WO2024041002A1 - 变容压缩机和空调系统 - Google Patents

变容压缩机和空调系统 Download PDF

Info

Publication number
WO2024041002A1
WO2024041002A1 PCT/CN2023/089725 CN2023089725W WO2024041002A1 WO 2024041002 A1 WO2024041002 A1 WO 2024041002A1 CN 2023089725 W CN2023089725 W CN 2023089725W WO 2024041002 A1 WO2024041002 A1 WO 2024041002A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
slide
groove
tail
cylinder
Prior art date
Application number
PCT/CN2023/089725
Other languages
English (en)
French (fr)
Inventor
赵旭敏
苗旺
阙沛祯
何庆南
牛玉婷
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2024041002A1 publication Critical patent/WO2024041002A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors

Definitions

  • the present application relates to the field of compressor technology, specifically to a variable capacity compressor and an air conditioning system.
  • variable frequency variable capacity compressors have been rapidly developed.
  • variable frequency compressor adopts a double-cylinder structure.
  • the variable frequency compressor can realize single-cylinder or double-cylinder inverter compressors. operating mode. When the load is large, double cylinders are used, and when the load is small, a single cylinder is used.
  • Similar functional patents include patents CN201410805892, CN101091063A, CN113757115A, etc., all of which involve the variable capacity function of the compressor. To realize this function, the slide groove of the variable displacement cylinder needs to be sealed so that high or low pressure can be introduced into the slide groove to control the movement of the slide.
  • variable displacement sliding vane reciprocates at high speed in the sealed sliding vane groove
  • the volume of the sealed sliding vane groove tail chamber is small, and its internal pressure pulsation is larger than that of the compressor suction and exhaust.
  • This will cause the high-frequency vibration and noise of the compressor to intensify; especially when the compressor is started and the slide vane tail chamber is left standing for a long time in a low temperature environment, it is easy to accumulate liquid.
  • the pressure pulsation in the slide vane tail chamber increases significantly, and the pulsation value is greater than that of variable volume compression.
  • the minimum pressure for switching between single and dual cylinders of the compressor causes the variable capacity mechanism to fail during the startup phase. Frequent switching between single and dual cylinders of the compressor causes the sliding blades to collide and make abnormal noises, seriously affecting the user experience.
  • this application provides a variable displacement compressor, including a first cylinder, a first sliding vane and a first partition.
  • the first cylinder is provided with a slide groove, and at least part of the first slide is disposed in the slide groove.
  • the first cylinder is also provided with a slide tail chamber, and the slide tail chamber is connected with the slide groove.
  • the slide grooves are connected, and an expansion cavity is provided on the first partition. The expansion cavity can be connected with the slide tail cavity to introduce the gas in the slide tail cavity into the expansion cavity.
  • the first cylinder has a hollow cavity, the first roller is disposed in the hollow cavity,
  • the first bearing is located between the first cylinder and the first partition.
  • An expansion channel is provided on the first bearing. One end of the expansion channel can be connected to the slide tail cavity, and the other end is connected to the slide tail cavity.
  • the expansion chambers are connected.
  • the slide tail cavity includes a first slide tail cavity and a second slide tail cavity, the first slide tail cavity is connected with the radially outer end of the slide groove, and the first slide tail cavity is connected with the radially outer end of the slide groove. It includes a head and a tail, the head can be connected with the first roller, the tail can move and extend into the first slide tail cavity; the second slide tail cavity is connected with the first slide The tail cavity is connected.
  • the second slide tail cavity includes a first communication groove and a first cavity, the first communication groove is connected to the first slide tail cavity, and the first cavity is connected to the first The grooves are connected, and the first cavity is connected with the expansion channel on the first bearing.
  • the first cavity in the cross section of the first cylinder, is a strip-shaped groove structure, one end of the first cavity is connected to the first communication groove, and the other end faces away from the first communication groove.
  • the direction of the first communication groove extends, and the other end of the first cavity is located on one side of the slide groove;
  • the first communication groove is also a strip groove structure, and one end of the first communication groove It is connected with the first cavity, and the other end is located on the other side of the slide groove; that is, the other end of the first communication groove and the other end of the first cavity are located on both sides of the slide groove,
  • the slide groove is located in the middle;
  • the first slide tail cavity is a through hole penetrating along the axial direction of the first cylinder, and at least part of the structure of the first slide tail cavity is located inside the first communication groove .
  • the first cavity in a cross-section of the first cylinder passing through the axis, includes a first part and a second part, both the first part and the second part are groove structures, and the third part One part communicates with the second part, the first part is located radially inside the second part, the second part communicates the first communication groove with the first part, and the first part connects the The second part is connected to the expansion channel.
  • both the first part and the second part are grooves extending along the axial direction of the first cylinder, and the axial height of the first part is less than the axial height of the second part.
  • the first part extends axially from the end surface of the first cylinder connecting with the first bearing, and the second part also extends along the axis from the end surface of the first cylinder connecting with the first bearing. extending in the direction;
  • the expansion channel is a groove that runs axially from one axial end face of the first bearing to the other axial end face.
  • the area of the first cavity is S; the cross-section of the expansion channel is a circular hole, its diameter is D, and satisfies S/3 ⁇ 1 /4 ⁇ D2 ⁇ S.
  • the second slide tail chamber further includes a pressure communication groove, the pressure communication groove is in communication with the first communication groove, and the pressure communication groove can pass in gas with pressure to pass through the the first communication slot and the first A slide tail cavity acts on the tail of the first slide to control locking or unlocking of the first slide, thereby controlling unloading or loading of the first roller.
  • a pressure switching channel is further included.
  • the pressure switching channel can pass in gas with pressure from outside the variable displacement compressor, and the pressure communication groove is an axial direction from the first cylinder.
  • a through hole that penetrates the end surface in the axial direction to the other end surface in the axial direction.
  • a communication hole is also provided inside the first cylinder. One end of the communication hole is connected to the pressure switching channel and the other end is connected to the pressure communication groove. Connected.
  • the pressure communication groove is a waist-shaped hole structure.
  • the expansion cavity is an accommodation cavity provided inside the first partition, and a second communication groove is also provided on the first partition, and one end of the second communication groove is connected to the The expansion passage of the first bearing is connected to the expansion chamber, and the other end is connected to the expansion cavity.
  • a first cover plate is further included, and the first cover plate is disposed on the axial end surface of the first partition away from the first bearing, so that the first partition is sandwiched Between the first bearing and the first cover plate, the expansion chamber extends from the axial end surface of the first partition plate that is connected to the first cover plate toward the other axial end surface. Extended to form, the first cover forms a seal on the expansion chamber.
  • This application also provides an air conditioning system, which includes the variable displacement compressor described in the previous item.
  • Figure 1 is a partial cross-sectional view of the pump body part of the variable displacement compressor of the present application.
  • Figure 2 is a structural diagram of the air conditioning system with a variable displacement compressor of the present application.
  • Figure 3 is a schematic cross-sectional view of the lower end surface of the variable displacement cylinder of the variable displacement compressor of the present application.
  • Figure 4 is a pressure pulsation curve diagram when the sliding vane tail chamber of the variable displacement compressor of the present application is running with liquid.
  • variable displacement rolling rotor compressor of the related art When the variable displacement rolling rotor compressor of the related art is running in two cylinders, the variable displacement sliding vane reciprocates at high speed in the sealed sliding vane groove. Since the tail chamber volume of the sealed sliding vane groove is small, its internal pressure pulsation is relatively small compared to the compressor. The suction and exhaust gases are too large, which will cause the high-frequency vibration and noise of the compressor to intensify; after the compressor has been left standing for a long time in a low-temperature environment, it is easy to accumulate liquid in the tail chamber of the slide vane when it is started.
  • variable displacement mechanism will fail during the startup phase. Frequent switching between single and double cylinders of the compressor will cause the sliding blades to collide and make abnormal noises, seriously affecting the user experience.
  • the technical problem to be solved by the embodiments of the present application is to overcome the defect in the related art that the pressure pulsation exists in the slide vane tail chamber of the variable displacement compressor, resulting in the generation of high-frequency vibration and noise, thereby providing a variable displacement compressor and an air conditioning system.
  • embodiments of the present invention provide a variable capacity rolling rotor compressor.
  • the compressor has a variable capacity cylinder that can realize unloading and operation, and a continuously operating cylinder.
  • the compressor has a single There are two modes: cylinder operation and dual-cylinder operation.
  • the cavity at the rear of the sliding vane of the variable displacement cylinder in the compressor is in a sealed state and is not connected to the high-pressure gas in the housing.
  • the pin head is provided with a spring located in the pin hole of the first bearing 11.
  • the upper end of the pin hole is connected with the slide tail chamber 25.
  • the lower end of the pin hole passes through the first partition 12a, the high-pressure channel 18 of the first cover 12 and the high-pressure channel 18 in the housing.
  • the high-pressure oil is connected; when the compressor double-cylinder is running, the high-pressure solenoid valve 23 is open, the low-pressure solenoid valve 22 is closed, and the slide tail chamber 25 is connected with the compressor exhaust.
  • variable displacement compressor in order to solve the problem that due to the small volume of the closed sliding vane groove tail chamber, the internal pressure pulsation is larger than that of the compressor suction and exhaust, resulting in increased high-frequency vibration noise of the compressor, the variable displacement compressor according to the embodiment of the present invention includes a sliding vane tail. Cavity expansion and pressure stabilizing structure, the expansion of the variable volume slide slot tail cavity can greatly increase the effective volume of the slide slot tail cavity, reduce the ratio of the effective volume of the slide to the tail cavity, and effectively reduce the pressure of the variable volume slide tail cavity under normal operating conditions. pressure pulsation, thereby reducing the high-frequency vibration and noise of the compressor.
  • expansion channels 26 are also provided on the first bearing 11 and the first partition 12a respectively.
  • the expansion channels 26 are respectively connected with the sliding vane tail cavity 25 and the expansion cavity 25a, which greatly increases the effective volume of the sliding vane tail cavity 25 and reduces the proportion of the effective volume of the sliding vane and the variable volume sliding vane tail cavity.
  • the variable volume sliding vane is in the sealed sliding vane groove.
  • the expansion cavity 25a is a sealed cavity composed of the cavity of the first partition 12a and the first cover 12.
  • variable capacity compressor which includes:
  • the first cylinder 9, the first slide 16 and the first partition 12a The first cylinder 9 is provided with a slide groove 91 . At least part of the first slide 16 is disposed in the slide groove 91 .
  • the first cylinder 9 is also provided with a slide tail chamber 25.
  • the slide tail cavity 25 is connected with the slide groove 91 .
  • the first partition 12a is provided with an expansion cavity 25a.
  • the expansion chamber 25a can communicate with the slide tail chamber 25, so that the gas in the slide tail chamber 25 can be introduced into the expansion chamber 25a.
  • an expansion cavity is provided on the first partition (the first partition is a structure added to open the expansion cavity), and the expansion cavity can be connected with the slide tail cavity, thereby effectively forming a capacity expansion of the slide tail cavity.
  • the expansion mechanism can greatly increase the effective volume of the slide vane tail chamber, thereby effectively reducing the pressure pulsation in the variable volume slide vane tail chamber under normal working conditions, and further reducing the high-frequency vibration and noise of the compressor.
  • a first roller 10 and a first bearing 11 are also included, the first cylinder 9 has a hollow cavity, and the first roller 10 is disposed in the hollow cavity,
  • the first bearing 11 is located between the first cylinder 9 and the first partition 12a.
  • An expansion channel 26 is provided on the first bearing 11. One end of the expansion channel 26 can be connected with the slide tail. The cavity 25 is connected, and the other end is connected with the expansion cavity 25a.
  • an expansion channel is provided on the first bearing connected to the first cylinder. One end of the expansion channel can be connected to the slide tail cavity and the other end can be connected to the expansion cavity to form an expansion communication passage.
  • one end of the expansion channel can be connected to the slide tail cavity, and the other end of the expansion channel can be connected to the slide tail cavity.
  • One end is connected to the expansion chamber, thereby effectively forming an expansion mechanism for expanding the volume of the slide vane tail chamber, which can greatly increase the effective volume of the slide vane tail chamber, thereby effectively reducing the pressure pulsation of the variable volume slide vane tail chamber under normal operating conditions, further reducing the compressor high frequency vibration and noise.
  • a variable capacity sliding vane groove tail cavity expansion mechanism is provided to expand the volume of the variable volume sliding vane groove tail cavity, which can greatly increase the effective volume of the slide vane groove tail cavity and reduce the ratio of the effective volume of the slide vane to the tail cavity. , which can effectively reduce the pressure pulsation in the tail chamber of the variable volume slide under normal working conditions, and further reduce the high-frequency vibration and noise of the compressor.
  • the pressure pulsation in the tail chamber of the variable volume slide can be kept at a relatively small level, which can effectively reduce the pressure pulsation when the variable volume slide chamber is filled with liquid and avoid starting with liquid.
  • the pressure pulsation in the tail cavity of the variable volume slide plate suddenly changes, which solves the abnormal sound caused by the slide plate impact caused by the failure of the variable volume slide mechanism, and improves the user's use effect.
  • a variable displacement compressor such as a rotary variable displacement compressor, includes a housing assembly 1, a motor stator 2. Motor rotor 3 and pump body components.
  • the upper cover assembly 27 of the housing assembly 1 is provided with an exhaust pipe, the motor stator 2 is fixed on the inner wall of the housing assembly 1, and the motor rotor 3 is fixed on the crankshaft 4 of the pump body assembly, juxtaposed in the inner hole of motor stator 2.
  • the pump body component is welded and fixed to the housing component 1 .
  • the pump body assembly includes an upper bearing 5, a lower bearing (such as a first bearing 11) and a crankshaft 4.
  • An upper cylinder 6 and a lower cylinder (such as a first cylinder 9) are provided between the upper bearing 5 and the first bearing 11.
  • the upper cylinder 6 and the first cylinder 9 are separated by a second partition 8.
  • An upper roller 7 and a lower roller (such as the first roller 10) are respectively installed in the upper cylinder 6 and the first cylinder 9.
  • the upper roller 7 The upper and lower rollers are respectively sleeved on the upper and lower eccentric parts of the crankshaft 4.
  • An upper sliding plate 17 and a lower sliding plate (such as the first sliding plate 16) are installed in the sliding plate grooves in the upper cylinder 6 and the lower cylinder.
  • the heads of the upper sliding plate 17 and the lower sliding plate are respectively connected with the upper roller 7 and the lower roller.
  • the outer diameter of the cylinder is in contact, dividing the volume chamber in the cylinder into a high-pressure chamber and a low-pressure chamber to realize the compression function of the compressor.
  • a pin 15 is installed inside the first bearing 11 corresponding to the bottom of the first slide 16, and a pin spring 14 is installed on the pin head.
  • the pin spring is limited between the upper end of the pin hole and the pin head; the first bearing 11
  • a lower partition (such as the first partition 12a) is installed at the lower end, and the lower end of the lower partition is covered with a lower cover (such as the first cover 12).
  • the lower cover and the shaped cavity of the lower cover form an expansion cavity 25a;
  • a liquid distributor assembly 28 is provided outside the housing assembly 1.
  • the two bent pipes of the liquid distributor assembly 28 (such as the upper suction pipe 20 and the lower suction pipe 19 of the liquid distributor) are respectively connected with the upper cylinder 6 and the lower cylinder.
  • the suction ports are connected.
  • a lower cover 13 is installed at the bottom of the housing assembly 1, and an upper cover assembly 27 is installed at the upper part, thus forming a sealed cavity.
  • the upper and lower cylinders inhale refrigerant from the liquid distributor assembly 28, and the refrigerant enters the cylinder for compression.
  • the compressed high-pressure refrigerant enters the housing cavity and passes through the circulation hole between the motor stator and the motor rotor and the rotor circulation hole. Entering the upper cavity of the motor, the refrigerant is finally discharged from the compressor through the exhaust pipe of the upper cover assembly 27, and enters the air conditioning system 24. After circulating heat in the air conditioning system 24, it passes through the distributor assembly 28 again, thus completing a cycle.
  • the compressor realizes single-cylinder mode operation. If the high-pressure solenoid valve 23 is opened and the low-pressure solenoid valve 22 is closed at the same time, the compressor realizes double-cylinder mode. run.
  • the tail of the slide groove of the variable displacement cylinder is in a sealed state (for example, the slide tail of a conventional cylinder is in an open state), and the tail of the first slide 16 and the tail of the slide groove form a variable displacement slide tail cavity (for example, the slide tail cavity 25).
  • the first sliding vane reciprocates at high speed in the sliding vane groove. Since the variable volume sliding vane reciprocates at high speed in the sealed sliding vane groove, the volume of the sealed sliding vane groove tail chamber is small. , the pressure pulsation in the closed sliding vane groove tail chamber is larger than that of the compressor suction and exhaust, which may cause the compressor's high-frequency vibration and noise to intensify.
  • an embodiment of the present application proposes a sliding vane tail chamber expansion Variable capacity compressor with voltage stabilization structure.
  • the shaped cavity of the first partition 12a and the first cover 12 form an expansion cavity 25a.
  • Expansion channels 26 are respectively provided on the first bearing 11 and the first partition 12a.
  • the expansion channels 26 are respectively connected with the sliding vane tail cavity 25 and the expansion cavity 25a, so that the effective volume of the sliding vane tail cavity 25 is greatly increased, and the friction between the sliding vane and the transformer is reduced.
  • variable volume slide vane tail chamber 25 The proportion of the effective volume of the tail cavity of the sliding plate, variable volume When the slide vane reciprocates at high speed in the sealed slide vane groove, the pressure pulsation in the variable volume slide vane tail chamber 25 will be greatly reduced, thereby reducing the high-frequency vibration and noise of the compressor.
  • the related technology does not have an expansion channel and an expansion cavity, and the closed sliding vane groove tail cavity has a small volume. Since the slide vane volume accounts for a large proportion of the slide vane groove tail chamber volume, when the variable volume cylinder slide plate reciprocates at high speed in the slide vane groove, , its internal pressure pulsation is larger than that of the compressor suction and exhaust, which will lead to the problem of aggravated high-frequency vibration and noise of the compressor.
  • the embodiment of the present application provides an expansion cavity 25a and an expansion channel 26, which is equivalent to greatly increasing the volume of the tail cavity of the slide groove, reducing the ratio of the slide to the variable volume cavity, and reducing the volume of the slide. Pressure pulsation during high-speed reciprocating motion in the slide groove.
  • the embodiments of this application are mainly used in the two processes of compressor double-cylinder operation and low-temperature static startup of the compressor with liquid. If the liquid startup cannot overcome the pressure pulsation, the pressure pulsation in the slide tail chamber will increase significantly, and the pulsation value will be greater than The lowest pressure for switching between single and dual cylinders of a variable displacement compressor causes the variable displacement mechanism to fail during the startup phase and frequent switching between single and dual cylinders of the compressor.
  • the slide tail cavity 25 includes a first slide tail cavity 251 and a second slide tail cavity 252.
  • the first slide tail cavity 251 is connected with the radially outer end of the slide groove 91, so
  • the first slide 16 includes a head 161 and a tail 162, the head 161 can be connected with the first roller 10, and the tail 162 can move and extend into the first slide tail cavity 251;
  • the second slide tail cavity 252 is connected with the first slide tail cavity 251 .
  • the embodiment of the present application can further expand the volume of the original first slide vane tail chamber through the design of the second slide vane tail chamber, achieving a further expansion effect and further reducing the pressure pulsation of the variable volume slide vane tail chamber under normal operating conditions. , reduce the high-frequency vibration and noise of the compressor, and at the same time, it can effectively reduce the pressure pulsation when the variable volume sliding vane cavity (low temperature static start) is filled with liquid, and avoid abnormal noise caused by the sliding vane impact caused by the failure of the variable volume mechanism.
  • the second slide tail cavity 252 includes a first communication groove 2521 and a first cavity 2522.
  • the first communication groove 2521 is connected with the first slide tail cavity 251, and the first cavity 2522 Communicated with the first communication groove 2521 , the first cavity 2522 is communicated with the expansion channel 26 on the first bearing 11 .
  • the first communication groove while connecting the first cavity and the first slide tail cavity, the first communication groove also extends in the opposite direction of the first cavity, allowing the first communication groove to form
  • the further expansion channel further reduces the pressure pulsation in the slide tail cavity and reduces noise; through the first cavity, gas can be connected to the expansion channel and the expansion cavity for effective expansion, effectively reducing pressure pulsation and reducing noise.
  • the first cavity 2522 has a strip-shaped groove structure. One end of the first cavity 2522 is connected to the first communication groove 2521 , and the other end of the first cavity 2522 is connected to the first communication groove 2521 . One end extends in a direction away from the first communication groove 2521, and the other end of the first cavity 2522 is located on one side of the slide groove 91; the first communication groove 2521 is also a strip groove structure. One end of the first communication groove 2521 is connected to the first cavity 2522, and the other end is located on the other side of the slide groove 91; that is, the other end of the first communication groove 2521 is connected to the first cavity 2522.
  • the other end of is located on both sides of the slide groove 91, and the slide groove 91 is located in the middle; the first slide tail cavity 251 is formed along the first At least part of the structure of the first slide tail chamber 251 is located inside the first communication groove 2521 through the axially penetrating through hole of the cylinder 9 .
  • the first cavity has a strip-shaped groove structure, which can further form a channel capable of expanding the gas volume.
  • the first cavity extends toward one side of the slide groove, and the first communication groove extends toward the other side of the slide groove. Extending in the lateral direction can effectively use the space of the cylinder to open different slot structures, and each slot can be opened to the maximum, increasing the volume of the expansion channel and improving the expansion effect.
  • the first cavity 2522 in the cross-section of the first cylinder 9 through the axis, includes a first part 25221 and a second part 25222, and both the first part 25221 and the second part 25222 are Groove structure, the first part 25221 is connected with the second part 25222, the first part 25221 is located radially inside the second part 25222, and the first communication groove 2521 and the first part 25221 pass between The second part 25222 is connected, and the second part 25222 and the expansion channel 26 are connected through the first part 25221.
  • two grooves can be formed, and a step can be formed between the two, which can avoid other structures such as holes as much as possible, and effectively maximize the use of the material space of the cylinder, improving space utilization while improving expansion effect.
  • both the first part 25221 and the second part 25222 are grooves extending along the axial direction of the first cylinder 9 , and the axial height of the first part 25221 is smaller than that of the second part.
  • the connecting end surfaces of the first bearings 11 extend in the axial direction;
  • the expansion channel 26 is a groove that axially penetrates from one axial end surface of the first bearing 11 to the other axial end surface.
  • the first part and the second part are groove structures extending along the axial direction, and have different heights, thereby forming a step hole, which can avoid other components and can effectively expand the capacity.
  • the area of the first cavity 2522 is S; the cross section of the expansion channel 26 is a circular hole, its diameter is D, and satisfies S/ 3 ⁇ 1/4 ⁇ D2 ⁇ S.
  • the embodiment of the present application can keep the pressure pulsation in the tail chamber of the variable volume slide at a relatively small level and avoid starting the pressure in the tail chamber of the variable volume slide with liquid.
  • the pulsation mutation solves the problem of abnormal sound caused by the failure of the variable capacity mechanism during the startup stage, frequent switching between single and double cylinders of the compressor, and abnormal noise caused by the sliding blade collision caused by the failure of the variable capacity mechanism, thereby improving the user's use effect.
  • the expansion channel 26 will have throttling when the pressure pulsation in the tail chamber of the variable volume sliding vane is large. Especially when the compressor is started after standing still for a long time in a low-temperature environment, the tail chamber of the sliding vane groove is prone to liquid accumulation. The pressure pulsation in the sliding vane tail chamber increases significantly (as shown in Figure 4 with the hydraulic pressure pulsation curve), and the expansion channel 26 is throttled more obviously, causing the pulsation value of the sliding vane tail chamber 25 to be greater than the minimum pressure for switching between single and double cylinders of the variable capacity compressor, and the pressure becomes larger.
  • the pressure pulsation in the tail chamber of the variable volume sliding vane is as low as 0.3 bar (as shown in Figure 4, the pressure pulsation curve after expansion and optimization), thereby reducing the high-frequency vibration and noise of the compressor caused by the pulsation, improving the user's use effect, and solving the problem of compression
  • liquid is easy to accumulate in the tail chamber of the sliding vane groove when starting, and the pressure pulsation in the sliding vane tail chamber increases significantly. This problem solves the problem of failure of the variable displacement mechanism during the startup stage, so that the variable displacement compressor can start up smoothly.
  • the second slide tail chamber 252 also includes a pressure communication groove 2523, the pressure communication groove 2523 is in communication with the first communication groove 2521, and the pressure communication groove 2523 can pass into a pressure-containing The gas passes through the first communication groove 2521 and the first slide tail cavity 251 and acts on the tail portion 162 of the first slide 16 to control the locking or unlocking of the first slide 16, Thus, the first roller 10 is controlled to be unloaded or loaded.
  • the external pressure can be introduced into the first sliding vane tail cavity through the pressure communication groove to control the first sliding vane, and the pressure communication groove can also further expand the capacity and effect. , further reducing the pressure pulsation in the slide tail cavity and reducing noise.
  • a pressure switching channel 81 is also included.
  • the pressure switching channel 81 can pass in gas with pressure from outside the variable displacement compressor.
  • the pressure communication groove 2523 is from the first cylinder 9 A through hole axially penetrates from one axial end surface to the other axial end surface.
  • a communication hole 92 is also provided inside the first cylinder 9. One end of the communication hole 92 is connected to the pressure switching channel 81. The other end is connected to the pressure communication groove 2523.
  • the pressure communication groove penetrating along the axial direction is connected with the external pressure switching channel through the communication hole, which can introduce pressure to act on the tail of the first sliding vane, thereby effectively controlling the volume change.
  • the pressure communication groove 2523 is a waist-shaped hole structure.
  • the pressure communication groove of the present application is designed as a waist-shaped hole structure, which can effectively increase the volume of the hole (especially compared to the round hole), thereby further improving the expansion effect, further reducing pressure pulsation, and reducing noise.
  • the expansion cavity 25a is a receiving cavity provided inside the first partition 12a, and a second communication groove 25b is also provided on the first partition 12a.
  • the second communication groove 25b One end is connected to the expansion channel 26 of the first bearing 11, and the other end is connected to the expansion cavity 25a.
  • the gas in the expansion channel can be conducted to the expansion cavity through the second communication groove, thereby forming an effective expansion effect.
  • a first cover plate 12 is also included.
  • the first cover plate 12 is disposed on the axial end surface of the first partition plate 12a away from the first bearing 11, so that the first cover plate 12 is
  • the partition plate 12a is sandwiched between the first bearing 11 and the first cover plate 12.
  • the expansion chamber 25a is axially connected to the first cover plate 12 from the first partition plate 12a.
  • the end surface extends toward the axial direction of the other end surface, and the first cover plate 12 forms a seal against the expansion chamber 25a.
  • Book The application embodiment can form an effective sealing effect on the expansion chamber through the arrangement of the first cover plate, so that the processing of the expansion chamber can be easier to implement, the cost of the application is lower, and the pressure of the slide vane tail chamber of the variable displacement compressor can be effectively reduced. Pulsating, reducing the noise there.
  • An embodiment of the present application also provides an air conditioning system, which includes the variable displacement compressor described in the previous item.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

本申请提供一种变容压缩机和空调系统,变容压缩机包括:第一气缸、第一滑片和第一隔板,所述第一气缸上设置有滑片槽,所述第一滑片的至少部分设置于所述滑片槽中,所述第一气缸上还设置有滑片尾腔,所述滑片尾腔与所述滑片槽连通,所述第一隔板上设置有扩容腔,所述扩容腔能与所述滑片尾腔连通,以将所述滑片尾腔中的气体导入所述扩容腔中。

Description

变容压缩机和空调系统
相关申请
本申请要求2022年08月24日申请的,申请号为202211019774.X,名称为“一种变容压缩机和空调系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及压缩机技术领域,具体涉及一种变容压缩机和空调系统。
背景技术
随着多联机市场的日益壮大,多联机空调系统对压缩机的能力输出范围越来越宽,特别是多联机空调仅开一台内机时需求的压缩机输出能力特别小,普通的双缸变频压缩机输出的最小能力已经无法满足系统需求,导致输出冷量过剩,压缩机会频繁出现开停机,导致压缩机耗功大,同时压缩机频率太低时,压缩机容积效率和电机效率大幅衰减,导致压缩机低频运行能效低。在原有的基础上为了获得小冷量高能效的输出,变频变容压缩机得到了快速的发展,即变频压缩机采用双缸结构,通过增加切换结构,实现变频压缩机单缸、双缸两种模式运行。大负荷时用双缸,小负荷时用单缸。类似功能专利有如专利CN201410805892、CN101091063A、CN113757115A等,都有涉及压缩机变容功能的专利。要实现这种功能,都需将变容气缸的滑片槽进行密封,以便对滑片槽内引入高压或低压来控制滑片的运动。但是变容压缩机双缸运行时,由于变容滑片在密封的滑片槽内高速往复运行,密闭的滑片槽尾腔容积较小,其内部压力脉动相对压缩机吸排气偏大,这样会导致压缩机高频振动噪声加剧;特别是压缩机在低温环境长期静置后启动滑片槽尾腔容易积液,此时滑片尾腔的压力脉动大幅增大,脉动值大于变容压缩机单双缸切换的最低压力,导致变容机构启动阶段失效,压缩机单双缸频繁切换,滑片产生撞击发异响,严重影响用户体验。
发明内容
基于此,本申请提供一种变容压缩机,包括第一气缸、第一滑片和第一隔板。所述第一气缸上设置有滑片槽,所述第一滑片的至少部分设置于所述滑片槽中,所述第一气缸上还设置有滑片尾腔,所述滑片尾腔与所述滑片槽连通,所述第一隔板上设置有扩容腔,所述扩容腔能与所述滑片尾腔连通,以将所述滑片尾腔中的气体导入所述扩容腔中。
在一些实施例中,还包括第一滚子和第一轴承,所述第一气缸具有中空空腔,所述第一滚子设置于所述中空空腔中,
所述第一轴承位于所述第一气缸与所述第一隔板之间,所述第一轴承上设置有扩容通道,所述扩容通道的一端能与所述滑片尾腔连通、另一端与所述扩容腔连通。
在一些实施例中,所述滑片尾腔包括第一滑片尾腔和第二滑片尾腔,所述第一滑片尾腔与所述滑片槽的径向外侧端连通,所述第一滑片包括头部和尾部,所述头部能与所述第一滚子相接,所述尾部能够运动伸入所述第一滑片尾腔中;所述第二滑片尾腔与所述第一滑片尾腔连通。
在一些实施例中,所述第二滑片尾腔包括第一连通槽和第一腔,所述第一连通槽与所述第一滑片尾腔连通,所述第一腔与所述第一连通槽连通,所述第一腔与所述第一轴承上的所述扩容通道连通。
在一些实施例中,在所述第一气缸的横截面内,所述第一腔为条形槽的结构,所述第一腔的一端与所述第一连通槽连通、另一端朝远离所述第一连通槽的方向延伸,且所述第一腔的另一端位于所述滑片槽的一侧;所述第一连通槽也为条形槽的结构,所述第一连通槽的一端与所述第一腔连通,另一端位于所述滑片槽的另一侧;即所述第一连通槽的另一端与所述第一腔的另一端位于所述滑片槽的两侧,所述滑片槽位于中间;所述第一滑片尾腔为沿所述第一气缸的轴向贯穿的通孔,所述第一滑片尾腔的至少部分结构位于所述第一连通槽的内部。
在一些实施例中,在所述第一气缸的过轴线的截面内,所述第一腔包括第一部分和第二部分,所述第一部分和所述第二部分均为槽结构,所述第一部分与所述第二部分连通,所述第一部分位于所述第二部分的径向内侧,所述第二部分将所述第一连通槽和所述第一部分连通,所述第一部分将所述第二部分与所述扩容通道连通。
在一些实施例中,所述第一部分和所述第二部分均为沿所述第一气缸的轴向延伸的槽,且所述第一部分的轴向高度小于所述第二部分的轴向高度;所述第一部分从所述第一气缸与所述第一轴承相接的端面沿轴向延伸,所述第二部分也从所述第一气缸与所述第一轴承相接的端面沿轴向延伸;所述扩容通道为从所述第一轴承的轴向一端面沿轴向贯穿至轴向另一端面的槽。
在一些实施例中,在所述第一气缸的横截面内,所述第一腔的面积为S;所述扩容通道的横截面为圆孔,其直径为D,并满足S/3≤1/4πD2≤S。
在一些实施例中,所述第二滑片尾腔还包括压力连通槽,所述压力连通槽与所述第一连通槽连通,且所述压力连通槽能够通入具有压力的气体以通过所述第一连通槽和所述第 一滑片尾腔而作用于所述第一滑片的尾部,以对所述第一滑片进行锁止或解锁的控制,从而对所述第一滚子进行卸载或加载的控制。
在一些实施例中,还包括压力切换通道,所述压力切换通道能够从所述变容压缩机的外部通入具有压力的气体,所述压力连通槽为从所述第一气缸的轴向一端面沿轴向贯穿至轴向另一端面的贯通孔,所述第一气缸的内部还设置有连通孔,所述连通孔的一端与所述压力切换通道连通、另一端与所述压力连通槽连通。
在一些实施例中,在所述第一气缸的横截面内,所述压力连通槽为腰形孔的结构。
在一些实施例中,所述扩容腔为设置在所述第一隔板内部的容纳腔,所述第一隔板上还设置有第二连通槽,所述第二连通槽的一端与所述第一轴承的所述扩容通道连通、另一端与所述扩容腔连通。
在一些实施例中,还包括第一盖板,所述第一盖板盖设在所述第一隔板的背离所述第一轴承的轴向端面上,使得所述第一隔板夹设在所述第一轴承与所述第一盖板之间,所述扩容腔从所述第一隔板的与所述第一盖板相接的轴向端面朝轴向另一端面的方向延伸形成,所述第一盖板对所述扩容腔形成密封。
本申请还提供一种空调系统,其包括前任一项所述的变容压缩机。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1是本申请的变容压缩机泵体部分的局部剖视图。
图2是本申请的具有变容压缩机的空调系统的结构图。
图3是本申请的变容压缩机的变容缸下端面的截面示意图。
图4是本申请的变容压缩机的滑片尾腔带液运行时的压力脉动曲线图。
附图标记表示为:
1、壳体组件;2、电机定子;3、电机转子;4、曲轴;5、上轴承;6、上气缸;7、上滚子;8、第二隔板;9、第一气缸;91、滑片槽;92、连通孔;10、第一滚子;11、第一轴承;12、第一盖板;12a、第一隔板;13、下盖;14、销钉弹簧;15、销钉;16、第一滑片;161、头部;162、尾部;17、上滑片;18、高压通道;19、分液器下吸气管;20、 分液器上吸气管;21、压力控制管路;22、低压电磁阀;23、高压电磁阀;24、空调系统;25、滑片尾腔;25a、扩容腔;25b、第二连通槽;26、扩容通道;27、上盖组件;28、分液器组件;81、压力切换通道;
251、第一滑片尾腔;252、第二滑片尾腔;2521、第一连通槽;2522、第一腔;25221、第一部分;25222、第二部分;2523、压力连通槽。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
相关技术的变容滚动转子式压缩机在双缸运行时,变容滑片在密封的滑片槽内高速往复运行,由于密闭的滑片槽尾腔容积较小,其内部压力脉动相对压缩机吸排气偏大,这样会导致压缩机高频振动噪声加剧;压缩机在低温环境长期静置后启动滑片槽尾腔容易积液,此时滑片尾腔的压力脉动大幅增大,脉动值大于变容压缩机单双缸切换的最低压力,导致变容机构启动阶段失效,压缩机单双缸频繁切换,滑片产生撞击发异响,严重影响用户体验。
本申请实施例要解决的技术问题在于克服相关技术中的变容压缩机的滑片尾腔存在压力脉动,而导致产生高频振动和噪声的缺陷,从而提供一种变容压缩机和空调系统。
如图1-4所示,本发明实施例提供了一种变容滚动转子式压缩机,压缩机具有一个变容气缸,可以实现卸载和运转,还有一个持续运转的气缸,压缩机具有单缸运行和双缸运行两种模式。
压缩机中变容气缸的滑片尾部腔体为密封状态,不与壳体内的高压气体连通。销钉头部设置有弹簧位于第一轴承11的销钉孔内,销钉孔上端与滑片尾腔25连通,销钉孔下端依次通过第一隔板12a、第一盖板12的高压通道18与壳体内的高压油连通;压缩机双缸运行时高压电磁阀23打开,低压电磁阀22关闭,滑片尾腔25与压缩机排气连通。
为了解决由于密闭的滑片槽尾腔容积较小,其内部压力脉动相对压缩机吸排气偏大,导致压缩机高频振动噪声加剧的问题,本发明实施例的变容压缩机包括滑片尾腔扩容稳压结构,变容滑片槽尾腔扩容可大幅增大滑片槽尾腔的有效容积,降低滑片与尾腔有效容积的占比,有效降低常规工况变容滑片尾腔的压力脉动,进而降低压缩机的高频振动和噪声。在一些实施例中,还在第一轴承11和第一隔板12a上分别设置扩容通道26,扩容通道26 分别与滑片尾腔25和扩容腔25a连通,使得滑片尾腔25的有效容积大幅提升,降低了滑片与变容滑片尾腔有效容积的占比,变容滑片在密封的滑片槽内高速往复运行时滑片尾腔25的压力脉动就会大幅降低,进而降低压缩机的高频振动和噪声。在一些实施例中,所述扩容腔25a为第一隔板12a的腔体与第一盖板12组成的密封腔。
如图1-4所示,本申请实施例提供一种变容压缩机,其包括:
第一气缸9、第一滑片16和第一隔板12a。所述第一气缸9上设置有滑片槽91。所述第一滑片16的至少部分设置于所述滑片槽91中。所述第一气缸9上还设置有滑片尾腔25。所述滑片尾腔25与所述滑片槽91连通。所述第一隔板12a上设置有扩容腔25a。所述扩容腔25a能与所述滑片尾腔25连通,以将所述滑片尾腔25中的气体导入所述扩容腔25a中。
本申请实施例通过在第一隔板上设置的扩容腔(第一隔板是为开设扩容腔而增设的结构),且扩容腔能与滑片尾腔连通,从而有效形成对滑片尾腔扩容的扩容机构,能够大幅增大滑片尾腔的有效容积,从而能够有效降低常规工况变容滑片尾腔的压力脉动,进一步的降低压缩机的高频振动和噪声。
在一些实施例中,还包括第一滚子10和第一轴承11,所述第一气缸9具有中空空腔,所述第一滚子10设置于所述中空空腔中,
所述第一轴承11位于所述第一气缸9与所述第一隔板12a之间,所述第一轴承11上设置有扩容通道26,所述扩容通道26的一端能与所述滑片尾腔25连通、另一端与所述扩容腔25a连通。本申请实施例通过在与第一气缸相接的第一轴承上设置扩容通道,能够通过扩容通道一端与滑片尾腔连通,另一端与扩容腔连通,形成扩容连通通路。具体的,通过在与第一气缸相接的第一轴承上设置扩容通道,以及在与第一轴承相接的第一隔板上设置扩容腔,能够通过扩容通道一端与滑片尾腔连通,另一端与扩容腔连通,从而有效形成对滑片尾腔扩容的扩容机构,能够大幅增大滑片尾腔的有效容积,从而能够有效降低常规工况变容滑片尾腔的压力脉动,进一步的降低压缩机的高频振动和噪声。
本申请实施例通过设置变容滑片槽尾腔扩容机构,使变容滑片槽尾腔扩容,可大幅增大滑片槽尾腔的有效容积,降低滑片与尾腔有效容积的占比,可以有效降低常规工况变容滑片尾腔的压力脉动,进一步的降低压缩机的高频振动和噪声。在一些实施例中,通过限定扩容通道的直径D,可使变容滑片尾腔的压力脉动处于相对较小的水平,可有效降低变容滑片腔带液时的压力脉动,避免带液启动变容滑片尾腔的压力脉动突变,解决变容机构失效导致的滑片撞击产生异响,提升用户的使用效果。
在一些实施例中,变容压缩机,例如旋转式变容压缩机,包括壳体组件1、电机定子 2、电机转子3和泵体组件。所述壳体组件1的上盖组件27上设置有排气管,所述电机定子2固定于所述壳体组件1内壁,所述电机转子3固定于泵体组件的曲轴4上,并置于电机定子2内孔中。所述泵体组件焊接固定于壳体组件1上。泵体组件包括上轴承5、下轴承(例如第一轴承11)和曲轴4,在上轴承5与第一轴承11之间设置有上气缸6和下气缸(例如第一气缸9),上气缸6和第一气缸9中间具有第二隔板8分隔开,上气缸6和第一气缸9内分别安装有上滚子7和下滚子(例如第一滚子10),上滚子7和下滚子分别套于曲轴4的上下偏心部。上气缸6和下气缸内的滑片槽内安装有上滑片17和下滑片(例如第一滑片16),上滑片17、下滑片的头部分别和上滚子7、下滚子的外径抵接,将气缸内的容积腔分隔为高压腔和低压腔,实现压缩机的压缩功能。在第一轴承11内部对应于第一滑片16的底部安装有销钉15,在销钉头部安装有销钉弹簧14,销钉弹簧限位于销钉孔上端和销钉头部之间;所述第一轴承11下端安装有下隔板(例如第一隔板12a),下隔板的下端盖有下盖板(例如第一盖板12),下盖板和下盖板的形腔组成扩容腔25a;在壳体组件1外部设置有分液器组件28,分液器组件28两弯管(例如分液器上吸气管20和分液器下吸气管19)分别与上气缸6和下气缸的吸气口相连。在壳体组件1底部安装有下盖13,上部安装有上盖组件27,这样形成一个密闭腔体。
压缩机运转时,上下气缸从分液器组件28吸入制冷剂,制冷剂进入气缸内进行压缩,压缩后的高压制冷剂进入壳体腔内,并通过电机定子和电机转子间流通孔及转子流通孔进入电机上部空腔,制冷剂最终从上盖组件27的排气管排出压缩机,进入空调系统24,经过空调系统24循环换热后再次进度分液器组件28,由此完成一个循环。压缩机运行过程中若关闭高压电磁阀23,同时打开低压电磁阀22,压缩机实现单缸缸模式运行,若打开高压电磁阀23,同时关闭低压电磁阀22,压缩机实现双缸缸缸模式运行。
变容气缸滑片槽尾部为密封状态(例如常规气缸滑片尾部为敞开状态),第一滑片16尾部与滑片槽尾部形成变容滑片尾腔(例如滑片尾腔25)。
相关技术中,压缩机双缸运行时,第一滑片在滑片槽内高速往复运行,由于变容滑片在密封的滑片槽内高速往复运行,密闭的滑片槽尾腔容积较小,密闭的滑片槽尾腔压力脉动相对压缩机吸排气偏大,可能导致压缩机高频振动噪声加剧。
为了解决由于密闭的滑片槽尾腔容积较小,其内部压力脉动相对压缩机吸排气偏大,导致压缩机高频振动噪声加剧的问题,本申请实施例提出了一种滑片尾腔扩容稳压结构的变容压缩机。第一隔板12a的形腔与第一盖板12组成扩容腔25a。在第一轴承11和第一隔板12a上分别设置扩容通道26,扩容通道26分别与滑片尾腔25和扩容腔25a连通,使得滑片尾腔25的有效容积大幅提升,降低了滑片与变容滑片尾腔有效容积的占比,变容 滑片在密封的滑片槽内高速往复运行时变容滑片尾腔25的压力脉动就会大幅降低,进而降低压缩机的高频振动和噪声。
相关技术不具有扩容通道和扩容腔,密闭的滑片槽尾腔容积较小,由于滑片体积占比滑片槽尾腔容积较大,变容缸滑片在滑片槽内高速往复运动时,其内部压力脉动相对压缩机吸排气偏大,这样会导致压缩机高频振动噪声加剧的问题。为解决该问题,本申请实施例设置了扩容腔25a以及扩容通道26,相当于大幅增加了滑片槽尾腔的容积,减小了滑片与变容腔的占比,减小了滑片在滑片槽内高速往复运动时的压力脉动。
本申请实施例主要应用在压缩机双缸运行过程中和压缩机低温静置启动带液两个过程中,若带液启动无法克服压力脉动,滑片尾腔的压力脉动大幅增大,脉动值大于变容压缩机单双缸切换的最低压力,导致变容机构启动阶段失效,压缩机单双缸频繁切换。
在一些实施例中,所述滑片尾腔25包括第一滑片尾腔251和第二滑片尾腔252,所述第一滑片尾腔251与所述滑片槽91的径向外侧端连通,所述第一滑片16包括头部161和尾部162,所述头部161能与所述第一滚子10相接,所述尾部162能够运动伸入所述第一滑片尾腔251中;所述第二滑片尾腔252与所述第一滑片尾腔251连通。
本申请实施例通过第二滑片尾腔的设计,能够进一步扩大对原有的第一滑片尾腔的容积,起到进一步扩容的效果,进一步降低有效降低常规工况变容滑片尾腔的压力脉动,降低压缩机的高频振动和噪声,同时可有效降低变容滑片腔(低温静止启动)带液时的压力脉动,避免变容机构失效导致的滑片撞击产生异响。
在一些实施例中,所述第二滑片尾腔252包括第一连通槽2521和第一腔2522,所述第一连通槽2521与所述第一滑片尾腔251连通,所述第一腔2522与所述第一连通槽2521连通,所述第一腔2522与所述第一轴承11上的所述扩容通道26连通。
本申请实施例通过第一连通槽的设计,能够在起到连通第一腔与第一滑片尾腔的同时,第一连通槽还朝第一腔相反的方向延伸,能够使得第一连通槽形成进一步扩容的通道,进一步降低滑片尾腔的压力脉动,降低噪声;通过第一腔能够将气体连通至扩容通道和扩容腔中进行有效扩容,有效减小压力脉动,减小噪声。
在一些实施例中,在所述第一气缸9的横截面内,所述第一腔2522为条形槽的结构,所述第一腔2522的一端与所述第一连通槽2521连通、另一端朝远离所述第一连通槽2521的方向延伸,且所述第一腔2522的另一端位于所述滑片槽91的一侧;所述第一连通槽2521也为条形槽的结构,所述第一连通槽2521的一端与所述第一腔2522连通,另一端位于所述滑片槽91的另一侧;即所述第一连通槽2521的另一端与所述第一腔2522的另一端位于所述滑片槽91的两侧,所述滑片槽91位于中间;所述第一滑片尾腔251为沿所述第一 气缸9的轴向贯穿的通孔,所述第一滑片尾腔251的至少部分结构位于所述第一连通槽2521的内部。
在一些实施例中,第一腔为条形槽的结构,能够进一步形成能够对气体扩容的通道,第一腔朝滑片槽的一侧方向延伸,第一连通槽朝滑片槽的另一侧方向延伸,能够有效地利用气缸的空间开设不同的槽结构,并且使得各个槽均能被开设到最大,增大扩容通道的容积,提高扩容效果。
在一些实施例中,在所述第一气缸9的过轴线的截面内,所述第一腔2522包括第一部分25221和第二部分25222,所述第一部分25221和所述第二部分25222均为槽结构,所述第一部分25221与所述第二部分25222连通,所述第一部分25221位于所述第二部分25222的径向内侧,所述第一连通槽2521和所述第一部分25221之间通过所述第二部分25222连通,所述第二部分25222与所述扩容通道26之间通过所述第一部分25221连通。如此能够如图1所示,形成两个槽,二者之间形成台阶,能够尽可能地避让其他的比如孔结构,且有效最大程度地利用了气缸的材料空间,提高空间利用率的同时提高扩容效果。
在一些实施例中,所述第一部分25221和所述第二部分25222均为沿所述第一气缸9的轴向延伸的槽,且所述第一部分25221的轴向高度小于所述第二部分25222的轴向高度;所述第一部分25221从所述第一气缸9与所述第一轴承11相接的端面沿轴向延伸,所述第二部分25222也从所述第一气缸9与所述第一轴承11相接的端面沿轴向延伸;所述扩容通道26为从所述第一轴承11的轴向一端面沿轴向贯穿至轴向另一端面的槽。在一些实施例中,第一部分和第二部分为沿轴向延伸的槽结构,并且高度不同,从而形成台阶孔,能够对其他部件进行避让,同时还能进行有效的扩容。
在一些实施例中,在所述第一气缸9的横截面内,所述第一腔2522的面积为S;所述扩容通道26的横截面为圆孔,其直径为D,并满足S/3≤1/4πD2≤S。本申请实施例通过限定扩容通道D与第一腔横截面积S之间的关系,可使变容滑片尾腔的压力脉动处于相对较小的水平,避免带液启动变容滑片尾腔的压力脉动突变,解决变容机构启动阶段失效,压缩机单双缸频繁切换,变容机构失效导致的滑片撞击产生异响的问题,提升用户的使用效果。
若扩容通道26的通径D偏小,变容滑片尾腔的压力脉动较大时扩容通道会产生节流,特别是压缩机在低温环境长期静置后启动滑片槽尾腔容易积液,滑片尾腔的压力脉动大幅增大(如图4带液压力脉动曲线),扩容通道26节流更加明显,导致滑片尾腔25的脉动值大于变容压缩机单双缸切换的最低压力,变容机构启动阶段失效,压缩机单双缸频繁切换,滑片产生撞击发异响,严重影响用户体验;为进一步优化常规工况变容滑片尾腔的压 力脉动,根据变容滑片尾腔的横向(例如径向)截面积S,对扩容通道26的通径D进行限制,满足S/3≤1/4πD2≤S,可以进一步的优化降低常规工况变容滑片尾腔的压力脉动,压力脉动值低至0.3bar(如图4扩容优化后压力脉动曲线)进而降低由于脉动激发的压缩机的高频振动和噪声,提升用户的使用效果,解决压缩机在低温环境长期静置后启动滑片槽尾腔容易积液,滑片尾腔的压力脉动大幅增大的问题,解决变容机构启动阶段失效的问题,使得变容压缩机能够顺利启动运行。
在一些实施例中,所述第二滑片尾腔252还包括压力连通槽2523,所述压力连通槽2523与所述第一连通槽2521连通,且所述压力连通槽2523能够通入具有压力的气体以通过所述第一连通槽2521和所述第一滑片尾腔251而作用于所述第一滑片16的尾部162,以对所述第一滑片16进行锁止或解锁的控制,从而对所述第一滚子10进行卸载或加载的控制。
本申请实施例通过压力连通槽的设置,能够将外部压力通过压力连通槽通入至第一滑片尾腔,以对第一滑片进行控制,还通过压力连通槽起到进一步扩容的作用和效果,进一步降低滑片尾腔的压力脉动,降低噪声。
在一些实施例中,还包括压力切换通道81,所述压力切换通道81能够从所述变容压缩机的外部通入具有压力的气体,所述压力连通槽2523为从所述第一气缸9的轴向一端面沿轴向贯穿至轴向另一端面的贯通孔,所述第一气缸9的内部还设置有连通孔92,所述连通孔92的一端与所述压力切换通道81连通、另一端与所述压力连通槽2523连通。沿轴向贯穿的压力连通槽通过连通孔与外部的压力切换通道连通,能够引入压力作用于第一滑片的尾部,对变容起到有效控制的作用。
在一些实施例中,在所述第一气缸9的横截面内,所述压力连通槽2523为腰形孔的结构。本申请的压力连通槽设计为腰型孔的结构,能够有效提高孔的容积(尤其相对于圆孔),从而能够进一步提高扩容效果,进一步降低压力脉动,降低噪声。
在一些实施例中,所述扩容腔25a为设置在所述第一隔板12a内部的容纳腔,所述第一隔板12a上还设置有第二连通槽25b,所述第二连通槽25b的一端与所述第一轴承11的所述扩容通道26连通、另一端与所述扩容腔25a连通。通过第二连通槽能够将扩容通道中的气体导通至扩容腔中,形成有效扩容的作用。
在一些实施例中,还包括第一盖板12,所述第一盖板12盖设在所述第一隔板12a的背离所述第一轴承11的轴向端面上,使得所述第一隔板12a夹设在所述第一轴承11与所述第一盖板12之间,所述扩容腔25a从所述第一隔板12a的与所述第一盖板12相接的轴向端面朝轴向另一端面的方向延伸形成,所述第一盖板12对所述扩容腔25a形成密封。本 申请实施例通过第一盖板的设置能够对扩容腔形成有效的密封作用,这样扩容腔的加工能够较易实现,本申请成本较低,且能有效降低变容压缩机的滑片尾腔的压力脉动,降低该处的噪声。
本申请实施例还提供一种空调系统,其包括前任一项所述的变容压缩机。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施例,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种变容压缩机,其特征在于:包括:
    第一气缸(9),所述第一气缸(9)上设置有滑片槽(91)和滑片尾腔(25),所述滑片尾腔(25)与所述滑片槽(91)连通;
    第一滑片(16),所述第一滑片(16)的至少部分设置于所述滑片槽(91)中;及
    第一隔板(12a),所述第一隔板(12a)上设置有扩容腔(25a),所述扩容腔(25a)能与所述滑片尾腔(25)连通,以将所述滑片尾腔(25)中的气体导入所述扩容腔(25a)中。
  2. 根据权利要求1所述的变容压缩机,其特征在于:还包括第一滚子(10)和第一轴承(11),
    所述第一气缸(9)具有中空空腔,所述第一滚子(10)设置于所述中空空腔中,
    所述第一轴承(11)位于所述第一气缸(9)与所述第一隔板(12a)之间,所述第一轴承(11)上设置有扩容通道(26),所述扩容通道(26)的一端能与所述滑片尾腔(25)连通、另一端与所述扩容腔(25a)连通。
  3. 根据权利要求2所述的变容压缩机,其特征在于:
    所述滑片尾腔(25)包括第一滑片尾腔(251)和第二滑片尾腔(252),所述第一滑片尾腔(251)与所述滑片槽(91)的径向外侧端连通,所述第一滑片(16)包括头部(161)和尾部(162),所述头部(161)能与所述第一滚子(10)相接,所述尾部(162)能够运动伸入所述第一滑片尾腔(251)中;所述第二滑片尾腔(252)与所述第一滑片尾腔(251)连通。
  4. 根据权利要求3所述的变容压缩机,其特征在于:
    所述第二滑片尾腔(252)包括第一连通槽(2521)和第一腔(2522),所述第一连通槽(2521)与所述第一滑片尾腔(251)连通,所述第一腔(2522)与所述第一连通槽(2521)连通,所述第一腔(2522)与所述第一轴承(11)上的所述扩容通道(26)连通。
  5. 根据权利要求4所述的变容压缩机,其特征在于:
    在所述第一气缸(9)的横截面内,所述第一腔(2522)为条形槽的结构,所述第一腔(2522)的一端与所述第一连通槽(2521)连通、另一端朝远离所述第一连通槽(2521)的方向延伸,且所述第一腔(2522)的另一端位于所述滑片槽(91)的一侧;所述第一连通槽(2521)也为条形槽的结构,所述第一连通槽(2521)的一端与所述第一腔(2522)连通,另一端位于所述滑片槽(91)的另一侧;即所述第一连通槽(2521)的另一端与所 述第一腔(2522)的另一端位于所述滑片槽(91)的两侧,所述滑片槽(91)位于中间;所述第一滑片尾腔(251)为沿所述第一气缸(9)的轴向贯穿的通孔,所述第一滑片尾腔(251)的至少部分结构位于所述第一连通槽(2521)的内部。
  6. 根据权利要求4所述的变容压缩机,其特征在于:
    在所述第一气缸(9)的过轴线的截面内,所述第一腔(2522)包括第一部分(25221)和第二部分(25222),所述第一部分(25221)和所述第二部分(25222)均为槽结构,所述第一部分(25221)与所述第二部分(25222)连通,所述第一部分(25221)位于所述第二部分(25222)的径向内侧,所述第二部分(25222)将所述第一连通槽(2521)和所述第一部分(25221)连通,所述第一部分(25221)将所述第二部分(25222)与所述扩容通道(26)连通。
  7. 根据权利要求6所述的变容压缩机,其特征在于:
    所述第一部分(25221)和所述第二部分(25222)均为沿所述第一气缸(9)的轴向延伸的槽,且所述第一部分(25221)的轴向高度小于所述第二部分(25222)的轴向高度;所述第一部分(25221)从所述第一气缸(9)与所述第一轴承(11)相接的端面沿轴向延伸,所述第二部分(25222)也从所述第一气缸(9)与所述第一轴承(11)相接的端面沿轴向延伸;所述扩容通道(26)为从所述第一轴承(11)的轴向一端面沿轴向贯穿至轴向另一端面的槽。
  8. 根据权利要求4所述的变容压缩机,其特征在于:
    在所述第一气缸(9)的横截面内,所述第一腔(2522)的面积为S;所述扩容通道(26)的横截面为圆孔,其直径为D,并满足S/3≤1/4πD2≤S。
  9. 根据权利要求4-8中任一项所述的变容压缩机,其特征在于:
    所述第二滑片尾腔(252)还包括压力连通槽(2523),所述压力连通槽(2523)与所述第一连通槽(2521)连通,且所述压力连通槽(2523)能够通入具有压力的气体以通过所述第一连通槽(2521)和所述第一滑片尾腔(251)而作用于所述第一滑片(16)的尾部(162),以对所述第一滑片(16)进行锁止或解锁的控制,从而对所述第一滚子(10)进行卸载或加载的控制。
  10. 根据权利要求9所述的变容压缩机,其特征在于:还包括压力切换通道(81),
    所述压力切换通道(81)能够从所述变容压缩机的外部通入具有压力的气体,所述压力连通槽(2523)为从所述第一气缸(9)的轴向一端面沿轴向贯穿至轴向另一端面的贯通孔,所述第一气缸(9)的内部还设置有连通孔(92),所述连通孔(92)的一端与所述压力切换通道(81)连通、另一端与所述压力连通槽(2523)连通。
  11. 根据权利要求10所述的变容压缩机,其特征在于:
    在所述第一气缸(9)的横截面内,所述压力连通槽(2523)为腰形孔的结构。
  12. 根据权利要求2-11中任一项所述的变容压缩机,其特征在于:
    所述扩容腔(25a)为设置在所述第一隔板(12a)内部的容纳腔,所述第一隔板(12a)上还设置有第二连通槽(25b),所述第二连通槽(25b)的一端与所述第一轴承(11)的所述扩容通道(26)连通、另一端与所述扩容腔(25a)连通。
  13. 根据权利要求12所述的变容压缩机,其特征在于:
    还包括第一盖板(12),所述第一盖板(12)盖设在所述第一隔板(12a)的背离所述第一轴承(11)的轴向端面上,使得所述第一隔板(12a)夹设在所述第一轴承(11)与所述第一盖板(12)之间,所述扩容腔(25a)从所述第一隔板(12a)的与所述第一盖板(12)相接的轴向端面朝轴向另一端面的方向延伸形成,所述第一盖板(12)对所述扩容腔(25a)形成密封。
  14. 一种空调系统,其特征在于:包括权利要求1-13中任一项所述的变容压缩机。
PCT/CN2023/089725 2022-08-24 2023-04-21 变容压缩机和空调系统 WO2024041002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211019774.XA CN115306715A (zh) 2022-08-24 2022-08-24 一种变容压缩机和空调系统
CN202211019774.X 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024041002A1 true WO2024041002A1 (zh) 2024-02-29

Family

ID=83864338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089725 WO2024041002A1 (zh) 2022-08-24 2023-04-21 变容压缩机和空调系统

Country Status (2)

Country Link
CN (1) CN115306715A (zh)
WO (1) WO2024041002A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115306715A (zh) * 2022-08-24 2022-11-08 珠海格力电器股份有限公司 一种变容压缩机和空调系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140086547A (ko) * 2012-12-28 2014-07-08 엘지전자 주식회사 압축기
CN104912808A (zh) * 2015-06-25 2015-09-16 广东美芝制冷设备有限公司 压缩机构及具有其的低背压旋转式压缩机
CN105673509A (zh) * 2016-03-21 2016-06-15 珠海凌达压缩机有限公司 一种泵体、旋转滚子压缩机及空调器
CN109113994A (zh) * 2018-10-29 2019-01-01 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、变容压缩机、空气调节系统
CN110374875A (zh) * 2019-07-29 2019-10-25 珠海格力节能环保制冷技术研究中心有限公司 转子式压缩机的滑片结构、转子式压缩机及制冷设备
CN113883054A (zh) * 2021-10-28 2022-01-04 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、变容压缩机和空调系统
CN115306715A (zh) * 2022-08-24 2022-11-08 珠海格力电器股份有限公司 一种变容压缩机和空调系统
CN218266342U (zh) * 2022-08-24 2023-01-10 珠海格力电器股份有限公司 一种变容压缩机和空调系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140086547A (ko) * 2012-12-28 2014-07-08 엘지전자 주식회사 압축기
CN104912808A (zh) * 2015-06-25 2015-09-16 广东美芝制冷设备有限公司 压缩机构及具有其的低背压旋转式压缩机
CN105673509A (zh) * 2016-03-21 2016-06-15 珠海凌达压缩机有限公司 一种泵体、旋转滚子压缩机及空调器
CN109113994A (zh) * 2018-10-29 2019-01-01 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、变容压缩机、空气调节系统
CN110374875A (zh) * 2019-07-29 2019-10-25 珠海格力节能环保制冷技术研究中心有限公司 转子式压缩机的滑片结构、转子式压缩机及制冷设备
CN113883054A (zh) * 2021-10-28 2022-01-04 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、变容压缩机和空调系统
CN115306715A (zh) * 2022-08-24 2022-11-08 珠海格力电器股份有限公司 一种变容压缩机和空调系统
CN218266342U (zh) * 2022-08-24 2023-01-10 珠海格力电器股份有限公司 一种变容压缩机和空调系统

Also Published As

Publication number Publication date
CN115306715A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
JP4516121B2 (ja) ロータリ圧縮機の容量可変装置及びこれを備えたエアコンデショナの運転方法
JP5631398B2 (ja) ロータリ圧縮機及び冷凍サイクル装置
WO2013168194A1 (ja) 密閉形圧縮機及びヒートポンプ装置
EP1851437B1 (en) Capacity varying type rotary compressor
WO2024041002A1 (zh) 变容压缩机和空调系统
KR102338127B1 (ko) 로터리 압축기
CN203272136U (zh) 单缸多级压缩机
JP5228905B2 (ja) 冷凍装置
JP2013241851A (ja) 気体圧縮機
JP2006152839A (ja) ロータリ2段圧縮機及びその圧縮機を用いた空気調和機
KR20100023632A (ko) 용량가변형 로터리 압축기 및 이를 적용한 냉동기기 및 그 운전 방법
JP5338314B2 (ja) 圧縮機および冷凍装置
CN218266342U (zh) 一种变容压缩机和空调系统
JP3764261B2 (ja) スクロール圧縮機
WO2016076064A1 (ja) 回転式圧縮機及び冷凍サイクル装置
KR101983049B1 (ko) 압축기
KR101587170B1 (ko) 로터리 압축기
CN111075721B (zh) 泵体组件及变容压缩机
KR101587174B1 (ko) 로터리 압축기
JP5727348B2 (ja) 気体圧縮機
JP5363486B2 (ja) ロータリ圧縮機
CN111059056A (zh) 泵体组件、旋转式压缩机、空调器
CN104564675A (zh) 双缸旋转式压缩机及具有其的制冷装置
CN112412785B (zh) 压缩机及冷冻循环装置
JP2000009065A (ja) スクロール型圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856097

Country of ref document: EP

Kind code of ref document: A1