WO2020177140A1 - 一种丙烯腈催化剂及其制备方法和应用 - Google Patents

一种丙烯腈催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2020177140A1
WO2020177140A1 PCT/CN2019/077613 CN2019077613W WO2020177140A1 WO 2020177140 A1 WO2020177140 A1 WO 2020177140A1 CN 2019077613 W CN2019077613 W CN 2019077613W WO 2020177140 A1 WO2020177140 A1 WO 2020177140A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
acrylonitrile
acrylonitrile catalyst
carrier
preparation
Prior art date
Application number
PCT/CN2019/077613
Other languages
English (en)
French (fr)
Inventor
王立才
Original Assignee
营口市向阳催化剂有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 营口市向阳催化剂有限责任公司 filed Critical 营口市向阳催化剂有限责任公司
Priority to KR1020207000720A priority Critical patent/KR102231075B1/ko
Publication of WO2020177140A1 publication Critical patent/WO2020177140A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to an acrylonitrile catalyst, a preparation method and application thereof, and belongs to the field of catalysts.
  • Acrylonitrile (AN) is a raw material monomer for synthetic fiber acrylic fibers, and also a raw material for thermoplastic synthetic resins such as ABS, SAN, nitrile rubber, adiponitrile, acrylamide and other derivatives. It is one of the important products of petrochemical industry. . The process technology for the production of acrylonitrile by ammoxidation of propylene has become increasingly mature, and the development of acrylonitrile catalysts with excellent performance is the focus of the acrylonitrile industry.
  • the current catalyst can be continuously operated in a fluidized bed reactor for 4-5 years without the need to be replaced as a whole, which is a significant improvement over the previous only requiring 1-1.5 years to replace the new catalyst.
  • the molybdenum catalyst is mainly the volatilization of the molybdenum component.
  • the earliest way to solve these problems is to unload the catalyst from the reactor, add the lost components and activate them before adding them to the reactor. Of course, this method is uneconomical because the shutdown of the plant will cause a lot of economy loss.
  • An improved method is to continuously add volatile components to the reactor to supplement and reduce the loss of certain components in the catalyst.
  • the angle of repose is usually used to describe the fluidity of the catalyst.
  • the fluidity measurement is usually carried out in a cold state, which cannot represent the flow state of the catalyst at a high temperature in the reactor. If the flow state of the catalyst deteriorates at high temperatures, it will cause the cyclone separator leg or the air and propylene-ammonia distributor to be blocked and fail to operate normally.
  • this phenomenon may be caused by excessive molybdenum oxide on the surface of the catalyst. If excessive molybdenum oxide is present and deposited on the surface of the catalyst, the particles will stick to each other and cause blockage.
  • the low oxygen ratio of the catalyst can significantly increase the production capacity of the reactor, which is the direction pursued by current researchers.
  • the oxygen ratio is too low, some high-valence elements in the catalyst will be over-reduced to produce a large amount of excessive molybdenum oxide. Therefore, lowering the reaction temperature, reducing the sublimation of the active component molybdenum, and delaying the life of the catalyst are the trends in the development of new catalysts.
  • high-load catalysts can reduce the catalyst loading for a certain scale of production equipment.
  • High propylene load and high reaction pressure conditions can increase the output of acrylonitrile and the processing capacity of the reactor, and can expand the reactor, so that the manufacturer can appropriately increase the production capacity according to market demand.
  • High-pressure resistant catalysts can also meet increasing environmental requirements. Therefore, it is a current research direction to develop a catalyst that maintains high reaction performance under high load and high pressure conditions, and it will make it possible for the production of acrylonitrile to form economies of scale. As most of the acrylonitrile plants have been expanded and modified, the production capacity has increased by 60% on the original basis, and the main equipment of these plants has not changed.
  • the acrylonitrile catalyst of the present invention can react at a lower reaction temperature to effectively prevent the sublimation of active components and improve the stability of the acrylonitrile catalyst; it can react at a lower reaction temperature to reduce the production of carbonyl compounds and increase the acrylonitrile
  • the cleanliness of the catalyst It can increase the single-pass yield of acrylonitrile and hydrocyanic acid, reduce the yield of acetonitrile, and better meet market demand. It can react at high weight space velocity, reduce the amount of acrylonitrile catalyst loaded, and better meet the needs of the expansion device.
  • the present invention also provides a method for preparing an acrylonitrile catalyst with easy to obtain raw materials and simple and easy preparation method.
  • the present invention provides an acrylonitrile catalyst comprising a metal oxide represented by the following general formula (1),
  • A is one or more elements selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium;
  • C is selected from one or two elements in the group consisting of vanadium and cadmium;
  • a, b, c, d, e, f, g, and h represent the number of atoms of each element
  • a 1.2 ⁇ 3.0
  • d 0.3 ⁇ 1.6
  • e 0.4 ⁇ 1.8
  • the content of f, g and h is 0.01 ⁇ 0.4 respectively;
  • the acrylonitrile catalyst contains a carrier, and the metal oxide is supported on the carrier; preferably, the carrier is silica.
  • the added amount of the carrier is 30%-70%, preferably 40%-55%.
  • the bulk density of the acrylonitrile catalyst is 0.88 to 1.12 g/mL, and the compactness is 1.04 to 1.28 g/mL; and/or the pore volume of the acrylonitrile catalyst is 0.20 ⁇ 0.30mL/g, the specific surface area is 30.0m 2 /g or more.
  • the acrylonitrile catalyst of the present invention 30% or less of the acrylonitrile catalyst has a particle size greater than 90 ⁇ m, and 30-50% of the acrylonitrile catalyst has a particle size greater than 20 ⁇ m and 45 ⁇ m or less, and 7% or less The particle size of the acrylonitrile catalyst is 20 ⁇ m or less.
  • the invention also provides a preparation method of the acrylonitrile catalyst according to the invention, which comprises the following steps:
  • Preparation process Dissolve the raw material for preparing the acrylonitrile catalyst in water and mix with the carrier to obtain a precursor slurry;
  • Drying process drying the precursor slurry to obtain dry particles
  • the carrier is silica
  • the silica is added in the form of silica sol; preferably, based on the total mass of the silica sol, SiO 2
  • the content of is 35.1 to 49.5%; and/or the content of Cl - is 11 to 17 ppm; more preferably, the silica sol contains a stabilizer, and the stabilizer is ammonia.
  • the viscosity of the silica sol is 6-14 cP, the pH is 9.0-9.6, and the density is 1.19-1.325 g/mL; and/or, the silica sol
  • the particle size of SiO 2 is 17-25 nm.
  • the drying temperature is 130°C-400°C, preferably 150°C-350°C; in the calcination step, the calcination temperature
  • the temperature is 500°C-700°C, preferably 580°C-680°C, the roasting time is 1h-5h, preferably 1h-3h; when roasting is carried out, air is introduced, and the air flow rate is 100-400Nm 3 /ton of acrylonitrile catalyst, preferably 150-300 Nm 3 /ton of acrylonitrile catalyst.
  • a lower operating temperature can be used, such as 418°C to 425°C, which is beneficial to prolong the life of the catalyst, which exceeds 10 years or longer;
  • the units used in the present invention are all international standard units, and the numerical values and numerical ranges appearing in the present invention should be understood as including systematic errors that are inevitable in industrial production.
  • the first embodiment of the present invention provides an acrylonitrile catalyst comprising a metal oxide represented by the following general formula (1),
  • A is one or more elements selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium;
  • B is one or more elements selected from the group consisting of praseodymium, europium, terbium and dysprosium;
  • C is selected from one or two elements in the group consisting of vanadium and cadmium;
  • a, b, c, d, e, f, g, and h represent the number of atoms of each element
  • a 1.2 ⁇ 3.0
  • d 0.3 ⁇ 1.6
  • e 0.4 ⁇ 1.8
  • x is the number of oxygen atoms required to satisfy the valence of other elements.
  • One of the purposes of this embodiment is to improve the stability of the catalyst, mainly to solve the problem of structural distortion of the catalyst and the loss of molybdenum, the main active substance of the catalyst.
  • the key to solving the structural distortion of the catalyst requires the catalyst to have a reasonable element composition and solve the loss of molybdenum
  • the main purpose is to reduce the loss of molybdenum by reducing the reaction temperature.
  • This embodiment introduces molybdenum, bismuth, nickel, magnesium, and iron as essential components.
  • this embodiment adopts a reasonable combination of elements to give full play to the "synergistic effect" between the elements, so that the structural distortion of the catalyst is reduced to reduce the loss of active material molybdenum; by introducing alkali metal elements, the pH of the catalyst surface is adjusted to make the catalyst in It has good adsorption capacity for reaction raw materials at lower temperature, ensuring that the catalyst has a high acrylonitrile yield and propylene conversion rate under low temperature conditions.
  • this embodiment also introduces element cerium, which not only reduces the amount of reaction by-products, but also enables the catalyst to have good acrylonitrile yield, selectivity and stability under a higher load.
  • the selectivity of the catalyst can be increased, the yield of acrylonitrile, the yield of hydrocyanic acid, and the yield of acetonitrile can be increased; the reaction temperature can also be reduced .
  • the reaction temperature can also be reduced .
  • the generation of carbonyl compounds can be reduced, the cleanliness of the catalyst can be improved, the polymerization of organic matter can be reduced, and the operating cycle of the device can be improved.
  • the acrylonitrile catalyst of the present invention can increase the conversion rate of propylene, is beneficial to long-term efficient operation of the catalyst, and can improve the selectivity and stability of the catalyst.
  • molybdenum in the catalyst of the present invention any oxide form of molybdenum can be used, such as molybdenum oxide or molybdate. More preferred is a water-soluble molybdate, and the most preferred starting material is ammonium heptamolybdate.
  • the alkali metal in the catalyst may be in the form of an oxide, or a salt capable of producing an oxide upon calcination, such as nitrate or chloride. Nitrate or chloride is easily available and easily dissolved.
  • the iron, nickel, magnesium, cerium, and bismuth in the catalyst can be in the form of oxides, or any compound that can generate oxides during calcination, more preferably water-soluble salts, most preferably hydrated nitrates Or nitrate.
  • the praseodymium, europium, terbium and dysprosium in the catalyst can be used in the form of oxides, or any compound that can generate oxides during calcination, more preferably water-soluble salts, most preferably hydrated nitrate or nitric acid salt.
  • the vanadium and cadmium in the catalyst can be in the form of oxides, or any compound that can generate oxides during calcination, and water-soluble salts are more preferred.
  • vanadium is preferably introduced in the form of vanadyl nitrate;
  • cadmium is preferably introduced in the form of hydrated nitrate or nitrate.
  • the bulk density of the acrylonitrile catalyst is 0.88 to 1.12 g/mL, and the compactness is 1.04 to 1.28 g/mL; and/or the pore volume of the acrylonitrile catalyst is 0.20 to 0.30 mL/g ,
  • the specific surface area is 30.0m 2 /g or more.
  • the attrition rate of the acrylonitrile catalyst is 4% or less.
  • 30% or less of the acrylonitrile catalyst has a particle size greater than 90 ⁇ m, and 30-50% of the acrylonitrile catalyst has a particle size greater than 20 ⁇ m and 45 ⁇ m or less, and 7% or less of the acrylonitrile
  • the particle size of the catalyst is 20 ⁇ m or less.
  • Preparation process Dissolve the raw material for preparing the acrylonitrile catalyst in water and mix with the carrier to obtain a precursor slurry;
  • Drying process drying the precursor slurry to obtain dry particles
  • Roasting process calcining the dry particles to obtain a calcined product
  • the conductivity of the water is less than 1 ⁇ s/cm.
  • the invention can make the conductivity of water less than 1 ⁇ s/cm by using sand filtration, activated carbon adsorption, and membrane permeation filtration.
  • the soluble active component raw materials can be dissolved in a certain amount of pure water with a conductivity of less than 1 ⁇ s/cm to prepare a mixed solution, and then mixed with a carrier to make a slurry.
  • the carrier is silica, which is added in the form of silica sol; preferably, the content of SiO 2 is 35.1 to 49.5% based on the total mass of the silica sol; and/or, Cl - content of 11 ⁇ 17ppm.
  • the silica sol contains a stabilizer, and the stabilizer is ammonia.
  • the content of NH 3 is 0.15-0.27%.
  • the viscosity of the silica sol is 6 to 14 cP
  • the pH is 9.0 to 9.6
  • the density is 1.19 to 1.325 g/mL
  • the particle size of SiO 2 in the silica sol is 17 to 25nm.
  • the prepared slurry is spray-dried and molded at 130°C to 400°C to obtain dry particles.
  • the spray molding temperature is 150°C to 350°C.
  • the spray dryer can be a pressure type or a centrifugal turntable type, preferably a centrifugal turntable Formula can ensure that the prepared acrylonitrile catalyst has a good particle size distribution.
  • the spray-formed dry particles are usually calcined and activated under the conditions of 500°C to 700°C.
  • the firing time is 1h-5h or longer.
  • the preferred firing temperature is 580°C-680°C, and the firing time is 1h- 3h, air can be introduced during the roasting process, and the air input amount is 100-400 Nm 3 /ton acrylonitrile catalyst, preferably 150-300 Nm 3 /ton acrylonitrile catalyst.
  • the preparation method of the acrylonitrile catalyst of the present application further includes a three-waste treatment step, the tail gas in the production process is recovered, the waste water is evaporated and discharged up to the standard, and the waste residue is processed after pressure filtration.
  • the acrylonitrile catalyst of the present invention can use a fluidized bed to produce acrylonitrile.
  • Acrylonitrile catalyst can be used in continuous production process or batch production process, but it is best to choose continuous production process when using large reactor.
  • the reactants required for preparing acrylonitrile by using the acrylonitrile catalyst of the present invention are oxygen, ammonia, propylene and their mixtures.
  • the required oxygen can be pure oxygen or oxygen-enriched air, but it is more reasonable to use air as an oxygen source in terms of economy and resource convenience;
  • ammonia can be fertilizer grade liquid ammonia;
  • propylene can be combined with saturated hydrocarbons such as ethane, propane, butane, Pentane exists as a mixture. But from an economic point of view, the propylene content should be greater than 85% (volume).
  • the molar ratio of ammonia to propylene in the reaction raw materials is preferably (0.5 ⁇ 1.5):1.
  • the molar ratio of ammonia to propylene exceeding 1.5:1 has no obvious effect on the reaction.
  • the molar ratio of ammonia to propylene is (1.0 ⁇ 1.2): At 1 o'clock, the utilization rate of ammonia is the highest, which greatly reduces the content of unreacted ammonia in the reactor effluent, thereby reducing the amount of sulfuric acid used to neutralize unreacted ammonia.
  • Such a low ratio of ammonia, air and propylene is beneficial to improve the efficiency of the reactor, and the production capacity of the reactor can be increased by 5%.
  • the catalyst reaction pressure is generally 0.01 to 0.20 MPa, preferably 0.05 to 0.14 MPa. When the reaction pressure of this catalyst is greater than 0.10MPa, the yield of acrylonitrile can still reach 81.0%, and the reaction effect is better at lower pressure.
  • the key factor for catalyst efficiency is the contact time between the reaction raw materials and the catalyst. The contact time is usually 0.1 to 30 seconds, preferably the contact time is 0.5 to 18 seconds.
  • adding water to the reaction raw materials can increase the selectivity of the reaction and the yield of acrylonitrile.
  • the electronegativity of the catalyst surface is optimized, so that the catalyst generates a small amount of static electricity under the impact of the high-speed airflow in the reactor, so that the fine particle catalyst lost to the quenching tower is not adsorbed by the quenching tower tube wall.
  • the service life of the device is improved, and the production efficiency is improved.
  • Reactor fluidized bed reactor, inner diameter
  • Catalyst filling amount 440g
  • Reactor top pressure 0.08MPa (gauge pressure)
  • the reaction product was absorbed with acid solution and water at 0°C, and the product was analyzed by a combination of gas chromatography and chemical analysis. And calculate the carbon balance, when the carbon balance is (95 ⁇ 105)%, it is valid data.
  • Example 2 The preparation method is the same as in Example 1, but the starting materials are added according to Table 1.
  • the composition of the catalyst active components is shown in Table 2, and the introduction method is the same as in Example 1.
  • Example 2 The preparation method is the same as in Example 1, but the starting materials are added according to Table 1.
  • the composition of the catalyst active components is shown in Table 2, and the introduction method is the same as in Example 1.
  • the reaction temperature is 5°C lower than the standard evaluation conditions.
  • the reaction temperature in the actual production industrial device can be reduced to 418°C, which is 8°C lower than the domestic catalyst and 12°C lower than the Ineos C49MC catalyst.
  • Low temperature catalyst A lower reaction temperature will reduce the volatilization of active components and increase the life of the catalyst; a lower reaction temperature will reduce the amount of impurities produced by the reactor, which is beneficial to the control of product quality.
  • the yield of carbonyl compound acrolein is about 0.2%, and acrylic acid is about 1.5%, which are both at a relatively low level.
  • the content of four-effect sewage pollutants will be reduced, and the polymerization problem of recycling and refining systems will be reduced. The occurrence of, improve the yield of products and increase the operating cycle of the device.
  • the yield of the main product acrylonitrile can exceed 83%, indicating that the acrylonitrile catalyst of the present invention is a highly selective catalyst.
  • the acrylonitrile catalyst of the present invention generates less impurities during the reaction process, the single yield of acrolein is about 0.2%, and the content of acrylic acid is greatly reduced compared with XYA-5. This makes it easier to control the quality of the main and by-products, and also makes the operation of the acrylonitrile production device easier.
  • the systems of the acrylonitrile device will be cleaner, which will reduce the labor intensity of the operator, increase the refining recovery rate of the production device, and increase the economic benefits of the device.
  • Table 5 shows the catalyst activity evaluation results. It can be seen from Table 5 that the catalysts of the examples of the present invention have significantly improved propylene conversion, acrylonitrile selectivity, and acrylonitrile yield compared with the test results of the comparative example. Shows good results.
  • Example 1 and Comparative Example 1 The corresponding catalysts were prepared according to the preparation methods and addition amounts of Example 1 and Comparative Example 1. Each time 440g of the catalysts obtained in Example 1 and Comparative Example 1 were taken, placed in a fluidized bed catalyst evaluation device, and heated to 435°C , Continuous operation for 1000h, and the test time in the following table 6 was stabilized for 90 minutes respectively, and the catalyst stability was evaluated by gas chromatography and liquid chromatography. The evaluation results are shown in Table 6.
  • Table 6 shows the test results of the stability of the acrylonitrile catalysts of Example 1 and Comparative Example 1. It can be seen from Table 6 that in the stability test of the acrylonitrile catalyst of Example 1, the yield of acrylonitrile for 1000 h is 1.62% lower than the yield of acrylonitrile for 4 h, which is not obvious; The selectivity of acrylonitrile for 4 hours is 0.86% lower, and the change is not obvious; while the stability test of the catalyst of Comparative Example 1 for 1000 hours, the yield of acrylonitrile is 2.88% lower than the yield of acrylonitrile for 4 hours, and the decrease is large. The selectivity is 1.90% lower than that of 4h acrylonitrile, which is significantly lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种丙烯腈催化剂及其制备方法和应用。该丙烯腈催化剂,其包含具有下述通式所示的金属氧化物:BiaFebNicMgdCeeAfBgChMo12Ox,其中:A选自由锂、钠、钾、铷、铯组成的组中的一种或两种以上的元素;B选自由镨、铕、铽、镝组成的组中的一种或两种以上的元素;C选自由钒、镉组成的组中的一种或两种的元素;a、b、c、d、e、f、g和h表示各元素的原子个数;a为1.2~3.0;b为1.0~2.7;c为3~8;d为0.3~1.6;e为0.4~1.8;f、g和h含量分别为0.01~0.4;x为用于满足其它元素化合价所需的氧原子数。该催化剂具有以下效果:1)可满足工业化扩能装置高催化剂负荷的要求;2)降低了羰基化合物丙烯醛、丙烯酸的生成量,提高了装置运行周期。

Description

一种丙烯腈催化剂及其制备方法和应用
交叉引用
本申请主张2019年3月7日提交的中国专利申请号为201910173069.7的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及一种丙烯腈催化剂及其制备方法和应用,属于催化剂领域。
背景技术
丙烯腈(AN)是用于合成纤维腈纶的原料单体,也是ABS、SAN等热塑性合成树酯、丁腈橡胶、己二腈、丙烯酰胺及其他衍生物的原料,是石油化工重要产品之一。丙烯氨氧化生产丙烯腈的工艺技术已日趋成熟,研制性能优良的丙烯腈催化剂是丙烯腈行业关注的热点。
对于催化剂稳定性,目前催化剂在流化床反应器中可连续运转4-5年不必整体更换,比过去仅能用1-1.5年即需更换新催化剂有了明显的提高。从催化剂本身来说,某种组分的挥发损失是造成使用寿命不长的主要原因。钼系催化剂主要是钼组分的挥发。最早解决这些问题的方法是将催化剂从反应器中卸出,补加流失的组分并活化后再加入到反应器内,当然,这种方法是不经济的,因为工厂停车将造成很大经济损失。一种改进的方法是连续向反应器内加入易挥发的组分,以补充和减少催化剂中某些组分的流失。例如加入含有氧化钼的硅胶以解决钼的挥发,就可以不必停车以保持工厂有较长的年开工时数。但是,这种方法也存在一些缺点,主要是补充加入的物质与反应器内催化剂不同,长期使用会使反应器内催化剂组成发生变化。
另外,丙烯腈催化剂的技术指标中还有一项流动性或结块倾向的指标,通常用休止角来描述催化剂的流动性。通常测定流动性是在冷态下进行,不能代表催化剂在反应器内的高温下的流动状态。如果在高温下催化剂流动状 态变差就会造成旋风分离器料腿或空气、丙烯-氨分布器被堵塞而无法正常运转。对于钼系催化剂,发生这种现象的原因可能是在催化剂表面出现过量氧化钼造成的。如果过量氧化钼出现且在催化剂表面沉积就会使微粒相互粘结而造成堵塞。催化剂采用低氧比条件可以显著提高反应器生产能力,是当前研究工作者追求的方向。但是氧比过低时,催化剂中的某些高价态元素会被过度还原而产生大量的过量氧化钼。因此,降低反应温度,减少活性组分钼的升华,延缓催化剂的寿命是新型催化剂研发的趋势。
对于清洁性问题,由于在目前丙烯腈反应产物中有丙烯醛、丙烯酸等杂质,它们大部分是在系统中通过聚合除去,如果系统中聚合物积累将堵塞管线和设备,装置必须停工清洗,影响运行周期,因此工厂希望使用的催化剂能尽量减少丙烯醛、丙烯酸的生成。清洁性差的催化剂羰基化合物丙烯醛、丙烯酸的生成量较大。鉴于羰基化合物丙烯醛、丙烯酸的存在对外排污水及装置运行周期都有直接影响。为此要开展降低反应过程中丙烯醛、丙烯酸的工作,实现低温反应是提高丙烯腈催化剂清洁环保性能的关键技术措施。
对于选择性问题,由于丙烯氨氧化反应不受热力学平衡的控制,而完全受动力学因素控制,关键在于催化剂性能,因此随着对丙烯氨氧化耦合反应网络系统研究的深入,催化剂表面结构更多信息的获取以及各组分氧化物催化剂体系设计能力的提高,将丙烯腈单程收率继续提升的空间还是存在的。随着市场的变化,对丙烯腈生产过程中的副产物氢氰酸、乙腈的需求也发生了变化,应当研究副产物的选择性,以满足不同使用单位的需要。
对于催化剂负荷低的问题,高负荷催化剂对一定规模的生产装置而言,可减少催化剂装填量。高丙烯负荷、高反应压力条件可以提高丙烯腈产量和反应器的处理能力,并可使反应器扩能,这样厂家可根据市场需求适当提高生产能力。耐高压催化剂还可以满足日益提高的环保要求。因此研制出在高负荷、高压条件下仍保持高反应性能的催化剂是目前的一个研究方向,它将使丙烯腈生产形成规模经济效益成为可能。由于一些丙烯腈装置大部分都进行了扩能改造,生产能力在原有基础上增加了60%,这些装置主体设备没有 改变。由于负荷的增加,反应压力增加了,反应器负荷也增加了,因此从生产实际角度,提高国产丙烯腈催化剂高压下的选择性和活性、提高国产丙烯腈催化剂的重时空速也是目前亟待解决的技术问题。
发明内容
发明要解决的问题
鉴于现在技术中的丙烯腈催化剂所存在的问题,本申请首先提供了一种丙烯腈催化剂。具体而言,本发明的丙烯腈催化剂可以在较低反应温度下反应有效防止活性组分升华,提高丙烯腈催化剂的稳定性;能够在较低反应温度下反应减少羰基化合物的产生,提高丙烯腈催化剂的清洁性。可以提高丙烯腈和氢氰酸的单程收率、降低乙腈收率,更好满足市场需求。能够在高重量空速下反应,减少丙烯腈催化剂装填量,更好满足扩能装置的需求。
进一步地,本发明还提供一种原料易于获取,制备方法简单易行的丙烯腈催化剂的制备方法。
用于解决问题的方案
本发明提供一种丙烯腈催化剂,其包含具有下述通式(1)所示的金属氧化物,
Bi aFe bNi cMg dCe eA fB gC hMo 12O x            (1)
其中:
A选自由锂、钠、钾、铷、铯组成的组中的一种或两种以上的元素;
B选自由镨、铕、铽、镝组成的组中的一种或两种以上的元素;
C选自由钒、镉组成的组中的一种或两种的元素;
a、b、c、d、e、f、g和h表示各元素的原子个数;
a为1.2~3.0;
b为1.0~2.7;
c为3~8;
d为0.3~1.6;
e为0.4~1.8;
f、g和h含量分别为0.01~0.4;
x为用于满足其它元素化合价所需的氧原子数。
根据本发明的丙烯腈催化剂,其中,所述丙烯腈催化剂含有载体,所述金属氧化物负载于所述载体上;优选地,所述载体为二氧化硅。
根据本发明的丙烯腈催化剂,其中,以所述丙烯腈催化剂的总质量计,所述载体的加入量为30%-70%,优选为40%-55%。
根据本发明的丙烯腈催化剂,其中,所述丙烯腈催化剂的松密度为0.88~1.12g/mL,紧密度为1.04~1.28g/mL;和/或,所述丙烯腈催化剂的孔容为0.20~0.30mL/g,比表面积为30.0m 2/g以上。
根据本发明的丙烯腈催化剂,其中,30%以下的所述丙烯腈催化剂的粒径为大于90μm,30-50%的所述丙烯腈催化剂的粒径为大于20μm且在45μm以下,7%以下的所述丙烯腈催化剂的粒径为20μm以下。
本发明还提供一种根据本发明的丙烯腈催化剂的制备方法,包括以下步骤:
制备工序:取制备所述丙烯腈催化剂的原料溶于水后与载体混合,获得前体浆料;
干燥工序:将所述前体浆料干燥,得到干燥颗粒;
焙烧工序:对所述干燥颗粒进行活化焙烧,得到焙烧产物。
根据本发明的丙烯腈催化剂的制备方法,其中,所述载体为二氧化硅,所述二氧化硅是以硅溶胶的形式加入的;优选地,以所述硅溶胶的总质量计,SiO 2的含量为35.1~49.5%;和/或,Cl -的含量为11~17ppm;更优选地,所述硅溶胶中包含有稳定剂,所述稳定剂为氨水。
根据本发明的丙烯腈催化剂的制备方法,其中,所述硅溶胶的粘度为6~14cP,pH值为9.0~9.6,密度为1.19~1.325g/mL;和/或,所述硅溶胶中的SiO 2的粒径为17~25nm。
根据本发明的丙烯腈催化剂的制备方法,其中,所述干燥工序中,所述干燥的温度为130℃-400℃,优选为150℃-350℃;所述焙烧工序中,所述焙 烧的温度为500℃-700℃,优选为580℃-680℃,所述焙烧的时间为1h-5h,优选为1h-3h;在进行焙烧时通入空气,所述空气的通入量为100-400Nm 3/吨丙烯腈催化剂,优选为150-300Nm 3/吨丙烯腈催化剂。
本发明还提供一种根据本发明的丙烯腈催化剂或本发明的制备方法制备得到的丙烯腈催化剂在丙烯氨氧化制备丙烯腈中的应用。
发明的效果
本发明的丙烯腈催化剂具有以下效果:
1)可满足工业化扩能装置高催化剂负荷的要求;
2)降低了羰基化合物丙烯醛、丙烯酸的生成量,提高了装置运行周期。
3)在实际生产中,可以使用较低的操作温度,例如418℃~425℃,有利于延长催化剂寿命,催化剂使用寿命超过10年或更长;
4)丙烯转化率高,降低了吸收塔尾气治理的负荷;
5)在较低的反应温度条件下还可使丙烯腈的单程收率可以达到83.0%或者更高;
6)本发明的催化剂更重要的优点是主要成分成本低而且催化剂的制备很简单。
具体实施方式
以下将详细说明本发明的各种示例性实施例、特征和方面。在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好地说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在另外一些实例中,对于本领域技术人员熟知的方法、手段、器材和步骤未作详细描述,以便于凸显本发明的主旨。
如无特殊声明,本发明所使用的单位均为国际标准单位,并且本发明中 出现的数值,数值范围,均应当理解为包含了工业生产中所不可避免的系统性误差。
第一实施方式
本发明的第一实施方式提供了一种丙烯腈催化剂,包含具有下述通式(1)所示的金属氧化物,
Bi aFe bNi cMg dCe eA fB gC hMo 12O x          (1)
其中:
A选自由锂、钠、钾、铷、铯组成的组中的一种或两种以上的元素;
B选自由镨、铕、铽、镝组成的组中的一种或两种以上的元素;
C选自由钒、镉组成的组中的一种或两种的元素;
a、b、c、d、e、f、g和h表示各元素的原子个数;
a为1.2~3.0;
b为1.0~2.7;
c为3~8;
d为0.3~1.6;
e为0.4~1.8;
f、g和h含量分别为0.01~0.4;
x为用于满足其它元素化合价所需的氧原子数。
本实施方式的目的之一在于提高催化剂的稳定性,主要解决催化剂结构畸变问题和催化剂的主要活性物钼的流失问题,解决催化剂结构畸变关键要求催化剂有合理的元素组成,解决活性物质钼的流失主要是通过降低反应温度,达到减少钼流失的目的。
本实施方式通过引入钼、铋、镍、镁和铁作为必需成分。本实施方式一方面通过元素合理搭配,充分发挥了元素之间的“协同作用”,使催化剂结构畸变变得缓和减少活性物质钼的流失;通过引入碱金属元素,调整催化剂表面酸碱度,使催化剂在较低温度下对反应原料有好的吸附能力,保证催化剂在低温条件下有很高的丙烯腈收率和丙烯转化率。另外,本实施方式还引入 元素铈,不仅降低了反应副产物生成量,而且使催化剂在较高负荷下具有良好的丙烯腈收率和选择性及稳定性。
进一步,本实施方式通过引入镨、铕、铽和/或镝等元素,可以提高催化剂的选择性,提高丙烯腈收率,提高氢氰酸收率,降低乙腈收率;还可以降低反应的温度,减缓催化剂活性衰减的速度,延长催化剂的寿命;提高催化剂的处理能力,满足装置扩能的需求。本实施方式通过引入钒和/或镉等元素,可以降低羰基化合物的生成量,提高催化剂的清洁性,减少有机物的聚合,提高装置的运行周期。本发明的丙烯腈催化剂,可以提高丙烯的转化率,并且有利于催化剂长周期高效运行,可以提高催化剂选择性及稳定性。
本发明的催化剂中的钼,可以使用任何氧化物形式的钼,如氧化钼或者钼酸盐。较优选的是可水溶性的钼酸盐,最优选起始物料为七钼酸铵。
催化剂中的碱金属,可以用氧化物形式,也可以用经焙烧能产生氧化物的盐,例如硝酸盐或氯化盐。硝酸盐或氯化盐易于获得和容易溶解。
催化剂中的铁、镍、镁、铈、铋,可以用氧化物形式,也可以使用在焙烧时能够生成氧化物的任何化合物,较优选的是可水溶性的盐,最优选的是水合硝酸盐或硝酸盐。
催化剂中的镨、铕、铽和镝,可以用氧化物形式,也可以使用在焙烧时能够生成氧化物的任何化合物,较优选的是可水溶性的盐,最优选的是水合硝酸盐或硝酸盐。
催化剂中的钒、镉,可以用氧化物形式,也可以使用在焙烧时能够生成氧化物的任何化合物,较优选的是可水溶性的盐。具体而言,钒优选以硝酸双氧钒的方式引入;镉优选以水合硝酸盐或硝酸盐的方式引入。
本发明的丙烯腈催化剂可以仅由活性组分组成,在无载体的情况下使用也可显示出优良的性能。为了优化技术方案,可以与载体结合使用,所述金属氧化物负载于所述载体上。所述载体优选的是二氧化硅,以所述丙烯腈催化剂的总质量计,载体占催化剂重量的30%-70%;优选的,载体占催化剂总重量的40%-55%。
在本发明中,所述丙烯腈催化剂的松密度为0.88~1.12g/mL,紧密度为1.04~1.28g/mL;和/或,所述丙烯腈催化剂的孔容为0.20~0.30mL/g,比表面积为30.0m 2/g以上。
另外,在本发明中,以所述丙烯腈催化剂的质量计,所述丙烯腈催化剂的磨损率为4%以下。
在本发明中,30%以下的所述丙烯腈催化剂的粒径为大于90μm,30-50%的所述丙烯腈催化剂的粒径为大于20μm且在45μm以下,7%以下的所述丙烯腈催化剂的粒径为20μm以下。
本发明的丙烯腈催化剂具有优异的催化性能,催化效率高。具体地,丙烯腈(AN)的收率为80%以上,乙腈(ACN)的收率为4%以下,氢氰酸(HCN)的收率为6%左右。
第二实施方式
本发明的第二实施方式提供了一种第一实施方式的丙烯腈催化剂的制备方法,具体包括以下步骤:
制备工序:取制备丙烯腈催化剂的原料溶于水后与载体混合,获得前体浆料;
干燥工序:将所述前体浆料干燥,得到干燥颗粒;
焙烧工序:对所述干燥颗粒进行焙烧,得到焙烧产物;
优选地,所述水的电导率为小于1μs/cm。
本发明可以通过使用沙滤、活性炭吸附、膜渗透过滤的方式,使水的电导率小于1μs/cm。
具体地,所述制备步骤中,可以将可溶性的活性组分原料溶解到一定量的电导率小于1μs/cm的纯水中,制成混合溶液,然后与载体混合做成浆液。
进一步地,所述载体为二氧化硅,二氧化硅是以硅溶胶形式加入的;优选地,以所述硅溶胶的总质量计,SiO 2的含量为35.1~49.5%;和/或,Cl -的含量为11~17ppm。
在本发明中,所述硅溶胶中包含有稳定剂,所述稳定剂为氨水。在硅溶 胶中,NH 3的含量为0.15-0.27%。
在本发明中,所述硅溶胶的粘度为6~14cP,pH值为9.0~9.6,密度为1.19~1.325g/mL;和/或,所述硅溶胶中的SiO 2的粒径为17~25nm。
在干燥工序中,在130℃~400℃下将配置好的浆液喷雾干燥成型,得到干燥颗粒,优选喷雾成型温度为150℃~350℃,喷雾干燥器可用压力式或离心转盘式,优选离心转盘式,能保证制成的丙烯腈催化剂有良好的粒度分布。
在焙烧工序中,通常在500℃~700℃条件下,将喷雾成型后的干燥颗粒进行焙烧活化,焙烧时间1h~5h或更长时间,优选的焙烧温度580℃~680℃,焙烧时间1h~3h,焙烧过程中可以通入空气,空气通入量为100~400Nm 3/吨丙烯腈催化剂,优选通入量为150~300Nm 3/吨丙烯腈催化剂。
另外,本申请的丙烯腈催化剂的制备方法还包括三废处理的步骤,将生产过程中的尾气进行回收,废水经蒸发后达标排放,废渣经压滤后进行处理。
第三实施方式
本发明的第三实施方式提供了一种本发明的第一实施方式的丙烯腈催化剂或第二实施方式的制备方法制备得到的丙烯腈催化剂在丙烯氨氧化制备丙烯腈中的应用。
具体地,本发明的丙烯腈催化剂可以使用流化床制造丙烯腈。丙烯腈催化剂可以用于连续的生产过程,也可以用于间歇生产过程,但在使用大型反应器时最好选择连续的生产过程。此外,希望对丙烯腈催化剂进行周期性再生或活化,例如在一定温度下通入空气以实现这一过程。
利用本发明的丙烯腈催化剂制备丙烯腈所需反应物为氧、氨、丙烯及它们的混合物。所需氧可以用纯氧、富氧空气,但从经济、资源方便考虑,使用空气作为氧源更为合理;氨可用肥料级液氨;丙烯可以和饱和烃如乙烷、丙烷、丁烷、戊烷的混合物形式存在。但从经济角度考虑,丙烯含量应大于85%(体积)。
反应原料中的氨与丙烯的摩尔比最好为(0.5~1.5):1,氨与丙烯的摩尔比超过1.5:1对反应没有明显影响,氨与丙烯的摩尔比为(1.0~1.2):1 时,氨的利用率最高,大大降低了反应器流出物中未反应氨的含量,从而减少了用于中和未反应氨硫酸的用量。
反应原料中的空气与丙烯的摩尔比为(8.5~9.8):1,最佳空气与丙烯的摩尔比为(9.0~9.5):1。
这样低的氨、空气与丙烯配比,有利于提高反应器的效率,反应器的生产能力可提高5%。
催化剂负荷(即WWH,指每吨催化剂每小时处理丙烯的吨数)为0.04~0.20,最佳为0.06~0.10,并且在实际生产中可以保证WWH=0.08~0.085时长期稳定运行。在相同反应器催化剂使用量条件下,可提高原料丙烯的投料量,相应提高反应器的生产能力10~15%。
催化剂反应压力一般为0.01~0.20MPa,优选为0.05~0.14MPa。本催化剂在反应压力大于0.10MPa时,丙烯腈的收率仍然可以达到81.0%,在较低压力下反应效果更好,对催化剂效率起关键因素是反应原料与催化剂的接触时间,通常接触时间为0.1~30秒,优选接触时间为0.5~18秒。
实际生产时,反应温度为380℃~590℃,优选为418℃~425℃,此时,丙烯腈的收率仍然可以达到83.0%以上,并且可以保证在此温度下长期稳定运行,可减缓催化剂中活性物质钼的损失,有利于提高催化剂的使用寿命。
一般来说,向反应原料加水可以提高反应的选择性和丙烯腈的收率。但在本发明中,不需要向原料中加水,因为在反应过程中有水生成。
由于采用多种元素组合,优化了催化剂表面的电负性,使得催化剂在反应器内高速气流冲击下产生较小量静电,使流失到急冷塔的细小颗粒催化剂不被急冷塔管壁吸附,延长了该装置使用周期,提高了生产效率。
实施例
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例中,对催化剂考察评价的具体条件为:
反应器:流化床反应器,内径
Figure PCTCN2019077613-appb-000001
催化剂填装量:440克
反应器顶压力:0.08MPa(表压)
反应温度:435℃
反应时间:4小时
原料比:烯烃/氨/空气=1/1.2/9.5(摩尔比)
WWH:0.085小时 -1
反应产物用0℃酸液和水吸收,用气相色谱和化学分析结合分析产物。并计算碳平衡,当碳平衡在(95~105)%时为有效数据。
烯烃转化率、不饱和腈收率和丙烯腈选择性的定义为:
Figure PCTCN2019077613-appb-000002
Figure PCTCN2019077613-appb-000003
Figure PCTCN2019077613-appb-000004
实施例1
将388.43g(NH 4) 6Mo 7O 24·4H 2O加入到75℃热水中,搅拌使其全部溶解,再加入2684.1g二氧化硅含量为40%(wt)的硅溶胶(牌号;NALCO 2327CH),制成物料A。
将125.93g Fe(NO 3) 3·9H 2O加入到80℃热水中,搅拌使其全部溶解,再加入177.87g Bi(NO 3) 3·5H 2O,287.91g Ni(NO 3) 2·6H 2O,28.21g Mg(NO 3) 2·6H 2O,63.69g Ce(NO 3) 3·6H 2O,制成物料B。
将1.5g NaCl,2.22g KNO 3,9.57g Pr(NO 3) 3·6H 2O,4.52g Cd(NO 3) 2加入80℃热水中溶解后,将其加入到物料B中,形成物料C。
将物料C在快速搅拌下滴加于物料A中,并于80℃恒温老化4h后,用 直径50mm雾化盘,转速12000转/min,160℃下,喷雾干燥成型,将干燥成型的催化剂放置到回转焙烧炉中,600℃下焙烧活化3h,得到成品催化剂,其中催化剂活性组分组成见表2。
实施例2~6
制备方法同实施例1,但起始用料按表1加入。催化剂活性组分组成见表2,其引入方式与实施例1相同。
对比例1~6
制备方法同实施例1,但起始用料按表1加入。催化剂活性组分组成见表2,其引入方式与实施例1相同。
Figure PCTCN2019077613-appb-000005
表2催化剂活性组分组成表
Figure PCTCN2019077613-appb-000006
性能测试
1、样品初活性评价
取实施例1获得催化剂中的三个样品(各440g)置于流化床催化剂评价装置中,升温并反应温度控制在435℃,稳定90min后取样,利用气相色谱和液相色谱分析,进行样品初活性评价,具体结果如下表3所示。
表3实施例1的丙烯腈催化剂的样品初活性评价表
Figure PCTCN2019077613-appb-000007
由表3中数据可以看出,一般而言,丙烯腈催化剂的标准评价条件中的反应温度是440℃,而本发明催化剂样品的评价温度是435℃,在反应温度低5℃的情况下取得了上述反应成绩,从数据上看:
(1)反应温度较标准评价条件低5℃,在实际生产的工业装置上的反应温度可降至418℃,比国内催化剂低8℃,比英力士公司的C49MC催化剂低12℃,是一种低温型催化剂。较低的反应温度会减少活性组分的挥发,提高催化剂的寿命;较低的反应温度反应器产生的杂质量会减少,利于产品质量的控制。
(2)羰基化合物丙烯醛收率在0.2%左右、丙烯酸在1.5%左右,均处于较低的水平,在工业装置上将会减少四效外排污水污染物的含量,减少回收精制系统聚合问题的发生,提高产品的收率,增长装置的运行周期。
(3)主要产物丙烯腈的收率可以超过83%,说明本发明丙烯腈催化剂是一种高选择性催化剂。
(4)由于本发明催化剂的催化剂催化效能高,在工业装置上可以降低重量空速,利于扩能装置的生产。
2、样品初活性与XYA-5催化剂的对比评价
按照上述样品初活性评价的方法,取实施例1获得催化剂中的三个样品和XYA-5催化剂的三个样品(各440g),置于流化床催化剂评价装置中,升温并反应温度控制在435℃,稳定90min后取样,利用气相色谱和液相色谱分析,进行样品初活性对比评价,具体结果如下表4所示:
表4实施例1的丙烯腈催化剂的样品初活性与XYA-5催化剂的对比评价表
Figure PCTCN2019077613-appb-000008
从上表4中可以看出:
(1)本发明的丙烯腈催化剂有良好的稳定性能和较高的丙烯腈单收,AN收率可以超过83%,比XYA-5催化剂的AN收率高约2.5个百分点,在工业生产时其初活性将超过85%,是一种高效的催化剂。
(2)本发明的丙烯腈催化剂在反应过程中生成的杂质少,丙烯醛单收在0.2%左右,且丙烯酸的含量较XYA-5有大幅度的降低。这样使主副产品质量易于控制,也使丙烯腈生产装置操作更加容易,丙烯腈装置各系统将更加清洁,将降低操作者劳动强度,提高生产装置的精制回收率,也将提高装置的经济效益。
(3)副产品乙腈的收率有所下降,氢氰酸的收率有所上升。在工业装 置上,催化剂进入平衡态后,氢氰酸的收率将在6%左右,将提高甲酯产业链的经济效益。
3、催化剂活性评价
取实施例1-6和对比例1-6获得的催化剂(各440g)置于流化床催化剂评价装置中,升温并反应温度控制在435℃,稳定90min后取样,利用气相色谱和液相色谱分析,进行催化剂活性评价,评价结果由表5所示。
表5催化剂活性评价结果
Figure PCTCN2019077613-appb-000009
表5为催化剂活性评价结果,从表5中可以看出:本发明实施例的催化剂在丙烯转化率,丙烯腈选择性,丙烯腈收率上,均比对比例的测试结果有显著的提高,表现出较好的效果。
4、催化剂稳定性评价
按实施例1和对比例1的制备方法及加入量制备相应的催化剂,每次各取实施例1和对比例1得到的催化剂各440g,置于流化床催化剂评价装置中,升温至435℃,连续运行1000h,并按下表6中的试验时间分别稳定90min, 利用气相色谱和液相色谱分析,进行催化剂稳定性评价,评价结果由表6所示。
表6实施例1和对比例1的丙烯腈催化剂稳定性试验结果
Figure PCTCN2019077613-appb-000010
表6为实施例1和对比例1的丙烯腈催化剂稳定性的试验结果。从表6可以看出:实施例1的丙烯腈催化剂的稳定性试验进行1000h的丙烯腈收率比进行4h的丙烯腈收率降低了1.62%,下降不明显;进行1000h的丙烯腈 选择性比进行4h的丙烯腈选择性低了0.86%,变化不明显;而对比例1催化剂的稳定性试验进行1000h的丙烯腈收率比4h的丙烯腈收率降低了2.88%,降低幅度大,丙烯腈选择性比4h的丙烯腈选择性低了1.90%,明显降低。
5、 物性测试
对实施例1制备得到的丙烯腈催化剂进行相应的物理性能测试,结果如下表7所示。
表7
Figure PCTCN2019077613-appb-000011
由表1可以看出,本申请的丙烯腈催化剂的物性参数合适,满足生产丙烯腈的要求。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种丙烯腈催化剂,其特征在于,包含具有下述通式(1)所示的金属氧化物,
    Bi aFe bNi cMg dCe eA fB gC hMo 12O x  (1)
    其中:
    A选自由锂、钠、钾、铷、铯组成的组中的一种或两种以上的元素;
    B选自由镨、铕、铽、镝组成的组中的一种或两种以上的元素;
    C选自由钒、镉组成的组中的一种或两种的元素;
    a、b、c、d、e、f、g和h表示各元素的原子个数;
    a为1.2~3.0;
    b为1.0~2.7;
    c为3~8;
    d为0.3~1.6;
    e为0.4~1.8;
    f、g和h含量分别为0.01~0.4;
    x为用于满足其它元素化合价所需的氧原子数。
  2. 根据权利要求1所述的丙烯腈催化剂,其特征在于,所述丙烯腈催化剂含有载体,所述金属氧化物负载于所述载体上;优选地,所述载体为二氧化硅。
  3. 根据权利要求2所述的丙烯腈催化剂,其特征在于,以所述丙烯腈催化剂的总质量计,所述载体的加入量为30%-70%,优选为40%-55%。
  4. 根据权利要求1-3任一项所述的丙烯腈催化剂,其特征在于,所述丙烯腈催化剂的松密度为0.88~1.12g/mL,紧密度为1.04~1.28g/mL;和/或,所述丙烯腈催化剂的孔容为0.20~0.30mL/g,比表面积为30.0m 2/g以上。
  5. 根据权利要求1-4任一项所述的丙烯腈催化剂,其特征在于,30%以下的所述丙烯腈催化剂的粒径为大于90μm,30-50%的所述丙烯腈催化剂的粒径为大于20μm且在45μm以下,7%以下的所述丙烯腈催化剂的粒径为20μm以下。
  6. 一种根据权利要求1-5任一项所述的丙烯腈催化剂的制备方法,其特征在于,包括以下步骤:
    制备工序:取制备所述丙烯腈催化剂的原料溶于水后与载体混合,获得前体浆料;
    干燥工序:将所述前体浆料干燥,得到干燥颗粒;
    焙烧工序:对所述干燥颗粒进行活化焙烧,得到焙烧产物。
  7. 根据权利要求6所述的丙烯腈催化剂的制备方法,其特征在于,所述载体为二氧化硅,所述二氧化硅是以硅溶胶的形式加入的;优选地,以所述硅溶胶的总质量计,SiO 2的含量为35.1~49.5%;和/或,Cl -的含量为11~17ppm;更优选地,所述硅溶胶中包含有稳定剂,所述稳定剂为氨水。
  8. 根据权利要求7所述的丙烯腈催化剂的制备方法,其特征在于,所述硅溶胶的粘度为6~14cP,pH值为9.0~9.6,密度为1.19~1.325g/mL;和/或,所述硅溶胶中的SiO 2的粒径为17~25nm。
  9. 根据权利要求6-8任一项所述的丙烯腈催化剂的制备方法,其特征在于,所述干燥工序中,所述干燥的温度为130℃-400℃,优选为150℃-350℃;所述焙烧工序中,所述焙烧的温度为500℃-700℃,优选为580℃-680℃,所述焙烧的时间为1h-5h,优选为1h-3h;在进行焙烧时通入空气,所述空气的通入量为100-400Nm 3/吨丙烯腈催化剂,优选为150-300Nm 3/吨丙烯腈催化剂。
  10. 一种根据权利要求1-5任一项所述的丙烯腈催化剂或权利要求6-9任一项所述的制备方法制备得到的丙烯腈催化剂在丙烯氨氧化制备丙烯腈中的应用。
PCT/CN2019/077613 2019-03-07 2019-03-11 一种丙烯腈催化剂及其制备方法和应用 WO2020177140A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207000720A KR102231075B1 (ko) 2019-03-07 2019-03-11 아크릴로니트릴 촉매 및 이의 제조방법과 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910173069.7A CN109772356B (zh) 2019-03-07 2019-03-07 一种丙烯腈催化剂及其制备方法和应用
CN201910173069.7 2019-03-07

Publications (1)

Publication Number Publication Date
WO2020177140A1 true WO2020177140A1 (zh) 2020-09-10

Family

ID=66487714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077613 WO2020177140A1 (zh) 2019-03-07 2019-03-11 一种丙烯腈催化剂及其制备方法和应用

Country Status (3)

Country Link
KR (1) KR102231075B1 (zh)
CN (1) CN109772356B (zh)
WO (1) WO2020177140A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328754A (zh) * 2023-04-13 2023-06-27 广州大学 一种溶解氧活化催化剂及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112121811B (zh) * 2019-11-15 2021-12-14 北京水木滨华科技有限公司 一种制备甲基丙烯腈用催化剂及制备甲基丙烯腈的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1054914A (zh) * 1990-11-05 1991-10-02 中国石油化工总公司 丙烯腈流化床催化剂
CN1285237A (zh) * 1999-08-19 2001-02-28 中国石油化工集团公司 丙烯氨氧化制造丙烯腈流化床催化剂
CN101147867A (zh) * 2006-09-20 2008-03-26 中国石油化工股份有限公司 丙烯氨氧化流化床催化剂
JP4588533B2 (ja) * 2005-05-24 2010-12-01 ダイヤニトリックス株式会社 アクリロニトリル合成用触媒
CN102658167A (zh) * 2012-05-08 2012-09-12 营口市向阳催化剂有限责任公司 一种丙烯氨氧化制备丙烯腈的催化剂
CN104994945A (zh) * 2013-02-21 2015-10-21 三菱丽阳株式会社 丙烯腈制造用催化剂和丙烯腈的制造方法
CN106955717A (zh) * 2017-04-10 2017-07-18 营口市风光化工有限公司 一种高效、耐磨丙烯腈催化剂的制备方法
CN109070070A (zh) * 2016-08-31 2018-12-21 旭化成株式会社 催化剂的制造方法及丙烯腈的制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4030740B2 (ja) * 2001-10-11 2008-01-09 ダイヤニトリックス株式会社 アンモ酸化用触媒の製造方法
ES2449580T3 (es) * 2006-10-26 2014-03-20 Mitsubishi Rayon Co., Ltd. Catalizador de lecho fluidizado para producir acrilonitrilo y procedimiento para producir acrilonitrilo
WO2013129363A1 (ja) * 2012-02-29 2013-09-06 三菱レイヨン株式会社 アクリロニトリルの製造方法
CN103418403A (zh) * 2012-05-16 2013-12-04 中国石油化工股份有限公司 用于烯烃氨氧化反应的低温高负荷催化剂
EP3409357B1 (en) * 2016-01-25 2022-06-01 Asahi Kasei Kabushiki Kaisha Fluid bed ammoxidation reaction catalyst, and acrylonitrile production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1054914A (zh) * 1990-11-05 1991-10-02 中国石油化工总公司 丙烯腈流化床催化剂
CN1285237A (zh) * 1999-08-19 2001-02-28 中国石油化工集团公司 丙烯氨氧化制造丙烯腈流化床催化剂
JP4588533B2 (ja) * 2005-05-24 2010-12-01 ダイヤニトリックス株式会社 アクリロニトリル合成用触媒
CN101147867A (zh) * 2006-09-20 2008-03-26 中国石油化工股份有限公司 丙烯氨氧化流化床催化剂
CN102658167A (zh) * 2012-05-08 2012-09-12 营口市向阳催化剂有限责任公司 一种丙烯氨氧化制备丙烯腈的催化剂
CN104994945A (zh) * 2013-02-21 2015-10-21 三菱丽阳株式会社 丙烯腈制造用催化剂和丙烯腈的制造方法
CN109070070A (zh) * 2016-08-31 2018-12-21 旭化成株式会社 催化剂的制造方法及丙烯腈的制造方法
CN106955717A (zh) * 2017-04-10 2017-07-18 营口市风光化工有限公司 一种高效、耐磨丙烯腈催化剂的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328754A (zh) * 2023-04-13 2023-06-27 广州大学 一种溶解氧活化催化剂及其制备方法和应用
CN116328754B (zh) * 2023-04-13 2024-06-11 广州大学 一种溶解氧活化催化剂及其制备方法和应用

Also Published As

Publication number Publication date
KR20200107921A (ko) 2020-09-16
KR102231075B1 (ko) 2021-03-22
CN109772356B (zh) 2020-06-02
CN109772356A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN101712590B (zh) 乙烷氧化脱氢的改进方法
KR101513300B1 (ko) 불포화 알데히드 및/또는 불포화 카르복실산의 제조법
EP2842625A1 (en) Catalyst for producing butadiene, method for producing said catalyst, and method for producing butadiene using said catalyst
Xiao et al. Ceria-promoted Ni–Co/Al 2 O 3 catalysts for n-dodecane steam reforming
WO2020177140A1 (zh) 一种丙烯腈催化剂及其制备方法和应用
CN103752305A (zh) 一种催化剂、其制备方法以及使用该催化剂生产丙烯酸甲酯并联产甲基丙烯酸甲酯的方法
CN110639492A (zh) 用于醋酸甲酯与甲醛制丙烯酸甲酯的催化剂及其应用
JP2011132218A (ja) 共役ジエンの製造方法
JP7209578B2 (ja) 触媒およびその製造方法
JP5388897B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒および該触媒を用いた不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
KR20100099230A (ko) 저급 알칸 탄화수소의 가암모니아 산화 및/또는 산화를 위한 혼합된 금속 산화물 촉매의 제조 방법
CN104941616B (zh) 一种催化生物乙醇制备烯烃的催化剂及其制备方法
JP2012106942A (ja) 共役ジエンの製造方法
CN103769150B (zh) 低水比乙苯脱氢的催化剂及其方法
US4541964A (en) Production of methacrylonitrile
JP7061422B2 (ja) 共役ジオレフィン製造用触媒およびその製造方法
JP2020146686A (ja) 触媒、触媒の製造方法、アクリロニトリルの製造方法
JP5295815B2 (ja) メタクロレインおよびメタクリル酸の製造触媒
CN103551159A (zh) 2,3,6-三甲基苯酚催化剂及其制备方法
CN102658167B (zh) 一种丙烯氨氧化制备丙烯腈的催化剂
CN104974066B (zh) 一种二甲基硫醚的制备方法
JP2832047B2 (ja) プロピレンの製造方法
CN112521281B (zh) 丙烯酸甲酯的合成方法
CN108640827A (zh) 一种催化甲基丙烯醛氧化制甲基丙烯酸的方法
CN114471516B (zh) 一种用于丙烯酸甲酯合成的固体碱催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918067

Country of ref document: EP

Kind code of ref document: A1