WO2020125064A1 - 涡旋压缩机、空调器及涡旋压缩机背压调节方法 - Google Patents
涡旋压缩机、空调器及涡旋压缩机背压调节方法 Download PDFInfo
- Publication number
- WO2020125064A1 WO2020125064A1 PCT/CN2019/103955 CN2019103955W WO2020125064A1 WO 2020125064 A1 WO2020125064 A1 WO 2020125064A1 CN 2019103955 W CN2019103955 W CN 2019103955W WO 2020125064 A1 WO2020125064 A1 WO 2020125064A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- chamber
- scroll
- scroll compressor
- control valve
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/24—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
Definitions
- the present application relates to the technical field of compression devices, and in particular, to a scroll compressor, an air conditioner, and a scroll compressor back pressure adjustment method.
- Scroll compressor is a positive displacement compressor with high efficiency, low noise and smooth operation. It has been widely used in air conditioners and refrigeration units in recent years. Generally speaking, scroll compressors are composed of hermetic casing, movable scroll, static scroll, crankshaft, anti-rotation mechanism and motor. It relies on a pair of interlocking dynamic and static vortex teeth to form several pairs of crescent-shaped closed working chambers. During the operation of the scroll compressor, due to the gas force, centrifugal force, etc. acting on the scroll disk, causing it to overturn or separate from each other, the gas leakage and friction increase.
- the prior art usually adopts a floating form of a movable scroll or a static scroll, and a back pressure chamber is provided on the side facing away from the scroll, thereby generating a back pressure to balance the overturning force or moment, and realizing the dynamic and static vortex Between seals.
- a back pressure chamber is provided on the side facing away from the scroll, thereby generating a back pressure to balance the overturning force or moment, and realizing the dynamic and static vortex Between seals.
- the back pressure design is unreasonable, it directly affects the performance and reliability of the compressor: if the back pressure is excessive, the contact force between the dynamic and static scrolls is too large, and the frictional power consumption increases or even wears and sticks, resulting in performance and reliability. If the back pressure is insufficient, the orbiting scroll will overturn, the scroll pump will leak severely, the cooling capacity will decrease, the power consumption will increase, and the exhaust temperature will be too high, which will also result in decreased performance and reliability. Therefore, designing a suitable back pressure is a key technology for scroll compressor
- Patent No. 201210023627.X discloses a scroll compressor back pressure structure.
- the patent focuses on improving the thermal expansion loss of the existing intermittent back pressure technology to reduce the repeated expansion of oil and gas accumulated in the back pressure hole Or the loss of hot fluid caused by compression, however, the pressure source of the back pressure chamber still depends on the intermittent communication between the back pressure chamber and the compression chamber to obtain a suitable intermediate pressure.
- the main disadvantages of this backpressure technology are:
- the back pressure chamber and the compression chamber are periodically reciprocally connected within the crankshaft angle range, and the pressure of the compression chamber gradually changes within the crankshaft angle range, resulting in large pressure fluctuations in the backpressure chamber.
- the fluctuation of the backpressure pressure will inevitably lead to the fluctuation of the floating sealing force, and the theoretical check is based on the average pressure of the backpressure chamber to measure the tight margin.
- the backpressure chamber pressure fluctuates to the minimum, the compression chamber sealing margin may be insufficient to cause the pump If the pressure in the back pressure chamber fluctuates to the maximum, the sealing margin of the compression chamber may be too large, resulting in increased contact wear of the pump body.
- the gap communication method of the prior art will definitely bring pressure fluctuations in the back pressure chamber;
- the gap between the compression chamber and the back pressure chamber determines the size of the pressure in the back pressure chamber. Since the communication angle cannot be adjusted, the sealing margin of the compression chamber under different working conditions must be considered at the beginning of the design, for example ,
- the suction pressure of the compressor is high during high-temperature heating in summer and low during low-temperature heating in winter. When the suction pressure is high, it enters the compression chamber and enters the back pressure chamber after a certain angle of compression, resulting in a large back pressure and low suction pressure.
- the pressure in the back pressure chamber is small, under low temperature heating, the compressor often has different degrees of undercompression. Under the same angle between the back pressure chamber and the compression chamber, the sealing margin under the low temperature heating condition is the smallest. Therefore, in order to ensure Under low temperature heating, the pump bodies can still be reliably sealed, and the sealing margin under high temperature refrigeration conditions is too large, resulting in a large friction power consumption of the compressor under these conditions.
- the main purpose of the present application is to provide a scroll compressor, an air conditioner, and a scroll compressor back pressure adjustment method to solve the back pressure chamber and the back pressure chamber in the prior art when the back pressure chamber and the compression chamber are intermittently connected
- a scroll compressor including: a housing; a mounting bracket, the mounting bracket is fixedly installed inside the housing; a fixed scroll, the fixed scroll is installed on On the mounting bracket; the movable scroll, the movable scroll is rotatably installed between the mounting bracket and the stationary scroll, the movable scroll and the stationary scroll have a compression cavity, the movable scroll and the mounting bracket There is a medium-pressure chamber between them, the bottom of the mounting bracket and the top of the fixed scroll have low-pressure suction chambers; the first connection channel, both ends of the first connection channel communicate with the compression chamber and the medium-pressure chamber, the first connection A first control valve is provided on the channel; a second connection channel, both ends of the second connection channel communicate with the medium-pressure chamber and the low-pressure suction chamber respectively, and a second control valve is provided on the second connection channel.
- the first connection channel is provided on the movable scroll.
- connection channel is provided on the mounting bracket and communicates with the low-pressure suction chamber at the bottom of the mounting bracket.
- the second connecting channel extends along the mounting bracket and the fixed scroll and communicates with the low-pressure suction chamber on the top of the fixed scroll.
- the first control valve is a first one-way check valve, and the flow direction of the first one-way check valve is from the compression chamber to the intermediate pressure chamber.
- the second control valve is a second one-way check valve, and the flow direction of the second one-way check valve is from the medium-pressure chamber to the low-pressure suction chamber.
- both the first connection channel and the second connection channel include a check valve seat mounting portion, a communication hole on the intermediate pressure chamber side, a sealing cone surface and a communication hole on the compression chamber side, the sealing cone surface is located near the check valve seat installation portion
- the end of the communication hole on the pressure chamber side, the communication hole on the compression chamber side is a groove on the side wall of the check valve seat mounting portion
- both the first control valve and the second control valve include a first valve seat, an elastic member, and a sealing member , The sealing member is installed at the sealing conical surface, the first valve seat is installed in the check valve seat mounting portion, and both ends of the elastic member abut between the first valve seat and the sealing member, respectively.
- the first connection passage includes a check valve seat installation hole and a medium pressure chamber communication hole;
- the first control valve includes a sealing sheet and a second valve seat, the sealing sheet is located at the bottom of the second valve seat, and the second valve seat is provided There are through holes.
- the second valve seat includes a body and an outer flange provided on the outer periphery of the body, the sealing sheet is located inside the outer flange, and the body is provided with a through hole.
- the second control valve is a flap valve check valve.
- an air conditioner including a scroll compressor.
- the scroll compressor is the scroll compressor described above.
- a scroll compressor back pressure adjustment method is implemented using the scroll compressor described above.
- the scroll compressor back pressure adjustment method includes : When the pressure Pb in the intermediate pressure chamber is higher than the predetermined value of the pressure Ps in the low-pressure suction chamber, the first control valve on the first connection channel is opened to prevent the fluid in the intermediate pressure chamber from flowing back to the compression chamber to cause the intermediate pressure chamber and compression
- the pressure fluctuation in the cavity makes the pressure in the medium pressure cavity stable at a certain pressure Pb before the end of the communication with the compression cavity, through the first control valve, the second control valve, the compression cavity pressure Pm, the low pressure suction cavity pressure Ps and the pre-tightening resistance ⁇ P of the second control valve are jointly controlled to achieve the following control: (1) When the pressure Pb of the intermediate pressure chamber is greater than the pressure Ps of the low-pressure suction chamber and the pre-tightening resistance ⁇ P of the second control valve, That is, Pb>(Ps+
- the pressure of the medium-pressure chamber of the present application is lower, but it can still be normally sealed.
- the reason is that the existing medium-pressure technology under high-pressure ratio conditions, due to the low suction pressure, the compression chamber is under-compressed seriously, and the communication angle between the medium-pressure chamber and the compression chamber needs to be closer to the discharge angle to increase the pressure of the medium-pressure chamber to achieve sealing Therefore, the seal under low-temperature heating conditions of high-low ratio is ensured.
- the pressure in the medium-pressure chamber is too high due to the connection angle close to the exhaust chamber, which causes The amount is too large, which leads to the disadvantages of high friction power consumption.
- the scroll compressor adopting the patent of the present application can effectively release pressure under such a condition that the pressure of the intermediate pressure chamber is too large, and release pressure to a safer and more effective pressure.
- FIG. 1 schematically shows a partial cross-sectional view of a first embodiment of a scroll compressor of the present application
- FIG. 2 schematically shows a partial cross-sectional view of a second embodiment of the scroll compressor of the present application
- FIG. 3 schematically shows a cross-sectional view of a third embodiment of the scroll compressor of the present application
- FIG. 4 schematically shows a partial cross-sectional view of a fourth embodiment of the scroll compressor of the present application
- FIG. 5 schematically shows a partial cross-sectional view of a fifth embodiment of the scroll compressor of the present application
- FIG. 6 schematically shows a partial cross-sectional view of a sixth embodiment of the scroll compressor of the present application
- FIG. 7 schematically shows a partial cross-sectional view of a seventh embodiment of the scroll compressor of the present application
- FIG. 9 schematically shows a partial cross-sectional view when the first control valve of the present application is installed on the orbiting scroll in FIG. 8;
- FIG. 11 schematically shows a partial cross-sectional view of the mounting bracket of the present application
- FIG. 12 schematically shows a first perspective view of the second valve seat of the present application
- 15 is a schematic diagram showing the relationship between the pressure change of the compression chamber of the conventional scroll compressor and the crank angle;
- FIG. 16 schematically shows a pressure change diagram during the use of the scroll compressor of the present application and the existing scroll compressor.
- spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure The spatial relationship between a device or feature shown and other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device described in the figures. For example, if a device in the drawing is turned upside down, a device described as “above another device or configuration” or “above another device or configuration” will then be positioned as “below other device or configuration” or “in Under other devices or structures”. Thus, the exemplary term “above” may include both “above” and “below” orientations. The device can also be positioned in other different ways (rotated 90 degrees or at other orientations), and the relative description of the space used here is explained accordingly.
- a scroll compressor in this embodiment includes a housing 10, a fixed scroll 30, and an exhaust chamber 200.
- the casing 10 includes a casing 12 and an upper cover 11 covered on the casing 12.
- the mounting bracket 20 is fixedly installed inside the housing 10; the fixed scroll 30 is installed on the mounting bracket 20; the movable scroll 40 is rotatably installed between the mounting bracket 20 and the fixed scroll 30, moving A compression chamber 90 is provided between the scroll 40 and the fixed scroll 30, and a medium-pressure chamber 100 is provided between the movable scroll 40 and the mounting bracket 20. Both the bottom of the mounting bracket 20 and the top of the fixed scroll 30 have low pressure.
- both ends of the first connection channel 50 communicate with the compression chamber 90 and the intermediate pressure chamber 100 respectively, the first connection channel 50 is provided with a first control valve 70; the two ends of the second connection channel 60 are respectively The pressure chamber 100 and the low-pressure suction chamber 110 communicate with each other, and a second control valve 80 is provided on the second connection channel 60.
- the scroll compressor of the present application particularly refers to the structure of a horizontal vehicle-mounted scroll compressor, but the features involved in the present application can still be well applied to the traditional vertical enthalpy-increasing scroll compressor.
- the driving motor 130 is built in the casing 12, and the driving motor 130 drives the crankshaft 120 to rotate.
- the crankshaft 120 is circumferentially and radially constrained by the auxiliary bearing 140 and the main bearing 170 to ensure the scroll compressor shaft system
- the driving end of the crankshaft 120 drives the movable scroll 40 to reciprocate around the stationary scroll 30 through the flexible eccentric sleeve 180. Therefore, the compression volume composed of the fixed scroll 30 and the movable scroll 40 periodically increases and decreases, forming a compression chamber 90 for compressing refrigerant, thereby completing continuous compression of the refrigerant drawn into the compression chamber 90 .
- the scroll compressor of the present application also has the structural characteristics as shown in FIG. 1: the axial sealing method between the pump bodies of the scroll compressor according to the present application is the floating scroll 40 floating seal, that is, the movable scroll
- the back surface of the disk 40 (relative to the fixed scroll 30) forms a medium-pressure chamber 100 for resisting the axial gas force generated by the compression chamber 90 on the front surface of the movable scroll 40. Therefore, directions are formed on both sides of the movable scroll 40
- the pressure in the intermediate pressure chamber 100 is an intermediate pressure Pb between the discharge pressure Pd and the suction pressure Ps
- the pressure Pm in the compression chamber 90 is a pressure that gradually increases from the outer periphery toward the center.
- the pressure generated on the front and back sides of the movable scroll disk 40 closely fits the movable scroll disk 40 to the stationary scroll disk 30 to achieve axial sealing between the pump bodies.
- the present application provides a first connection channel 50 between the compression chamber 90 and the medium-pressure chamber 100 to introduce the pressure in the compression chamber 90 into the medium-pressure chamber 100.
- a first control valve 70 is provided on the first connecting channel 50, only gas is allowed to flow from the compression chamber 90 into the intermediate pressure chamber 100.
- the role of the first control valve 70 is to make the intermediate pressure
- the pressure fluctuation in the chamber 100 is small, and eventually stabilizes at a certain pressure value.
- the communication angle between the passage of the compression chamber 90 and the intermediate pressure chamber 100 is ⁇ 1 ⁇ 2, corresponding to the pressure of the compression chamber 90 is P1 and P2, the pressure state of the compression chamber 90 corresponding to any medium pressure scheme that directly or indirectly connects the compression chamber 90 and the medium pressure chamber 100 is shown in FIG. 15. Therefore, as shown in FIG. 16, the pressure change diagram of the intermediate pressure chamber during the use of the existing scroll compressor and the scroll compressor of the present application, where: Pm, intermediate pressure chamber pressure; the solid curve is the application Characteristic medium pressure curve; the dashed line is the medium pressure fluctuation curve of the prior art, P is the pressure of the compression chamber 90, and is affected by the pressure of the compression chamber 90.
- the pressure in the medium pressure chamber 100 is shown by the dotted line in FIG.
- the pressure in the medium pressure chamber 100 has periodic fluctuations, and the pressure fluctuations in the medium pressure chamber 100 will certainly Axial sealing force between the dynamic and static disks is caused.
- the medium pressure is at a minimum, there may be insufficient sealing between the pump bodies to cause leakage.
- the intermediate pressure is at a maximum, the sealing force between the pump bodies may be too large to cause too much friction power consumption.
- the reason why the pressure fluctuation of the intermediate pressure chamber 100 in the existing scroll compressor is large is that when the compression chamber 90 and the intermediate pressure chamber 100 periodically communicate, the pressure in the compression chamber 90 is the low pressure P1 at the initial communication angle ⁇ 1.
- the pressure in the medium pressure chamber 100 is higher than the pressure in the compression chamber 90, the fluid leaks through the medium pressure chamber 100 to the compression chamber 90 causing the pressure in the medium pressure chamber 100 to decrease.
- the pressure of the intermediate pressure chamber 100 of the scroll compression hole of the present application is basically stabilized at a stable value by the action of the first control valve 70, and the compression chamber 90 and the intermediate pressure chamber 100
- the pressure in the compression chamber 90 is low and the pressure in the medium pressure chamber 100 is high, but due to the action of the first control valve 70, there will be no medium pressure
- the chamber 100 leaks to the compression chamber 90, so that the pressure in the medium-pressure chamber 100 can always be maintained at a certain pressure level.
- the first connection channel 50 is provided on the movable scroll 40, and the second connection channel 60 is provided on the bottom of the mounting bracket 20 and the mounting bracket 20
- the low-pressure suction chamber 110 is in communication. As shown by the arrows in FIG.
- the first connection channel 50 can only be opened when the value is reached, preventing the fluid in the medium pressure chamber 100 from flowing back to the compression chamber 90 to cause pressure fluctuations in the medium pressure chamber 100 and the compression chamber 90, so that the pressure in the medium pressure chamber 100 can be stabilized at maximum A certain pressure Pb (Pb is slightly lower than Pm) before the end of the communication with the compression chamber 90, then, through the first control valve 70, the second control valve 80, the compression chamber 90 pressure Pm, the low pressure suction chamber 110 pressure Ps and the first Under the common adjustment control of the preload resistance ⁇ P of the second control valve 80: 1.
- the second control valve 80 When the pressure Pb of the intermediate pressure chamber 100 is lower than the pressure Ps of the low-pressure suction chamber 110 and the preload resistance ⁇ P of the second control valve 80, that is, Pb ⁇ (Ps+ ⁇ P), the second control valve 80 is controlled When closed, the pressure in the medium-pressure chamber 100 is maintained at the Pb level.
- the pressure of the intermediate pressure chamber 100 in the actual operating condition of the entire scroll compressor compression will be at different pressure levels, as shown in FIG. 14, the area with a diagonal line in the figure represents the existing scroll compressor Application effect, the area without diagonal lines indicates the application effect of the scroll compressor of the present application, P1 is the communication pressure of the compression chamber 90; ⁇ P, the preload resistance of the second control valve 80, compared with the prior art, The pressure of the medium pressure chamber 100 is low, but it can still be sealed normally.
- the 100-pressure sealing is achieved, therefore, the sealing under low-temperature heating conditions such as high-low ratio is ensured.
- the pressure in the medium-pressure chamber is too high due to the connection angle close to the exhaust chamber, thus This causes shortcomings such as large frictional power consumption due to a large sealing margin.
- the scroll compressor adopting the patent of the present application can effectively release pressure under such a working condition that the pressure of the intermediate pressure chamber 100 is too large, and release pressure to a safer and more effective pressure.
- the first control valve 70 in this embodiment is a first one-way check valve, and the flow direction of the first one-way check valve is from the compression chamber 90 to the intermediate pressure chamber 100.
- the second control valve 80 is a second one-way check valve. The flow direction of the second one-way check valve is from the medium-pressure chamber 100 to the low-pressure suction chamber 110.
- a scroll compressor is provided.
- the scroll compressor in this embodiment is basically the same as the first embodiment. The difference is that this embodiment
- the second connection passage 60 in the section extends along the mounting bracket 20 and the fixed scroll 30 and communicates with the top low-pressure suction chamber 110 of the fixed scroll 30 instead of the low-pressure suction chamber 110 at the bottom of the mounting bracket 20.
- the exhaust high-pressure chamber Pd and the low-pressure suction chamber Ps are formed on the back of the fixed scroll 30.
- the low-pressure suction chamber 110 and the medium-pressure chamber 100 can be adjusted to form an appropriate intermediate pressure. Specifically, as shown in the structures of FIGS.
- a second connection channel between the mounting bracket 20 and the fixed scroll 30 is installed between the medium-pressure chamber 100 of the present application and the low-pressure suction chamber 110 on the top of the fixed scroll 30.
- the second control valve 80 having a non-return characteristic may be disposed in the second connection passage 60 on the fixed scroll 30, as shown in FIG. It can also be disposed in the second connection channel 60 on the mounting bracket 20, as shown in FIG.
- the second connection channel 60 of the scroll compressor is also provided in the mounting bracket 20 and communicates with the bottom low-pressure suction chamber 110 of the mounting bracket 20.
- first connection channel 50 passes through the movable scroll 40 to connect the compression chamber 90 and the intermediate pressure chamber 100.
- first control valve 70 is provided on 50, and a second connecting channel 60 is opened in the mounting bracket 20 to communicate the intermediate pressure chamber 100 and the low-pressure suction chamber 110 at the bottom of the mounting bracket 20.
- the second connecting channel 60 is provided with a ⁇ 80 ⁇ Two control valve 80. As shown in FIGS.
- the first connection passage 50 in the present application includes a check valve seat mounting portion 561, an intermediate-pressure chamber-side communication hole 562, a sealing cone surface 563 and a compression chamber-side communication hole 564, which seals the cone surface 563 is located at the end of the check valve seat mounting portion 561 near the intermediate pressure chamber side communication hole 562, and the compression chamber side communication hole 564 is a groove located on the side wall of the check valve seat installation portion 561;
- the first control valve 70 includes a first The valve seat 781, the elastic member 782, and the sealing member 783, the sealing member 783 is installed at the sealing conical surface 563, the first valve seat 781 is installed in the check valve seat mounting portion 561, and both ends of the elastic member 782 abut the first Between the valve seat 781 and the sealing member 783, when the pressure in the compression chamber 90 reaches a certain value, the sealing member 783 opens the communication hole 562 on the intermediate pressure chamber side, and the fluid in the compression chamber 90 enters the intermediate pressure chamber 100.
- the first control valve 70 is installed and fixed by the fixed cooperation between the first valve seat 781 and the check valve seat mounting portion 561, and the seal between the passages is sealed by the sealing member 783, that is, between the steel ball structure and the sealing conical surface 563, And the sealing member 783 is attached to the sealing conical surface 563 by the elastic member 782.
- the elastic member 782 gently presses the sealing member 783 against the sealing conical surface 563, which has a small sealing pretension.
- the sealing member 783 is not attached to the sealing conical surface 563, the fluid can communicate with the compression chamber 90 and the intermediate pressure chamber 100 through the intermediate pressure chamber side communication hole 562 and the compression chamber side communication hole 564.
- the first connection channel 50 includes a check valve seat mounting hole 51 and a medium pressure chamber communication hole 52;
- the first control valve 70 includes a sealing sheet 71 and a second valve
- the seat 72 and the sealing sheet 71 are located at the bottom of the second valve seat 72.
- the second valve seat 72 is provided with a through hole 721.
- the sealing sheet 71 sets the second valve seat 72 on the second valve seat 72
- the through hole 721 is opened, and the fluid in the compression chamber 90 enters the medium pressure chamber 100.
- the second valve seat 72 in this embodiment includes a body 722 and an outer flange 723 provided on the outer periphery of the body 722.
- the sealing sheet 71 is located inside the outer flange 723, and the body 722 The above-mentioned through hole 721 is provided thereon.
- the second valve seat 72 can pass fluid through the sealing plate 71 and the communication hole 52 of the intermediate pressure chamber.
- the second connection passage 60 in the present application also includes a check valve seat mounting portion 561, a communication hole 562 on the intermediate pressure chamber side, a sealing cone surface 563, and a communication hole 564 on the compression chamber side.
- the sealing cone surface 563 is located at The check valve seat mounting portion 561 is close to the end of the intermediate pressure chamber side communication hole 562, and the compression chamber side communication hole 564 is a groove on the side wall of the check valve seat installation portion 561;
- the second control valve 80 includes a first valve seat 781, an elastic member 782 and a sealing member 783, the sealing member 783 is installed at the sealing conical surface 563, the first valve seat 781 is installed in the check valve seat mounting portion 561, and both ends of the elastic member 782 abut the first valve respectively Between the seat 781 and the sealing member 783.
- a second control valve 80 is provided on the second connecting channel 60, and the fluid in the intermediate pressure chamber 100 in the mounting bracket 20 can only flow to The low-pressure suction chamber 110 outside the mounting bracket 20 is installed.
- the elastic member 782 of the second one-way check valve has a certain pretension in the natural assembly state, that is, the spring in FIG. 11 is already in a certain compression state, and the circle The steel ball is pressed tightly on the sealing conical surface 563.
- the second control valve 80 is configured as a flap valve check valve.
- the one-way check valve of the flap valve is designed to have a certain amount of preload.
- the preload of the elastic member 782 in this application is a key factor for controlling the pressure of the medium pressure chamber. According to the communication angle between the medium pressure chamber 100 and the compression chamber 90, the preload on the elastic member 782 Tight pressure is generally set in the range of 0.3 ⁇ 0.8MPA.
- an air conditioner including a scroll compressor.
- the scroll compressor is the scroll compressor in the above embodiment.
- a scroll compressor back pressure adjustment method is implemented using the scroll compressor described above.
- the scroll compressor back pressure adjustment method includes :
- the first control valve 70 on the first connection channel 50 is opened to prevent the fluid in the intermediate pressure chamber 100 from flowing back to the compression chamber 90.
- the pressure fluctuations in the intermediate pressure chamber 100 and the compression chamber 90 enable the pressure in the intermediate pressure chamber 100 to be stabilized at a certain pressure Pb before the end of the communication with the compression chamber 90. Therefore, the first control valve 70 and the second control The following control can be achieved under the common adjustment control of the valve 80, the pressure Pm of the compression chamber 90, the pressure Ps of the low-pressure suction chamber 110 and the preload resistance ⁇ P of the second control valve 80: 1.
- the pressure Pb of the intermediate-pressure chamber 100 is greater than the low-pressure suction chamber
- the second control valve 80 is controlled to open, and the fluid in the intermediate pressure chamber 100 leaks to the low-pressure suction chamber 110. Stably maintain the pressure in the medium pressure chamber 100 at Ps+ ⁇ P; 2.
- the pressure Pb in the intermediate pressure chamber 100 is lower than the pressure Ps in the low-pressure suction chamber 110 and the preload resistance ⁇ P of the second control valve 80, that is, Pb ⁇ (Ps+ ⁇ P)
- the second control valve 80 is controlled to be closed, so that the pressure in the intermediate pressure chamber 100 is maintained at the Pb level.
- the above-mentioned embodiments of the present application achieve the following technical effects: by providing a one-way check structure near the intermediate pressure chamber, the present application only allows fluid to flow from the compression chamber to the intermediate pressure chamber, and The fluid has a small flow loss when passing through the check structure; in this application, the communication method between the intermediate pressure chamber and the low-pressure chamber outside the bracket is a through hole directly opened on the bracket, and a one-way check is provided in the through hole The structure only allows fluid to flow from the intermediate pressure chamber to the low pressure side, and is provided with a certain preload pressure.
- the intermediate pressure on one side of the check structure When the intermediate pressure on one side of the check structure is greater than the low pressure pressure + preload pressure on the other side, the intermediate pressure chamber and the low pressure The suction chamber is connected only; the communication method between the intermediate pressure chamber and the low pressure chamber on the outer periphery of the upper cover in this application is a connecting through hole opened on the bracket and the static plate, and a one-way check structure is provided in the through hole, which only allows fluid It flows from the intermediate pressure chamber to the low pressure side and is provided with a certain preload pressure.
- the intermediate pressure on one side of the check structure is greater than the low pressure + preload pressure on the other side, the intermediate pressure chamber and the low pressure chamber are connected.
- the back pressure adjustment structure of the scroll compressor of the present application makes the pressure in the back pressure chamber basically stable at the same level under the same working condition, the pump body seal is more reliable, and the performance of the compressor is improved. Under different working conditions, through the back pressure adjustment structure of the present application, the compression chamber of the compressor pump body can obtain a substantially equal sealing margin, the pump body sealing is more reliable, the adaptability of the working conditions of the compressor is improved, and the overall compressor is improved Energy efficiency (APF energy efficiency).
- APF energy efficiency Energy efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
一种涡旋压缩机、空调器及涡旋压缩机背压调节方法,其中涡旋压缩机包括:安装支架(20);静涡旋盘(30);动涡旋盘(40),动涡旋盘(40)与静涡旋盘(30)之间具有压缩腔(90),动涡旋盘(40)与安装支架(20)之间具有中压腔(100),安装支架(20)的底部以及静涡旋盘(30)的顶部均具有低压吸气腔(110);第一连接通道(50),两端分别与压缩腔(90)和中压腔(100)连通,第一连接通道(50)上设置有第一控制阀(70);第二连接通道(60),两端分别与中压腔(100)和低压吸气腔(110)连通,第二连接通道(60)上设置有第二控制阀(80)。该涡旋压缩机能够使得同一工况下背压腔内的压力基本稳定在相同水平,泵体密封更可靠,提升压缩机性能。而在不同工况下,该压缩机的压缩腔能获得基本相等的密封余量,泵体密封更可靠,提升压缩机的工况适应性,提升压缩机整体能效。
Description
本申请要求于2018年12月17日提交至中国国家知识产权局、申请号为201811545156.2、发明名称为“涡旋压缩机、空调器及涡旋压缩机背压调节方法”的专利申请的优先权。
本申请涉及压缩装置技术领域,具体而言,涉及一种涡旋压缩机、空调器及涡旋压缩机背压调节方法。
涡旋压缩机是一种效率高、噪声低以及运转平稳的容积式压缩机,近年来广泛应用于空调和制冷机组中。一般来说,涡旋压缩机由密闭外壳、动涡旋盘、静涡旋盘、曲轴、防自转机构及电机等零部件组成。它依靠一对相互啮合的动、静涡旋齿形成几对月牙形封闭的工作腔。涡旋压缩机工作过程中,由于气体力、离心力等作用在涡旋盘,使其倾覆或相互脱离导致气体泄漏与摩擦加剧。现有技术通常以动涡旋盘或静涡旋盘浮动形式,并在其背向涡卷一侧设置背压室,从而产生背压力以平衡倾覆作用力或力矩,实现动、静涡旋之间密封。如果背压力设计不合理,直接影响压缩机性能与可靠性:若背压力过剩,则动静涡旋盘之间贴紧作用力过大,其摩擦功耗增加甚至出现磨损、粘着,导致性能与可靠性下降;若背压力不足,动涡旋盘出现倾覆,涡旋泵体严重泄漏,制冷量下降,功耗增加,并且排气温度偏高,也导致性能与可靠性下降。因此,设计适合的背压力是涡旋压缩机实现高效性与高可靠性的关键技术。
申请号为201210023627.X的专利公开了一种涡旋压缩机背压结构,该专利重点是针对现有间歇连通背压技术的热膨胀损失进行改善,以降低积存在背压孔内的油气反复膨胀或压缩所造成的热流体损失,但是,其背压腔的压力源头仍是依靠背压腔与压缩腔之间间歇连通从而获得合适的中间压力。该背压技术的主要劣势在于:
1、背压腔与压缩腔之间是在曲轴转角范围内周期往复连通,而压缩腔的压力在曲轴转角范围内逐渐变化,于是导致背压腔的压力波动大。背压压力的波动必将导致浮动密封力的波动,而理论校核时均以背压腔的平均压力来衡量密余量,背压腔压力波动至最小时压缩腔密封余量可能不足导致泵体泄漏,而背压腔压力波动至最大时压缩腔密封余量可能太大导致泵体接触磨损增大。总之,现有技术的间隙连通方式下必将带来背压腔压力波动;
2、压缩腔与背压腔之间的间隙连通角度大小决定了背压腔压力大小,由于无法调整连通角度大小,在设计之初即要考虑不同的工况下压缩腔的密封余量,例如,夏季高温制热时压缩机吸气压力高而在冬季低温制热时吸气压力低,吸气压力高时进入压缩腔压缩一定角度后进入背压腔导致背压压力大,吸气压力低时背压腔压力小,而低温制热下压缩机往往出现不同程度的欠压缩,在同一背压腔与压缩腔连通角度下,低温制热工况下的密封余量最小,因 此,为了确保低温制热下泵体之间仍能可靠密封,高温制冷工况下的密封余量偏大,导致这些工况下压缩机摩擦功耗偏大。
发明内容
本申请的主要目的在于提供一种涡旋压缩机、空调器及涡旋压缩机背压调节方法,以解决现有技术中的涡旋压缩机的背压腔和压缩腔间歇周期连通时背压腔压力波动大的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种涡旋压缩机,包括:壳体;安装支架,安装支架固定安装在壳体的内部;静涡旋盘,静涡旋盘安装在安装支架上;动涡旋盘,动涡旋盘可转动地安装在安装支架和静涡旋盘之间,动涡旋盘与静涡旋盘之间具有压缩腔,动涡旋盘与安装支架之间具有中压腔,安装支架的底部以及静涡旋盘的顶部均具有低压吸气腔;第一连接通道,第一连接通道的两端分别与压缩腔和中压腔连通,第一连接通道上设置有第一控制阀;第二连接通道,第二连接通道的两端分别与中压腔和低压吸气腔连通,第二连接通道上设置有第二控制阀。
进一步地,第一连接通道设置在动涡旋盘上。
进一步地,第二连接通道设置在安装支架上并与安装支架的底部的低压吸气腔连通。
进一步地,第二连接通道沿安装支架和静涡旋盘延伸并与静涡旋盘的顶部的低压吸气腔连通。
进一步地,第一控制阀为第一单向止回阀,第一单向止回阀的流通方向为从压缩腔到中压腔。
进一步地,第二控制阀为第二单向止回阀,第二单向止回阀的流通方向为从中压腔到低压吸气腔。
进一步地,第一连接通道和第二连接通道均包括止回阀座安装部、中压腔侧连通孔、密封圆锥面以及压缩腔侧连通孔,密封圆锥面位于止回阀座安装部靠近中压腔侧连通孔的端部,压缩腔侧连通孔为位于止回阀座安装部的侧壁的凹槽;第一控制阀和第二控制阀均包括第一阀座、弹性部件以及密封部件,密封部件安装在密封圆锥面处,第一阀座安装在止回阀座安装部内,弹性部件的两端分别抵顶在第一阀座和密封部件之间。
进一步地,第一连接通道包括止回阀座安装孔和中压腔连通孔;第一控制阀包括密封片和第二阀座,密封片位于第二阀座的底部,第二阀座上设置有通孔。
进一步地,第二阀座包括本体和设置在本体外周的外凸缘,密封片位于外凸缘的内部,本体上设置有通孔。
进一步地,第二控制阀为舌阀片单向止回阀。
根据本申请的另一方面,提供了一种空调器,包括涡旋压缩机,涡旋压缩机为上述的涡旋压缩机。
根据本申请的再一方面,提供了一种涡旋压缩机的背压调节方法,涡旋压缩机的背压调节方法采用上述的涡旋压缩机实现,涡旋压缩机的背压调节方法包括:当中压腔内的压力Pb高于低压吸气腔的压力Ps预定值时,第一连接通道上的第一控制阀开启,防止中压腔内的流体逆流至压缩腔造成中压腔和压缩腔内的压力波动,使中压腔内的压力最大能稳定在与压缩腔连通结束前的某一压力Pb,通过第一控制阀、第二控制阀、压缩腔压力Pm、低压吸气腔压力Ps以及第二控制阀的预紧阻力△P的共同调节控制下实现以下控制:(1)当中压腔压力Pb大于低压吸气腔的压力Ps和第二控制阀的预紧阻力△P时,即Pb>(Ps+△P),控制第二控制阀开启,中压腔内流体泄漏至低压吸气腔,最终使中压腔内的压力稳定维持在Ps+△P;(2)当中压腔压力Pb低于低压吸气腔的压力Ps和第二控制阀的预紧阻力△P时,即Pb<(Ps+△P),控制第二控制阀关闭,使得中压腔内的压力维持在Pb水平。
应用本申请的技术方案,相比现有技术,本申请的中压腔压力较低,但是仍能正常密封。原因在于现有的中压技术在高压比工况下,由于吸气压力较小,压缩腔欠压缩严重,中压腔与压缩腔连通角度需要更靠近排气角以提高中压腔压力实现密封,因此,确保了高低比这类低温制热工况下的密封,在额定设计工况以及高压差工况下,由于连通角靠近排气腔使得中压腔压力偏大,从而引起因密封余量太大而导致摩擦功耗大等缺点。而采用本申请专利的涡旋压缩机则可以在这类中压腔的压力过大的工况下有效泄压,泄压至更安全有效的压力下。
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示意性示出了本申请的涡旋压缩机的第一实施例的局部剖视图;
图2示意性示出了本申请的涡旋压缩机的第二实施例的局部剖视图;
图3示意性示出了本申请的涡旋压缩机的第三实施例的剖视图;
图4示意性示出了本申请的涡旋压缩机的第四实施例的局部剖视图;
图5示意性示出了本申请的涡旋压缩机的第五实施例的局部剖视图;
图6示意性示出了本申请的涡旋压缩机的第六实施例的局部剖视图;
图7示意性示出了本申请的涡旋压缩机的第七实施例的局部剖视图;
图8示意性示出了本申请的动涡旋盘的第一实施例的局部剖视图;
图9示意性示出了本申请的第一控制阀安装在图8中的动涡旋盘上时的局部剖视图;
图10示意性示出了本申请的动涡旋盘和第一控制阀的第二实施例的局部剖视图;
图11示意性示出了本申请的安装支架的局部剖视图;
图12示意性示出了本申请的第二阀座的第一立体图;
图13示意性示出了本申请的第二阀座的第二立体图;
图14示意性示出了本申请的涡旋压缩机和现有的涡旋压缩机的应用效果对比图;
图15示意性示出了现有的涡旋压缩机的压缩腔压力变化与曲轴转角的关系图;
图16示意性示出了本申请的涡旋压缩机与现有涡旋压缩机使用过程中的压力变化图。
其中,上述附图包括以下附图标记:
10、壳体;11、上盖;12、机壳;20、安装支架;30、静涡旋盘;40、动涡旋盘;50、第一连接通道;51、止回阀座安装孔;52、中压腔连通孔;60、第二连接通道;561、止回阀座安装部;562、中压腔侧连通孔;563、密封圆锥面;564、压缩腔侧连通孔;70、第一控制阀;71、密封片;72、第二阀座;721、通孔;722、本体;723、外凸缘;80、第二控制阀;781、第一阀座;782、弹性部件;783、密封部件;90、压缩腔;100、中压腔;110、低压吸气腔;120、曲轴;130、驱动电机;140、副轴承;150、主平衡块;160、密封轴封;170、主轴承;180、偏心套;190、驱动轴承;200、排气腔。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
参见图1至图16所示,根据本申请的实施例,提供了一种涡旋压缩机,本实施例中的涡旋压缩机包括壳体10、静涡旋盘30、排气腔200、压缩腔90、动涡旋盘40、安装支架20、 低压吸气腔110、曲轴120、驱动电机130、副轴承140、主平衡块150、密封轴封160、主轴承170、中压腔100、偏心套180、驱动轴承190、第一连接通道50以及第二连接通道60。
其中,壳体10包括机壳12和盖设在机壳12上的上盖11。安装时,将安装支架20固定安装在壳体10内部;静涡旋盘30安装在安装支架20上;动涡旋盘40可转动地安装在安装支架20和静涡旋盘30之间,动涡旋盘40与静涡旋盘30之间具有压缩腔90,动涡旋盘40与安装支架20之间具有中压腔100,安装支架20的底部以及静涡旋盘30的顶部均具有低压吸气腔110;第一连接通道50的两端分别与压缩腔90和中压腔100连通,第一连接通道50上设置有第一控制阀70;第二连接通道60的两端分别与中压腔100和低压吸气腔110连通,第二连接通道60上设置有第二控制阀80。
本申请的涡旋压缩机尤其指卧式车载涡旋压缩机结构,但是本申请涉及的特征仍能很好地应用于传统的立式增焓涡旋压缩机中。
参见图3所示,驱动电机130内置在机壳12内,驱动电机130驱动曲轴120转动,曲轴120通过副轴承140和主轴承170进行周向和径向约束,保证涡旋压缩机轴系的同轴度,曲轴120驱动端通过柔性偏心套180驱动动涡旋盘40绕静涡旋盘30做回转往复运动。于是由静涡旋盘30和动涡旋盘40构成的压缩容积出现周期性增大减小,形成压缩制冷剂的压缩腔90,从而完成连续不断地对被吸入压缩腔90内的制冷剂压缩。
本申请的涡旋压缩机还具有如图1所示的结构特征:本申请涉及的涡旋压缩机的泵体之间的轴向密封方式为动涡旋盘40浮动密封,即在动涡旋盘40的背面(相对于静涡旋盘30)形成中压腔100用于抵抗动涡旋盘40正面压缩腔90产生的轴向气体力,于是,在动涡旋盘40的正反两面形成方向相反的轴向气体压力,中压腔100内的压力为处于排气压力Pd和吸气压力Ps之间的中间压力Pb,压缩腔90内的压力Pm为从外周朝中心不断变大的压力。动涡旋盘40正反两面产生的压力将动涡旋盘40紧紧贴合在静涡旋盘30上,实现泵体之间轴向密封。
如图1所示,为了获得中压腔100内的稳定压力,本申请在压缩腔90和中压腔100之间设置第一连接通道50,将压缩腔90内的压力引入中压腔100,如图1中的箭头所示,且在该第一连接通道50上设置第一控制阀70,只容许气体从压缩腔90流入中压腔100,该第一控制阀70的作用在于使得中压腔100内的压力波动小,最终稳定在某一压力值。
如图15所示,其中:θ1、中压腔与压缩腔连通开启角;θ2、中压腔与压缩腔连通关闭角;P1、中压腔与压缩腔连通开启压缩腔压力;P2、中压腔与压缩腔连通关闭压缩腔压力;θ、驱动曲轴转角;P、压缩腔压力。图中Y坐标为压缩腔90内的压力P,X轴为曲轴120的转角,用于连通压缩腔90通路与中压腔100的连通角为θ1\θ2,对应压缩腔90的压力为P1和P2,任何直接或间接连通压缩腔90和中压腔100的中压方案对应的压缩腔90的压力状态均如图15所示。于是,如图16所示为现有的涡旋压缩机和本申请的涡旋压缩机的使用过程中的中压腔压力变化图,其中:Pm、中压腔压力;实线曲线为本申请特征的中压曲线;虚线为现有技术的中压波动曲线,P为压缩腔90的压力,受压缩腔90压力的影响,中压腔100 内的压力如图16中虚线所示,为现有的中压方案,通过直接或间接连通压缩腔90和中压腔100,对应的连通角度θ1\θ2下,中压腔100内的压力具有周期性波动,而中压腔100压力波动必将引起动静盘之间的轴向密封力,在中压压力最小时,泵体之间可能密封不足引起泄漏,在中间压力最大时,泵体之间可能密封力太大引起摩擦功耗太大。
之所以现有涡旋压缩机中的中压腔100压力波动大,是因为压缩腔90与中压腔100周期连通时,在开始连通角度θ1下,压缩腔90内的压力为低压P1,此时,中压腔100内的压力高于压缩腔90的压力,流体通过中压腔100泄漏至压缩腔90导致中压腔100压力降低,随着压缩腔90的不断压缩,压力逐渐上升,上升到高于中压腔100压力时流体朝中压腔100泄漏,于是中压腔100压力不断上升,在中压腔100与压缩腔90连通结束前达到最大,然后压缩腔90与中压腔100连通关闭,随后进入下一个连通周期,周期往复如图16所示。如图16中实线所示,为本申请的涡旋压缩孔的中压腔100的压力,受第一控制阀70的作用,其基本稳定在一稳定值,压缩腔90与中压腔100的连通角度和方式不变的前提下,中压腔100连通压缩腔90时,压缩腔90压力较低,中压腔100压力大,但是由于第一控制阀70的作用,不会存在中压腔100向压缩腔90泄漏,于是能保持中压腔100内的压力始终保持在一定压力水平。
如图1所示,在本申请的第一实施例中,将第一连接通道50设置在动涡旋盘40上,并使得第二连接通道60设置在安装支架20并与安装支架20的底部低压吸气腔110连通。如图1中箭头所示只容许流体从中压腔100向低压吸气腔110流通且具有一定的预紧阻力,即只有当中压腔100内的压力Pb高于低压吸气腔110的压力Ps预定值时该第一连接通道50才能开启,防止中压腔100内的流体逆流至压缩腔90造成中压腔100和压缩腔90内的压力波动,使中压腔100内的压力最大能稳定在与压缩腔90连通结束前的某一压力Pb(Pb略低于Pm),于是,通过第一控制阀70、第二控制阀80、压缩腔90压力Pm、低压吸气腔110压力Ps以及第二控制阀80的预紧阻力△P的共同调节控制下:1、当中压腔100压力Pb大于低压吸气腔110的压力Ps和第二控制阀80的预紧阻力△P时,即Pb>(Ps+△P),控制第二控制阀80开启,中压腔100内流体泄漏至低压吸气腔110,最终使中压腔100内的压力稳定维持在Ps+△P(忽略此处通路的流通阻力);2、当中压腔100压力Pb低于低压吸气腔110的压力Ps和第二控制阀80的预紧阻力△P时,即Pb<(Ps+△P),控制第二控制阀80关闭,中压腔100内的压力维持在Pb水平。
于是,整个涡旋压缩机压缩的实际运行工况中的中压腔100的压力会处于不同的压力水平,如图14所示,图中具有斜线的区域表示现有的涡旋压缩机的应用效果,没有斜线的区域表示本申请的涡旋压缩机的应用效果,P1为压缩腔90连通压力;△P、第二控制阀80的预紧阻力,相比现有技术,本申请的中压腔100压力较低,但是仍能正常密封。原因在于现有的中压技术在高压比工况下,由于吸气压力较小,压缩腔90欠压缩严重,中压腔100与压缩腔90连通角度需要更靠近排气角以提高中压腔100压力实现密封,因此,确保了高低比这类低温制热工况下的密封,在额定设计工况以及高压差工况下,由于连通角靠近排气腔使得中压腔压力偏大,从而引起因密封余量太大而导致摩擦功耗大等缺点。而采用本申请专利的涡旋压缩机则可以在这类中压腔100的压力过大的工况下有效泄压,泄压至更安全有效的压力下。
优选地,本实施例中的第一控制阀70为第一单向止回阀,该第一单向止回阀的流通方向为从压缩腔90到中压腔100。第二控制阀80为第二单向止回阀,第二单向止回阀的流通方向为从中压腔100到低压吸气腔110。
参见图2所示,根据本申请的第二实施例,提供了一种涡旋压缩机,本实施例中的涡旋压缩机与第一实施例的基本相同,所不同的是,本实施例中的第二连接通道60沿安装支架20和静涡旋盘30延伸并与静涡旋盘30的顶部低压吸气腔110连通,而不是与安装支架20的底部的低压吸气腔110连通。如图2所示,静涡旋盘30背面形成排气高压腔Pd和低压吸气腔Ps,可以利用该处的低压吸气腔110与中压腔100调节形成合适的中间压力。具体地,如图5和图6的结构,本申请的中压腔100和静涡旋盘30顶部的低压吸气腔110之间通过安装支架20和静涡旋盘30上的第二连接通道60连通,具有止回特性的第二控制阀80可设置在静涡旋盘30上的第二连接通道60内,如图5所示。又可以设置在安装支架20上的第二连接通道60内,如图6所示。
参见图3所示,涡旋压缩机的第二连接通道60也设置在安装支架20并与安装支架20的底部低压吸气腔110连通。
如图4所示为本申请的第四实施例的局部剖视图,在本实施例中第一连接通道50穿过动涡旋盘40连通压缩腔90和中压腔100,在该第一连接通道50上设置有第一控制阀70,在安装支架20内开设有第二连接通道60连通中压腔100和安装支架20底部的低压吸气腔110,在该第二连接通道60上设置有第二控制阀80。参见图8和图9所示,本申请中的第一连接通道50包括止回阀座安装部561、中压腔侧连通孔562、密封圆锥面563以及压缩腔侧连通孔564,密封圆锥面563位于止回阀座安装部561靠近中压腔侧连通孔562的端部,压缩腔侧连通孔564为位于止回阀座安装部561侧壁的凹槽;第一控制阀70包括第一阀座781、弹性部件782以及密封部件783,密封部件783安装在密封圆锥面563处,第一阀座781安装在止回阀座安装部561内,弹性部件782的两端分别抵顶在第一阀座781和密封部件783之间,当压缩腔90内的压力达到一定值时,密封部件783将中压腔侧连通孔562打开,压缩腔90内的流体进入到中压腔100内。通过第一阀座781与止回阀座安装部561之间的固定配合将第一控制阀70安装固定,通路之间的密封利用密封部件783,即钢珠结构与密封圆锥面563之间密封,且通过弹性部件782将密封部件783贴合在密封圆锥面563上,在正常装配状态下,弹性部件782将密封部件783轻轻按压在密封圆锥面563上,具有很小的密封预紧力。在密封部件783未贴合在密封圆锥面563上时,流体可以通过中压腔侧连通孔562和压缩腔侧连通孔564连通压缩腔90和中压腔100。
参见图10所示,在本申请的另一种实施例中第一连接通道50包括止回阀座安装孔51和中压腔连通孔52;第一控制阀70包括密封片71和第二阀座72,密封片71位于第二阀座72的底部,第二阀座72上设置有通孔721,当压缩腔90内的压力达到一定值时,密封片71将第二阀座72上设置的通孔721打开,压缩腔90内的流体进入到中压腔100内。参见图12和图13所示,本实施例中的第二阀座72包括本体722和设置在本体722外周的外凸缘723,安 装时,密封片71位于外凸缘723的内部,本体722上设置有上述通孔721。第二阀座72在密封片71打开时,流体能通过密封片71和中压腔连通孔52通过。
如图11所示,本申请中的第二连接通道60也包括止回阀座安装部561、中压腔侧连通孔562、密封圆锥面563以及压缩腔侧连通孔564,密封圆锥面563位于止回阀座安装部561靠近中压腔侧连通孔562的端部,压缩腔侧连通孔564为位于止回阀座安装部561侧壁的凹槽;第二控制阀80包括第一阀座781、弹性部件782以及密封部件783,密封部件783安装在密封圆锥面563处,第一阀座781安装在止回阀座安装部561内,弹性部件782的两端分别抵顶在第一阀座781和密封部件783之间。通过在安装支架20内开设第二连接通道60用于连通安装支架20内外侧,第二连接通道60上设置有第二控制阀80,处于安装支架20内的中压腔100的流体只能流向安装支架20外部的低压吸气腔110。相比第一单向止回阀,第二单向止回阀的弹性部件782在自然装配状态下其具有一定的预紧力即如图11中的弹簧已处于一定的压缩状态,将圆形钢珠紧紧按压在密封圆锥面563上。
参见图7所示,在本申请的另一种优选的实施例中,将第二控制阀80设置为舌阀片单向止回阀。设计时,舌阀片单向止回阀设计成具有一定的预紧量。如图11至图13所示,本申请中的弹性部件782的预紧量为控制中压腔压力的关键因素,根据中压腔100与压缩腔90的连通角度大小,弹性部件782上的预紧压力一般设置在0.3~0.8MPA范围内。
根据本申请的另一方面,提供了一种空调器,包括涡旋压缩机,涡旋压缩机为上述实施例中的涡旋压缩机。
根据本申请的再一方面,提供了一种涡旋压缩机的背压调节方法,涡旋压缩机的背压调节方法采用上述的涡旋压缩机实现,涡旋压缩机的背压调节方法包括:
当中压腔100内的压力Pb高于低压吸气腔110的压力Ps预定值时,第一连接通道50上的第一控制阀70开启,防止中压腔100内的流体逆流至压缩腔90造成中压腔100和压缩腔90内的压力波动,使中压腔100内的压力最大能稳定在与压缩腔90连通结束前的某一压力Pb,于是,通过第一控制阀70、第二控制阀80、压缩腔90压力Pm、低压吸气腔110压力Ps以及第二控制阀80的预紧阻力△P的共同调节控制下实现以下控制:1、当中压腔100压力Pb大于低压吸气腔110的压力Ps和第二控制阀80的预紧阻力△P时,即Pb>(Ps+△P),控制第二控制阀80开启,中压腔100内流体泄漏至低压吸气腔110,最终使中压腔100内的压力稳定维持在Ps+△P;2、当中压腔100压力Pb低于低压吸气腔110的压力Ps和第二控制阀80的预紧阻力△P时,即Pb<(Ps+△P),控制第二控制阀80关闭,使得中压腔100内的压力维持在Pb水平。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:本申请通过在靠近中间压力腔侧设置单向止回结构,只容许流体从压缩腔流向中压腔,且流体在通过该止回结构时具有较小的流通损失;本申请中连通中间压力腔和支架外侧低压腔的连通方式为直接开设在支架上的通孔,在通孔内设置有单向止回结构,只容许流体从中间压力腔向低压侧流通,且设置有一定的预紧压力,当止回结构一侧的中间压力大于另一侧的低压压力+预紧压 力时,中压腔和低压吸气腔才连通;本申请中的中间压力腔和上盖外周低压腔的连通方式为开设在支架和静盘上的连接通孔,在通孔内设置有单向止回结构,只容许流体从中间压力腔向低压侧流通,且设置有一定的预紧压力,当止回结构一侧的中间压力大于另一侧的低压压力+预紧压力时,中压腔和低压腔才连通。
本申请的涡旋压缩机背压调节结构使得同一工况下背压腔内的压力基本稳定在相同水平,泵体密封更可靠,提升压缩机性能。而在不同工况下,通过本申请的背压调节结构,压缩机泵体压缩腔能获得基本相等的密封余量,泵体密封更可靠,提升压缩机的工况适应性,提升压缩机整体能效(APF能效)。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (12)
- 一种涡旋压缩机,其特征在于,包括:壳体(10);安装支架(20),所述安装支架(20)固定安装在所述壳体(10)的内部;静涡旋盘(30),所述静涡旋盘(30)安装在所述安装支架(20)上;动涡旋盘(40),所述动涡旋盘(40)可转动地安装在所述安装支架(20)和所述静涡旋盘(30)之间,所述动涡旋盘(40)与所述静涡旋盘(30)之间具有压缩腔(90),所述动涡旋盘(40)与所述安装支架(20)之间具有中压腔(100),所述安装支架(20)的底部以及所述静涡旋盘(30)的顶部均具有低压吸气腔(110);第一连接通道(50),所述第一连接通道(50)的两端分别与所述压缩腔(90)和所述中压腔(100)连通,所述第一连接通道(50)上设置有第一控制阀(70);第二连接通道(60),所述第二连接通道(60)的两端分别与所述中压腔(100)和所述低压吸气腔(110)连通,所述第二连接通道(60)上设置有第二控制阀(80)。
- 根据权利要求1所述的涡旋压缩机,其特征在于,所述第一连接通道(50)设置在所述动涡旋盘(40)上。
- 根据权利要求1所述的涡旋压缩机,其特征在于,所述第二连接通道(60)设置在所述安装支架(20)上并与所述安装支架(20)的底部的所述低压吸气腔(110)连通。
- 根据权利要求1所述的涡旋压缩机,其特征在于,所述第二连接通道(60)沿所述安装支架(20)和所述静涡旋盘(30)延伸并与所述静涡旋盘(30)的顶部的所述低压吸气腔(110)连通。
- 根据权利要求1所述的涡旋压缩机,其特征在于,所述第一控制阀(70)为第一单向止回阀,所述第一单向止回阀的流通方向为从所述压缩腔(90)到所述中压腔(100)。
- 根据权利要求1所述的涡旋压缩机,其特征在于,所述第二控制阀(80)为第二单向止回阀,所述第二单向止回阀的流通方向为从所述中压腔(100)到所述低压吸气腔(110)。
- 根据权利要求1所述的涡旋压缩机,其特征在于,所述第一连接通道(50)和所述第二连接通道(60)均包括止回阀座安装部(561)、中压腔侧连通孔(562)、密封圆锥面(563)以及压缩腔侧连通孔(564),所述密封圆锥面(563)位于所述止回阀座安装部(561)靠近所述中压腔侧连通孔(562)的端部,所述压缩腔侧连通孔(564)为位于所述止回阀座安装部(561)的侧壁的凹槽;所述第一控制阀(70)和所述第二控制阀(80)均包括第一阀座(781)、弹性部件(782)以及密封部件(783),所述密封部件(783)安装在所述密封圆锥面(563)处,所述第一阀座(781)安装在所述止回阀座安装部(561)内,所述弹性部件(782)的两端分别抵顶在所述第一阀座(781)和所述密封部件(783)之间。
- 根据权利要求1所述的涡旋压缩机,其特征在于,所述第一连接通道(50)包括止回阀座安装孔(51)和中压腔连通孔(52);所述第一控制阀(70)包括密封片(71)和第二阀座(72),所述密封片(71)位于所述第二阀座(72)的底部,所述第二阀座(72)上设置有通孔(721)。
- 根据权利要求8所述的涡旋压缩机,其特征在于,所述第二阀座(72)包括本体(722)和设置在所述本体(722)的外周的外凸缘(723),所述密封片(71)位于所述外凸缘(723)的内部,所述本体(722)上设置有所述通孔(721)。
- 根据权利要求1所述的涡旋压缩机,其特征在于,所述第二控制阀(80)为舌阀片单向止回阀。
- 一种空调器,包括涡旋压缩机,其特征在于,所述涡旋压缩机为权利要求1至10中任一项所述的涡旋压缩机。
- 一种涡旋压缩机的背压调节方法,其特征在于,所述涡旋压缩机的背压调节方法采用权利要求1至10中任一项所述的涡旋压缩机实现,所述涡旋压缩机的背压调节方法包括:当所述中压腔(100)内的压力Pb高于所述低压吸气腔(110)的压力Ps预定值时,所述第一连接通道(50)上的所述第一控制阀(70)开启,防止所述中压腔(100)内的流体逆流至所述压缩腔(90)造成所述中压腔(100)和所述压缩腔(90)内的压力波动,使所述中压腔(100)内流体的压力最大能稳定在与所述压缩腔(90)连通结束前的某一压力Pb,通过所述第一控制阀(70)、所述第二控制阀(80)、所述压缩腔(90)压力Pm、所述低压吸气腔(110)压力Ps以及所述第二控制阀(80)的预紧阻力△P的共同调节控制下实现以下控制:(1)当所述中压腔(100)压力Pb大于所述低压吸气腔(110)的压力Ps和所述第二控制阀(80)的预紧阻力△P时,即Pb>(Ps+△P),控制所述第二控制阀(80)开启,所述中压腔(100)内流体泄漏至所述低压吸气腔(110),最终使所述中压腔(100)内的压力稳定维持在Ps+△P;(2)当所述中压腔(100)压力Pb低于所述低压吸气腔(110)的压力Ps和所述第二控制阀(80)的预紧阻力△P时,即Pb<(Ps+△P),控制所述第二控制阀(80)关闭,使得所述中压腔(100)内的压力维持在Pb水平。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811545156.2A CN109654016A (zh) | 2018-12-17 | 2018-12-17 | 涡旋压缩机、空调器及涡旋压缩机背压调节方法 |
CN201811545156.2 | 2018-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020125064A1 true WO2020125064A1 (zh) | 2020-06-25 |
Family
ID=66114721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/103955 WO2020125064A1 (zh) | 2018-12-17 | 2019-09-02 | 涡旋压缩机、空调器及涡旋压缩机背压调节方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109654016A (zh) |
WO (1) | WO2020125064A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109654016A (zh) * | 2018-12-17 | 2019-04-19 | 珠海格力节能环保制冷技术研究中心有限公司 | 涡旋压缩机、空调器及涡旋压缩机背压调节方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004116300A (ja) * | 2002-09-24 | 2004-04-15 | Fujitsu General Ltd | スクロール圧縮機 |
KR20130074392A (ko) * | 2011-12-26 | 2013-07-04 | 한라비스테온공조 주식회사 | 스크롤 압축기 |
CN205117718U (zh) * | 2015-10-21 | 2016-03-30 | 广东美的暖通设备有限公司 | 一种用于维持涡旋压缩机背压稳定的结构及涡旋压缩机 |
CN205172938U (zh) * | 2015-11-23 | 2016-04-20 | 珠海格力节能环保制冷技术研究中心有限公司 | 一种涡旋压缩机 |
CN109654016A (zh) * | 2018-12-17 | 2019-04-19 | 珠海格力节能环保制冷技术研究中心有限公司 | 涡旋压缩机、空调器及涡旋压缩机背压调节方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5342185A (en) * | 1993-01-22 | 1994-08-30 | Copeland Corporation | Muffler plate for scroll machine |
US5741120A (en) * | 1995-06-07 | 1998-04-21 | Copeland Corporation | Capacity modulated scroll machine |
US5611674A (en) * | 1995-06-07 | 1997-03-18 | Copeland Corporation | Capacity modulated scroll machine |
KR100341836B1 (ko) * | 1999-01-19 | 2002-06-24 | 구자홍 | 스크롤 압축기 |
JP4614009B1 (ja) * | 2009-09-02 | 2011-01-19 | ダイキン工業株式会社 | スクロール圧縮機 |
CN104343682B (zh) * | 2013-08-07 | 2016-12-28 | 艾默生环境优化技术(苏州)有限公司 | 涡旋压缩机 |
CN105298838A (zh) * | 2015-11-23 | 2016-02-03 | 珠海格力节能环保制冷技术研究中心有限公司 | 一种涡旋压缩机及其调节控制方法 |
CN107893758B (zh) * | 2017-11-06 | 2024-04-16 | 珠海格力电器股份有限公司 | 涡旋压缩机及具有其的空调器 |
CN209414148U (zh) * | 2018-12-17 | 2019-09-20 | 珠海格力节能环保制冷技术研究中心有限公司 | 涡旋压缩机和空调器 |
-
2018
- 2018-12-17 CN CN201811545156.2A patent/CN109654016A/zh active Pending
-
2019
- 2019-09-02 WO PCT/CN2019/103955 patent/WO2020125064A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004116300A (ja) * | 2002-09-24 | 2004-04-15 | Fujitsu General Ltd | スクロール圧縮機 |
KR20130074392A (ko) * | 2011-12-26 | 2013-07-04 | 한라비스테온공조 주식회사 | 스크롤 압축기 |
CN205117718U (zh) * | 2015-10-21 | 2016-03-30 | 广东美的暖通设备有限公司 | 一种用于维持涡旋压缩机背压稳定的结构及涡旋压缩机 |
CN205172938U (zh) * | 2015-11-23 | 2016-04-20 | 珠海格力节能环保制冷技术研究中心有限公司 | 一种涡旋压缩机 |
CN109654016A (zh) * | 2018-12-17 | 2019-04-19 | 珠海格力节能环保制冷技术研究中心有限公司 | 涡旋压缩机、空调器及涡旋压缩机背压调节方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109654016A (zh) | 2019-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW591174B (en) | Scroll machine with ported orbiting scroll member | |
US10962008B2 (en) | Variable volume ratio compressor | |
KR100916229B1 (ko) | 스크롤 압축기의 모드 전환장치 | |
KR100554910B1 (ko) | 방출밸브를 갖춘 스크롤 머신 | |
CN100362238C (zh) | 涡旋式压缩机 | |
WO2014114222A1 (zh) | 转动装置及应用其的转子式压缩机和流体马达 | |
KR20100025539A (ko) | 용량 변조 압축기 | |
KR100608664B1 (ko) | 스크롤 압축기의 용량 가변 장치 | |
KR20030021117A (ko) | 압축기 토출 밸브 | |
KR100547323B1 (ko) | 스크롤 압축기 | |
US8920149B2 (en) | Single-screw compressor having an adjustment mechanism for adjusting a compression ratio of the compression chamber | |
US8202068B2 (en) | Capacity varying device for scroll compressor | |
WO2020125064A1 (zh) | 涡旋压缩机、空调器及涡旋压缩机背压调节方法 | |
CN209414148U (zh) | 涡旋压缩机和空调器 | |
WO2013140458A1 (ja) | スクロール圧縮機 | |
KR100512997B1 (ko) | 스크롤 압축기 | |
JP5386566B2 (ja) | スクロール圧縮機 | |
KR100557061B1 (ko) | 스크롤 압축기 | |
JPH0584394B2 (zh) | ||
WO2022077754A1 (zh) | 压缩机和制冷系统 | |
KR20100081819A (ko) | 스크롤 압축기 | |
KR100564968B1 (ko) | 스크롤 압축기 | |
KR100512998B1 (ko) | 스크롤 압축기 | |
WO2021157121A1 (ja) | インジェクション機構付き圧縮機 | |
JPH0127279B2 (zh) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19899833 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19899833 Country of ref document: EP Kind code of ref document: A1 |