WO2022116577A1 - 泵体组件及具有其的流体机械 - Google Patents

泵体组件及具有其的流体机械 Download PDF

Info

Publication number
WO2022116577A1
WO2022116577A1 PCT/CN2021/110071 CN2021110071W WO2022116577A1 WO 2022116577 A1 WO2022116577 A1 WO 2022116577A1 CN 2021110071 W CN2021110071 W CN 2021110071W WO 2022116577 A1 WO2022116577 A1 WO 2022116577A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump body
cylinder
body assembly
roller
following relationship
Prior art date
Application number
PCT/CN2021/110071
Other languages
English (en)
French (fr)
Inventor
巩庆霞
柯达俊
罗惠芳
吴健
邓罡
尹雪峰
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2022116577A1 publication Critical patent/WO2022116577A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts

Definitions

  • the present disclosure is based on the CN application number CN202011396227.4 and the filing date is December 03, 2020, and claims its priority, and the disclosure content of the CN application is hereby incorporated into the present disclosure as a whole.
  • the present disclosure relates to the technical field of pump body assemblies, and in particular, to a pump body assembly and a fluid machine having the same.
  • the relative eccentricity ⁇ should be selected to be a larger value, but with the increase of the eccentricity e .
  • the difficulty of the compressor in the structural design will increase, and it will also lead to an increase in the contact force and friction and wear between the sliding vane and the roller, resulting in an increase in the power consumption of the compressor and a decrease in reliability. Therefore, there is no optimal relative eccentricity ⁇ in the prior art to keep the compressor performance in a better state.
  • the main purpose of the present disclosure is to provide a pump body assembly and a fluid machine having the same, so as to improve the problem that the optimal relative eccentricity is not selected in the prior art.
  • a pump body assembly including: a cylinder assembly, including a cylinder, a roller and a sliding vane, the cylinder has an inner cavity and a sliding vane groove communicated with the inner cavity, and the roller
  • the roller is rotatably arranged in the inner cavity, the sliding vane is slidably arranged in the sliding vane groove, and the head of the sliding vane is in contact with the outer peripheral surface of the roller;
  • the crankshaft is passed through the cylinder assembly, and the crankshaft includes an eccentric portion, The eccentric part is located in the inner cavity, and the roller is sleeved on the eccentric part; wherein, the eccentricity e of the eccentric part and the inner circle radius R of the cylinder satisfy the following relationship: or or
  • the following relationship is satisfied between the height H of the cylinder and the inner diameter D of the cylinder:
  • the following relationship is satisfied between the height H of the cylinder and the inner diameter D of the cylinder:
  • the following relationship is satisfied between the height H of the cylinder and the inner diameter D of the cylinder:
  • the crankshaft further includes a long shaft section and a short shaft section, the long shaft section and the short shaft section are connected by an eccentric portion, and the outer diameters of the long shaft section and the short shaft section are the same; wherein, the exhaust volume of the pump body assembly The following relationship is satisfied between V and the outer diameter d of the long shaft segment:
  • the following relationship is satisfied between the exhaust volume V of the pump body assembly and the outer diameter d of the long shaft segment:
  • the following relationship is satisfied between the exhaust volume V of the pump body assembly and the outer diameter d of the long shaft segment:
  • the thickness a of the rollers satisfies the following relationship: 3.80 ⁇ a ⁇ 7.85.
  • the thickness a of the rollers satisfies the following relationship: 3.80 ⁇ a ⁇ 7.5.
  • the crankshaft includes two eccentric portions, which are arranged in a one-to-one correspondence with the rollers of the two cylinder assemblies.
  • a fluid machine comprising the above-mentioned pump body assembly.
  • the driving device drives the crankshaft to rotate, so that the rollers sleeved outside the eccentric portion of the crankshaft move in the cylinder, thereby compressing and discharging the refrigerant.
  • the above relationship between the eccentricity e of the eccentric part and the inner circle radius R of the cylinder makes the relative eccentricity (the ratio of the eccentricity e to the inner circle radius R of the cylinder) an optimal value, thereby improving the utilization rate of the cylinder volume , reduces the occupied volume of the pump body assembly, improves the operating performance of the pump body assembly, reduces the power consumption of the pump body assembly, improves the problem that the optimal relative eccentricity is not selected in the prior art, and improves the Operational reliability of pump body components.
  • FIG. 1 shows a front view of an embodiment of a pump body assembly according to the present disclosure
  • Fig. 2 shows the enlarged schematic diagram of the pump body assembly in Fig. 1 at place A;
  • FIG. 3 shows a cross-sectional view of an embodiment of a fluid machine according to the present disclosure
  • Figure 4 shows the relationship between the relative eccentricity ⁇ of the fluid machine and the compressor performance coefficient COP
  • Figure 5 shows the relationship between the aspect ratio ⁇ of the fluid machine and the compressor performance coefficient COP
  • FIG. 6 is a graph showing the relationship between the ratio ⁇ of the displacement of the fluid machine to the shaft diameter and the compressor performance coefficient COP;
  • Figure 7 shows a graph showing the relationship between the thickness of the rollers of the fluid machine and the compressor coefficient of performance COP.
  • the present application provides a pump body assembly and a fluid machine having the same.
  • the pump body assembly includes a cylinder assembly and a crankshaft 40 .
  • the cylinder assembly includes a cylinder 10, a roller 20 and a sliding vane 30.
  • the cylinder 10 has an inner cavity 11 and a sliding vane slot 12 communicated with the inner cavity 11.
  • the roller 20 is rotatably arranged in the inner cavity 11, and the sliding vane 30 can be It is slidably arranged in the sliding vane groove 12 , and the head of the sliding vane 30 is in contact with the outer peripheral surface of the roller 20 .
  • the crankshaft 40 is passed through the cylinder assembly, the crankshaft 40 includes an eccentric portion 41 , the eccentric portion 41 is located in the inner cavity 11 , and the rollers 20 are sleeved on the eccentric portion 41 .
  • the following relationship is satisfied between the eccentricity e of the eccentric portion 41 and the inner circle radius R of the cylinder 10:
  • the driving device drives the crankshaft 40 to rotate, so that the roller 20 sleeved outside the eccentric portion 41 of the crankshaft 40 moves in the cylinder 10, thereby compressing and discharging the refrigerant .
  • the above relationship between the eccentricity e of the eccentric portion 41 and the inner circle radius R of the cylinder 10 makes the relative eccentricity (the ratio of the eccentricity e to the inner circle radius R of the cylinder) an optimum value, thereby increasing the cylinder volume
  • the utilization rate, the occupied volume of the pump body assembly are reduced, the operation performance of the pump body assembly is improved, the power consumption of the pump body assembly is reduced, and the problem that the optimal relative eccentricity is not selected in the prior art is improved, Improves the operational reliability of the pump body assembly.
  • the relationship between the eccentric amount e of the eccentric portion 41 and the inner radius R of the cylinder 10 is not limited to this. In other embodiments not shown in the drawings, the following relationship is satisfied between the eccentricity e of the eccentric portion and the inner circle radius R of the cylinder: In this way, the above-mentioned relationship between the eccentricity e of the eccentric portion and the inner circle radius R of the cylinder 10 makes the relative eccentricity (the ratio of the eccentricity e to the inner circle radius R of the cylinder) an optimum value, thereby improving the utilization of the cylinder volume.
  • the relationship between the eccentric amount e of the eccentric portion 41 and the inner radius R of the cylinder 10 is not limited to this. In other embodiments not shown in the drawings, the following relationship is satisfied between the eccentricity e of the eccentric portion and the inner circle radius R of the cylinder: In this way, the above-mentioned relationship between the eccentricity e of the eccentric portion and the inner circle radius R of the cylinder 10 makes the relative eccentricity (the ratio of the eccentricity e to the inner circle radius R of the cylinder) an optimum value, thereby improving the utilization of the cylinder volume.
  • the relative eccentricity ⁇ (the ratio of the eccentricity e of the eccentric portion 41 to the inner circle radius R of the cylinder 10 ) has a great influence on the structural size of the pump body assembly and the utilization rate of the cylinder volume.
  • Volume utilization From the perspective of improving the utilization rate of cylinder volume, reducing the volume and weight of the pump body assembly (compressor), and improving the performance of the pump body assembly (compressor), a larger value for ⁇ should be selected, but with the increase of the eccentricity e, the This leads to an increase in the difficulty of structural design of the pump body assembly (compressor), and also increases the contact force and friction loss between the sliding vane 30 and the roller 20, and increases the power consumption and reliability of the pump body assembly (compressor). reduce.
  • the following relationship is satisfied between the height H of the cylinder 10 and the inner diameter D of the cylinder 10: Specifically, the influence of the ratio of the height H of the cylinder 10 to the inner diameter D of the cylinder 10 on the pump body assembly is mainly reflected in the change of the force on the rollers and the vanes and the change of the leakage from the compression chamber to the suction chamber.
  • the circumferential leakage of the tangential point gap between the cylinder 10 and the roller 20 and the contact point gap between the sliding vane 30 and the roller 20 is also smaller.
  • an excessively small cylinder height will not only lead to an increase in the diameter of the cylinder 10 and the external dimensions of the pump body assembly; it will also lead to an increase in the sliding speed between the sliding vane 30 and the roller 20, aggravated wear, and affect the pump body assembly. service life.
  • the above relationship between the height H of the cylinder 10 and the inner diameter D of the cylinder 10 enables the height-diameter ratio of the cylinder 10 to be set within an optimal range, so that the performance of the pump body assembly is in a better state.
  • the following relationship is satisfied between the height H of the cylinder 10 and the inner diameter D of the cylinder 10: In this way, the above relationship between the height H of the cylinder 10 and the inner diameter D of the cylinder 10 enables the height-diameter ratio of the cylinder 10 to be set within an optimal range, so that the performance of the pump body assembly is in a better state.
  • the following relationship is satisfied between the height H of the cylinder 10 and the inner diameter D of the cylinder 10: In this way, the above relationship between the height H of the cylinder 10 and the inner diameter D of the cylinder 10 enables the height-diameter ratio of the cylinder 10 to be set within an optimal range, so that the performance of the pump body assembly is in a better state.
  • the crankshaft 40 further includes a long shaft section 42 and a short shaft section 43 , the long shaft section 42 and the short shaft section 43 are connected by an eccentric portion 41 , and the outer diameters of the long shaft section 42 and the short shaft section 43 are the same.
  • the following relationship is satisfied between the exhaust volume V of the pump body assembly and the outer diameter d of the long shaft section 42: Specifically, the design of the ratio of the exhaust volume V of the pump body assembly to the outer diameter d of the long shaft section 42 is very important to the performance and reliability of the pump body assembly (compressor).
  • the ratio of the outer diameter d of the long shaft section 42 is too large, the frictional power consumption of the pump body assembly will increase, which is detrimental to performance; if the ratio of the exhaust volume V of the pump body assembly to the outer diameter d of the long shaft section 42 is too small , which will increase the deflection of the crankshaft of the pump body assembly, which is likely to cause abnormal wear. In this way, the above relationship between the ratio of the exhaust volume V of the pump body assembly to the outer diameter d of the long shaft section 42 enables the height-diameter ratio of the cylinder 10 to be set within the optimal range, so that the performance of the pump body assembly is in a better state .
  • the following relationship is satisfied between the exhaust volume V of the pump body assembly and the outer diameter d of the long shaft section 42: In this way, the above relationship between the ratio of the exhaust volume V of the pump body assembly to the outer diameter d of the long shaft section 42 enables the height-diameter ratio of the cylinder 10 to be set within the optimal range, so that the performance of the pump body assembly is in a better state .
  • the following relationship is satisfied between the exhaust volume V of the pump body assembly and the outer diameter d of the long shaft section 42: In this way, the above relationship between the ratio of the exhaust volume V of the pump body assembly to the outer diameter d of the long shaft section 42 enables the height-diameter ratio of the cylinder 10 to be set within the optimal range, so that the performance of the pump body assembly is in a better state .
  • the thickness a of the roller 20 satisfies the following relationship: 3.80 ⁇ a ⁇ 7.85.
  • the contact area between the roller 20 and the lower flange 110 or the separator 140 directly affects the end face leakage and friction loss of the roller 20.
  • the thickness a of the roller 20 satisfies the following relationship: 3.80 ⁇ a ⁇ 7.5. In this way, the above-mentioned setting of the thickness a of the roller 20 enables a better balance between leakage loss and friction loss, so that the performance of the pump body assembly is in a better state.
  • the number of cylinder assemblies is two, and the two cylinder assemblies are arranged at intervals along the height direction of the pump body assembly.
  • the crankshaft 40 includes two eccentric portions 41 , and the two eccentric portions 41 are one with the rollers 20 of the two cylinder assemblies. A corresponding setting. In this way, the above arrangement makes the pump body assembly a double-cylinder pump body assembly, thereby improving the operation efficiency of the pump body assembly.
  • the pump body assembly further includes an upper flange 100 , a lower flange 110 , a lower cover plate 120 and a spring 130 .
  • the spring 130 is arranged in the sliding vane slot 12 , and one end of the spring 130 is in contact with the end of the sliding vane 30 away from the roller 20 , and the other end of the spring 130 is in contact with the inner wall of the sliding vane slot 12 , so as to move toward the sliding vane 30 .
  • a spring force is applied towards the movement of the rollers 20 .
  • the upper flange 100 is arranged above the cylinder 10 and has an exhaust hole
  • the lower flange 110 is arranged below the cylinder 10
  • the lower cover 120 is arranged below the lower flange 110 and is connected with the lower flange 110 .
  • the present application also provides a fluid machine including the above-mentioned pump body assembly.
  • the fluid machine is a compressor.
  • the compressor performance coefficient COP satisfies the following relationship:
  • Q is the cooling capacity of the compressor
  • the size of the cooling capacity is affected by the leakage
  • the leakage is affected by the thickness a of the roller 20, the height H of the cylinder 10 and the inner diameter D of the cylinder 10.
  • W is the power consumption of the compressor, which is related to friction loss, indicated power loss, etc.
  • the friction loss is related to the thickness a of the roller 20 , the inner radius R of the cylinder 10 and the eccentricity e of the eccentric portion 41 .
  • the relationship between the relative eccentricity ⁇ (the ratio of the eccentricity e of the eccentric portion 41 to the inner circle radius R of the cylinder 10 ) and the compressor performance coefficient COP is shown in Figure 4, when the relative eccentricity ⁇ ranges from 0.17 to 0.25 , the compressor performance coefficient reaches the optimal range.
  • the relationship between the height-diameter ratio ⁇ (the ratio of the height H of the cylinder 10 to the inner diameter D of the cylinder 10) and the compressor performance coefficient COP is shown in Figure 5. As the height-diameter ratio ⁇ increases, the compressor performance coefficient First increase and then decrease, when the height-diameter ratio ⁇ range is 0.4 ⁇ 0.58, the compressor performance coefficient reaches the optimal range.
  • the relationship between the ratio of the exhaust volume V to the shaft diameter ⁇ (the ratio of the exhaust volume V of the pump body assembly to the outer diameter d of the long shaft section 42) and the compressor performance coefficient COP and the wear amount of the parts are shown in Figure 6 , when the ratio of the displacement V to the crankshaft diameter is in the range of 0.6 ⁇ 1.8, the performance of the compressor reaches the optimal range, and the wear amount of the compressor is small at this time.
  • the relationship between the thickness a of the roller 20 and the compressor performance coefficient COP is shown in FIG. 7 . When the thickness of the roller 20 ranges from 4 to 7.5 mm, the measured compressor performance coefficient reaches an optimal range.
  • the fluid machine further includes an upper cover assembly 50 , a housing assembly 60 , a driving device 80 , a liquid separator 90 and a lower cover assembly 70 .
  • the upper cover assembly 50 is covered on the casing assembly 60
  • the lower cover assembly 70 is located below the casing assembly 60 and is connected with the casing assembly 60
  • the upper cover assembly 50, the casing assembly 60 and the lower cover assembly 70 are formed around
  • the installation cavity, the driving device 80 and the pump body assembly are all arranged in the installation cavity.
  • the driving device 80 includes a stator 81 and a rotor 82 .
  • the driving device 80 is sleeved outside the long shaft section 42 of the crankshaft 40 and drives the long shaft section 42 to rotate, thereby driving the crankshaft 40 to rotate.
  • the dispenser 90 is connected to both the exhaust port and the intake port of the pump body assembly.
  • the head of the sliding vane 30 is in close contact with the outer wall of the roller 20, and reciprocates along the sliding vane groove 12 with the rotation of the roller 20.
  • the roller 20, the sliding vane 30 and the cylinder The crescent-shaped working volume formed by 10 constantly changes, so as to realize the suction, compression and exhaust process of the compressor.
  • the followability between the roller 20 and the slider 30 is deteriorated, and the stability of the slider 30 itself is also deteriorated.
  • the driving device drives the crankshaft to rotate, so that the rollers sleeved outside the eccentric part of the crankshaft move in the cylinder, thereby compressing and discharging the refrigerant.
  • the relative eccentricity (the ratio of the eccentricity e to the inner circle radius R of the cylinder) an optimal value, thereby improving the utilization rate of the cylinder volume , reduces the occupied volume of the pump body assembly, improves the operating performance of the pump body assembly, reduces the power consumption of the pump body assembly, improves the problem that the optimal relative eccentricity is not selected in the prior art, and improves the Operational reliability of pump body components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种泵体组件及流体机械,泵体组件包括:气缸组件,包括气缸(10)、滚子(20)及滑片(30),气缸(10)具有内腔(11)及与内腔(11)相连通的滑片槽(12),滚子(20)可转动地设置在内腔(11)中,滑片(30)可滑动地设置在滑片槽(12)内,滑片(30)的头部与滚子(20)的外周面相接触;曲轴(40),穿设在气缸组件上,曲轴(40)包括偏心部(41),偏心部(41)位于内腔(11)中,且滚子(20)套设在偏心部(41)上;偏心部(41)的偏心量e与气缸(10)的内圆半径R的比值为0.15-0.195或0.21-0.225或0.235-0.27,改善了现有技术中并未对最优相对偏心距进行选取的问题。

Description

泵体组件及具有其的流体机械
本公开是以CN申请号为CN202011396227.4,申请日为2020年12月03的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及泵体组件技术领域,具体而言,涉及一种泵体组件及具有其的流体机械。
背景技术
目前,单转子式滚动转子式压缩机在家用空调领域的应用十分广泛,提效和降成本是滚动转子式压缩机的两大发展趋势和目标。具体地,压缩机小型化生产是降低成本的重要途径,而提效则需要从压缩机本身结构出发。其中,相对偏心距Ф(即曲轴偏心量e与气缸内圆半径R的比值)对压缩机的性能至关重要。
然而,在现有技术中,从提高气缸容积利用率、减少压缩机体积和重量和提升压缩机性能的角度考虑,相对偏心距Ф宜选择较大的值,但是随着偏心量e的加大,压缩机在结构设计时的难度增加,同时也会导致滑片与滚子间的接触力和摩擦磨损增加,引起压缩机的功耗增大,可靠性降低。因此,现有技术中并未存在最优相对偏心距Ф以使压缩机性能处于较优的状态。
公开内容
本公开的主要目的在于提供一种泵体组件及具有其的流体机械,以改善现有技术中并未对最优相对偏心距进行选取的问题。
为了实现上述目的,根据本公开的一个方面,提供了一种泵体组件,包括:气缸组件,包括气缸、滚子及滑片,气缸具有内腔及与内腔相连通的滑片槽,滚子可转动地设置在内腔中,滑片可滑动地设置在滑片槽内,且滑片的头部与滚子的外周面相接触;曲轴,穿设在气缸组件上,曲轴包括偏心部,偏心部位于内腔中,且滚子套设在偏心部上;其中,偏心部的偏心量e与气缸的内圆半径R之间满足以下关系:
Figure PCTCN2021110071-appb-000001
Figure PCTCN2021110071-appb-000002
Figure PCTCN2021110071-appb-000003
在一些实施例中,气缸的高度H与气缸的内圆直径D之间满足以下关系:
Figure PCTCN2021110071-appb-000004
在一些实施例中,气缸的高度H与气缸的内圆直径D之间满足以下关系:
Figure PCTCN2021110071-appb-000005
在一些实施例中,气缸的高度H与气缸的内圆直径D之间满足以下关系:
Figure PCTCN2021110071-appb-000006
在一些实施例中,曲轴还包括长轴段和短轴段,长轴段和短轴段通过偏心部连接,长轴段和短轴段的外径一致;其中,泵体组件的排气量V与长轴段的外径d之间满足以下关系:
Figure PCTCN2021110071-appb-000007
在一些实施例中,泵体组件的排气量V与长轴段的外径d之间满足以下关系:
Figure PCTCN2021110071-appb-000008
在一些实施例中,泵体组件的排气量V与长轴段的外径d之间满足以下关系:
Figure PCTCN2021110071-appb-000009
在一些实施例中,滚子的厚度a满足以下关系:3.80≤a≤7.85。
在一些实施例中,滚子的厚度a满足以下关系:3.80≤a≤7.5。
在一些实施例中,气缸组件为两个,两个气缸组件沿泵体组件的高度方向间隔设置,曲轴包括两个偏心部,两个偏心部与两个气缸组件的滚子一一对应设置。
根据本公开的另一方面,提供了一种流体机械,包括上述的泵体组件。
应用本公开的技术方案,在泵体组件运行过程中,驱动装置驱动曲轴转动,以使套设在曲轴的偏心部外的滚子在气缸内运动,进而压缩并排出冷媒。这样,偏心部的偏心量e与气缸的内圆半径R之间的上述关系使得相对偏心距(偏心量e与气缸的内圆半径R之比)为最优值,进而提高了气缸容积利用率、减小了泵体组件的占用体积、提升了泵体组件的运行性能、降低了泵体组件的功耗,改善了现有技术中并未对最优相对偏心距进行选取的问题,提升了泵体组件的运行可靠性。
附图说明
构成本申请的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示 意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开的泵体组件的实施例的主视图;
图2示出了图1中的泵体组件的A处放大示意图;
图3示出了根据本公开的流体机械的实施例的剖视图;
图4示出了流体机械的相对偏心距Ф与压缩机性能系数COP之间的关系图;
图5示出了流体机械的高径比λ与压缩机性能系数COP之间的关系图;
图6示出了流体机械的排气量与轴径的比值ε与压缩机性能系数COP之间的关系图;以及
图7示出了流体机械的滚子的厚度与压缩机性能系数COP之间的关系图。
其中,上述附图包括以下附图标记:
10、气缸;11、内腔;12、滑片槽;20、滚子;30、滑片;40、曲轴;41、偏心部;42、长轴段;43、短轴段;50、上盖组件;60、壳体组件;70、下盖组件;80、驱动装置;81、定子;82、转子;90、分液器;100、上法兰;110、下法兰;120、下盖板;130、弹簧;140、隔板。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本公开中,在未作相反说明的情况下,使用的方位词如“上、下”通常是针对附图所示的方向而言的,或者是针对竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“左、右”通常是针对附图所示的左、右;“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本公开。
为了改善现有技术中并未对最优相对偏心距进行选取的问题,本申请提供了一种泵体组件及具有其的流体机械。
如图1和图3所示,泵体组件包括气缸组件和曲轴40。气缸组件包括气缸10、滚子20及滑片30,气缸10具有内腔11及与内腔11相连通的滑片槽12,滚子20可转动地设置在内腔11中,滑片30可滑动地设置在滑片槽12内,且滑片30的头部与滚子20的外周面相接触。曲轴40穿设在气缸组件上,曲轴40包括偏心部41,偏心 部41位于内腔11中,且滚子20套设在偏心部41上。其中,偏心部41的偏心量e与气缸10的内圆半径R之间满足以下关系:
Figure PCTCN2021110071-appb-000010
应用本实施例的技术方案,在泵体组件运行过程中,驱动装置驱动曲轴40转动,以使套设在曲轴40的偏心部41外的滚子20在气缸10内运动,进而压缩并排出冷媒。这样,偏心部41的偏心量e与气缸10的内圆半径R之间的上述关系使得相对偏心距(偏心量e与气缸的内圆半径R之比)为最优值,进而提高了气缸容积利用率、减小了泵体组件的占用体积、提升了泵体组件的运行性能、降低了泵体组件的功耗,改善了现有技术中并未对最优相对偏心距进行选取的问题,提升了泵体组件的运行可靠性。
需要说明的是,偏心部41的偏心量e与气缸10的内圆半径R之间的关系不限于此。在附图中未示出的其他实施方式中,偏心部的偏心量e与气缸的内圆半径R之间满足以下关系:
Figure PCTCN2021110071-appb-000011
这样,偏心部的偏心量e与气缸10的内圆半径R之间的上述关系使得相对偏心距(偏心量e与气缸的内圆半径R之比)为最优值,进而提高了气缸容积利用率、减小了泵体组件的占用体积、提升了泵体组件的运行性能、降低了泵体组件的功耗,改善了现有技术中并未对最优相对偏心距进行选取的问题,提升了泵体组件的运行可靠性。
需要说明的是,偏心部41的偏心量e与气缸10的内圆半径R之间的关系不限于此。在附图中未示出的其他实施方式中,偏心部的偏心量e与气缸的内圆半径R之间满足以下关系:
Figure PCTCN2021110071-appb-000012
这样,偏心部的偏心量e与气缸10的内圆半径R之间的上述关系使得相对偏心距(偏心量e与气缸的内圆半径R之比)为最优值,进而提高了气缸容积利用率、减小了泵体组件的占用体积、提升了泵体组件的运行性能、降低了泵体组件的功耗,改善了现有技术中并未对最优相对偏心距进行选取的问题,提升了泵体组件的运行可靠性。
在本实施例中,相对偏心距Ф(偏心部41的偏心量e与气缸10的内圆半径R之比)对泵体组件的结构尺寸及气缸容积的利用率均有较大的影响,气缸容积利用率
Figure PCTCN2021110071-appb-000013
从提高气缸容积利用率、减少泵体组件(压缩机)体积和重量及提升泵体组件(压缩机)性能的角度考虑,Ф宜选择较大的值,但是随着偏心量e的增加,会导致泵体组件(压缩机)在结构设计时的难度增加,同时也会 导致滑片30与滚子20间的接触力和摩擦损耗增加,泵体组件(压缩机)的功耗增加、可靠性降低。
在一些实施例中,气缸10的高度H与气缸10的内圆直径D之间满足以下关系:
Figure PCTCN2021110071-appb-000014
具体地,气缸10的高度H与气缸10的内圆直径D的比值对泵体组件的影响主要体现在滚子和滑片受力的变化及压缩腔向吸气腔泄漏量的变化。其中,气缸10的高度H与气缸10的内圆直径D的比值越小,则气缸10的高度相对来说较短,滚子20和滑片30的侧面所受到的气体力越小,气体通过气缸10和滚子20的切点间隙及滑片30和滚子20的接触点间隙的周向泄漏也越小。然而,过小的气缸高度不仅会导致气缸10的直径增加,泵体组件的外形尺寸增加;也会导致滑片30与滚子20之间的滑移速度增加,磨损加剧,影响泵体组件的使用寿命。这样,气缸10的高度H与气缸10的内圆直径D之间的上述关系使得气缸10的高径比设置在最优范围内,以使泵体组件的性能处于较优的状态。
在一些实施例中,气缸10的高度H与气缸10的内圆直径D之间满足以下关系:
Figure PCTCN2021110071-appb-000015
这样,气缸10的高度H与气缸10的内圆直径D之间的上述关系使得气缸10的高径比设置在最优范围内,以使泵体组件的性能处于较优的状态。
在一些实施例中,气缸10的高度H与气缸10的内圆直径D之间满足以下关系:
Figure PCTCN2021110071-appb-000016
这样,气缸10的高度H与气缸10的内圆直径D之间的上述关系使得气缸10的高径比设置在最优范围内,以使泵体组件的性能处于较优的状态。
在一些实施例中,曲轴40还包括长轴段42和短轴段43,长轴段42和短轴段43通过偏心部41连接,长轴段42和短轴段43的外径一致。其中,泵体组件的排气量V与长轴段42的外径d之间满足以下关系:
Figure PCTCN2021110071-appb-000017
具体地,泵体组件的排气量V与长轴段42的外径d之比的设计对泵体组件(压缩机)性能及可靠性至关重要,若泵体组件的排气量V与长轴段42的外径d之比过大,会导致泵体组件的摩擦功耗增加,对性能不利;若泵体组件的排气量V与长轴段42的外径d之比过小,会导致泵体组件的曲轴挠度增大,容易造成异常磨损。这样,泵体组件的排气量V与长轴段42的外径d之比的上述关系使得气缸10的高径比设置在最优范围内,以使泵体组件的性能处于较优的状态。
在一些实施例中,泵体组件的排气量V与长轴段42的外径d之间满足以下关系:
Figure PCTCN2021110071-appb-000018
这样,泵体组件的排气量V与长轴段42的外径d之比的上述关系使得气缸10的高径比设置在最优范围内,以使泵体组件的性能处于较优的状态。
在一些实施例中,泵体组件的排气量V与长轴段42的外径d之间满足以下关系:
Figure PCTCN2021110071-appb-000019
这样,泵体组件的排气量V与长轴段42的外径d之比的上述关系使得气缸10的高径比设置在最优范围内,以使泵体组件的性能处于较优的状态。
在一些实施例中,滚子20的厚度a满足以下关系:3.80≤a≤7.85。具体地,滚子20与下法兰110或隔板140的接触面积直接影响到滚子20的端面泄漏及摩擦损失,滚子20的厚度a越大,则端面泄漏越小,但相应的端面摩擦损失也越大。因此,要取得泄漏损失和摩擦损失的平衡,选择合适的滚子厚度较为重要。这样,滚子20的厚度a的上述设置使得泄漏损失与摩擦损失之间得到较好的平衡,以使泵体组件的性能处于较优的状态。
在一些实施例中,滚子20的厚度a满足以下关系:3.80≤a≤7.5。这样,滚子20的厚度a的上述设置使得泄漏损失与摩擦损失之间得到较好的平衡,以使泵体组件的性能处于较优的状态。
在一些实施例中,气缸组件为两个,两个气缸组件沿泵体组件的高度方向间隔设置,曲轴40包括两个偏心部41,两个偏心部41与两个气缸组件的滚子20一一对应设置。这样,上述设置使得泵体组件为双缸泵体组件,进而提升了泵体组件的运行效率。
如图1至图3所示,泵体组件还包括上法兰100、下法兰110、下盖板120及弹簧130。其中,弹簧130设置在滑片槽12内,且弹簧130的一端与滑片30远离滚子20的一端抵接,弹簧130的另一端与滑片槽12的内壁抵接,以向滑片30施加朝向滚子20运动的弹性力。上法兰100设置在气缸10的上方且具有排气孔,下法兰110设置在气缸10的下方,下盖板120设置在下法兰110的下方且与下法兰110连接。
如图3所示,本申请还提供了一种流体机械,包括上述的泵体组件。在一些实施例中,流体机械为压缩机。
在本实施例中,压缩机性能系数COP满足以下关系:
Figure PCTCN2021110071-appb-000020
其中,Q为压缩机制冷量,制冷量的大小受泄露影响,泄漏又受到滚子20的厚度 a、气缸10的高度H及气缸10的内圆直径D的影响。W为压缩机功耗,功耗与摩擦损失、指示功损等有关,摩擦损失与滚子20的厚度a、气缸10的内圆半径R及偏心部41的偏心量e相关。相对偏心距Ф(偏心部41的偏心量e与气缸10的内圆半径R之比)与压缩机性能系数COP之间的关系如图4所示,当相对偏心距Ф范围为0.17~0.25时,压缩机性能系数达到最优范围。高径比λ(气缸10的高度H与气缸10的内圆直径D之比)与压缩机性能系数COP之间的关系如图5所示,随着高径比λ增大,压缩机性能系数先增后减,当高径比λ范围为0.4≤λ≤0.58时,压缩机性能系数达到较优范围。排气量V与轴径的比值ε(泵体组件的排气量V与长轴段42的外径d之比)与压缩机性能系数COP及零件磨损量之间的关系如图6所示,当排气量V与曲轴轴径的比值范围为0.6≤ε≤1.8时,压缩机性能达到较优范围,且此时压缩机的磨损量较小。滚子20的厚度a与压缩机性能系数COP之间的关系如图7所示,当滚子20的厚度范围为4~7.5mm时,测得压缩机性能系数达到较优范围。
如图3所示,流体机械还包括上盖组件50、壳体组件60、驱动装置80、分液器90及下盖组件70。其中,上盖组件50盖设在壳体组件60上,下盖组件70位于壳体组件60的下方且与壳体组件60连接,上盖组件50、壳体组件60及下盖组件70围绕形成安装腔,驱动装置80及泵体组件均设置在安装腔内。驱动装置80包括定子81和转子82,驱动装置80套设在曲轴40的长轴段42外且带动长轴段42旋转,进而驱动曲轴40转动。分液器90与泵体组件的排气口和进气口均连接。
具体地,在压缩机运行过程中,滑片30的头部紧贴滚子20的外壁,并随着滚子20的旋转沿滑片槽12作往复运动,滚子20、滑片30与气缸10形成的月牙形工作容积不断产生变化,以此实现压缩机的吸气、压缩和排气过程,当滑片30伸出滑片槽12内的长度(偏心量e大则滑片30伸出的长度长)较长时,滚子20与滑片30之间的跟随性变差、滑片30本身的稳定性也变差。另外,滚子20的外圆周面与气缸10的内圆周面、滚子20的端面泄漏(与滚子20的厚度a有关)、滑片30与气缸10的高度方向、滑片30的侧面与滑片槽12之间属于间隙配合,在压缩机工作过程中依靠油膜密封,但是仍然会存在泄漏,且滚子20的外圆周面与气缸10的内圆周面之间的径向间隙泄露占比最大,而气缸10的高度H决定径向间隙泄露通道的行程。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
在泵体组件运行过程中,驱动装置驱动曲轴转动,以使套设在曲轴的偏心部外的滚子在气缸内运动,进而压缩并排出冷媒。这样,偏心部的偏心量e与气缸的内圆半 径R之间的上述关系使得相对偏心距(偏心量e与气缸的内圆半径R之比)为最优值,进而提高了气缸容积利用率、减小了泵体组件的占用体积、提升了泵体组件的运行性能、降低了泵体组件的功耗,改善了现有技术中并未对最优相对偏心距进行选取的问题,提升了泵体组件的运行可靠性。
显然,上述所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 一种泵体组件,包括:
    气缸组件,包括气缸(10)、滚子(20)及滑片(30),所述气缸(10)具有内腔(11)及与所述内腔(11)相连通的滑片槽(12),所述滚子(20)可转动地设置在所述内腔(11)中,所述滑片(30)可滑动地设置在所述滑片槽(12)内,且所述滑片(30)的头部与所述滚子(20)的外周面相接触;
    曲轴(40),穿设在所述气缸组件上,所述曲轴(40)包括偏心部(41),所述偏心部(41)位于所述内腔(11)中,且所述滚子(20)套设在所述偏心部(41)上;
    其中,偏心部(41)的偏心量e与所述气缸(10)的内圆半径R之间满足以下关系:
    Figure PCTCN2021110071-appb-100001
    Figure PCTCN2021110071-appb-100002
    Figure PCTCN2021110071-appb-100003
  2. 根据权利要求1所述的泵体组件,其中所述气缸(10)的高度H与所述气缸(10)的内圆直径D之间满足以下关系:
    Figure PCTCN2021110071-appb-100004
  3. 根据权利要求1或2所述的泵体组件,其中所述气缸(10)的高度H与所述气缸(10)的内圆直径D之间满足以下关系:
    Figure PCTCN2021110071-appb-100005
  4. 根据权利要求1至3中任一项所述的泵体组件,其中所述气缸(10)的高度H与所述气缸(10)的内圆直径D之间满足以下关系:
    Figure PCTCN2021110071-appb-100006
  5. 根据权利要求1至4中任一项所述的泵体组件,其中所述曲轴(40)还包括长轴段(42)和短轴段(43),所述长轴段(42)和所述短轴段(43)通过所述偏心部(41)连接,所述长轴段(42)和所述短轴段(43)的外径一致;其中,泵体组件的排气量V与所述长轴段(42)的外径d之间满足以下关系:
    Figure PCTCN2021110071-appb-100007
  6. 根据权利要求5所述的泵体组件,其中所述泵体组件的排气量V与所述长轴段 (42)的外径d之间满足以下关系:
    Figure PCTCN2021110071-appb-100008
  7. 根据权利要求5或6所述的泵体组件,其中所述泵体组件的排气量V与所述长轴段(42)的外径d之间满足以下关系:
    Figure PCTCN2021110071-appb-100009
  8. 根据权利要求1至7中任一项所述的泵体组件,其中所述滚子(20)的厚度a满足以下关系:3.80≤a≤7.85。
  9. 根据权利要求1至8中任一项所述的泵体组件,其中所述滚子(20)的厚度a满足以下关系:3.80≤a≤7.5。
  10. 根据权利要求1至9中任一项所述的泵体组件,其中所述气缸组件为两个,两个所述气缸组件沿所述泵体组件的高度方向间隔设置,所述曲轴(40)包括两个偏心部(41),两个所述偏心部(41)与两个所述气缸组件的滚子(20)一一对应设置。
  11. 一种流体机械,包括权利要求1至10中任一项所述的泵体组件。
PCT/CN2021/110071 2020-12-03 2021-08-02 泵体组件及具有其的流体机械 WO2022116577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011396227.4 2020-12-03
CN202011396227.4A CN112460017A (zh) 2020-12-03 2020-12-03 泵体组件及具有其的流体机械

Publications (1)

Publication Number Publication Date
WO2022116577A1 true WO2022116577A1 (zh) 2022-06-09

Family

ID=74805361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110071 WO2022116577A1 (zh) 2020-12-03 2021-08-02 泵体组件及具有其的流体机械

Country Status (2)

Country Link
CN (1) CN112460017A (zh)
WO (1) WO2022116577A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460017A (zh) * 2020-12-03 2021-03-09 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的流体机械
CN114370399B (zh) * 2021-12-09 2023-01-17 珠海格力电器股份有限公司 泵体组件和双级压缩机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236318A (en) * 1991-10-18 1993-08-17 Tecumseh Products Company Orbiting rotary compressor with adjustable eccentric
JP4365729B2 (ja) * 2004-05-31 2009-11-18 三菱重工業株式会社 ロータリー圧縮機
CN103742411A (zh) * 2013-12-23 2014-04-23 广东美芝制冷设备有限公司 压缩机、空调器和热水机
CN203655634U (zh) * 2013-12-23 2014-06-18 广东美芝制冷设备有限公司 压缩机、空调器和热水机
CN110821831A (zh) * 2019-12-11 2020-02-21 安徽美芝精密制造有限公司 单缸压缩机及热交换工作设备
CN110925200A (zh) * 2019-12-11 2020-03-27 安徽美芝精密制造有限公司 单缸压缩机及制冷制热设备
CN211116592U (zh) * 2019-12-11 2020-07-28 安徽美芝精密制造有限公司 单缸压缩机
CN112460017A (zh) * 2020-12-03 2021-03-09 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的流体机械
CN214036117U (zh) * 2020-12-03 2021-08-24 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的流体机械

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236318A (en) * 1991-10-18 1993-08-17 Tecumseh Products Company Orbiting rotary compressor with adjustable eccentric
JP4365729B2 (ja) * 2004-05-31 2009-11-18 三菱重工業株式会社 ロータリー圧縮機
CN103742411A (zh) * 2013-12-23 2014-04-23 广东美芝制冷设备有限公司 压缩机、空调器和热水机
CN203655634U (zh) * 2013-12-23 2014-06-18 广东美芝制冷设备有限公司 压缩机、空调器和热水机
CN110821831A (zh) * 2019-12-11 2020-02-21 安徽美芝精密制造有限公司 单缸压缩机及热交换工作设备
CN110925200A (zh) * 2019-12-11 2020-03-27 安徽美芝精密制造有限公司 单缸压缩机及制冷制热设备
CN211116592U (zh) * 2019-12-11 2020-07-28 安徽美芝精密制造有限公司 单缸压缩机
CN112460017A (zh) * 2020-12-03 2021-03-09 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的流体机械
CN214036117U (zh) * 2020-12-03 2021-08-24 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的流体机械

Also Published As

Publication number Publication date
CN112460017A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2022116577A1 (zh) 泵体组件及具有其的流体机械
KR880000832B1 (ko) 스크롤 유체기계
KR20180095391A (ko) 로터리 압축기
KR20100084079A (ko) 로터리 압축기
KR20150033062A (ko) 사판식 압축기의 흡입맥동 저감장치
CN110905812B (zh) 单缸压缩机及热交换工作设备
JP3924817B2 (ja) 容積形流体機械
KR20180080885A (ko) 로터리 압축기
WO2011072617A1 (zh) 全封闭式制冷压缩机及其转子压缩机单元
CN214036117U (zh) 泵体组件及具有其的流体机械
WO2016086396A1 (zh) 低背压旋转式压缩机
WO2023097898A1 (zh) 泵体组件及增焓转子压缩机
WO2019052080A1 (zh) 泵体组件、流体机械及换热设备
CN112360742B (zh) 曲轴、泵体结构及压缩机
CN111043006B (zh) 单缸压缩机及热交换工作设备
CN114320915A (zh) 泵体组件、压缩机及制冷制热设备
CN110821831B (zh) 单缸压缩机及热交换工作设备
CN218177407U (zh) 滑片、泵体组件和压缩机
JPS60259790A (ja) ロ−タリ圧縮機
JP7218195B2 (ja) ロータリ圧縮機
US20230383747A1 (en) Scroll compressor
CN220378472U (zh) 涡旋压缩机及空调
KR102673753B1 (ko) 스크롤 압축기
JP3874018B2 (ja) スクロール型流体機械
CN218934727U (zh) 压缩机构、旋转式压缩机和制冷循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899616

Country of ref document: EP

Kind code of ref document: A1