WO2020177340A1 - 一种纳米银线及其制备方法 - Google Patents

一种纳米银线及其制备方法 Download PDF

Info

Publication number
WO2020177340A1
WO2020177340A1 PCT/CN2019/113142 CN2019113142W WO2020177340A1 WO 2020177340 A1 WO2020177340 A1 WO 2020177340A1 CN 2019113142 W CN2019113142 W CN 2019113142W WO 2020177340 A1 WO2020177340 A1 WO 2020177340A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
concentration
silver nanowires
fibers
halide
Prior art date
Application number
PCT/CN2019/113142
Other languages
English (en)
French (fr)
Inventor
李海龙
公昊
刘梦茹
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2020177340A1 publication Critical patent/WO2020177340A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention belongs to the field of nano silver wire preparation, and specifically relates to a method for preparing nano silver wires by using plant fibers.
  • Plant fiber is a thick-walled tissue widely distributed in seed plants. It is an inexhaustible and inexhaustible renewable resource in nature. Bleached pulp fiber is the product of wood, grass and other plant fibers after cooking and bleaching to remove most of lignin and part of hemicellulose. Its main component is cellulose, and the cellulose content of natural cotton fiber and hemp fiber It can be as high as 95%.
  • Cellulose is a linear polymer compound formed by D-glucopyranosyl group connected by ⁇ -1,4 glycoside bonds. It is the most widely distributed and richest natural renewable polysaccharide resource on the earth. It undergoes photosynthesis every year. The output is as high as 140-180 billion tons. The repeating unit of the cellulose molecule is simple and uniform.
  • Hemicellulose is a heterogeneous complex polysaccharide composed of two or more hexoses or pentoses, with abundant uronic acid branches. According to the different glycosyl units, hemicellulose can be divided into xylose, polydextrose mannose and polygalactose mannose. In addition to the main glycan structure, the hemicellulose in the same plant fiber material often includes other sugar structures, with a low degree of polymerization, and generally has branched chains.
  • nano-silver wires Due to its unique electrical, thermal and optical properties, nano-silver wires have received more and more attention in the past ten years.
  • silver nanowires were usually prepared by electrochemical methods, which had a low yield and the synthesized silver nanowires were very uneven.
  • the hard template method usually uses porous membranes, carbon nanotubes, DNA, etc. as templates for the growth of silver nanowires.
  • this method also has disadvantages such as difficulty in template removal, low yield, and inability to industrial production.
  • researchers are committed to selecting surfactants, polymer micelles, etc.
  • the polyol method is a stable and efficient method for preparing silver nanowires in the soft template method, and is widely used by most researchers.
  • the polyol method uses polyhydric alcohol as a reducing agent to reduce the silver salt under heating.
  • a protective agent is added during the reaction to achieve the directional growth of nano silver wires, but this method requires a large amount of alcohol reagents to obtain nano silver wires.
  • the length is usually within 200 ⁇ m. Therefore, the preparation of silver nanowires needs to develop a method with low cost, uniform product and high aspect ratio.
  • the technical problem to be solved by the present invention is how to obtain nano silver wires with uniform particle size and high aspect ratio.
  • the invention provides a method for preparing nano silver wires.
  • the method selects plant fiber as the reducing agent, adds a proper amount of halide, and reduces the nano silver wire under hydrothermal conditions.
  • the method is simple, low in cost, no need to add surfactants and other chemicals, green and pollution-free, and the obtained nano silver mitochondria Uniform diameter and high aspect ratio.
  • a method for preparing silver nanowires includes the following steps:
  • the reaction temperature is 130-250°C, and the reaction time is 12-84h.
  • the reaction temperature is 160-220°C, and the reaction time is 18-72h.
  • the molar ratio of the halide to the silver ion is 0.5:1 to 5:1.
  • the concentration of the plant fiber is 0.01-2.0 g/L; the concentration of the silver ion is 0.1-5.0 mmol/L.
  • the concentration of the plant fiber is 0.08-0.8 g/L; the concentration of the silver ion is 0.3-3.0 mmol/L.
  • the halide is any one or two or more of HCl, HBr, HI, KCl, KBr, KI, NaCl, NaBr and NaI.
  • the silver ion is derived from an aqueous solution of soluble silver salt, such as a silver nitrate solution.
  • the inert gas is nitrogen, argon, or helium.
  • the plant fibers include bleached pulp fibers, cotton fibers, and hemp fibers.
  • the invention utilizes plant fibers to slowly degrade substances such as reducing sugars under specific hydrothermal conditions, and gradually reduces the silver ions in the solution. After adding an appropriate amount of halide, the halide ion acts as a control agent to achieve the growth of ultra-long silver nanowires.
  • the prepared nano silver wire has excellent performance and can be widely used in optical polarizers, photonic crystals, organic light-emitting diodes, solar cells, touch screens, catalytic industries and other fields.
  • the present invention has the following advantages and beneficial effects:
  • the present invention directly selects the biodegradable polysaccharide polymer plant fiber as the reducing agent without adding other reducing agents, surfactants and other chemicals, reducing the amount of chemicals.
  • the present invention uses plant fibers to reduce nano silver wires under hydrothermal conditions, and water is used as a solvent, which is green and pollution-free.
  • the nano silver wire obtained by the method of the present invention has a uniform diameter, and the aspect ratio is as high as 5000 or more.
  • the method of the invention is simple to operate, and the yield of nano silver wires can be as high as over 80%.
  • FIG. 1 is an SEM image of nano silver wires prepared by using bleached eucalyptus pulp fibers obtained in Example 1.
  • Example 2 is an SEM image of nano silver wires prepared by using bleached pine pulp fibers obtained in Example 2.
  • FIG. 3 is an SEM image of nano silver wires prepared from hemp pulp fibers obtained in Example 3.
  • FIG. 3 is an SEM image of nano silver wires prepared from hemp pulp fibers obtained in Example 3.
  • a method for preparing silver nanowires specifically includes the following steps:
  • Disperse the bleached eucalyptus pulp fiber in the inner lining of a polytetrafluoroethylene hydrothermal reactor add silver nitrate solution and stir evenly, then add HCl solution, the fiber concentration is 0.2g/L, Ag + concentration is 1mmol/L, HCl concentration 2mmol/L, blow in nitrogen and exhaust air, react in a hydrothermal reaction kettle for 24 hours at a reaction temperature of 180°C, and naturally cool to room temperature after the reaction is completed to obtain nano silver wires.
  • the obtained SEM image of the silver nanowires prepared by using bleached eucalyptus pulp fiber is shown in Fig. 1. It can be clearly seen from Fig. 1 that the diameter of the silver nanowires is uniform and the aspect ratio can reach more than 5000.
  • a method for preparing silver nanowires specifically includes the following steps:
  • Disperse the bleached pine pulp fibers in the inner lining of the PTFE hydrothermal reactor add the silver nitrate solution and stir evenly, then add the NaBr solution, the PTFE inner lining, the fiber concentration is 0.8g/L, Ag + concentration
  • the concentration of NaBr is 3mmol/L
  • the concentration of NaBr is 3mmol/L
  • argon gas is introduced to exhaust the air, and the reaction is carried out in the reactor for 16 hours at a reaction temperature of 220°C. After the reaction is completed, it is naturally cooled to room temperature to obtain nano silver wires.
  • a method for preparing silver nanowires specifically includes the following steps:
  • Disperse the hemp pulp fiber in the inner lining of the polytetrafluoroethylene hydrothermal reactor add the silver nitrate solution and stir evenly, then add the KI solution, the fiber concentration is 0.08g/L, the Ag + concentration is 2mmol/L, and the KI concentration is 8mmol/ L, helium gas was introduced to exhaust the air, and reacted in the reactor for 48 hours at a reaction temperature of 200°C. After the reaction was completed, it was naturally cooled to room temperature to obtain nano silver wires.
  • the SEM image of the silver nanowires prepared by the obtained hemp pulp fiber is shown in Fig. 3. It can be clearly seen from Fig. 3 that the diameter of the silver nanowires is uniform and the aspect ratio can reach more than 5000.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种纳米银线及其制备方法,包括以下步骤:将植物纤维与银离子混合后,再加入卤化物,向反应器中通入惰性气体排出空气后,在水热条件下反应,直至生成纳米银线,冷却即可。该方法选用植物纤维为还原剂,在水热条件下制备出纳米银线,无需添加表面活性剂等化学药品,绿色无污染,得到的纳米银线直径均一,长径比高。

Description

一种纳米银线及其制备方法 技术领域
本发明属于纳米银线制备领域,具体涉及一种利用植物纤维制备纳米银线的方法。
背景技术
植物纤维是广泛分布在种子植物中的一种厚壁组织,是自然界中取之不尽、用之不竭的可再生资源。漂白纸浆纤维是木材、草类等植物纤维经过蒸煮、漂白脱除绝大部分木素和部分半纤维素后的产物,其主要成分为纤维素,而天然的棉纤维和麻纤维中纤维素含量可高达95%。纤维素是一种由D-吡喃式葡萄糖基经β-1,4苷键连接而成的线性高分子化合物,是地球上分布最广,最丰富的天然可再生多糖资源,每年通过光合作用的产量就高达1400-1800亿吨。纤维素分子的重复单元简单而均一,存在结晶结构和无定形结构两种聚集状态,常温下稳定。半纤维素是由两种或两种以上的己糖或戊糖构成的不均一复合聚糖,带有丰富的糖醛酸支链。按照糖基单元的不同,半纤维素可分为聚木糖类、聚葡萄糖甘露糖类和聚半乳糖葡萄糖甘露糖类。除了主要的聚糖结构外,同一植物纤维原料中的半纤维素往往还包括其他的糖类结构,聚合度较低,而且普遍带有支链。
纳米银线由于其独特的电学、热学和光学特性,在过去的十多年中受到越来越多的关注。在早期,纳米银线通常使用电化学法制备,该方法产率低,合成的纳米银线十分不均匀。为了得到均匀,可控,高长径比的纳米银线,研究者们相继发明了硬模板法和软模板法。硬模板法通常选用多孔膜、碳纳米管、DNA等作为纳米银线生长的模板,然而此方法也存在模板去除困难,产率低,无法工业化生产等缺点。为了克服硬模板法的缺点,研究者们致力于选用表面活性剂、聚合物胶束等作为软模板,在均匀的溶液中控制纳米银线的生长,所得产物均匀,产率较高,适合大规模生产。目前,多元醇法是软模板法中一种稳定,高效的纳米银线制备方法,被大多数研究者广泛采用。多元醇法是在加热的条件下使用多元醇作为还原剂还原银盐,通常反应过程中加入保护剂实现纳米银线的定向生长,但该方法需要消耗大量的醇类试剂,得到的纳米银线的长度通常在200μm以内。因此,纳米银线的制备需要开发一种成本低,产物均匀且长径比高的方法。
技术问题
本发明所要解决的技术问题,是如何得到粒径均一,长径比高的纳米银线。
技术解决方案
本发明提供了一种纳米银线的制备方法。该方法选用植物纤维为还原剂,添加适量卤化物后在水热条件下还原出纳米银线,方法简单,成本低,无需添加表面活性剂等化学药品,绿色无污染,得到的纳米银线粒径均一,长径比高。
本发明的目的通过如下技术方案实现:
一种纳米银线的制备方法,包括以下步骤:
将植物纤维与银离子混合后,再加入卤化物,向反应器中通入惰性气体排出空气后,在水热条件下反应,直至生成纳米银线,冷却即可。
优选地,反应温度为130~250℃,反应时间为12-84h。
优选地,反应温度为160-220℃,反应时间为18-72h。
优选地,所述卤化物与银离子的摩尔比为0.5:1-5:1。
优选地,所述植物纤维的浓度为0.01-2.0g/L;所述银离子的浓度为0.1-5.0mmol/L。
优选地,所述植物纤维的浓度为0.08-0.8g/L;所述银离子的浓度为0.3-3.0mmol/L。
优选地,所述卤化物为HCl、HBr、HI、KCl、KBr、KI、NaCl、NaBr和NaI中的任意一种或两种以上。
优选地,所述银离子来源于可溶性银盐的水溶液,如硝酸银溶液等。
优选地,所述惰性气体为氮气、氩气、氦气。
优选地,所述植物纤维包括漂白纸浆纤维、棉纤维、麻纤维。
本发明利用植物纤维在特定的水热条件下可以缓慢地降解出还原性糖类等物质,逐渐还原溶液中的银离子。添加适量的卤化物后,卤素离子作为控制剂,从而实现超长纳米银线的生长。所制备的纳米银线性能优异,可广泛用于光学偏振器,光子晶体,有机发光二极管,太阳能电池,触摸屏,催化工业等领域。
有益效果
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明直接选用生物可降解的多糖类高分子植物纤维为还原剂,无需添加其他还原剂、表面活性剂等化学药品,减少了化学品用量。
(2)本发明在水热条件下使用植物纤维还原出纳米银线,水作为溶剂,绿色无污染。
(3)本发明方法得到的纳米银线直径均一,长径比高达5000以上。
(4)本发明方法操作简单,纳米银线产率可高达80%以上。
附图说明
图1为实施例1中得到的利用漂白桉木浆纤维制备的纳米银线的SEM图。
图2为实施例2中得到的利用漂白松木浆纤维制备的纳米银线的SEM图。
图3为实施例3中得到的利用麻浆纤维制备的纳米银线的SEM图。
本发明的实施方式
以下结合具体实施例及附图对本发明技术方案作进一步详细的说明,但本发明的保护范围不限于此。
实施例1
一种纳米银线的制备方法,具体包括如下步骤:
将漂白桉木浆纤维分散在聚四氟乙烯水热反应釜内衬中,加入硝酸银溶液搅拌均匀,再加入HCl溶液,纤维浓度为0.2g/L,Ag +浓度为1mmol/L,HCl浓度2mmol/L,通入氮气排出空气,在水热反应釜中反应24h,反应温度为180℃,反应完成后自然冷却至室温,得到纳米银线。
得到的利用漂白桉木浆纤维制备的纳米银线的SEM图如图1所示,通过图1可清晰地看到纳米银线直径均一,长径比可达5000以上。
实施例2
一种纳米银线的制备方法,具体包括如下步骤:
将漂白松木浆纤维分散在聚四氟乙烯水热反应釜内衬中,加入硝酸银溶液搅拌均匀,再加入NaBr溶液,聚四氟乙烯内衬中,纤维浓度为0.8g/L,Ag +浓度为3mmol/L,NaBr浓度3mmol/L,通入氩气排出空气,在反应釜中反应16h,反应温度为220℃,反应完成后自然冷却至室温,得到纳米银线。
得到的利用漂白松木浆纤维制备的纳米银线的SEM图如图2所示,通过图2可清晰地看到纳米银线直径均一,长径比可达5000以上
实施例3
一种纳米银线的制备方法,具体包括如下步骤:
将麻浆纤维分散在聚四氟乙烯水热反应釜内衬中,加入硝酸银溶液搅拌均匀,再加入KI溶液,纤维浓度为0.08g/L,Ag +浓度为2mmol/L,KI浓度8mmol/L,通入氦气排出空气,在反应釜中反应48h,反应温度为200℃,反应完成后自然冷却至室温,得到纳米银线。
得到的麻浆纤维制备的纳米银线的SEM图如图3所示,通过图3可清晰地看到纳米银线直径均一,长径比可达5000以上。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

  1. 一种纳米银线的制备方法,其特征在于,包括以下步骤:
    将植物纤维与银离子混合后,再加入卤化物,向反应器中通入惰性气体排出空气后,在水热条件下反应,直至生成纳米银线,冷却即可。
  2. 根据权利要求1所述的方法,其特征在于,反应温度为130~250℃,反应时间为12-84h。
  3. 根据权利要求2所述的方法,其特征在于,反应温度为160-220℃,反应时间为18-72h。
  4. 根据权利要求1或2或3所述的方法,其特征在于,所述卤化物与银离子的摩尔比为0.5:1-5:1。
  5. 根据权利要求4所述的方法,其特征在于,所述植物纤维的浓度为0.01-2.0g/L;所述银离子的浓度为0.1-5.0mmol/L。
  6. 根据权利要求5所述的方法,其特征在于,所述植物纤维的浓度为0.08-0.8g/L;所述银离子的浓度为0.3-3.0mmol/L。
  7. 根据权利要求6所述的方法,其特征在于,所述卤化物为HCl、HBr、HI、KCl、KBr、KI、NaCl、NaBr和NaI中的任意一种或两种以上。
  8. 根据权利要求1或2或3所述的方法,其特征在于,所述银离子来源于可溶性银盐溶液。
  9. 根据权利要求1或2或3所述的方法,其特征在于,所述惰性气体为氮气、氩气、氦气;所述植物纤维包括漂白纸浆纤维、棉纤维、麻纤维。
  10. 一种纳米银线,其特征在于,由权利要求1~9任意一项所述方法制得。
PCT/CN2019/113142 2019-03-05 2019-10-25 一种纳米银线及其制备方法 WO2020177340A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910162167.0A CN109807349A (zh) 2019-03-05 2019-03-05 一种纳米银线及其制备方法
CN201910162167.0 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020177340A1 true WO2020177340A1 (zh) 2020-09-10

Family

ID=66608099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113142 WO2020177340A1 (zh) 2019-03-05 2019-10-25 一种纳米银线及其制备方法

Country Status (2)

Country Link
CN (1) CN109807349A (zh)
WO (1) WO2020177340A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109807349A (zh) * 2019-03-05 2019-05-28 华南理工大学 一种纳米银线及其制备方法
CN111889694B (zh) * 2020-06-08 2023-10-03 广州市超彩油墨实业有限公司 一种一维银纳米材料的合成及制备导电油墨的方法
CN114505489A (zh) * 2020-10-27 2022-05-17 深圳市华科创智技术有限公司 一种银纳米线的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102259190A (zh) * 2011-06-16 2011-11-30 浙江科创新材料科技有限公司 一种快速大批量制备高长径比纳米银线的方法
CN105440314A (zh) * 2015-04-17 2016-03-30 北京林业大学 一种具有抗菌活性的纤维素复合材料及其制备方法
CN106001583A (zh) * 2016-06-28 2016-10-12 北京化工大学常州先进材料研究院 一种纳米银线的制备方法
EP3360629A1 (en) * 2015-10-09 2018-08-15 Chongqing University Of Arts And Sciences New silver nanowires with uniform aspect ratio and nodes preparation method
WO2018168849A1 (ja) * 2017-03-14 2018-09-20 Dowaエレクトロニクス株式会社 ワイヤ同士の分離性が良好な銀ナノワイヤ分散液の製造法
CN109807349A (zh) * 2019-03-05 2019-05-28 华南理工大学 一种纳米银线及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080255B2 (en) * 2011-03-31 2015-07-14 The Hong Kong University Of Science And Technology Method of producing silver nanowires in large quantities
CN104511596B (zh) * 2013-09-30 2017-01-18 中科院广州化学有限公司 一种纳米银线的连续制备方法及其装置
CN104439275A (zh) * 2014-11-19 2015-03-25 广东华科新材料研究院有限公司 一种纳米银纤维的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102259190A (zh) * 2011-06-16 2011-11-30 浙江科创新材料科技有限公司 一种快速大批量制备高长径比纳米银线的方法
CN105440314A (zh) * 2015-04-17 2016-03-30 北京林业大学 一种具有抗菌活性的纤维素复合材料及其制备方法
EP3360629A1 (en) * 2015-10-09 2018-08-15 Chongqing University Of Arts And Sciences New silver nanowires with uniform aspect ratio and nodes preparation method
CN106001583A (zh) * 2016-06-28 2016-10-12 北京化工大学常州先进材料研究院 一种纳米银线的制备方法
WO2018168849A1 (ja) * 2017-03-14 2018-09-20 Dowaエレクトロニクス株式会社 ワイヤ同士の分離性が良好な銀ナノワイヤ分散液の製造法
CN109807349A (zh) * 2019-03-05 2019-05-28 华南理工大学 一种纳米银线及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NI JIA;CAO FANG-FANG;CHEN SHU-YONG;WANG WEI-WEI;HAN NA;JIN LIANG-MAO: "Research of Influencing Factors in Preparing Silver Nanowires with High Aspect Ratio by Hydrothermal Method", JOURNAL OF YANSHAN UNIVERSITY, vol. 41, 31 July 2017 (2017-07-31), pages 66, XP055732047 *

Also Published As

Publication number Publication date
CN109807349A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2020177340A1 (zh) 一种纳米银线及其制备方法
KR101783951B1 (ko) 그래핀을 포함하는 비스코스섬유 및 이의 제조방법
Yahya et al. Preparation of nanocellulose via transition metal salt-catalyzed hydrolysis pathway
Xu et al. Preparation and characterization of spherical cellulose nanocrystals with high purity by the composite enzymolysis of pulp fibers
CN101949103B (zh) 一种秸秆微纳米纤维素的制备方法
CN105692587B (zh) 一种利用天然结构高分子纳米纤维气凝胶制备氮掺杂的碳气凝胶及其制备方法
CN106111137B (zh) 一种碳量子点-氧化亚铜复合材料的制备方法及其应用
CN108355717A (zh) 一种纤维素/BiOBr复合光催化材料的制备方法
CN101811664A (zh) 一种纤维素/银纳米复合材料及其制备方法
CN105568730A (zh) 一种可再生纳米纤维素的制备方法
AU2020100319A4 (en) Method for preparing cellulose nanofibrils by deep eutectic solvent pretreatment
CN110857337A (zh) 一种同步制备多种生物质材料的方法
CN103726378A (zh) 低温下制备微晶纤维素的方法
CN109232993A (zh) 一种纤维素/微米纤维素长丝多孔小球的制备方法
CN110803695A (zh) 一种以大型海藻为原料制备石墨烯的方法
CN108409984A (zh) 一种快速同步制备木质素纳米颗粒和碳量子点的方法
CN111944178A (zh) 一种纳米综纤维素增强复合膜制备方法及制得的复合膜
CN109468871A (zh) 一种植物秸秆制备的木质纳米纤维素及其方法与应用
CN112225927A (zh) 一种具有可调节手性向列结构的紫外线屏蔽纤维素薄膜及其制备方法
CN108436099A (zh) 一种具有抗菌性能的纳米银的制备方法
CN105884908A (zh) 一种羧基化纤维素纳米粒子的制备方法
Xiao et al. Pretreatment of corncob powder by choline chloride-urea-ethanolamine to co-produce glucose, xylose and lignin nanospheres
CN103665437A (zh) 一种细菌纤维素/石墨烯复合材料的制备方法
CN113999322B (zh) 一种高羧基含量的tempo氧化纤维素的低能耗制备方法
CN111992231A (zh) 一种用于纤维素一步法水解加氢制备山梨醇的双功能催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917639

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19917639

Country of ref document: EP

Kind code of ref document: A1