder 122 or the bearing 124 through the limiting device.
  • the limiting device may be a circlip structure as shown in FIG. 3 , or a limiting block structure as shown in FIG. 4 .
  • the limiting device when the limiting device is set as a circlip structure, it is assembled in a pre-machined groove to prevent the valve plate and the spring from flying out, and through the positioning of the groove, the stroke of the valve plate can be controlled (displacement) L.
  • the limit block when the limit device is set as a limit block structure, the limit block can be assembled in a pre-machined hole and fixed by interference fit or threaded structure, so as to prevent the valve plate and the spring from flying out. And through the structural design of the limit block, the stroke L of the valve plate can be controlled.
  • a flow hole is provided on the valve plate, and the flow hole is arranged on the valve plate.
  • the outer part of the contact part with the valve seat and is located inside the contact part between the valve plate and the limit device, so as to ensure that there will be no leakage when the valve plate and the valve seat are tightly attached, and also to ensure that the valve plate remains in the position of the limit device.
  • the circulation effect of the pressure relief channel 126 can be achieved through the circulation hole.
  • the spring when the valve plate is in close contact with the valve seat, the spring is compressed and has an elastic force Ft (unit: N), which acts on the valve plate and has a tendency to drive the valve plate away from the valve seat.
  • the contact part between the valve plate and the valve seat is a theoretical line contact, that is, the top of the valve seat is an arc structure.
  • the valve seat is set to be circular, and the contact part has a diameter m (unit: mm). If the contact part is not circular, the area enclosed by the contact part can also be calculated. Find the diameter m of a circle of the same area. Then, the relationship between the elastic force Ft and the diameter m is set to be 0 ⁇ Ft ⁇ 0.9 ⁇ m 2 .
  • the valve plate and the valve seat are in surface contact, and the contact part has an inner diameter m and an outer diameter n, so set 0 ⁇ Ft ⁇ 0.25 ⁇ (m+n) 2 .
  • the target pressure difference for opening the pressure relief device 130 (the pressure difference between the high-pressure inner space in the casing 110 and the suction hole) needs to be considered. If the target pressure difference is large, then The design spring force Ft increases accordingly. In addition, it is also necessary to consider the viscous force of the lubricating oil existing between the valve plate and the valve seat when the valve plate and the valve seat are in contact. To sum up, when 0 ⁇ Ft ⁇ 0.9 ⁇ m 2 or 0 ⁇ Ft ⁇ 0.25 ⁇ (m+n) 2 is set, the pressure relief device 130 can realize that the compressor 100 stops after the compressor 100 is shut down in various application situations of cooling and heating. Rapid pressure balance, such as the requirement of pressure balance within 3 minutes, enables the rotary compressor 100 to adapt to the requirements of different application situations and solves the problem of restarting after shutdown.
  • the compressor 100 when the compressor 100 is provided with the pressure relief device 130, if the elastic force Ft is designed to be larger, it also means that a larger pressure difference is required to close the pressure relief device 130, that is, if the compressor 100 operates under a When the pressure difference is smaller than the pressure difference when the pressure relief device 130 is closed, the pressure relief device 130 is also in an open state when the compressor 100 is running, which will cause the compressor 100 to communicate with high and low pressure, thereby affecting the operating efficiency of the compressor 100 .
  • the elastic force Ft can be set to 0 ⁇ Ft ⁇ 0.6 ⁇ m 2 or 0 ⁇ Ft ⁇ 0.15 ⁇ (m +n) 2 , to meet the requirement that the pressure relief device 130 of the rotary compressor 100 is in a closed state under most operating conditions, and also to meet the requirement of the balance between the high and low pressure sides of the compressor 100 after the compressor 100 is shut down, so that it can be Take into account the requirements of the compressor 100 operating efficiency and pressure balance.
  • the rotary compressor 100 can greatly shorten the time for restarting the compressor 100 after being shut down, so that the refrigeration system can be restarted again, and the effect of the refrigeration system can be improved.
  • a refrigeration system including the compressor 100 and the heat exchanger 200 proposed in the first aspect, and the suction of the heat exchanger 200 and the compressor 100 cavity connected. Therefore, the refrigeration system has all the beneficial effects of the compressor 100 proposed in the first aspect, which will not be repeated here.
  • the refrigeration system further includes a non-return member (not shown in the figure), the non-return member is configured to prevent the refrigerant in the suction chamber from being discharged to the outside of the casing of the compressor through the suction port of the compressor, thereby preventing the inside of the casing from being discharged.
  • the pressure of the compressor is discharged through the suction port, which is conducive to maintaining the pressure, thereby facilitating the realization of the pressure regulating function of the compressor.
  • the refrigeration system can be applied to refrigeration equipment such as air conditioners and refrigerators.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

一种压缩机(100)和制冷系统。其中,压缩机包括:壳体(110),壳体包括容纳腔(150);气缸组件(120),设置于容纳腔内,气缸组件包括吸气腔(160)和泄压通道(126),泄压通道与吸气腔和容纳腔连通,泄压通道具有泄压口;泄压装置(130),与气缸组件连接,泄压装置沿泄压通道的轴线方向运动,以开启或关闭泄压口;其中,泄压装置的通流面积满足:0<Sz≤0.8×S,Sz表示泄压装置的通流面积,S表示泄压通道的截面积。通过弹性件(134)的弹力、泄压通道及泄压件(132)的参数设计,从而缩短压缩机停机后再次重启的时间,以便于制冷系统再次重新运行,提高制冷系统的效果。

Description

压缩机和制冷系统
本申请要求于2020年10月14日提交中国国家知识产权局、申请号为“202011097561.X”、发明名称为“压缩机和制冷系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩机技术领域,具体而言,涉及一种压缩机和一种制冷系统。
背景技术
在制冷装置中,压缩机从上一回运行后停机到可以再次启动时,压缩机的吸气侧与排气侧的压力差要达到某个要求的范围内才可以更可靠的重新启动,特别是对于滚动转子式压缩机来说,该压力差必须达到一个较小的数值,例如1kgf/cm 2以内,否则压缩机将无法启动,导致制冷装置暂时无法有效运行。
一般情况下,当制冷装置停机后,通过节流部件可以快速的实现高低压换热器之间的平衡,从而压缩机吸排气侧压差平衡,压缩机可以重新启动。然而,在一些制冷系统中,节流部件在停机时关闭,或者制冷装置在压缩机的吸气侧或排气侧装有停机时关闭的截止阀,导致停机后压缩机的吸排气侧只能通过压缩机内部的间隙泄漏逐渐达到平衡。在这种情况下,一是平衡时间会加长,有可能无法满足系统停机后再次启动的时间间隔要求,另一方面,通过间隙泄漏时,当吸排气的压差较小时泄漏会十分缓慢,甚至由于润滑油的密封作用,无法达到吸排气侧压差小于压缩机启动的平衡压力要求,导致压缩机启动困难。
相关技术中,利用一种名为hard start kit启动组件在未达到压力平衡时增加压缩机的启动力矩来帮助压缩机启动的方式,但仍然存在启动压差的上限要求,另一方面,转子式压缩机带压差启动时存在较大的启动模式问题以及功耗问题,不利于压缩机和系统的可靠运行。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面在于提出了一种压缩机。
本申请的第二方面在于提出了一种制冷系统。
有鉴于此,根据本申请的第一方面,提出了一种压缩机,包括:壳体,壳体包括容纳腔;气缸组件,设置于容纳腔内,气缸组件包括吸气腔和泄压通道,泄压通道与吸气腔和容纳腔连通,泄压通道具有泄压口;泄压装置,与气缸组件连接,泄压装置沿泄压通道的轴线方向运动,以开启或关闭泄压口;泄压装置的通流面积满足:0<Sz≤0.8×S,Sz表示泄压装置的通流面积,S表示泄压通道的截面积。
本申请的提供的压缩机包括壳体、气缸组件和泄压装置。气缸组件开设有吸气腔和泄压通道。泄压装置相对于泄压通道运动时能够关闭或打开泄压通道上的泄压口,以平衡气缸组件的吸气腔和壳体内的压力。通过限定泄压装置的通流面积,具体地,泄压口的周长与泄压装置的位移之积大于零,且小于或等于0.8倍的泄压通道的截面积,对高压侧向低压侧流动的流体进行节流,使得泄压装置两侧的流体的压力分布有利于泄压装置的稳定。从而能够大幅度缩短压缩机停机后再次重启的时间,以便于制冷系统再次重新运行,提高制冷系统的效果。
具体地,当压缩机停机处于预设时间内时,吸气腔和容纳腔的实际压差较大,此时泄压装置无需打开泄压通道。当压缩机关闭超出预设时间后,实际压差逐渐减小,压差的调节效率也将逐渐降低,此时泄压装置离开泄压口,以打开泄压通道。从而提升压差的调节效率,实现快速地对容纳腔的压力和吸气腔的压力进行调节,以使二者快速地达到平衡,进而可以满足再次启动压缩机的条件。其中,压缩机整体的压差调节效率取决于泄压通道的构造、数量,实际压差以及流体的粘度等参数。
需要说明的是,泄压通道不同截面的面积可以相同,也可以不同。当泄压通道的多个截面积不同时,S为泄压通道的最小截面积。
另外,泄压口的面积和泄压通道的截面积可以相同,也可以不同,可根据流体流通需求合理设置。
在上述技术方案中,进一步地,泄压通道包括:第一泄压通道,第一泄压通道的第一端与吸气腔连通;第二泄压通道,第二泄压通道的第一端与第一泄压通道的第二端连通,第二泄压通道的第二端与容纳腔连通;其中,泄压装置位于第一泄压通道和第二泄压通道之间;通流面积满足:0<Sz≤0.8×S1,Sz表示通流面积,S1表示第一泄压通道的截面积。
在该技术方案中,泄压装置可以设置在泄压通道连接容纳腔的一端,也可以设置在泄压通道中间,以将泄压通道分为高、低压泄压通道。其中,当泄压装置位于泄压通道中间时,泄压通道包括第一泄压通道和第二泄压通道。其中,第一泄压通道与吸气腔连通,第二泄压通道与容纳腔连通,第一泄压通道和第二泄压通道通过泄压装置连通。通过泄压装置可以提升压缩机调节两个泄压通道压差的能力,从而快速实现压缩机的压力平衡,进而满足再次启动旋转式压缩机的需要。
进一步地,通过限定周向通流面积对高压侧向低压侧流动的流体进行节流,使得泄压装置两侧的流体的压力分布有利于泄压装置的稳定。从而能够大幅度缩短压缩机停机后再次重启的时间,以实现压缩机的快速启动功能提高制冷系统的效果。
在上述任一技术方案中,进一步地,泄压装置包括:泄压件,可活动的设置于泄压通道容纳腔侧的泄压口上;弹性件,与气缸组件连接和泄压件连接,弹性件配置为驱动泄压件运动,以打开或关闭泄压口。
在该技术方案中,通过弹性件控制泄压件运动。当吸气腔和容纳腔的实际压差大于弹性件的弹力时,容纳腔内的压力推动泄压件,泄压件与泄压口接触并关闭泄压通道。当吸气腔和容纳腔的实际压差小于弹性件的弹力时,弹性件向泄压件远离泄压口的方向推动泄压件,泄压通道被打开,随着泄压件的运动,泄压件逐渐远离泄压口。从而快速地对容纳腔的压力和吸气腔的压力进行调节,以使二者的压力达到平衡,进而可以满足再次启动压缩机的条件。
在上述任一技术方案中,进一步地,泄压装置还包括:限位件,与气缸组件连接,限位件用于沿泄压通道轴线方向对泄压件的进行限位。
在该技术方案中,第二位置可以根据弹性件的弹力确定,也可以在气缸组件上设置限位件,通过限位件对泄压件进行沿泄压通道轴线方向上的限位,从而阻止泄压件和弹性件飞出,限制泄压件的位移大小,进而确保泄压过程中泄压装置的稳定性。
具体地,限位件可以是卡簧结构,也可以是限位块结构。
在上述任一技术方案中,进一步地,泄压件上开设有至少一个通流孔。
在该技术方案中,当泄压件处于相对于泄压口的最大位移时,泄压件达到 限位件处,由于周向与限位件接触导致难以流动,因此,为了保证泄压通道的畅通,在泄压件上设置一个或多个流通孔。从而既能保证泄压件与泄压口贴紧时不会产生泄漏,也能保证泄压件在限位件接触时仍能通过流通孔实现泄压通道的流通作用。
具体地,流通孔设置在泄压件与泄压口接触部位的外部,以及泄压件与限位件接触部位的内部。换言之,流通孔的设置位置能够同时满足,在泄压件封闭泄压通道时,泄压件上未与泄压口连通的区域,以及在泄压件与限位件接触时,未与限位件接触的区域。
在上述任一技术方案中,进一步地,沿泄压通道轴线方向,泄压通道设置有朝向容纳腔凸起的凸起结构,凸起结构包括朝向容纳腔的平台,平台设置有泄压口。
在该技术方案中,通过在泄压通道上设置凸起结构,以使泄压口相对于气缸组件突出。当泄压件关闭泄压口时,由于泄压口突出于周边台阶,使得泄压件能够与泄压口有效接触,从而避免泄压件倾斜而影响泄压件关闭泄压通道的效果。其中,凸起结构的高度可根据生产或压力调节需求合理设置。
在上述任一技术方案中,进一步地,基于泄压件关闭泄压口,弹性件被压缩;弹性件的弹力满足:0<Ft≤a×m 2,或0<Ft≤b×(m+n) 2,其中,Ft表示弹性件的弹力,m表示泄压口的直径,n表示平台的直径,a的取值范围为0.6~0.9,b的取值范围为0.15~0.25。
在该技术方案中,随着泄压装置的高压侧压缩弹性件,泄压件逐渐靠近泄压口直至泄压口封闭。当泄压件关闭泄压口,此时,若泄压口的直径等于平台的直径,泄压件与平台为线接触,则弹性件的弹力Ft(单位:N)满足:0<Ft≤a×m 2,其中,m表示泄压口的直径(单位:mm),a的取值范围为0.6~0.9;若泄压口的直径小于平台的直径,泄压件与平台为面接触,则弹性件的弹力Ft满足:0<Ft≤b×(m+n) 2,其中,m表示泄压口的直径,n表示平台的直径,b的取值范围为0.15~0.25。从而充分考虑了考虑控制泄压件打开泄压通道的压差,也即容纳腔内部空间与吸气腔之间的压差。其中,容纳腔内部空间与吸气腔之间压差越大,弹性件的弹力则需要设计的越大。当然影响弹力设计的条件还包括泄压件与泄压口接触时,泄压件与平台之间存在的润滑油的粘滞力作用等因素。通过限定弹性件的弹力使泄压装置能够实现压缩机在制冷及制热多种 应用情形下停机后快速压力平衡要求,从而使压缩机能够适应不同应用情形的要求,解决停机后重新启动的问题。
进一步地,若弹性件的弹力设计较大,也意味着需要更大的压差才能使泄压件关闭泄压通道,也就是说,若压缩机运行工况的压差小于关闭泄压件的压差时,泄压件在压缩机运行时也处于开启状态,这样会导致压缩机高低压串通,从而影响压缩机的运行效率。例如,针对存在小压差运行工况使用情形的压缩机,a可设置为0.6,也即弹性件的弹力Ft可以设置为0<Ft≤0.6×m 2,或b设置为0.15,也即0<Ft≤0.15×(m+n) 2;而针对常规工况使用情形的压缩机,a可设置为0.9,也即弹性件的弹力Ft可以设置为0<Ft≤0.9×m 2,或b设置为0.25,也即0<Ft≤0.25×(m+n) 2。从而满足压缩机在大多数运行条件下泄压件处于关闭状态的要求,并且在停机后,也能满足指定时间内压缩机构高低压侧平衡的要求,从而可以兼顾压缩机运行效率与压力平衡的需求。
在上述任一技术方案中,进一步地,泄压装置的位移L满足:0<L≤1mm。
在该技术方案中,由于泄压件离开泄压口后,弹性件对泄压件的作用力会随着泄压件的位移增加而减小,若该作用力变化太大,则会导致泄压件在不同位置时所需要的关闭泄压通道的多个压差之间存在较大差异,导致泄压件运动不稳定,进而引发撞击、磨损及噪音等问题。因此,泄压装置泄压件与泄压口之间的最大位移不能过大,则通过设置泄压装置的位移L满足:0<L≤1mm,确保泄压件运动时的稳定性,以便于快速泄压。
在上述任一技术方案中,进一步地,壳体开设有吸气口;气缸组件包括:气缸和轴承;气缸设置于容纳腔内部,轴承设置于气缸的两侧,气缸和轴承围合成吸气腔,吸气腔与吸气口连通;泄压通道设置于气缸和轴承上;泄压装置与气缸或轴承连接。
在该技术方案中,气缸安装在容纳腔内,气缸包括气缸主体、滑片、活塞和偏心曲轴,活塞设置在气缸主体中,偏心曲轴穿设于气缸主体。轴承连接于气缸的两侧,通过轴承支撑偏心曲轴。气缸和轴承围合出吸气腔,吸气腔与壳体上的吸气口连通,以将吸气腔内的制冷剂排到壳体外。泄压装置连接于气缸或轴承中任一个,泄压装置可以设置在吸气腔任意一侧,也可以同时设置在吸气腔两侧。从而通过活塞公转以及滑片往复运动,来实现压缩机的进气、压缩、排气过程,即完成一个工作循环。
具体地,当压缩机停止工作时,活塞停在气缸主体内的某一位置,活塞与气缸主体为间隙配合,从而可以通过活塞与气缸主体之间的间隙对容纳腔和吸气腔处的压力进行调节。其中,在制冷应用情况下,制冷剂气体可以从间隙处泄露以使得压缩机内的压力平衡,制冷剂气体由压力相对较高的一侧泄露至压力相对较低的一侧,以使得压力平衡;还可以是压力相对较高一侧的油泄露至压力相对较低的一侧,溶解在油中的制冷剂逸出,以提升压力相对较低一侧的环境压力,从而使得压缩机压力平衡。
在上述任一技术方案中,进一步地,气缸组件还包括:消音件,与轴承连接,消音件与轴承围合成消音腔;泄压通道与吸气腔和消音腔连通。
在该技术方案中,消音件设置在轴承上,该消音件能够与轴承围合出消音腔。通过设置消音件降低吸气腔和容纳腔进行压力调节时产生的噪音,降低压缩机使用时对用户造成的不适感,提高压缩机的实用性。
根据本申请的第二方面,提出了一种制冷系统,包括第一方面提出的压缩机;换热器,与压缩机的吸气腔相连。因此该制冷系统具备第一方面提出的压缩机的全部有益效果,在此不再赘述。
在上述技术方案中,进一步地,制冷系统还包括:止回件,止回件配置为阻挡吸气腔内的制冷剂通过压缩机的吸气口排到压缩机的壳体外。
在该技术方案中,制冷系统还包括止回件,通过止回件阻挡吸气腔内的制冷剂通过压缩机的吸气口排到压缩机的壳体外,从而防止壳体内的压力通过吸气口排出,有利于压力保持,进而便于实现压缩机的压力调节功能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1示出了本申请一个实施例的制冷系统的结构示意图;
图2示出了本申请一个实施例的压缩机的气缸组件的结构示意图;
图3示出了本申请一个实施例的压缩机的泄压装置结构示意图;
图4示出了本申请又一个实施例的压缩机的泄压装置结构示意图;
图5示出了本申请又一个实施例的压缩机的泄压装置结构示意图;
图6示出了本申请又一个实施例的压缩机的泄压装置结构示意图;
图7示出了本申请又一个实施例的压缩机的泄压装置结构示意图。
附图标号说明:
100压缩机,110壳体,120气缸组件,122气缸,1222气缸主体,1224活塞,1226偏心曲轴,124轴承,126泄压通道,1262第一泄压通道,1264第二泄压通道,1266凸起结构,128消音件,130泄压装置,132泄压件,134弹性件,136限位件,138通流孔,140座体,150容纳腔,160吸气腔,200换热器。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不限于下面公开的具体实施例的限制。
下面参照图1至图7描述根据本申请一些实施例的压缩机、制冷系统。
实施例1:
如图1和图2所示,根据本申请第一方面的实施例,提出了一种压缩机100,该压缩机100包括:壳体110、气缸组件120和泄压装置130。
详细地,壳体110围合出容纳腔150,壳体110上开设有连接换热器200的吸气口。气缸组件120位于容纳腔150中,气缸组件120开设有吸气腔160和泄压通道126。吸气腔160与吸气口连接,以将吸气腔160内的制冷剂排到壳体110外。泄压通道126与吸气腔160和容纳腔150连通,且具有泄压口。泄压装置130连接于气缸组件120,沿泄压通道126的轴线方向泄压装置130运动具有第一位置和第二位置。若泄压装置130处于第一位置,泄压装置130与泄压口接触,以封堵泄压口。随着泄压装置130从第一位置运动至第二位置,泄压装置130敞开泄压口。若泄压装置130处于第二位置,沿吸气腔160至容纳腔150的方向泄压装置130移动最大位移,也即第二位置为泄压装置130能够运动的最远位置。其中, 泄压装置130周向的通流面积记作Sz,泄压通道126的截面积记作S,则当泄压装置130处于第二位置时周向的通流面积Sz满足:0<Sz≤0.8×S。具体地,泄压装置130周向的通流面积Sz=L×Z,L为泄压装置130的位移,也即泄压装置130从第一位置运动至第二位置的距离,Z为泄压口的周长。
在该实施例中,压缩机100包括壳体110、气缸组件120和泄压装置130,通过泄压装置130平衡气缸组件120的吸气腔160和壳体110内的压力,并通过限定周向通流面积对高压侧向低压侧流动的流体进行节流,使得泄压装置130两侧的流体的压力分布有利于泄压装置130的稳定。从而能够大幅度缩短压缩机100停机后再次重启的时间,以便于制冷系统再次重新运行,提高制冷系统的效果。
具体地,当压缩机100停机处于预设时间内时,吸气腔160和容纳腔150的实际压差较大,此时泄压装置130无需打开泄压通道126。当压缩机100关闭超出预设时间后,实际压差逐渐减小,压差的调节效率也将逐渐降低,此时泄压装置130离开泄压口,以打开泄压通道126。从而提升压差的调节效率,实现快速地对容纳腔150的压力和吸气腔160的压力进行调节,以使二者快速地达到平衡,进而可以满足再次启动压缩机100的条件。其中,压缩机100整体的压差调节效率取决于泄压通道126的构造、数量,实际压差以及流体的粘度等参数。
需要说明的是,泄压通道126不同截面的面积可以相同,也可以不同。当泄压通道126的多个截面积不同时,周向通流面积大于零,且小于或等于0.8倍的泄压通道126的最小截面积。
另外,泄压口的面积和泄压通道126的截面积可以相同,也可以不同,可根据流体流通需求合理设置。
实施例2:
如图3至图7所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:泄压通道126包括:第一泄压通道1262和第二泄压通道1264。
详细地,第一泄压通道1262的第一端连通于吸气腔160,第二端连通于第二泄压通道1264的第一端。第二泄压通道1264的第二端连通于容纳腔150。泄压装置130设置在第一泄压通道1262和第二泄压通道1264之间,以导通或阻碍第一泄压通道1262和第二泄压通道1264内的流体。若泄压装置130处于第二位置,也即泄压装置130能够运动的最远位置,此时,泄压装置130能够完全敞开第一泄压通道1262的第二端的泄压口,第二泄压通道1264内的高压通过泄压口 流向第一泄压通道1262。并且当泄压装置130处于第二位置时,第一泄压通道1262第二端的泄压口的周长与泄压装置130从第一位置运动至第二位置的位移之积,也即泄压装置130的周向通流面积Sz满足:0<Sz≤0.8×S1,其中,S1表示第一泄压通道1262的截面积。
在该实施例中,泄压装置130可以设置在泄压通道126连接容纳腔150的一端,也可以设置在泄压通道126中间,以将泄压通道126分为高、低压泄压通道。其中,当泄压装置130位于泄压通道126中间时,泄压通道126包括第一泄压通道1262和第二泄压通道1264。其中,第一泄压通道1262与吸气腔160连通,第二泄压通道1264与容纳腔150连通,第一泄压通道1262和第二泄压通道1264通过泄压装置130连通。通过泄压装置130可以提升压缩机100调节两个泄压通道126压差的能力,从而快速实现压缩机100的压力平衡,进而满足再次启动旋转式压缩机100的需要。进一步地,通过限定周向通流面积对高压侧向低压侧流动的流体进行节流,使得泄压装置130两侧的流体的压力分布有利于泄压装置130的稳定。从而能够大幅度缩短压缩机100停机后再次重启的时间,以实现压缩机100的快速启动功能提高制冷系统的效果。
具体地,第一泄压通道1262的截面积和第二泄压通道1264的截面积相同或不同,可根据压力调节需求合理设置。
实施例3:
如图3至图5所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:泄压装置130包括:泄压件132和弹性件134。
详细地,泄压件132可活动的设置于泄压通道126的泄压口上。弹性件134安装在气缸组件120上,并与泄压件132连接,以驱动泄压件132沿泄压通道126的轴线方向运动,进而打开或关闭泄压口。
在该实施例中,通过弹性件134控制泄压件132运动。当吸气腔160和容纳腔150的实际压差大于弹性件134的弹力时,容纳腔150内的压力推动泄压件132至第一位置,泄压件132与泄压口接触并关闭泄压通道126。当吸气腔160和容纳腔150的实际压差小于弹性件134的弹力时,弹性件134推动泄压件132由第一位置向第二位置运动,泄压通道126被打开,随着泄压件132的运动,泄压件132逐渐远离泄压口。从而快速地对容纳腔150的压力和吸气腔160的压力进行调节,以使二者的压力达到平衡,进而可以满足再次启动压缩机100的条件。
进一步地,第二位置可以根据弹性件134的弹力确定,也可以在气缸组件 120上设置限位件136,通过限位件136限定第二位置,从而对泄压件132进行沿泄压通道126轴线方向上的限位。
具体地,限位件136可以是如图3所示的卡簧结构,也可以是如图4所示的限位块结构。其中,如图3所示,当限位件136设置成卡簧结构时,将其装配在气缸组件120上预先加工的卡槽中,从而阻止泄压件132和弹性件134飞出,并且通过卡槽的定位,可以控制泄压件132的第二位置。如图4所示,当限位件136设置成限位块结构时,可以将限位块装配在气缸组件120上预先加工的孔中,通过过盈配合或者螺纹结构等固定,从而阻止泄压件132和弹性件134飞出,并且通过限位块结构设计,可以控制泄压件132的第二位置。另外,限位件136的数量可以是一个,也可以是多个,多个限位件136间隔设置。
可以理解的是,为了便于连接弹性件134和气缸组件120,可以在泄压口处设置用于固定弹性件134的座体140,通过座体140加强弹性件134和气缸组件120的连接强度,从而保证泄压过程中泄压装置130的稳定性,有利于快速平衡吸气腔160和容纳腔150之间压差。
实施例4:
如图3和图5所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:泄压件132上开设有至少一个通流孔138。
在该实施例中,当泄压件132处于第二位置,也即泄压件132相对于泄压口的最大位移时,泄压件132达到限位件136处,由于周向与限位件136接触导致难以流动,因此,为了保证泄压通道126的畅通,在泄压件132上设置一个或多个流通孔。
具体地,流通孔设置在泄压件132与泄压口接触部位的外部,以及泄压件132与限位件136接触部位的内部,也即流通孔的设置位置同时满足,在泄压件132封闭泄压通道126时,泄压件132上未与泄压口连通的区域,以及在泄压件132与限位件136接触时,未与限位件136接触的区域。从而既能保证泄压件132与泄压口贴紧时不会产生泄漏,也能保证泄压件132在限位件136接触时仍能通过流通孔实现泄压通道126的流通作用。
实施例5:
如图6和图7所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:泄压通道126设置有凸起结构1266。
详细地,沿泄压通道126轴线方向,泄压通道126设置有凸起结构1266,该 凸起结构1266朝向吸气腔160至容纳腔150的方向凸起,凸起的高度(单位:mm)记作A,凸起结构1266朝向容纳腔150的一侧形成有平台,泄压口设置在平台上。其中,弹性件134可以为弹簧。
在该实施例中,通过在泄压通道126上设置凸起结构1266,以使泄压口相对于气缸组件120突出。当泄压件132达到第一位置时,由于泄压口突出于周边台阶,使得泄压件132能够与泄压口有效接触,从而避免泄压件132倾斜而影响泄压件132关闭泄压通道126的效果。其中,凸起结构的高度A可根据生产或压力调节需求合理设置。
进一步地,如图5所示,泄压口的直径小于或等于平台的直径。随着泄压装置130的高压侧压缩弹性件134,泄压件132逐渐靠近泄压口直至泄压口封闭。当泄压件132关闭泄压口,即泄压件132处于第一位置,此时,若泄压口的直径等于平台的直径,泄压件132与平台为线接触,则弹性件134的弹力Ft(单位:N)满足:0<Ft≤a×m 2,其中,m表示泄压口的直径(单位:mm),a的取值范围为0.6~0.9;若泄压口的直径小于平台的直径,泄压件132与平台为面接触,则弹性件134的弹力Ft满足:0<Ft≤b×(m+n) 2,其中,m表示泄压口的直径,n表示平台的直径,b的取值范围为0.15~0.25。从而充分考虑了考虑控制泄压件132打开泄压通道126的压差(容纳腔150内部空间与吸气腔160之间的压差)。其中,容纳腔150内部空间与吸气腔160之间压差越大,弹性件134的弹力则需要设计的越大。当然,当然影响弹力设计的条件还包括泄压件132与泄压口接触时,泄压件132与平台之间存在的润滑油的粘滞力作用等因素。通过限定弹性件134的弹力使泄压装置130能够实现压缩机100在制冷及制热多种应用情形下停机后快速压力平衡要求,从而使压缩机100能够适应不同应用情形的要求,解决停机后重新启动的问题。
需要说明的是,若弹性件134的弹力设计较大,也意味着需要更大的压差才能使泄压件132关闭泄压通道126,也就是说,若压缩机100运行工况的压差小于关闭泄压件132的压差时,泄压件132在压缩机100运行时也处于开启状态,这样会导致压缩机100高低压串通,从而影响压缩机100的运行效率。例如,针对存在小压差运行工况使用情形的压缩机100,a可设置为0.6,也即弹性件134的弹力Ft可以设置为0<Ft≤0.6×m 2,或b设置为0.15,也即0<Ft≤0.15×(m+n) 2;针对常规工况使用情形的压缩机100,a可设置为0.9,也即弹性件134的弹力Ft可以设置为0<Ft≤0.9×m 2,或b设置为0.25,也即0<Ft≤0.25×(m+n) 2。从而满足 压缩机100在大多数运行条件下泄压件132处于关闭状态的要求,并且在停机后,也能满足指定时间内压缩机100构高低压侧平衡的要求,从而可以兼顾压缩机100运行效率与压力平衡的需求。
具体地,泄压口设置为圆形,则泄压口与泄压件132接触时具有直径m,若泄压口为非圆形,也可以计算泄压口围成的面积换算出相同面积圆的直径。
实施例6:
如图3和图4所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:泄压装置130的位移L,也即泄压装置130从第一位置运动至第二位置的距离,满足:0<L≤1mm。
在该实施例中,由于泄压件132离开泄压口后,弹性件134对泄压件132的作用力会随着泄压件132的位移增加而减小,若该作用力变化太大,则会导致泄压件132在不同位置时所需要的关闭泄压通道126的多个压差之间存在较大差异,导致泄压件132运动不稳定,进而引发撞击、磨损及噪音等问题。因此,泄压装置130从第一位置运动至第二位置的距离,也即泄压件132与泄压口之间的最大位移不能过大,则通过设置泄压装置130的位移L满足:0<L≤1mm,确保泄压件132运动时的稳定性,以便于快速泄压。
当然,位移L可根据弹性件134的设计参数及压缩机100的结构尺寸合理设置。
实施例7:
如图2所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:气缸组件120包括:气缸122、轴承124和消音件128。
详细地,气缸122安装在容纳腔150内,气缸122包括气缸主体1222、滑片(图中未示出)、活塞1224和偏心曲轴1226,活塞1224设置在气缸主体1222中,偏心曲轴1226穿设于气缸主体1222。轴承124连接于气缸122的两侧,通过轴承124支撑偏心曲轴1226。气缸122和轴承124围合出吸气腔160,吸气腔160与壳体110上的吸气口连通,以将吸气腔160内的制冷剂排到壳体110外。泄压装置130连接于气缸122或轴承124中任一个,泄压装置130可以设置在吸气腔160任意一侧,也可以同时设置在吸气腔160两侧。消音件128设置在轴承124上,该消音件128能够与轴承124围合出消音腔。泄压通道126设置于气缸122和轴承124上,泄压通道126的两端分别与吸气腔160和消音腔连通。
在该实施例中,通过活塞1224公转以及滑片往复运动,来实现压缩机100 的进气、压缩、排气过程,即完成一个工作循环。另外通过设置消音件128降低吸气腔160和容纳腔150进行压力调节时产生的噪音,降低压缩机100使用时对用户造成的不适感,提高压缩机100的实用性。
具体地,当压缩机100停止工作时,活塞1224停在气缸主体1222内的某一位置,活塞1224与气缸主体1222为间隙配合,从而可以通过活塞1224与气缸主体1222之间的间隙对容纳腔150和吸气腔160处的压力进行调节。其中,在制冷应用情况下,制冷剂气体可以从间隙处泄露以使得压缩机100内的压力平衡,制冷剂气体由压力相对较高的一侧泄露至压力相对较低的一侧,以使得压力平衡;还可以是压力相对较高一侧的油泄露至压力相对较低的一侧,溶解在油中的制冷剂逸出,以提升压力相对较低一侧的环境压力,从而使得压缩机100压力平衡。
进一步地,包括主轴承和副轴承,主轴承和副轴承设置在气缸122的相对两侧。当主轴承上可以设置有主轴承排气孔,在主轴承上设置有主轴承消音件128。同样的,当副轴承设置有副轴承排气孔时,可以在副轴承上设置副轴承消音件128。当然,主轴承或副轴承上设置的排气孔数量可以为多个。通过设置多个排气孔一致泄压装置130打开泄压通道126时的性能下降幅度,同时,能够避免由于泄压装置130的回流导致排气温度的上升造成的可靠性的风险。
具体地,若泄压通道126包括第一泄压通道1262和第二泄压通道1264,如图5所示,第一泄压通道1262可以开设在气缸122上,如图3和图4所示,第一泄压通道1262也可以同时在开设在气缸122和轴承124上,其中位于气缸122上的部分第一泄压通道1262和位于轴承124上的部分第一泄压通道1262的截面积相同或不同。同样的,第二泄压通道1264可以开设在轴承124上,也可以同时在开设在气缸122和轴承124上。
实施例8:
如图1和图2所示,根据本申请的一个具体实施例,提出了一种旋转式压缩机100,包括:壳体110,以及壳体110围成的密闭空间(容纳腔150);压缩机构部,压缩机构部设在壳体110内,压缩机构部包括气缸122、主轴承、副轴承、泄压通道126、泄压装置130,主轴承和副轴承设在气缸122的相对两侧,气缸122具有吸气腔160,吸气腔160连通压缩机100的吸气侧空间。气缸122包括气缸主体1222、设置在气缸主体1222内的活塞1224和滑片,以及与气缸主体1222连接的偏心曲轴1226;在主轴承上设置有排气孔,并相应的在主轴承上具有上 消音件128围成排气消音腔。同样的,若在副轴承上设置排气孔,则安装有下消音件128,从而形成排气消音腔。
如图3、图4和图5所示,泄压通道126连通吸气腔160和壳体110内的空间,泄压装置130具有阀片(泄压件132)及弹簧(弹性件134),泄压装置130被构造成利用阀片的移动来打开或关闭泄压通道126。泄压装置130可以设置在主轴承一侧,也可以设置在副轴承一侧,也可以同时在两侧均设置该泄压装置130。其中连通壳体110内空间的为高压侧泄压通道126(第二泄压通道1264),连通吸气腔160的为低压侧泄压通道126(第一泄压通道1262)。当泄压通道126关闭时,阀片与位于泄压通道126顶端的阀座(座体140)贴紧从而关闭高压侧泄压通道126到低压侧泄压通道126的流通。高压侧泄压通道126中连通壳体110高压内部空间的高压,低压侧泄压通道126连通吸气腔160内的低压,阀片在高、低压泄压通道126之间的压差的作用下贴紧阀座从而关闭泄压通道126。弹簧对阀片具有作用力,该作用力驱动阀片离开阀座从而打开泄压通道126。
当泄压通道126打开时,阀片移动,从而离开阀座。若低压泄压通道126具有最小截面积S,阀片与阀座接触位置最小周长为Z,泄压通道126打开时阀片具有最大位移L,则定义阀片打开最大时,从高压侧泄压通道126到低压侧泄压通道126的周向通流面积Sz=Z×L。则设置有0<Sz≤0.8×S。当流体从高压侧泄压通道126到低压侧泄压通道126流动时,经过周向通流面积Sz时会产生一定的节流作用,使得阀片两侧的流体的压力分布有利于阀片的稳定。
具体地,在阀座的设计中,为保证阀片能有效关闭泄压通道126,需要将阀座设计的相对突出。如图5和图6所示,当阀片与阀座贴紧时,阀片周向设计有台阶(凸起结构),以避免阀片倾斜而影响阀片关闭泄压通道126的效果。为此,设置有阀座高于周边台阶,即图6中的尺寸A设置有A>0,以保证阀片与阀座的有效接触。
进一步的,由于阀片离开阀座后,弹簧对阀片的作用力会随着阀片行程的增加而减小,若作用力变化太大,会导致阀片在不同位置时所需要的关闭压差差异较大,导致阀片运行不稳定,带来撞击、磨损及噪音等问题。因此,阀片的行程L不能过大,结合弹簧的设计参数及滚动转子式压缩机100的结构尺寸,设置行程0<L≤1mm时具有较好的应用效果。
为了实现压缩机100较好的生产制造性,可以将泄压装置130预先装配在气缸122或轴承124上,成为气缸122部件或轴承124部件的一部分,这样的话,不 会因为增加泄压装置130而影响压缩机100的装配制造性。为此,设置了限位装置(限位件136),通过限位装置将阀片、弹簧预先装配在气缸122或轴承124上。限位装置可以是如图3所示的卡簧结构,也可以是如图4所示的限位块结构。
如图3所示,当限位装置设置成卡簧结构时,将其装配在预先加工的卡槽中,从而阻止阀片和弹簧飞出,并且通过卡槽的定位,可以控制阀片的行程(位移)L。如图4所示,当限位装置设置成限位块结构时,可以将限位块装配在预先加工的孔中,通过过盈配合或者螺纹结构等固定,从而阻止阀片和弹簧飞出,并且通过限位块结构设计,可以控制阀片的行程L。
当阀片行程最大时达到限位装置位置,由于周向与限位装置接触导致难以流动,因此,为了保证泄压通道126的畅通,在阀片上设置有流通孔,该流通孔设置在阀片与阀座接触部位的外部,且位于阀片与限位装置接触部品的内部,从而既能保证阀片与阀座贴紧时不会产生泄漏,也能保证阀片在限位装置位置时仍能通过流通孔实现泄压通道126的流通作用。
更进一步地,当阀片与阀座贴紧时,弹簧被压缩,具有弹力Ft(单位:N),该弹力Ft作用于阀片,具有驱动阀片离开阀座的趋势。阀片与阀座的接触部位为理论上的线接触,即阀座的顶部为圆弧结构。如图6和图7所示,一般情况下,阀座设置为圆形,此时接触部位具有直径m(单位:mm),若接触部位非圆形,也可以计算接触部位围成的面积换算出相同面积圆的直径m。则设置有弹力Ft与该直径m的关系为0<Ft≤0.9×m 2。阀片与阀座为面接触,接触部位具有内径m和外径n,则设置为0<Ft≤0.25×(m+n) 2
在设计泄压通道126关闭时的弹力Ft时,需要考虑泄压装置130打开的目标压差(壳体110内高压内部空间与吸气孔之间的压差),若目标压差大,则设计弹力Ft相应增加。另外,还需要考虑阀片与阀座接触时阀片与阀座之间存在的润滑油的粘滞力作用等。综合来说,当设置0<Ft≤0.9×m 2或0<Ft≤0.25×(m+n) 2时,泄压装置130能够实现压缩机100在制冷及制热多种应用情形下停机后快速压力平衡如3分钟内压力平衡的要求,从而使旋转式压缩机100能够适应不同应用情形的要求,解决停机后重新启动的问题。
另外,当压缩机100设置有泄压装置130时,若弹力Ft设计较大,也意味着需要更大的压差才能使泄压装置130关闭,也就是说,若压缩机100运行工况的压差小于关闭泄压装置130的压差时,泄压装置130在压缩机100运行时也处于开启状态,这样会导致压缩机100构高低压串通,从而影响压缩机100的运行效 率。因此,针对存在小压差运行工况使用情形的压缩机100,当设置本申请的泄压装置130时,弹力Ft可以设置为0<Ft≤0.6×m 2或0<Ft≤0.15×(m+n) 2,以满足旋转式压缩机100在大多数运行条件下泄压装置130处于关闭状态的要求,并且,在压缩机100停机后也能满足压缩机100高低压侧平衡的要求,从而可以兼顾压缩机100运行效率与压力平衡的需求。
在该实施例中,旋转式压缩机100可以大幅度缩短压缩机100停机后再次重启的时间,由此,制冷系统可以再次重新运行,提高制冷系统的效果。
实施例9:
如图1所示,根据本申请第二方面的实施例,提出了一种制冷系统,包括:第一方面提出的压缩机100和换热器200,换热器200与压缩机100的吸气腔相连。因此该制冷系统具备第一方面提出的压缩机100的全部有益效果,在此不再赘述。
进一步地,制冷系统还包括止回件(图中未示出),止回件配置为阻挡吸气腔内的制冷剂通过压缩机的吸气口排到压缩机的壳体外,从而防止壳体内的压力通过吸气口排出,有利于压力保持,进而便于实现压缩机的压力调节功能。
具体地,该制冷系统能够应用于空调器、电冰箱等制冷设备。
在本说明书的描述中,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性,除非另有明确的规定和限定;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种压缩机,其中,包括:
    壳体,所述壳体包括容纳腔;
    气缸组件,设置于所述容纳腔内,所述气缸组件包括吸气腔和泄压通道,所述泄压通道与所述吸气腔和所述容纳腔连通,所述泄压通道具有泄压口;
    泄压装置,与所述气缸组件连接,所述泄压装置沿所述泄压通道的轴线方向运动,以开启或关闭所述泄压口;
    其中,所述泄压装置的通流面积满足:0<Sz≤0.8×S,Sz表示所述泄压装置的通流面积,S表示所述泄压通道的截面积。
  2. 根据权利要求1所述的压缩机,其中,所述泄压通道包括:
    第一泄压通道,所述第一泄压通道的第一端与所述吸气腔连通;
    第二泄压通道,所述第二泄压通道的第一端与所述第一泄压通道的第二端连通,所述第二泄压通道的第二端与所述容纳腔连通;
    其中,所述泄压装置位于所述第一泄压通道和所述第二泄压通道之间;所述通流面积满足:0<Sz≤0.8×S1,Sz表示所述通流面积,S1表示所述第一泄压通道的截面积。
  3. 根据权利要求2所述的压缩机,其中,所述泄压装置包括:
    泄压件,可活动的设置于所述泄压通道的泄压口上;
    弹性件,与所述气缸组件连接和所述泄压件连接,所述弹性件配置为驱动所述泄压件运动,以打开或关闭所述泄压口。
  4. 根据权利要求3所述的压缩机,其中,所述泄压装置还包括:
    限位件,与所述气缸组件连接,所述限位件用于沿所述泄压通道轴线方向对所述泄压件的进行限位。
  5. 根据权利要求3所述的压缩机,其中,
    所述泄压件上开设有至少一个通流孔。
  6. 根据权利要求3所述的压缩机,其中,
    沿所述泄压通道轴线方向,所述泄压通道设置有朝向所述容纳腔凸起的凸起结构,所述凸起结构包括朝向所述容纳腔的平台,所述平台设置有所述泄压 口。
  7. 根据权利要求6所述的压缩机,其中,
    基于所述泄压件关闭所述泄压口,所述弹性件被压缩;
    所述弹性件的弹力满足:0<Ft≤a×m 2,或0<Ft≤b×(m+n) 2
    其中,Ft表示所述弹性件的弹力,m表示所述泄压口的直径,n表示所述平台的直径,a的取值范围为0.6~0.9,b的取值范围为0.15~0.25。
  8. 根据权利要求1至7中任一项所述的压缩机,其中,
    所述泄压装置的位移L满足:0<L≤1mm。
  9. 根据权利要求1至7中任一项所述的压缩机,其中,所述壳体开设有吸气口;
    所述气缸组件包括:气缸和轴承;
    所述气缸设置于所述容纳腔内部,所述轴承设置于所述气缸的两侧,所述气缸和所述轴承围合成所述吸气腔,所述吸气腔与所述吸气口连通;
    所述泄压通道设置于所述气缸和所述轴承上;
    所述泄压装置与所述气缸或所述轴承连接。
  10. 根据权利要求9所述的压缩机,其中,所述气缸组件还包括:
    消音件,与所述轴承连接,所述消音件与所述轴承围合成消音腔;
    所述泄压通道的两端分别与所述吸气腔和所述消音腔连通。
  11. 一种制冷系统,其中,包括:
    如权利要求1至10中任一项所述的压缩机;
    换热器,与所述压缩机的吸气腔相连。
  12. 根据权利要求11所述的制冷系统,其中,还包括:
    止回件,所述止回件配置为阻挡所述吸气腔内的制冷剂通过所述压缩机的吸气口排到所述压缩机的壳体外。
PCT/CN2020/136129 2020-10-14 2020-12-14 压缩机和制冷系统 WO2022077754A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3156551A CA3156551A1 (en) 2020-10-14 2020-12-14 Compressor and refrigeration system
US17/825,258 US20220290672A1 (en) 2020-10-14 2022-05-26 Compressor and refrigeration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011097561.XA CN112228343B (zh) 2020-10-14 2020-10-14 压缩机和制冷系统
CN202011097561.X 2020-10-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/825,258 Continuation US20220290672A1 (en) 2020-10-14 2022-05-26 Compressor and refrigeration system

Publications (1)

Publication Number Publication Date
WO2022077754A1 true WO2022077754A1 (zh) 2022-04-21

Family

ID=74113601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136129 WO2022077754A1 (zh) 2020-10-14 2020-12-14 压缩机和制冷系统

Country Status (4)

Country Link
US (1) US20220290672A1 (zh)
CN (1) CN112228343B (zh)
CA (1) CA3156551A1 (zh)
WO (1) WO2022077754A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150979A (ja) * 1997-07-31 1999-02-23 Hitachi Ltd 容積形流体機械
JP2002227789A (ja) * 2001-02-01 2002-08-14 Mitsubishi Electric Corp 回転圧縮機
CN2784623Y (zh) * 2004-12-22 2006-05-31 上海日立电器有限公司 旋转式压缩机的泄压保护结构
CN1896524A (zh) * 2005-07-11 2007-01-17 三星电子株式会社 旋转式压缩机
JP2010174674A (ja) * 2009-01-28 2010-08-12 Panasonic Corp 密閉型ロータリ圧縮機および空気調和機
CN104728116A (zh) * 2013-12-24 2015-06-24 珠海凌达压缩机有限公司 旋转式压缩机及具有其的空调器
CN111322240A (zh) * 2020-02-03 2020-06-23 广东美芝制冷设备有限公司 旋转式压缩机和具有其的制冷系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245673A (ja) * 1988-08-06 1990-02-15 Mitsubishi Electric Corp スクロール圧縮機
JPH03213679A (ja) * 1990-01-19 1991-09-19 Mitsubishi Electric Corp 多気筒回転式圧縮機
US5807081A (en) * 1997-01-06 1998-09-15 Carrier Corporation Combination valve for screw compressors
KR100608866B1 (ko) * 2005-05-19 2006-08-08 엘지전자 주식회사 로터리 압축기의 용량 가변 장치
WO2012004992A1 (ja) * 2010-07-08 2012-01-12 パナソニック株式会社 ロータリ圧縮機及び冷凍サイクル装置
CN103511261B (zh) * 2013-03-12 2016-02-17 广东美芝制冷设备有限公司 旋转式压缩机以及冷冻循环装置
CN106164552B (zh) * 2014-04-17 2018-10-26 株式会社鹭宫制作所 节流装置以及具备该节流装置的冷冻循环系统
JP6955087B2 (ja) * 2017-08-31 2021-10-27 サイアム コンプレッサー インダストリー カンパニー リミテッド ロータリ圧縮機
CA3137384C (en) * 2019-08-23 2024-04-16 Guangdong Meizhi Compressor Co., Ltd. Rotary compressor and refrigeration cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150979A (ja) * 1997-07-31 1999-02-23 Hitachi Ltd 容積形流体機械
JP2002227789A (ja) * 2001-02-01 2002-08-14 Mitsubishi Electric Corp 回転圧縮機
CN2784623Y (zh) * 2004-12-22 2006-05-31 上海日立电器有限公司 旋转式压缩机的泄压保护结构
CN1896524A (zh) * 2005-07-11 2007-01-17 三星电子株式会社 旋转式压缩机
JP2010174674A (ja) * 2009-01-28 2010-08-12 Panasonic Corp 密閉型ロータリ圧縮機および空気調和機
CN104728116A (zh) * 2013-12-24 2015-06-24 珠海凌达压缩机有限公司 旋转式压缩机及具有其的空调器
CN111322240A (zh) * 2020-02-03 2020-06-23 广东美芝制冷设备有限公司 旋转式压缩机和具有其的制冷系统

Also Published As

Publication number Publication date
CN112228343B (zh) 2021-11-16
US20220290672A1 (en) 2022-09-15
CN112228343A (zh) 2021-01-15
CA3156551A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US10962008B2 (en) Variable volume ratio compressor
KR20030021117A (ko) 압축기 토출 밸브
EP3628871B1 (en) Compressor, air conditioner, and method for assembling compressor
KR20100025539A (ko) 용량 변조 압축기
JPH0249994A (ja) 回転式圧縮機
WO2008069789A1 (en) Integral slide valve relief valve
WO2022077754A1 (zh) 压缩机和制冷系统
CN110805555B (zh) 泵体结构、压缩机、空调器
CN111322240B (zh) 旋转式压缩机和具有其的制冷系统
WO2024041002A1 (zh) 变容压缩机和空调系统
CN209414148U (zh) 涡旋压缩机和空调器
WO2020125064A1 (zh) 涡旋压缩机、空调器及涡旋压缩机背压调节方法
WO2021128905A1 (zh) 泵体组件及变容压缩机
KR102547594B1 (ko) 가변 용량 사판식 압축기
CN111765079A (zh) 一种压缩机和空调器
US20210140419A1 (en) Variable displacement swash plate type compressor
JP2005351169A (ja) スクリュー圧縮機及びその運転制御方式
US11965507B1 (en) Compressor and valve assembly
CN212055114U (zh) 涡旋压缩机以及具有其的空调器
WO2021120656A1 (zh) 涡旋压缩机
CN214699325U (zh) 一种阀组件及包含其的涡旋压缩机
KR100852130B1 (ko) 토출실에 체크밸브가 장착된 왕복동식 압축기
KR101096971B1 (ko) 스크롤 압축기
JP2000009065A (ja) スクロール型圧縮機
CN111075717A (zh) 涡旋压缩机以及具有其的空调器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3156551

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957528

Country of ref document: EP

Kind code of ref document: A1