WO2020175421A1 - 熱硬化性樹脂フィルム及び第1保護膜形成用シート - Google Patents
熱硬化性樹脂フィルム及び第1保護膜形成用シート Download PDFInfo
- Publication number
- WO2020175421A1 WO2020175421A1 PCT/JP2020/007293 JP2020007293W WO2020175421A1 WO 2020175421 A1 WO2020175421 A1 WO 2020175421A1 JP 2020007293 W JP2020007293 W JP 2020007293W WO 2020175421 A1 WO2020175421 A1 WO 2020175421A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermosetting resin
- resin film
- thermosetting
- protective film
- film
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J201/00—Adhesives based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/35—Heat-activated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/40—Additional features of adhesives in the form of films or foils characterized by the presence of essential components
- C09J2301/416—Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
Definitions
- the present invention relates to a thermosetting resin film and a first protective film forming sheet.
- a work such as bumps, pillars, etc.
- protruding electrodes For example, by using a so-called face-down method, a projecting electrode in a workpiece (for example, a semiconductor chip that is a divided semiconductor wafer) is used as a corresponding terminal portion on the substrate.
- the flip-chip mounting method has been adopted, which is face-to-face, contact, and fusion/diffusion bonding.
- a curable resin film is attached to the surface of the projecting electrode and the circuit surface of the work in order to protect the circuit surface of the work and the projecting electrode, and the film is cured. Then, a protective film may be formed on these surfaces.
- the surface of the projecting electrode and the circuit surface of the work or the workpiece are sometimes referred to as “projecting electrode forming surface”.
- the curable resin film is attached to the projecting electrode forming surface of the work in a state of being softened by heating.
- the upper portion including the crown portion of the projecting electrode penetrates the curable resin film and projects from the curable resin film.
- the curable resin film spreads between the protruding electrodes so as to cover the protruding electrodes of the work and adheres closely to the circuit surface, as well as the surface of the protruding electrodes, especially the surface near the circuit surface. And the protruding electrode is embedded.
- the curable resin film is further cured to cover the circuit surface of the work and the surface of the portion in the vicinity of the circuit surface of the projecting electrode to form a protective film that protects these areas.
- the semiconductor chip used in this mounting method is, for example, a semiconductor wafer having projecting electrodes formed on the circuit surface, the surface opposite to the circuit surface is ground, It is obtained by dicing and dividing.
- a curable resin film is attached to the protruding electrode forming surface for the purpose of protecting the circuit surface of the semiconductor wafer and the protruding electrodes, and the film is cured to form the protruding electrodes.
- the semiconductor wafer is divided into semiconductor chips, and finally, the semiconductor chip having the protective film on the protruding electrode formation surface (in this specification, "with protective film” Sometimes referred to as “semiconductor chip”) (see Patent Document 1).
- Such a work product having a protective film on the protruding electrode formation surface (in the present specification, it may be referred to as a "work product with a protection film”) is further prepared on a substrate. It becomes a package by being mounted on, and the target device is constructed by using this package. When the semiconductor chip with the protective film is mounted on the substrate, the semiconductor package thus obtained is used to configure the target semiconductor device.
- Patent Document 1 Japanese Patent No. 5 5 1 5 8 1 1
- the present invention is a resin film capable of forming a protective film for protecting the protruding electrode formation surface of a work or a work processed product.
- the work is divided.
- the protective film which is a cured product, becomes excellent.
- An object is to provide a resin film that can be cut.
- the present invention is a thermosetting resin film for forming a first protective film on a surface of a work, the surface having a projecting electrode, the thermosetting resin film being cured by thermosetting.
- Thermosetting resin film other than acrylic resin having an epoxy group,
- thermosetting resin film Containing two or more thermosetting components, in the thermosetting resin film, the ratio of the total content of all the thermosetting components to the total mass of the thermosetting resin film is 4 It is 0 mass% or more, and for each of the thermosetting components contained in the thermosetting resin film, the following formula:
- thermosetting component [Equivalent of functional group involved in thermosetting reaction of thermosetting component (9 / 69)] X [Content of thermosetting component of thermosetting resin film (part by mass)] / [Thermosetting resin Total content of all thermosetting components of the film (parts by mass)]
- thermosetting resin film When the total value of the X values in all of the above-mentioned thermosetting components contained in the thermosetting resin film is calculated, the total value is calculated as 40 0 9/6 9 The following thermosetting resin film is provided.
- the present invention also provides a first protective film-forming sheet including a first supporting sheet, and the thermosetting resin film on one surface of the first supporting sheet.
- a resin film capable of forming a protective film for protecting the protruding electrode forming surface of a workpiece or a workpiece processed product which resin film is used ⁇ 2020/175421 4 ⁇ (:171? 2020 /007293
- a resin film which enables application of a new method for dividing a work.
- a new method when it is attached to the protruding electrode forming surface, the residue on the upper part of the protruding electrode is suppressed, and when the work is divided, the protective film that is a cured product is good.
- a resin film that can be cut is provided.
- FIG. 1 is a cross-sectional view schematically showing an example of a state in which a first protective film is formed on the protruding electrode formation surface using the curable resin film according to one embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing an example of a first protective film forming sheet according to an embodiment of the present invention.
- FIG. 3 is a cross-sectional view schematically showing another example of the first protective film forming sheet according to the embodiment of the present invention.
- FIG. 4 is a cross-sectional view schematically showing still another example of the first protective film forming sheet according to the embodiment of the present invention.
- FIG. 58 An enlarged cross-sectional view for schematically explaining a method for manufacturing a work piece with a first protective film in the case of using a sheet for forming a first protective film according to an embodiment of the present invention. Is.
- FIG. 58 An enlarged cross-sectional view for schematically explaining the method for manufacturing the workpiece with the first protective film, in the case where the first protective film-forming sheet according to the embodiment of the present invention is used. is there.
- FIG. 5 (:] Enlarged cross-sectional view for schematically explaining a method for manufacturing a work piece with a first protective film in the case of using a sheet for forming a first protective film according to an embodiment of the present invention. It is a figure.
- FIG. 68 An enlarged cross-sectional view for schematically explaining a method for manufacturing a work piece with a first protective film in the case of using a sheet for forming a first protective film according to an embodiment of the present invention. Is.
- FIG. 68 An enlarged cross-sectional view for schematically explaining a method for manufacturing a work piece with a first protective film in the case of using a sheet for forming a first protective film according to an embodiment of the present invention. ⁇ 2020/175421 5 (:171? 2020/007293
- thermosetting resin film is attached to the surface of the work having the protruding electrodes (that is, the surface on which the protruding electrodes are formed) and heat-cured to form a first protective film on the surface.
- a thermosetting resin film for forming a film wherein the thermosetting resin film contains two or more thermosetting components other than an acrylic resin having an epoxy group, and the thermosetting resin film
- the ratio of the total content of all types of the thermosetting components to the total mass of the thermosetting resin film is 40 mass% or more, the thermosetting resin contained in the thermosetting resin film
- the ingredients for each type, the following formula:
- thermosetting component [Equivalent of functional group involved in thermosetting reaction of thermosetting component (9 / 69)] X [Content of thermosetting component of thermosetting resin film (part by mass)] / [Thermosetting resin Total content of all thermosetting components of the film (parts by mass)]
- the total value becomes 40 or less.
- a first protective film forming sheet includes a first supporting sheet, and the thermosetting resin film is provided on one surface of the first supporting sheet. It is equipped with.
- the “thermosetting resin film” may be referred to as “thermosetting resin layer”.
- examples of the work include a semiconductor wafer and the like.
- workpieces include semiconductor chips, which are divided semiconductor wafers, and the like.
- the machining of the work includes, for example, division.
- protruding electrodes examples include bumps and pillars.
- the protruding electrode is provided on the connection pad part of the work, and it is used for eutectic solder, high temperature solder, gold or ⁇ 2020/175421 6 ⁇ (: 171-1? 2020/007293
- the sheet for forming the first protective film is provided with the thermosetting resin film (thermosetting resin layer), through which the projecting electrode forming surface of the workpiece (that is, the surface of the projecting electrode and the work is formed). Circuit surface) and used. Then, the thermosetting resin film after attachment has increased fluidity due to heating, and the upper portion including the crown of the protruding electrode penetrates the thermosetting resin film and projects from the thermosetting resin film. Further, the thermosetting resin film spreads between the protruding electrodes so as to cover the protruding electrodes, adheres to the circuit surface, and covers the surface of the protruding electrodes, particularly the surface of the portion near the circuit surface, Embed the protruding electrodes.
- thermosetting resin film thermosetting resin layer
- thermosetting resin film in this state is further cured by heating to finally form the first protective film, and protects the above-mentioned circuit surface and the protruding electrode in a state in which they are in close contact with each other.
- the thermosetting resin film of the present embodiment by using the thermosetting resin film of the present embodiment, the circuit surface of the work and the portion of the protruding electrode near the circuit surface, that is, the base portion are sufficiently protected by the first protective film.
- the work after the first protective film-forming sheet is pasted is, for example, if necessary, the surface opposite to the circuit surface is ground, the first support sheet is removed, and then the heat treatment is performed.
- the heating of the curable resin film embeds the protruding electrodes and forms the first protective film.
- the work is divided (that is, the work is divided into individual pieces) and the first protective film is cut, and the first protective film obtained by the cutting is provided on the protruding electrode formation surface.
- a target substrate device such as a semiconductor device is manufactured by using a work product (which may be referred to as a “first work product with a protective film” in the present specification).
- thermosetting resin film means “thermosetting resin film before curing”
- first protective film means a cured product of the thermosetting resin film.
- thermosetting resin film of the present embodiment is suitable for applying a method different from the conventional one as a method of dividing (in other words, dividing into pieces) a work into work pieces.
- a method different from the conventional method include the following methods.
- a modified layer is formed inside the work by irradiating the work with the first protective film formed of the thermosetting resin film on the projecting electrode forming surface with laser light. .. Then, a force is applied to the work after the modified layer is formed. More specifically, in the present embodiment, the work is expanded in the direction parallel to the circuit surface. As a result, the work is divided at the portion of the modified layer. At this time, by applying a force also to the first protective film, more specifically, by expanding the first protective film in a direction parallel to the sticking surface to the work, the first protective film is simultaneously expanded. Disconnect. At this time, the first protective film is cut along the divided parts of the work.
- the work piece with the first protective film which includes the work piece and the first protective film after cutting formed on the protruding electrode forming surface of the work piece, is manufactured.
- the first protective film is a cured product of the thermosetting resin film
- the workpiece can be favorably divided into the workpieces.
- the first protective film itself is also a cured product of the thermosetting resin film, it can be easily cut along the work dividing points when dividing the work.
- a method of dividing a work that involves the formation of such a modified layer is called stealth dicing (registered trademark), and the work is irradiated with laser light to scrape the work at the irradiation site while removing the work. It is essentially completely different from laser dicing, which is the process of cutting the wafer from its surface.
- thermosetting component that defines the ratio of the above total content is a component that exhibits a curing reaction when heated.
- an acrylic resin having an epoxy group is not included in this thermosetting component.
- thermosetting component examples include epoxy thermosetting resins, polyimide resins, unsaturated polyester resins and the like.
- Epoxy thermosetting resin consists of an epoxy resin (Min 1) and a thermosetting agent (Min 2), and these two components are both subject to the regulation of the above-mentioned total content ratio.
- acrylic resin having an epoxy group which is not included in the thermosetting component
- acrylic resins in the polymer component (8) described later those having an epoxy group can be mentioned.
- an acrylic resin having a glycidyl group is included in an acrylic resin having an epoxy group.
- thermosetting components contained in the thermosetting resin film are two or more kinds, and their combination and ratio can be arbitrarily selected.
- thermosetting resin film the ratio of the total content of all types of the thermosetting components to the total mass of the thermosetting resin film ([The thermosetting of all types of thermosetting resin film The total content (parts by mass) of the sexual component]/[the total mass (parts by mass) of the thermosetting resin film] XI 0) is 40% by mass or more as described above.
- the total content (parts by mass) of all types of thermosetting components means the total content (parts by mass) of two or more types of thermosetting components.
- thermosetting resin film remains at the upper portion including the crown portion of the projecting electrode when the work is attached to the projecting electrode forming surface. And a suitable property as a resin film for forming the first protective film.
- the thermosetting resin film does not remain on the upper portion of the protruding electrode.
- the work piece finally obtained can be sufficiently electrically coupled to the substrate by the projecting electrodes when the flip chip is mounted. That is, unless the thermosetting resin film can suppress the residual on the upper portion of the projecting electrode, the processed workpiece cannot be put to practical use. ⁇ 2020/175421 9 ⁇ (: 171-1? 2020/007293
- the total content of all types of the thermosetting components is based on the total mass of the thermosetting resin film.
- the proportion may be, for example, any one of 50 mass% or more, 60 mass% or more, 70 mass% or more, and 80 mass% or more.
- the upper limit of the ratio of the total content is not particularly limited.
- the ratio of the total content is not particularly limited.
- It is preferably 90 mass% or less.
- the ratio of the total content can be appropriately adjusted within a range set by arbitrarily combining the lower limit value and the upper limit value.
- the ratio of the total content is 40 to 90 mass%, 50 to 90 mass%, 60 to 90 mass%, 70 to 90 mass%, and 8 It may be any of 0 to 90% by mass.
- thermosetting resin film The above-mentioned value is calculated by the above formula for one thermosetting component contained in the thermosetting resin film.
- thermosetting component for which the X value is calculated is the same as the “thermosetting component” that defines the above-mentioned proportion of the total content in the thermosetting resin film.
- the "functional group involved in the thermosetting reaction of the thermosetting component" for calculating the X value is, for example, in the case of the epoxy resin (Mitsumi 1) described later, an epoxy group, and In the case of the curing agent (Mimi 2), it is a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, or a group in which an acid group is dehydrated.
- the functional groups are, for example, in the case of the epoxy resin (Mitsumi 1) described later, an epoxy group, and In the case of the curing agent (Mimi 2), it is a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, or a group in which an acid group is dehydrated.
- these are examples of the functional groups.
- thermosetting resin film contains various types of thermosetting components (wherein is an integer of 2 or more). These thermosetting components are 1 ⁇ for each type. Then, the equivalent of the functional group of the thermosetting component IV!] is set to (9/69), and the equivalent of the functional group of the thermosetting component IV! is set to (9/eq).
- thermosetting component IV! content (3! a (parts by weight), thermosetting ⁇ 0 2020/175421 10 ⁇ (: 17 2020 /007293
- thermosetting component of the resin film (Mass part)
- thermosetting component IV The ⁇ (hereinafter, that referred to as "X! Value") is calculated by the following equation.
- thermosetting component a thermosetting component Also, the above-mentioned value (hereinafter, referred to as “value”) is calculated by the following formula.
- thermosetting resin film the total value of the above-mentioned values (X !, Hex) in all kinds of thermosetting components (IV ! , He 1//) contained in the thermosetting resin film is as follows. It will be as follows.
- thermosetting resin film the total value of the X values is 400 9 or less.
- the first protective film which is a cured product of the thermosetting resin film, can be easily cut at the time of dividing the work.
- a work piece having the first protective film after being cut on the surface where the protruding electrodes are formed can be manufactured with high efficiency.
- the total value of the X value is, for example, 3759/69 or less, 350 9/6 or less, and 3259/6 It may be any of the following.
- the lower limit of the total value of the X values is not particularly limited.
- the total value of the X values is 1009 from the viewpoint of suppressing deterioration in flexibility due to excessive crosslinking reaction. It is preferably 9 or more
- the total value of the X values can be appropriately adjusted within a range set by arbitrarily combining the lower limit value and the upper limit value.
- the total value of the above-mentioned values may be any one of 100 to 400/ ⁇ , 100 to 3759/6, 100 to 3503 X ⁇ , and 100 to 3259/6. ..
- the one-layer thermosetting resin film having a thickness of 200 has a transmittance of light having a wavelength of 1 342 2 n of 50% or more.
- the transmittance of light having a wavelength of 1 342 n of a laminated film having a total thickness of 200, which is formed by laminating two or more layers of the thermosetting resin film having a thickness of less than 200 is It is preferably 50% or more.
- laser light of wavelength 1 342 01 is applied to the work. Then, the modified layer can be formed.
- the laser light may be irradiated to the work from the circuit surface side or the back surface side. However, when the laser light is irradiated to the work from the circuit surface side, the laser light is irradiated through the first protective film formed on the circuit surface.
- thermosetting resin film and its cured product eg, the first protective film
- the thermosetting resin film and its cured product have almost or exactly the same transmittance for light of the same wavelength. Therefore, one layer of thermosetting resin film with a thickness of 200
- the cured product When the transmittance of the cured product is 50% or more, the cured product has a wavelength of 1 342 n. ⁇ 2020/175421 12 ⁇ (: 171-1? 2020 /007293
- the transmittance is also 50% or more.
- the transmittance of light having a wavelength of 1 3 4 2 n is 50% or more
- the transmittance of light of a wavelength of 1 3 4 2 n of the cured product is also 50% or more.
- the first protective film formed by using the thermosetting resin film having the same composition as the one satisfying the condition of the light transmittance as described above allows the laser beam having the wavelength of 1 3 4 2 n to be satisfactorily transmitted. .. Therefore, a work provided with such a first protective film on the circuit surface is suitable for forming a modified layer inside the work by irradiating laser light from the circuit surface side. is there.
- thermosetting resin film having a thickness of 200 or a laminated film having a total thickness of 200 is The light transmittance may be, for example, 60% or more, 70% or more, 80% or more, and 85% or more.
- the value is not particularly limited, and the higher the value, the better.
- the light transmittance is preferably 95% or less.
- the light transmittance can be appropriately adjusted within a range set by arbitrarily combining the lower limit value and the upper limit value.
- the light transmittance is
- It is preferably 50 to 95%, and may be, for example, any of 60 to 95%, 70 to 95%, 80 to 95%, and 85 to 95%. ..
- thermosetting resin film having a thickness of 200, and a total thickness of 2
- the light transmittance of these (one layer of thermosetting resin film and laminated film) is 1 3 4 2 01 Not only when, but the same as each other.
- the number of layers of the thermosetting resin film having a thickness of less than 200 constituting the laminated film is not particularly limited, but is preferably 2 to 6. With such a number of layers, the laminated film can be produced more easily. ⁇ 2020/175421 13 ⁇ (: 171-1? 2020/007293
- thermosetting resin film having a thickness of less than 200, which composes the laminated film may have the same thickness, may have different thicknesses, or may have only one thickness. May be
- the reason why the thickness is specified to be 200 is because of such a thickness. This is because by using a thermosetting resin film or a laminated film, the light transmittance can be measured more accurately and easily in the present embodiment.
- one layer thermosetting resin film, and two or more layers The thickness of each of the thermosetting resin films composed of a plurality of layers is not limited to 200 0 1, as described later.
- the light transmittance is, for example, the kind and content of the components contained in the thermosetting resin film, such as the coloring agent ( ⁇ ) and the filler (mouth) described later, and the thermosetting resin film. It can be adjusted by adjusting the surface condition, etc.
- the rupture strength of the first protective film having a size of 200 1 111 X 1300 1111 and a thickness of 40 measured by the following method is 5 5 IV! 3 or less. I like it.
- the first protective film having the same composition as the first protective film having the breaking strength of not more than the upper limit value is easier to cut by the expand described later.
- the distance between the gripping devices in the first protective film is set to 8001 01, and the pulling speed of the first protective film is set to 200 0 11 11 /
- thermosetting resin film obtained by thermosetting the thermosetting resin film at 1300° for 2 hours can be used.
- the breaking strength of the first protective film is, for example, ⁇ 2020/175421 14 ⁇ (: 171-1? 2020/007293
- the lower limit of the breaking strength of the first protective film is not particularly limited. From the viewpoint that the protective ability of the first protective film is further enhanced, the breaking strength of the first protective film is preferably 0.1 IV! 3 or more.
- the breaking strength of the first protective film can be appropriately adjusted within a range set by arbitrarily combining the above-mentioned lower limit value and upper limit value.
- the breaking strength of the first protective film is preferably from 0.1 to 55 IV! 3, and, for example,
- the rupture strength of the first protective film is, for example, the components contained in the composition for forming a thermosetting resin layer described later, in particular, the polymer component (), the coupling agent (M), the filler ( ⁇ ). ), etc., and the content, and the thickness of the first protective film (in other words, the thickness of the thermosetting resin film), etc., can be adjusted.
- a protective film containing an organic material may be formed on the back surface. is there.
- the second protective film is used to prevent cracks from occurring in the workpiece after the workpiece is divided or packaged.
- the work piece with the second protective film having the second protective film on the back surface is finally taken into a target substrate device such as a semiconductor device.
- the second protective film may be required to have a function of marking information on the work piece with a laser and hiding the back surface of the work piece.
- a curable resin film in which a second protective film can be formed by curing and whose light transmission characteristics are adjusted is known.
- the second protective film for protecting the back surface of the workpiece and the first protective film for protecting the protruding electrode forming surface of the workpiece are ⁇ 2020/175421 15 ⁇ (: 171-1? 2020/007293
- thermosetting resin film capable of forming the second protective film immediately for forming the first protective film Since the formation position is different, the required characteristics are also different. Therefore, it is usually difficult to immediately use the thermosetting resin film capable of forming the second protective film immediately for forming the first protective film.
- Fig. 1 is a cross-sectional view schematically showing an example of a state in which a first protective film is formed on the protruding electrode formation surface using the thermosetting resin film of the present embodiment. Note that, in the drawings used in the following description, in order to facilitate understanding of the features of the present invention, for the sake of convenience, essential parts may be shown in an enlarged manner. Not necessarily the same.
- a plurality of projecting electrodes 91 are provided on the circuit surface 93 of the workpiece 90 shown here.
- the reference numeral 90 indicates the surface of the workpiece 90 opposite to the circuit surface 903 (rear surface).
- the projecting electrode 91 has a shape in which a part of a sphere is cut by a flat surface, and the flat surface corresponding to the cut and exposed portion is in contact with the circuit surface 93 of the work 90. Has become.
- the shape of the projecting electrode 91 is almost spherical.
- the first protective film 12 ′ is formed by using the thermosetting resin film of the present embodiment, covers the circuit surface 90 3 of the work 90, and further includes the protruding electrode 9 In the surface 9 13 of 1 of FIG. 1, the area other than the top portion 9 10 of the protruding electrode 9 1 and its vicinity is covered. In this way, the first protective film 12' adheres to the top surface 910 of the protruding electrode 91 and the surface 913 other than the vicinity thereof, and also adheres to the circuit surface 90-3 of the workpiece 90. Then, the protruding electrode 91 is embedded.
- the above-described substantially spherical shape of the projecting electrode 91 is particularly advantageous for forming the first protective film using the curable resin film.
- projecting electrodes 9 1 height 1-1 9 1 is not particularly limited, is preferably 5 0-5 0 0.
- the function of the protruding electrodes 91 can be further improved. Since the heights 1 to 1 of the projecting electrodes 91 are not more than the above-mentioned upper limit, the projecting electrode forming surface of the work 90 (that is, the surface 9 13 of the projecting electrodes 9 1 and the circuit of the work 90) Thermosetting resin on surface 90 3) ⁇ 2020/175421 16 ⁇ (:171? 2020/007293
- the effect of suppressing the residual thermosetting resin film in the upper portion of the protruding electrode 91 including the crown portion 910 becomes higher, and as a result, the first electrode in the upper portion of the protruding electrode 91 is increased.
- the effect of suppressing the formation of the protective film 12' is enhanced.
- the “height of the projecting electrode” means the height of the projecting electrode at a portion which is located at the highest position from the circuit surface of the work or the workpiece (that is, the crown portion).
- projecting electrodes 9 1 of width ⁇ ⁇ / 9 1 is not particularly limited, 5 0-6 0 0 Dearuko and are preferred. Projecting electrodes 9 1 of width ⁇ ⁇ / 9 1 that is not less than the lower limit, it is possible to further improve the function of projecting electrodes 9 1.
- the protruding electrode forming surface of the work 9 0 i.e., the surface 9 1 3 projecting electrodes 9 1, the workpiece 9 0
- the effect of suppressing the residual thermosetting resin film in the upper portion including the crown portion 9 10 of the protruding electrode 9 1 becomes higher, As a result, the effect of suppressing the formation of the first protective film 12′ on the upper portion of the protruding electrode 91 becomes higher.
- the “width of the protruding electrode” means a work or a workpiece. This means the maximum value of the line segment obtained by connecting a straight line between two different points on the surface of the protruding electrode when looking down on the protruding electrode from a direction perpendicular to the circuit surface of.
- Distance 0 9 1 between projecting electrodes 9 1 adjacent is not particularly limited, 1 0 0-8
- the “distance between adjacent protruding electrodes” means the minimum value of the distance between the surfaces of adjacent protruding electrodes.
- the thickness sheets 9 0 sites excluding the projecting electrodes 9 1 of the workpiece 9 0 may be appropriately selected depending on the intended use of the work 9 0 is not particularly limited.
- the thickness of sheets 9 0 after grinding the back surface 9 0 spoon workpiece 9 0 is preferably 5 0-5 0 0.
- the thickness sheets 9 0 of the work 9 0 after grinding the back surface 9 0 spoon is, that the at least as large as the lower limit, (in other words, pieces of the workpiece workpiece) splitting of the workpiece 9 at time 0, the work The effect of suppressing damage to the work piece is enhanced.
- the thickness sheets 9 0 of the work 9 0 after grinding the back surface 9 0 spoon is, that the it is not more than the upper limit, a thin workpiece workpiece is obtained.
- the thickness sheets 9 0 before grinding the back surface 9 0 spoon workpiece 9 0 is preferably 2 5 0-1 5 0 0.
- thermosetting resin film of the present embodiment is used is not limited to the one shown in FIG. 1, and a part of the configuration is changed within a range not impairing the effects of the present invention. It may be deleted or added.
- the projecting electrode has a substantially spherical shape as described above (a shape in which a part of the sphere is cut off by a flat surface), but such a substantially spherical shape is used.
- a projecting electrode with an almost oblate spheroidal shape (in other words, a shape in which a part including one end in the minor axis direction of the oblate spheroid is cut off by a flat surface) is also used as a projecting electrode with a preferable shape. Can be mentioned.
- Such a projecting electrode having a substantially spheroidal shape also has the first protective film formed by using the thermosetting resin film of the present embodiment, similarly to the above-mentioned projecting electrode having a substantially spherical shape. It is particularly advantageous. ⁇ 2020/175421 18 ⁇ (: 171-1? 2020 /007293
- examples of the protruding electrode include a columnar shape, an elliptic shape, a prism shape, an elliptical cone shape, a pyramid shape, a truncated cone shape, an elliptical truncated cone shape or a truncated pyramid shape; There is also a shape having a combination of a column, a prism, a truncated cone, a truncated ellipsoid or a truncated pyramid, and the above-mentioned substantially spherical or substantially spheroidal body.
- thermosetting resin film of the present embodiment is applied, and the shape of the projecting electrode in the present invention is not limited thereto.
- the first support sheet may be composed of one layer (single layer) or plural layers of two or more layers.
- the constituent materials and thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
- a plurality of layers may be the same or different from each other
- all layers may be the same or all layers may be the same”. May be different and only some of the layers may be the same", and "a plurality of layers are different from each other” means that "at least one of the constituent material and the thickness of each layer is different from each other”. It means that.
- a preferable first support sheet includes, for example, a first base material and a first pressure-sensitive adhesive layer provided on the first base material (in other words, the first base material and the first base material). 1 adhesive layer is laminated in these thickness directions), a first base material, a first intermediate layer provided on the first base material, and a first intermediate layer provided on the first intermediate layer.
- a pressure-sensitive adhesive layer i.e., a first base material, a first intermediate layer and a first pressure-sensitive adhesive layer, which are laminated in this order in the thickness direction
- And the like which include only the first base material.
- Fig. 2 is a cross-sectional view schematically showing an example of the first protective film forming sheet of the present embodiment.
- the first protective film-forming sheet 1 shown here uses, as the first support sheet, the first base material and the first pressure-sensitive adhesive layer laminated in the thickness direction thereof. That is, the first protective film forming sheet 1 includes a first base material 11, a first pressure-sensitive adhesive layer 13 provided on one surface of the first base material 11, and a first pressure-sensitive adhesive layer 1. And a thermosetting resin layer (thermosetting resin film) 12 provided on the surface 1 3 3 opposite to the first substrate 11 side.
- the first support sheet 10 1 is a laminated body of the first base material 11 and the first pressure-sensitive adhesive layer 13. Then, the first protective film forming sheet 1 is composed of the first support sheet 10 1 and one surface 10 1 3 of the first support sheet 10 1, that is, one of the first pressure-sensitive adhesive layer 13 It can be said that the thermosetting resin layer 12 provided on the surface 1 3 3 is provided.
- thermosetting resin layer 12 in the first protective film forming sheet 1 the ratio of the total content of the above thermosetting components is 40% by mass or more, and the total of the above X values is The value is less than 409/ ⁇ .
- Fig. 3 is a cross-sectional view schematically showing another example of the first protective film-forming sheet of the present embodiment.
- the first protective film forming sheet 2 As the first supporting sheet, the first base material, the first intermediate layer and the first adhesive layer are laminated in this order in the thickness direction thereof. Is used. That is, the first protective film forming sheet 2 is composed of a first base material 11, a first intermediate layer 14 provided on one surface of the first base material 11, and a first intermediate layer 14.
- the first adhesive layer 13 provided on the surface opposite to the first base material 11 side and the surface 1 3 opposite to the first intermediate layer 14 side of the first adhesive layer 1 3 3 is provided with a thermosetting resin layer (thermosetting resin film) 12 provided above, ⁇ 2020/175421 20 ⁇ (: 171-1? 2020/007293
- the first support sheet 102 is a laminate of the first base material 11, the first intermediate layer 14 and the first pressure-sensitive adhesive layer 13.
- the first protective layer forming sheet 2, the first support sheet - Bok 1 ⁇ 2 comprises a first supporting sheet 1 0 one side 1 of 2 0 2 3 on, other words the first adhesive layer 1 It can be said that the thermosetting resin layer 1 2 is provided on one surface 1 3 3 of the 3.
- the first protective film-forming sheet 2 is different from the first protective film-forming sheet 1 shown in FIG. 2 between the first base material 1 1 and the first pressure-sensitive adhesive layer 13 further.
- the first intermediate layer 14 is provided.
- thermosetting resin layer 12 in the first protective film forming sheet 2 the ratio of the total content of the above-mentioned thermosetting components is 40% by mass or more, and the total of the above X values. The value is less than 409/ ⁇ .
- Fig. 4 is a cross-sectional view schematically showing still another example of the first protective film-forming sheet of the present embodiment.
- the first protective film forming sheet 3 shown here the first supporting sheet made of only the first base material is used. That is, the first protective film forming sheet 3 includes a first base material 11 and a thermosetting resin layer (thermosetting resin film) 12 provided on the first base material 11. , It is configured.
- the first support sheet 103 is composed of only the first base material 11.
- the first protective film forming sheet 3 is provided with a first supporting sheet 103, and is provided on one surface 1033 of the first supporting sheet 103, in other words, one side of the first substrate 11 1. It can be said that the thermosetting resin layer 1 2 is provided on the surface 1 1 3 of the above.
- the first protective film forming sheet 3 is the first protective film forming sheet 1 shown in FIG. 2 in which the first pressure-sensitive adhesive layer 13 is omitted.
- thermosetting resin layer 12 in the first protective film forming sheet 3 the ratio of the total content of the above thermosetting components is 40% by mass or more, and the total of the above X values is The value is less than 409/ ⁇ .
- the first support sheet a known one may be used, and the first support sheet can be appropriately selected according to the purpose.
- the first base material has a sheet shape or a film shape, and examples of the constituent material thereof include various resins.
- the resin constituting the first base material may be only one kind, or may be two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof may be arbitrarily selected.
- the first base material may be only one layer (single layer), or may be a plurality of layers of two or more layers. In the case of a plurality of layers, the plurality of layers may be the same or different from each other. The combination of these plural layers is not particularly limited.
- the thickness of the first base material is preferably 50 to 200.
- the “thickness of the first base material” means the total thickness of the first base material, and for example, the thickness of the first base material composed of a plurality of layers means all the thicknesses of the first base material. Means the total thickness of the layers.
- the first base material is made of various known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softening agent (plasticizer) in addition to the main constituent materials such as the resin. It may contain additives.
- the first substrate may be transparent or opaque, and may be colored depending on the purpose, or another layer may be vapor-deposited.
- the first base material is preferably one that transmits energy rays.
- the first base material may be, for example, a release film obtained by subjecting one side of a resin film to a release treatment by silicone treatment or the like, as described later in Examples.
- the first base material can be manufactured by a known method.
- the first base material containing a resin can be manufactured by molding a resin composition containing the resin.
- the first pressure-sensitive adhesive layer is in the form of a sheet or a film, and as the pressure-sensitive adhesive containing a pressure-sensitive adhesive, for example, acrylic resin, urethane resin, rubber resin, silicone resin, epoxy resin, polyvinyl ether, polycarbonate Examples thereof include adhesive resins such as sodium, and acrylic resins are preferable.
- the "adhesive resin” is a concept including both a resin having adhesiveness and a resin having adhesiveness, and for example, the resin itself has adhesiveness. Not only this, but also includes resins that exhibit adhesiveness when used in combination with other components such as additives, and resins that exhibit adhesiveness due to the presence of a trigger such as heat or water.
- the first pressure-sensitive adhesive layer may be only one layer (single layer) or may be a plurality of layers of two or more layers. In the case of a plurality of layers, these plurality of layers may be the same or different from each other. The combination of these plural layers is not particularly limited.
- the thickness of the first pressure-sensitive adhesive layer is preferably 3 to 40.
- the “thickness of the first pressure-sensitive adhesive layer” means the total thickness of the first pressure-sensitive adhesive layer, and for example, the thickness of the first pressure-sensitive adhesive layer composed of a plurality of layers means the first pressure-sensitive adhesive layer. It means the total thickness of all the layers that compose.
- the first pressure-sensitive adhesive layer may be formed using an energy ray-curable pressure-sensitive adhesive, or may be formed using a non-energy ray-curable pressure-sensitive adhesive. ..
- the physical properties of the first pressure-sensitive adhesive layer formed using the energy ray-curable pressure-sensitive adhesive can be easily adjusted before and after curing.
- energy ray means an electromagnetic wave or a charged particle beam having an energy quantum, and examples thereof include ultraviolet rays, radiation, and electron rays.
- Ultraviolet rays can be emitted by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, or a!
- the electron beam can be generated by an electron beam accelerator or the like.
- energy ray-curable means a property of being cured by irradiation with energy rays
- non-energy ray-curable means energy.
- the first pressure-sensitive adhesive layer can be formed using the first pressure-sensitive adhesive composition containing a pressure-sensitive adhesive.
- the first pressure-sensitive adhesive composition can be formed on the target site by applying the first pressure-sensitive adhesive composition to the surface on which the first pressure-sensitive adhesive layer is to be formed and drying it if necessary.
- a more specific method for forming the first pressure-sensitive adhesive layer will be described later in detail together with a method for forming other layers.
- the coating of the first pressure-sensitive adhesive composition may be carried out by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a mouth coater, a mouth knife coater, a force ten coater, a die coater.
- a method using various coaters such as a coater, a knife coater, a screen coater, a Meyer bar coater, and a kiss coater can be used.
- the drying conditions of the first pressure-sensitive adhesive composition are not particularly limited, but when the first pressure-sensitive adhesive composition contains a solvent, it is preferable to heat-dry it.
- the first pressure-sensitive adhesive composition containing a solvent may be dried, for example, under the conditions of 70 to 130 ° and 10 seconds to 5 minutes.
- the first pressure-sensitive adhesive composition containing the energy ray-curable pressure-sensitive adhesive is, for example, , A non-energy ray curable adhesive resin ( ⁇ _ 13) (hereinafter sometimes abbreviated as “adhesive resin (1-13)") and an energy ray curable compound, 1st pressure-sensitive adhesive composition (I 1 1); Energy ray-curable pressure-sensitive adhesive resin ( ⁇ _ 2 3) (hereinafter referred to as "adhesive resin ( ⁇ _ 13)" in which an unsaturated group is introduced into the side chain. , Which may be abbreviated as “adhesive resin (I _ 2 3 )”), containing the first adhesive composition (I _ 2); A low-molecular compound and a first pressure-sensitive adhesive composition (I-3) containing
- the component contained in the adhesive composition ( ⁇ -3) is a general first adhesive composition other than these three kinds of the first adhesive composition (in the present specification, “first adhesive composition ( I) 1) to (I-3) other than "1st pressure-sensitive adhesive composition” can be used similarly.
- non-energy ray curable first adhesive composition examples include a first adhesive composition ( ⁇ -4) containing the above-mentioned adhesive resin ( ⁇ 13).
- the first pressure-sensitive adhesive composition (__ 4) preferably contains an acrylic resin as the pressure-sensitive adhesive resin (_13), and further contains one or more cross-linking agents. More preferable.
- the first adhesive composition such as the first adhesive composition (I 1!!) to (I-4) is the first adhesive composition including the adhesive and, if necessary, components other than the adhesive. It is obtained by blending each component for constituting the agent composition.
- each component is not particularly limited, and two or more components may be added at the same time.
- a solvent When a solvent is used, it may be used by mixing the solvent with any compounding ingredient other than the solvent and diluting this compounding ingredient in advance, or by diluting any compounding ingredient other than the solvent in advance. Alternatively, the solvent may be used by mixing with the compounding ingredients.
- the method of mixing the components at the time of compounding is not particularly limited, and a known method such as a method of mixing by rotating a stirring bar or a stirring blade; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing It may be selected appropriately.
- Temperature and time for addition and mixing of the components is not limited Ri particularly limited to each formulation component is not degraded, it may be appropriately adjusted, but it is preferable that the temperature is 1. 5 to 3 0 ° ⁇ . ⁇ 2020/175421 25 ⁇ (:171? 2020 /007293
- the first intermediate layer has a sheet shape or a film shape, and the constituent material thereof may be appropriately selected according to the purpose, and is not particularly limited.
- the first protective film it is possible to prevent the first protective film from being deformed by reflecting the shape of the protruding electrode existing on the circuit surface on the first protective film provided on the protruding electrode forming surface.
- urethane (meth)acrylate and the like can be mentioned from the viewpoint that the adhesiveness of the first intermediate layer is further improved.
- the first intermediate layer may be only one layer (single layer) or may be a plurality of layers of two or more layers. In the case of a plurality of layers, these plurality of layers may be the same or different from each other. The combination of these plural layers is not particularly limited.
- the thickness of the first intermediate layer can be appropriately adjusted according to the height of the projecting electrode present on the surface of the rake or the workpiece of the rake to be protected.
- the thickness of the first intermediate layer is preferably 50 to 6001 in terms of easily absorbing the effect of the protruding electrode having a relatively high height.
- the “thickness of the first intermediate layer” means the total thickness of the first intermediate layer, and for example, the thickness of the first intermediate layer composed of a plurality of layers constitutes the first intermediate layer. It means the total thickness of all layers.
- the first intermediate layer can be formed by using the composition for forming the first intermediate layer containing the constituent material. For example, by coating the composition for forming the first intermediate layer on the surface on which the first intermediate layer is to be formed, and drying it as necessary, or curing it by irradiation with energy rays, the first site is formed on the target site. An intermediate layer can be formed. A more specific method of forming the first intermediate layer will be described later in detail together with a method of forming the other layers.
- the first intermediate layer-forming composition can be applied, for example, by the same method as in the case of the first pressure-sensitive adhesive composition.
- the conditions for drying the first intermediate layer forming composition are not particularly limited, and may be the same as the conditions for drying the first adhesive composition, for example. ⁇ 2020/175 421 26 ⁇ (: 171? 2020 /007293
- the first intermediate layer forming composition When the first intermediate layer forming composition has an energy ray curability, it may be further cured by irradiation with an energy ray after being dried.
- composition for forming the first intermediate layer can be produced, for example, by the same method as in the case of the first pressure-sensitive adhesive composition except that the components are different.
- thermosetting resin film thermosetting resin layer
- thermosetting resin film is a film (layer) for protecting the circuit surface of the workpiece and the workpiece workpiece, and the protruding electrodes provided on the circuit surface.
- thermosetting resin film forms a first protective film by thermosetting.
- thermosetting resin film is cured (in other words, after the first protective film is formed)
- first support sheet and the thermosetting resin film are used.
- this laminated structure of the cured product in other words, the first supporting sheet and the first protective film
- this laminated structure is referred to as a “first protective film forming sheet”.
- thermosetting resin film may or may not have energy ray-curable characteristics in addition to thermosetting characteristics.
- thermosetting resin film has energy ray curable characteristics
- the contribution of the thermosetting resin film to the formation of the first protective film from the thermosetting resin film is It should be larger than the contribution of curing.
- the thermosetting resin film may be composed of one layer (single layer) or may be composed of two or more layers regardless of the presence or absence of energy ray curability. Good.
- the thermosetting resin film is composed of a plurality of layers, the plurality of layers may be the same as or different from each other, and the combination of the plurality of layers is not particularly limited.
- thermosetting resin film 1
- ⁇ 100 001 is preferable, and 3 ⁇ 800! is more preferable. ⁇ 2020/175 421 27 ⁇ (: 171? 2020 /007293
- the first protective film having higher protective ability can be formed.
- the thickness of the thermosetting resin film is equal to or less than the above upper limit, when the thermosetting resin film is attached to the protruding electrode forming surface of the work, the thermosetting resin film above the protruding electrodes is The effect of suppressing the remaining becomes higher.
- the thickness of the thermosetting resin film is equal to or less than the above upper limit value, the first protective film can be cut better when the work is divided.
- the “thickness of the thermosetting resin film” means the total thickness of the thermosetting resin film.
- the thickness of the thermosetting resin film composed of a plurality of layers means the thermosetting resin film. It means the total thickness of all layers constituting the film.
- thermosetting resin layer Composition for forming thermosetting resin layer
- the thermosetting resin film can be formed by using the thermosetting resin layer-forming composition containing the constituent material.
- the thermosetting resin film can be formed by applying the composition for forming a thermosetting resin layer to the surface on which the thermosetting resin film is to be formed, and drying the composition if necessary.
- the content ratio of the components that do not vaporize at room temperature is usually the same as the content ratio of the components in the thermosetting resin film.
- the coating of the composition for forming a thermosetting resin layer may be performed by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coat yuichi, a mouth coater, a mouth knife.
- a known method for example, an air knife coater, a blade coater, a bar coater, a gravure coat yuichi, a mouth coater, a mouth knife.
- the method using various coaters such as a coater, a force coater, a die coater, a knife coater, a screen coater, a Meyer bar coater, and a kiss coater can be used.
- thermosetting resin layer-forming composition The conditions for drying the thermosetting resin layer-forming composition are not particularly limited, regardless of whether the thermosetting resin film has energy-ray curability. However, when the thermosetting resin layer-forming composition contains the solvent described below, it is preferable to heat-dry the composition.
- the thermosetting resin layer-forming composition containing a solvent may be dried, for example, under the conditions of 70 to 130° and 10 seconds to 5 minutes. However, the thermosetting resin layer-forming composition includes the composition itself and the thermosetting composition formed from this composition. ⁇ 2020/175 421 28 ⁇ (: 171? 2020 /007293
- the curing conditions for thermosetting the thermosetting resin film to form the first protective film are not particularly limited as long as the curing degree is such that the first protective film sufficiently exhibits its function. However, it may be appropriately selected according to the type of the thermosetting resin film.
- the heating temperature during thermosetting of the thermosetting resin film is preferably 100 to 200 ° ⁇ , more preferably 110 to 180 ° ⁇ , more preferably 120 It is particularly preferable that it is ⁇ 170°.
- the heating time during the thermosetting is preferably 0.5 to 5 hours, more preferably 0.5 to 4 hours, and particularly preferably 1 to 3 hours.
- thermosetting resin film examples include those containing the polymer component (8) and the thermosetting component (M).
- the polymer component () is a component that can be regarded as formed by the polymerization reaction of the polymerizable compound.
- the thermosetting component (Mitsumi) is a component that can undergo a curing (polymerization) reaction by using heat as a reaction trigger.
- the polymerization reaction also includes a polycondensation reaction.
- thermosetting resin layer (I ⁇ I-1) ⁇ Composition for forming thermosetting resin layer (I ⁇ I-1) >
- thermosetting resin layer forming composition for example, a thermosetting resin layer forming composition (I 11-1) containing the polymer component (8) and the thermosetting component (8) In the present specification, it may be simply referred to as “composition (hereinafter referred to as “(composition) — 1”)” and the like.
- the polymer component () is a polymer compound for imparting film-forming property and flexibility to the thermosetting resin film.
- the polymer component () has thermoplasticity and does not have thermosetting property.
- composition ( ⁇ I-1) and the polymer component (8) contained in the thermosetting resin film may be only one kind, two or more kinds, or two or more kinds. In that case, those combinations and ratios can be arbitrarily selected. ⁇ 2020/175 421 29 ⁇ (: 171? 2020 /007293
- Examples of the polymer component (8) include acrylic resins, urethane resins, phenoxy resins, silicone resins, and saturated polyester resins. Among these, the polymer component (8) is preferably polyvinyl acetal or acrylic resin.
- polyvinyl acetals include, for example, polyvinyl formal, polyvinyl butyral, and the like, and polyvinyl butyral is more preferable.
- polyvinyl petitral examples include those having the structural units represented by the following formulas (()) _ 1, (()) _ 2 and (I) _ 3.
- n is independently an integer of 1 or more.
- the weight average molecular weight (IV!) of the polyvinyl acetal is from 5,000 to 2,000.
- thermosetting resin film is preferably 0 0, and more preferably 800 0 to 100 0 0 0.
- weight average molecular weight of the polyvinyl acetal is within such a range, when the thermosetting resin film is attached to the protruding electrode forming surface, the thermosetting resin film is prevented from remaining on the upper portion of the protruding electrode. The effect of doing this is higher.
- the polyvinyl acetal has a glass transition temperature (Choose 9) of preferably 40 to 80°, and more preferably 50 to 70°.
- the thermosetting resin film is ⁇ 2020/175421 30 ⁇ (: 171-1? 2020/007293
- the ratio of three or more kinds of monomers constituting the polyvinyl acetal can be arbitrarily selected.
- the acrylic resin in the polymer component (8) means a resin having a structural unit derived from (meth)acrylic acid or a derivative thereof.
- (meth)acrylic acid includes both “acrylic acid” and “methacrylic acid”.
- (meth)acryloyl group is a concept that includes both “acryloyl group” and “methacryloyl group”
- (meth)acrylate is a concept that includes both “acrylate” and “methacrylate”.
- the “derivative” of a specific compound means a compound having a structure in which one or more hydrogen atoms of the compound are substituted with a group (substituent) other than a hydrogen atom.
- (meth)acrylic acid ester is a derivative of (meth)acrylic acid.
- Examples of the acrylic resin in the polymer component (8) include known acrylic polymers.
- the weight average molecular weight (IV!) of the acrylic resin is preferably 100,000 to 200,000, more preferably 100,000, and more preferably 1,500. I like it.
- the weight average molecular weight of the acrylic resin is at least the above lower limit, the shape stability (temporal stability during storage) of the thermosetting resin film is improved.
- the weight average molecular weight of the acrylic resin is equal to or less than the above upper limit, the thermosetting resin film easily follows the uneven surface of the adherend, and the void between the adherend and the thermosetting resin film is increased. And the like are further suppressed.
- the “weight average molecular weight” is a polystyrene-converted value measured by gel permeation chromatography (° ⁇ ) method unless otherwise specified. ⁇ 2020/175421 31 ⁇ (: 171-1? 2020/007293
- the glass transition temperature (Choose 9) of the acrylic resin is preferably from 60 to 70°, and more preferably from 30 to 50°.
- the amount of the acrylic resin 9 is not less than the above lower limit, for example, the adhesive force between the cured product of the thermosetting resin film and the support sheet is suppressed, and the peelability of the support sheet is appropriately improved.
- the amount of the acrylic resin 9 is less than or equal to the above upper limit, the adhesive force between the thermosetting resin film and the cured product thereof to the adherend is improved.
- acrylic resin examples include, for example, one or more polymers of (meth)acrylic acid ester; (meth)acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, and 1 ⁇ 1-methylol acrylic. Examples thereof include copolymers of two or more types of monomers selected from amides and the like.
- Examples of the (meth)acrylic acid ester constituting the acrylic resin include (meth)methyl acrylate, (meth)ethyl acrylate, (meth)acrylic acid 11-propyl, and (meth)acrylic acid.
- (Meth)acrylic acid cycloalkyl esters such as isobornyl acrylate and (meth)dicyclopentanyl acrylate; ⁇ 2020/175 421 32 ⁇ (: 171? 2020 /007293
- (Meth)acrylic acid containing substituted amino groups such as 1 ⁇ 1-methylaminoethyl (meth)acrylic acid ester containing substituted amino groups such as 1 ⁇ 1-methylaminoethyl (meth)acrylic acid ester.
- substituted amino group means a group obtained by substituting one or two hydrogen atoms of an amino group with a group other than a hydrogen atom.
- the acrylic resin is selected from, for example, (meth)acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, and 1 ⁇ 1 _ methylol acrylic amide in addition to the (meth)acrylic acid ester. It may be a copolymer of one or more monomers.
- the monomer that constitutes the acrylic resin may be only one type or two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
- the acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth)acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group.
- the functional group of the acrylic resin is mediated by a crosslinking agent () described later. ⁇ 2020/175421 33 ⁇ (: 171-1? 2020/007293
- the acrylic resin is bound to another compound by the functional group, the reliability of the package obtained by using the first protective film forming sheet tends to be improved.
- thermoplastic resin other than polyvinyl acetal and an acrylic resin (hereinafter sometimes simply abbreviated as "thermoplastic resin”) It may be used alone without using the acetal and the acrylic resin, or may be used in combination with the polyvinyl acetal or the acrylic resin.
- thermoplastic resin By using the thermoplastic resin, the releasability of the first protective film from the first support sheet is improved, and the thermosetting resin film easily follows the uneven surface of the adherend. Occurrence of voids and the like with the curable resin film may be further suppressed.
- the weight average molecular weight of the thermoplastic resin is preferably from 100 to 100,000, and more preferably from 300 to 800.
- the glass transition temperature (Choose 9) of the thermoplastic resin is preferably 30 to 150°°, more preferably _20 to 120°°.
- thermoplastic resin examples include polyester resin, polyurethane resin, phenoxy resin, polybutene, polybutadiene, polystyrene and the like.
- thermoplastic resin contained in the composition ( ⁇ I-1) and the thermosetting resin film may be only one kind, may be two kinds or more, and may be two kinds or more. In some cases, their combination and ratio can be arbitrarily selected.
- the ratio of the content of the polymer component () to the total content of all components other than the solvent is, for example, 5 to 60% by mass regardless of the type of the polymer component (8),
- the polymer component () may also correspond to the thermosetting component (Mitsumi).
- the composition ( ⁇ ⁇ ⁇ _ 1) contains both the polymer component () and the thermosetting component (Mitsumi)
- the composition (III _ 1 ) Is considered to contain a polymer component () and a thermosetting component (M).
- thermosetting component (M) has thermosetting properties and is a component for thermosetting the thermosetting resin film to form the hard first protective film.
- thermosetting resin film both of the "thermosetting component” that defines the above-mentioned total content ratio and the “thermosetting component” for which the X value is calculated are thermoset.
- the sex component (Mimi) is applicable.
- thermosetting component (Mi) contained in the composition (III-1) and the thermosetting resin film may be only one kind, may be two kinds or more, and may be two kinds or more. If so, the combination and ratio thereof can be arbitrarily selected.
- thermosetting component examples include epoxy thermosetting resins, polyimide resins, unsaturated polyester resins, and the like.
- thermosetting component (Mitsumi) is preferably an epoxy thermosetting resin.
- Epoxy thermosetting resin consists of epoxy resin (1) and thermosetting agent (2).
- thermosetting resin film both of the “thermosetting component” that defines the above-mentioned total content ratio and the “thermosetting component” whose X value is to be calculated are epoxy resin (1 ) And thermosetting agent (Mimi 2) are both applicable.
- the epoxy thermosetting resin contained in the composition ( ⁇ _1) and the thermosetting resin film may be only one kind, or may be two or more kinds, or two kinds. In the above cases, the combination and ratio thereof can be arbitrarily selected.
- Epoxy resin (Mimi 1)
- Examples of the epoxy resin (Mitsumi 1) include known ones. ⁇ 2020/175 421 35 ⁇ (:171? 2020 /007293
- biphenyl compound bisphenol octadiglycidyl ether and its hydrogenated products, orthocresol novolac epoxy resin, dicyclopentadiene type epoxy resin, biphenyl type epoxy resin, bisphenol octa type epoxy resin, bisphenol type epoxy resin , And bifunctional or higher functional epoxy compounds such as phenylene skeleton type epoxy resin.
- an epoxy resin having an unsaturated hydrocarbon group may be used as the epoxy resin (Min 1).
- An epoxy resin having an unsaturated hydrocarbon group has higher compatibility with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, by using the epoxy resin having an unsaturated hydrocarbon group, the reliability of the work piece with the first protective film obtained by using the sheet for forming the first protective film is improved.
- Examples of the epoxy resin having an unsaturated hydrocarbon group include compounds in which a part of epoxy groups of a polyfunctional epoxy resin is converted into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by addition-reacting (meth)acrylic acid or a derivative thereof with an epoxy group.
- the epoxy resin having an unsaturated hydrocarbon group includes, for example, a compound in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
- the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include ethenyl group (vinyl group), 2-proberenyl group (allyl group), (meth)acryloyl group. , (Meth) acrylic amide group and the like, and acryloyl group is preferable.
- the number average molecular weight of the epoxy resin (Mimi 1) is not particularly limited, but from the viewpoint of the curability of the thermosetting resin film, and the strength and heat resistance of the resin film after curing,
- It is preferably from 300 to 300, more preferably from 300 to 100, and particularly preferably from 300 to 300.
- the epoxy equivalent of the epoxy resin (Min 1) is preferably 100 to 10009/6, more preferably 150 to 970, and ⁇ 2020/175 421 36 ⁇ (:171? 2020 /007293
- Epoxy resin (Mitsumi 1) may be used alone or in combination of two or more kinds. When two or more kinds are used in combination, the combination and the ratio thereof may be arbitrarily selected. ..
- thermosetting agent functions as a curing agent for the epoxy resin (Mimi 1).
- thermosetting agent examples include compounds having two or more functional groups capable of reacting with an epoxy group in one molecule.
- the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group is dehydrated, and the like, and a phenolic hydroxyl group, an amino group, or an acid group is dehydrated. It is preferably a group, and more preferably a phenolic hydroxyl group or an amino group.
- thermosetting agents examples include polyfunctional phenolic resins, biphenols, novolac type phenolic resins, dicyclopentagen type phenolic resins, aralkyl type phenolic resins. Examples thereof include enol resin.
- thermosetting agents examples of the amine-based curing agent having an amino group include dicyandiamide and the like.
- thermosetting agent may have an unsaturated hydrocarbon group.
- thermosetting agent having an unsaturated hydrocarbon group (Min 2) examples include, for example, a compound obtained by substituting a part of a hydroxyl group of a phenol resin with a group having an unsaturated hydrocarbon group, and an aromatic compound of a phenol resin. Examples thereof include compounds in which a group having an unsaturated hydrocarbon group is directly bonded to the ring.
- the unsaturated hydrocarbon group in the thermosetting agent (Mimi 2) is the same as the unsaturated hydrocarbon group in the epoxy resin having an unsaturated hydrocarbon group described above.
- the heat curing agent (Min 2) is used because the peelability of the first protective film from the first support sheet is improved. ⁇ 2020/175421 37 ⁇ (: 171-1? 2020/007293
- thermosetting agents for example, the resin component such as a polyfunctional phenol resin, a novolac type phenol resin, a dicyclopentadiene type phenol resin, an aralkyl type phenol resin has a number average molecular weight of 30 It is preferably from 0 to 300,0, more preferably from 400 to 100, and particularly preferably from 500 to 300.
- the molecular weight of the non-resin component such as biphenol or dicyandiamide in the thermosetting agent (Mitsumi 2) is not particularly limited, it is preferably, for example, 60 to 500.
- thermosetting agent (Mitsumi 2) may be used alone or in combination of two or more kinds. When two or more kinds are used in combination, the combination and the ratio thereof are arbitrarily selected. You can choose.
- thermosetting agent ( ⁇ ⁇ ⁇ _ 1) and the thermosetting resin film, a thermosetting agent ( ⁇ ⁇ ⁇ _ 1) and the thermosetting resin film, a thermosetting agent ( ⁇ ⁇ ⁇ _ 1) and the thermosetting resin film, a thermosetting agent ( ⁇ ⁇ ⁇ _ 1) and the thermosetting resin film, a thermosetting agent ( ⁇ ⁇ ⁇ _ 1) and the thermosetting resin film, a thermosetting agent (
- the content of 2) is, for example, 0.1 to 500 parts by mass, 1 to 250 parts by mass, 1 to 15 parts by mass with respect to the content of 100 parts by mass of the epoxy resin (Mitsumi 1). 0 parts by mass,! To 100 parts by mass, 1 to 75 parts by mass, and 1 to 50 parts by mass.
- the content of the thermosetting agent (Mitsumi 2) is at least the lower limit value, the thermosetting resin film will be more easily cured.
- the content of the thermosetting agent (Mimi 2) is less than or equal to the upper limit value, the moisture absorption rate of the thermosetting resin film is reduced, and the package obtained using the first protective film forming sheet is reduced. Reliability is further improved.
- the content of the thermosetting component (B) (for example, the total content of the epoxy resin (M1) and the thermosetting agent (M2)) Is, for example, 300 to 1400 parts by mass, 400 to 1300 parts by mass, 500 to 1100 parts with respect to 100 parts by mass of the polymer component (). It may be any one of 0 parts by mass, 600 to 100 parts by mass, and 700 to 900 parts by mass.
- the content of the thermosetting component (M) is within such a range, for example, the adhesive force between the first protective film and the first supporting sheet is suppressed, and the first supporting film is suppressed. ⁇ 2020/175 421 38 ⁇ (:171? 2020 /007293
- the composition ( ⁇ _1) and the thermosetting resin film may contain a curing accelerator ( ⁇ 3).
- the curing accelerator ( ⁇ 3) is a component for adjusting the curing speed of the composition (IIII-1).
- Preferable curing accelerators ( ⁇ ) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol; 2-methyl imidazole, 2 — Imidazoles such as phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (one or more hydrogen atoms are hydrogen Imidazoles substituted with groups other than atoms ); Organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (phosphines in which one or more hydrogen atoms have been substituted with organic groups); Examples thereof include tetraphenylboron salts such as phenylphosphonium tetraphenylborate and triphenylpho
- composition ( ⁇ I-1) and the thermosetting resin film contain the curing accelerator ( ⁇ ) may be only one kind, or may be two or more kinds, or two kinds. In the above cases, the combination and ratio of them can be arbitrarily selected.
- the content of the curing accelerator ( ⁇ 3) in the composition ( ⁇ _1) and the thermosetting resin film is Content of 100 parts by mass, for example, any of 0.01 to 10 parts by mass, and 0.1 to 7 parts by mass.
- the content of the curing accelerator ( ⁇ 3) is equal to or more than the lower limit value, the effect of using the curing accelerator ( ⁇ ) can be more remarkably obtained.
- the content of the curing accelerator ( ⁇ 3) is less than or equal to the above upper limit value, for example, the highly polar curing accelerator ( ⁇ 3) may be contained in the thermosetting resin film under high temperature and high humidity conditions. Suppresses segregation by moving to the adhesive interface with the adherend ⁇ 2020/175 421 39 ⁇ (: 171? 2020 /007293
- the composition ( ⁇ I-1) and the thermosetting resin film may contain a filler (mouth). Since the thermosetting resin film contains the filler (mouth), the thermal expansion coefficient of the first protective film obtained by curing the thermosetting resin film can be easily adjusted. Then, by optimizing this thermal expansion coefficient for the object to be formed with the first protective film, the reliability of the work piece with the first protective film obtained using the sheet for forming the first protective film is improved. To improve. In addition, the thermosetting resin film containing the filler (mouth) can reduce the moisture absorption rate of the first protective film and improve the heat dissipation.
- the filler (mouth) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
- Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride, etc.; spherical beads of these inorganic fillers; surface modification of these inorganic fillers. Quality products; single crystal fibers of these inorganic fillers; glass fibers and the like.
- the inorganic filler is preferably silica or alumina, and more preferably silica.
- the average particle size of the filler (mouth) may be appropriately selected according to the purpose and is not particularly limited, and may be, for example, 0.02 to 2.
- the term “average particle size” means the value of particle size (port 50 ) at an integrated value of 50% in the particle size distribution curve obtained by the laser diffraction scattering method, unless otherwise specified.
- the filler (mouth) contained in the composition (III-1) and the thermosetting resin film may be only one kind, may be two kinds or more, and may be two kinds or more. In that case, those combinations and ratios can be arbitrarily selected.
- composition ( ⁇ ⁇ ⁇ _ 1) based on the total content of all components other than the solvent ⁇ 2020/175 421 40 ⁇ (: 171? 2020 /007293
- the ratio of the content of the filler ( ⁇ ) (that is, the ratio of the content of the filler ( ⁇ ) to the total mass of the thermosetting resin film in the thermosetting resin film) is, for example, 3 ⁇ 60% by mass, 4 to 40% by mass, 5 to 30% by mass, 5 to 20% by mass, and 5 to 15% by mass. When the ratio is within such a range, it becomes easier to adjust the thermal expansion coefficient of the first protective film described above.
- the composition ( ⁇ _1) and the thermosetting resin film may contain a coupling agent (Mitsumi).
- a coupling agent (Mitsumi) having a functional group capable of reacting with an inorganic compound or an organic compound it is possible to improve the adhesiveness and adhesiveness of the thermosetting resin film to the adherend. .. Further, by using the coupling agent (Mitsumi), the cured product of the thermosetting resin film has improved water resistance without impairing heat resistance.
- the coupling agent (M) is preferably a compound having a functional group capable of reacting with a functional group of the polymer component (H), the thermosetting component (M), etc., and the silan coupling More preferably, it is an agent.
- Examples of the preferable silane coupling agent include, for example, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyljetoxysilane, 2-(3 , 4-Epoxycyclohexyl) Ethyltrimethoxysilane, 3-methacryloyloxypropyl trimethoxysilane, 3-Aminopropyltrimethoxysilane, 3-(2-Aminoethylamino)propyltrimethoxysilane, 3-(2-Aminoethylamino)propylmethyl jetoxy Silane, 3-(phenylamino)propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxys
- Methyltriethoxysilane Methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, imidazolesilane and the like.
- composition ( ⁇ _ 1) and the thermosetting resin film may contain only one type of coupling agent, or two or more types, and two types of coupling agents. In the following cases, their combination and ratio can be arbitrarily selected.
- the content of the coupling agent (Mitsumi) in the composition ( ⁇ 1-1) and the thermosetting resin film is the polymer component (8) and the thermosetting resin.
- the total content of 100 parts by mass of the active ingredient (Mitsumi) for example, any of the following: 0. 03 to 20 parts by mass, 0. 05 to 10 parts by mass, and 0. 1 to 5 parts by mass. May be
- the content of the coupling agent (Mitsumi) is not less than the lower limit value, the dispersibility of the filler (mouth) in the resin is improved and the adhesiveness of the thermosetting resin film to the adherend is improved.
- the effect of using the coupling agent (Mitsumi) such as improvement, can be more remarkably obtained.
- the content of the coupling agent (day) is not more than the upper limit value, the generation of outgas is further suppressed.
- the polymer component () one having a functional group such as a vinyl group, a (meth)acryloyl group, an amino group, a hydroxyl group, a carboxy group or an isocyanate group, which can be bonded to other compounds, such as the above-mentioned acrylic resin is used.
- the composition ( ⁇ -1) and the thermosetting resin film may contain a cross-linking agent ().
- the cross-linking agent () is a component for bonding the functional group in the polymer component () with other compound to cross-link, and by such cross-linking, the initial adhesive force of the thermosetting resin film is increased. And the cohesive force can be adjusted.
- crosslinking agent () examples include organic polyvalent isocyanate compounds, organic polyvalent imine compounds, metal chelate crosslinking agents (crosslinking agents having a metal chelate structure), aziridine crosslinking agents (crosslinking agents having an aziridinyl group. ) Etc.
- organic polyvalent isocyanate compound examples include aromatic polyvalent isocyanate compounds, aliphatic polyvalent isocyanate compounds and alicyclic polyvalent isocyanates. ⁇ 2020/175 421 42 ⁇ (: 171? 2020 /007293
- aromatic polyvalent isocyanate compound etc. trimer of the above aromatic polyvalent isocyanate compound, isocyanurate body and adduct body; Examples thereof include a terminal isocyanate urethane prepolymer obtained by reacting a polyvalent isocyanate compound and the like with a polyol compound.
- the "adduct” means the aromatic polyvalent isocyanate compound, the aliphatic polyvalent isocyanate compound or the alicyclic polyvalent isocyanate compound, and ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, castor oil, etc.
- adduct body examples include an xylylene diisocyanate adduct of trimethylolpropane as described below.
- terminal isocyanate urethane prepolymer means a prepolymer having a urethane bond and an isocyanate group at the terminal of the molecule.
- organic polyvalent isocyanate compound examples include 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylylene diisocyanate.
- organic polyvalent imine compound examples include, for example, 1 ⁇ 1, 1 ⁇ 1'-diphenylmethan-4,4'-bis(1-aziridinecarboxamide), trimethylol propantry/3-aziridinylprobio. Nate, tetramethylolmethanate/3-aziridinylprobionate,! ⁇ 1 ,! ⁇ 1, Toluene _ 2 ,4 ⁇ 2020/175421 43 ⁇ (: 171-1? 2020/007293
- cross-linking agent () When an organic polyisocyanate compound is used as the cross-linking agent (), it is preferable to use a hydroxyl group-containing polymer as the polymer component ().
- a hydroxyl group-containing polymer When the cross-linking agent () has an isocyanate group and the polymer component () has a hydroxyl group, the cross-linking structure can be easily introduced into the thermosetting resin film by the reaction between the cross-linking agent () and the polymer component (). ..
- composition ( ⁇ I-1) and the crosslinker () contained in the thermosetting resin film may be only one kind, may be two kinds or more, and may be two kinds or more. In some cases, their combination and ratio can be arbitrarily selected.
- the content of the cross-linking agent () in the composition ( ⁇ ⁇ ⁇ 1 1) is, for example, based on 100 parts by mass of the content of the polymer component (), for example, It may be any one of 0.01 to 20 parts by mass, 0.1 to 10 parts by mass, and 0.5 to 5 parts by mass.
- the content of the cross-linking agent () is at least the lower limit value, the effect of using the cross-linking agent () is more remarkably obtained.
- the content of the cross-linking agent () is less than or equal to the upper limit value, excessive use of the cross-linking agent () is suppressed.
- the composition ( ⁇ I-1) and the thermosetting resin film may contain an energy ray-curable resin ( ⁇ ). Since the thermosetting resin film contains the energy ray-curable resin ( ⁇ ), its characteristics can be changed by irradiation with energy rays.
- the energy ray-curable resin (O) is obtained by polymerizing (curing) an energy ray-curable compound.
- Examples of the energy ray-curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth)acryloyl group are preferable.
- Examples of the acrylate compound include trimethylolpropanate ⁇ 2020/175421 44 ⁇ (: 171-1? 2020 /007293
- Cycloaliphatic skeleton-containing (meth)acrylate Polyalkylene glycol (meth)acrylate such as polyethylene glycol di(meth)acrylate; Oligoester (meth)acrylate; Urethane (meth)acrylate oligomer; Epoxy-modified (meth)acrylate A polyether (meth)acrylate other than the above polyalkylene glycol (meth)acrylate; an itaconic acid oligomer, and the like.
- the weight average molecular weight of the energy ray-curable compound is preferably 100 to 300,000, and more preferably 300 to 100.
- the energy ray-curable compound used for the polymerization may be only one type, or may be two or more types. In the case of two or more types, their combination and ratio are arbitrarily selected. it can.
- the energy ray curable resin ( ⁇ ) contained in the composition ( ⁇ ⁇ ⁇ _ 1) and the thermosetting resin film may be only one kind, or may be two or more kinds, When there are two or more kinds, their combination and ratio can be arbitrarily selected.
- the energy ray-curable resin ( ⁇ ) when used, the energy ray-curable resin ( ⁇ ) in the composition ( ⁇ _1 1) with respect to the total mass of the composition ( ⁇ _1)
- the content ratio of may be, for example, any one of 1 to 95% by mass, 5 to 90% by mass, and 10 to 85% by mass.
- composition ( ⁇ I-1) and the thermosetting resin film contain the energy ray-curable resin ( ⁇ )
- the polymerization reaction of the energy ray-curable resin ( ⁇ ) is effective.
- a photopolymerization initiator (1 to 1) may be contained.
- the photopolymerization initiator in the composition (II 1 -1) (for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isoptyl ether, benzoin benzoic acid, benzoin Benzoin compounds such as methyl benzoate and benzoin dimethyl ketal; acetophenone, 2-hydroxy-2-methyl-1-phenylfluoropropane _ 1-one, 2, 2-dimethoxy _ 1, 2-diphenylethane
- -Acetophenone compounds such as 1-one; Acyl such as bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2,4,6-trimethylbenzyldiphenylphosphine oxide Phosphine oxide compounds; Sulfide compounds such as benzylphenylsulfide and tetramethylthiuram monosulfide; 1-Ketol compounds such as hydroxycyclohexylphenyl ketone; Azo compounds such as azobisisobutyronitrile; Titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; diketone compounds such as diacetyl; benzyl; dibenzil; benzophenone; 2,4-diethylthioxanthone; 1,2-diphenylmethane; 2-hydroxy_2- Methyl-1-[4-(1-methylvinyl)phenyl]propanone;
- the photopolymerization initiator (1 to 1) contained in the composition (III-1) and the thermosetting resin film may be only one kind, or may be two or more kinds, When there are more than one species, their combination and ratio can be arbitrarily selected.
- the content of the photopolymerization initiator (! !) in the composition ( ⁇ _ 1) is the same as that of the energy ray curable resin ( ⁇ ).
- the content of 100 parts by mass any one of, for example, 0.1 to 20 parts by mass, 1 to 10 parts by mass, and 2 to 5 parts by mass may be used.
- composition ( ⁇ I-1) and the thermosetting resin film may contain a colorant ( ⁇ ).
- Examples of the colorant (I) include known pigments such as inorganic pigments, organic pigments and organic dyes.
- organic pigments and organic dyes examples include aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squalium dyes, azurenium dyes, polymethine dyes, naphthoquinone dyes, pyriquinones.
- Lium dyes Lium dyes, phthalocyanine dyes, naphthalocyanine dyes, naphtholactam dyes, azo dyes, condensed azo dyes, indigo dyes, perinone dyes, perylene dyes, dioxazine dyes, quinacridone dyes, isindolinone Dyes, quinophthalone dyes, pyrrole dyes, thioindigo dyes, metal complex dyes (metal complex salt dyes), dithiol metal complex dyes, indolephenol dyes, triallylmethane dyes, anthraquinone dyes, naphthol dyes , Azomethine dyes, benzimidazolone dyes, piranslone dyes, and threne dyes.
- examples of the inorganic pigments include force-black, cobalt-based pigments, iron-based pigments, chromium-based pigments, titanium-based pigments, vanadium-based pigments, zirconium-based pigments, molybdenum-based pigments, ruthenium-based pigments, platinum-based pigments. , Tadano ⁇ (indium tin oxide) type dyes, and Hachio ⁇ (antimony tin oxide) type dyes.
- the colorant () contained in the composition (III-1) and the thermosetting resin film may be only one kind, may be two kinds or more, and may be two kinds or more. In that case, those combinations and ratios can be arbitrarily selected.
- the content of the coloring agent () in the thermosetting resin film may be appropriately adjusted according to the purpose.
- the ratio of the content of the colorant ( ⁇ ) to the total content of all components other than the solvent (that is, in the thermosetting resin film is 0.1 to 5 mass%.
- the ratio is equal to or more than the lower limit value, the effect of using the coloring agent () is more remarkable.
- the ratio is equal to or less than the upper limit value, an excessive decrease in light transmittance of the thermosetting resin film is suppressed.
- composition (I I-1) and the thermosetting resin film may contain a general-purpose additive (") as long as the effects of the present invention are not impaired.
- the general-purpose additive (" may be a known one and can be arbitrarily selected according to the purpose and is not particularly limited, but preferable examples include, for example, plasticizers, antistatic agents, antioxidants, gettering agents, etc. Is mentioned.
- composition ( ⁇ I-1) and the general-purpose additive (") contained in the thermosetting resin film may be only one kind, or may be two or more kinds, or two kinds. In the above cases, the combination and ratio of them can be arbitrarily selected.
- composition ( ⁇ I-1) and the general-purpose additive (") of the thermosetting resin film are not particularly limited and may be appropriately selected depending on the purpose.
- composition ( ⁇ _1) preferably further contains a solvent.
- the composition containing the solvent ( ⁇ _1) has good handleability.
- the solvent is not particularly limited, but preferred examples include hydrocarbons such as toluene and xylene; methanol, ethanol, 2-propanol, isoptyl alcohol (2-methylpropane _1-ol), 1-butanol.
- hydrocarbons such as toluene and xylene
- alcohols esters such as ethyl acetate; ketones such as acetone and methylethylketone; ethers such as tetrahydrofuran; dimethylformamide,
- Examples include amides (compounds having an amide bond) such as 1 ⁇ !-methylpyrrolidone.
- the solvent contained in the composition ( ⁇ _ 1) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrarily selected. it can.
- composition (III_1) The solvent contained in the composition (III_1) is contained in the composition ( ⁇ _1). ⁇ 2020/175 421 48 ⁇ (: 171? 2020 /007293
- Methyl ethyl ketone or the like is preferable from the viewpoint that the components can be mixed more uniformly.
- the content of the solvent of the composition ( ⁇ _1) is not particularly limited, and may be appropriately selected depending on, for example, the type of components other than the solvent.
- thermosetting resin film of the present embodiment a thermosetting resin for forming a first protective film on the surface of the work by sticking it on the surface having the projecting electrodes and thermosetting Resin film,
- thermosetting resin film other than the acrylic resin having an epoxy group
- thermosetting components consists of:
- thermosetting resin film the ratio of the total content of all types of the thermosetting components to the total mass of the thermosetting resin film is 40% by mass or more
- thermosetting resin film For each of the thermosetting components contained in the thermosetting resin film, the following formula:
- thermosetting component [Equivalent of functional group involved in thermosetting reaction of thermosetting component (9 / 69)] X [Content of thermosetting component of thermosetting resin film (part by mass)] / [Thermosetting resin Total content of all thermosetting components of the film (parts by mass)]
- thermosetting resin film When the total value of the X values in all of the above-mentioned thermosetting components contained in the thermosetting resin film is calculated, the total value is calculated as 40 0 9/6 9 below,
- thermosetting resin film having a thickness of 200, or composed of two or more layers of the thermosetting resin film having a thickness of less than 200, the total thickness
- the wavelength of the laminated film which is
- thermosetting resin film examples have a light transmittance of 50% or more.
- thermosetting resin film of the present embodiment for adhering to the surface of the work having the protruding electrodes and thermosetting, a first protective film is formed on the surface.
- thermosetting resin film of the present embodiment for adhering to the surface of the work having the protruding electrodes and thermosetting, a first protective film is formed on the surface.
- thermosetting resin film has a polymer component () and an epoxy group. ⁇ 2020/175 42 1 49 (: 171-1? 2020/007293
- thermosetting components other than acrylic resin, and a filler (mouth)
- thermosetting component comprises an epoxy resin (Min 1) and a thermosetting agent (Min 2),
- thermosetting resin film the total content of all types of the thermosetting components with respect to the total mass of the thermosetting resin film (in other words, the epoxy resin (M1) and the thermosetting agent (M2) The total content of)) is 40 mass% or more,
- thermosetting resin film the ratio of the content of the polymer component () with respect to the total mass of the thermosetting resin film is 5 to 30 mass%, in the thermosetting resin film, The ratio of the content of the filler (mouth) with respect to the total mass of the curable resin film is 5 to 20% by mass, and the thermosetting component contained in the thermosetting resin film has various types. For each, the following formula:
- thermosetting component [Equivalent of functional group involved in thermosetting reaction of thermosetting component (9 / 69)] X [Content of thermosetting component of thermosetting resin film (part by mass)] / [Thermosetting resin Total content of all thermosetting components of the film (parts by mass)]
- thermosetting resin film When the total value of the X values in all of the above-mentioned thermosetting components contained in the thermosetting resin film is calculated, the total value is calculated as 40 0 9/6 9 The following thermosetting resin film is mentioned.
- thermosetting resin film of the present embodiment for adhering to the surface of the work having the protruding electrodes and thermosetting, a first protective film is formed on the surface.
- thermosetting resin film of the present embodiment for adhering to the surface of the work having the protruding electrodes and thermosetting, a first protective film is formed on the surface.
- thermosetting resin film contains a polymer component (), two or more thermosetting components other than an epoxy group-containing acrylic resin, and a filler (mouth),
- thermosetting component is composed of an epoxy resin (Min 1) and a thermosetting agent (Min 2). ⁇ 2020/175 421 50 ⁇ (: 171-1? 2020 /007293
- thermosetting resin film the total content of all types of the thermosetting components with respect to the total mass of the thermosetting resin film (in other words, the epoxy resin (M1) and the thermosetting agent (M2) The total content of)) is 40 mass% or more,
- thermosetting resin film the ratio of the content of the polymer component () with respect to the total mass of the thermosetting resin film is 5 to 30 mass%, in the thermosetting resin film, The ratio of the content of the filler (mouth) with respect to the total mass of the curable resin film is 5 to 20% by mass, and the thermosetting component contained in the thermosetting resin film has various types. For each, the following formula:
- thermosetting component [Equivalent of functional group involved in thermosetting reaction of thermosetting component (9 / 69)] X [Content of thermosetting component of thermosetting resin film (part by mass)] / [Thermosetting resin Total content of all thermosetting components of the film (parts by mass)]
- thermosetting resin film When the total value of the X values in all of the above-mentioned thermosetting components contained in the thermosetting resin film is calculated, the total value is calculated as 40 0 9/6 9 below,
- thermosetting resin film having a thickness of 200, or composed of two or more layers of the thermosetting resin film having a thickness of less than 200, the total thickness
- the wavelength of the laminated film which is
- thermosetting resin film examples have a light transmittance of 50% or more.
- thermosetting resin film of the present embodiment is that the first protective film is formed on the surface of the work by sticking it on the surface having the projecting electrodes and thermally curing it.
- thermosetting resin film of the present embodiment is a thermosetting resin film of
- thermosetting resin film contains a polymer component (), two or more thermosetting components other than an epoxy group-containing acrylic resin, and a filler (mouth), ⁇ 2020/175 421 51 ⁇ (: 171-1? 2020/007293
- thermosetting component comprises an epoxy resin (Min 1) and a thermosetting agent (Min 2),
- thermosetting resin film the total content of all types of the thermosetting components with respect to the total mass of the thermosetting resin film (in other words, the epoxy resin (M1) and the thermosetting agent (M2) The total content of)) is 40 mass% or more,
- thermosetting resin film the ratio of the content of the polymer component () with respect to the total mass of the thermosetting resin film is 5 to 30 mass%, in the thermosetting resin film, The ratio of the content of the filler (mouth) with respect to the total mass of the curable resin film is 5 to 20% by mass, and the thermosetting component contained in the thermosetting resin film has various types. For each, the following formula:
- thermosetting component [Equivalent of functional group involved in thermosetting reaction of thermosetting component (9 / 69)] X [Content of thermosetting component of thermosetting resin film (part by mass)] / [Thermosetting resin Total content of all thermosetting components of the film (parts by mass)]
- thermosetting resin film When the total value of the X values in all of the above-mentioned thermosetting components contained in the thermosetting resin film is calculated, the total value is calculated as 40 0 9/6 9 below,
- thermosetting resin film which was obtained by heat-curing the film at 1300 ° for 2 hours, The thickness is The first protective film, which is Pulling speed up to 200/ As a result, the breaking strength of the first protective film when the first protective film is pulled in a direction parallel to the surface of the first protective film by the gripping device is 55 IV! 3 or less.
- a resin film may be used.
- thermosetting resin film of the present embodiment for adhering to the surface of the work having the projecting electrodes and thermosetting, the first protective film is formed on the surface.
- thermosetting resin film contains a polymer component (), two or more thermosetting components other than an epoxy group-containing acrylic resin, and a filler (mouth),
- thermosetting component comprises an epoxy resin (Min 1) and a thermosetting agent (Min 2),
- thermosetting resin film the total content of all types of the thermosetting components with respect to the total mass of the thermosetting resin film (in other words, the epoxy resin (M1) and the thermosetting agent (M2) The total content of)) is 40 mass% or more,
- thermosetting resin film the ratio of the content of the polymer component () with respect to the total mass of the thermosetting resin film is 5 to 30 mass%, in the thermosetting resin film, The ratio of the content of the filler (mouth) with respect to the total mass of the curable resin film is 5 to 20% by mass, and the thermosetting component contained in the thermosetting resin film has various types. For each, the following formula:
- thermosetting component [Equivalent of functional group involved in thermosetting reaction of thermosetting component (9 / 69)] X [Content of thermosetting component of thermosetting resin film (part by mass)] / [Thermosetting resin Total content of all thermosetting components of the film (parts by mass)]
- thermosetting resin film When the total value of the X values in all of the above-mentioned thermosetting components contained in the thermosetting resin film is calculated, the total value is calculated as 40 0 9/6 9 below,
- thermosetting resin film having a thickness of 200, or composed of two or more layers of the thermosetting resin film having a thickness of less than 200, the total thickness
- the wavelength of the laminated film which is
- thermosetting resin film which was obtained by heat-curing the film at 1300 ° for 2 hours, The thickness is ⁇ 2020/175 421 53 ⁇ (: 171? 2020 /007293
- the first protective film which is Pulling speed up to 200/ As a result, the breaking strength of the first protective film when the first protective film is pulled in a direction parallel to the surface of the first protective film by the gripping device is 55 IV! 3 or less.
- a resin film may be used.
- thermosetting resin layer-forming composition [0204]
- composition for forming a thermosetting resin layer such as the composition (I II-1) can be obtained by blending each component for constituting the composition.
- each component is not particularly limited, and two or more components may be added at the same time.
- a solvent When a solvent is used, it may be used by mixing the solvent with any compounding ingredient other than the solvent and diluting this compounding ingredient in advance, or by diluting any compounding ingredient other than the solvent in advance. Alternatively, the solvent may be used by mixing with the compounding ingredients.
- the method of mixing the components at the time of compounding is not particularly limited, and a known method such as a method of mixing by rotating a stirring bar or a stirring blade; a method of mixing using a mixer; a method of adding ultrasonic waves and mixing It may be selected appropriately.
- Temperature and time for addition and mixing of the components is not limited Ri particularly limited to each formulation component is not degraded, it may be appropriately adjusted, but it is preferable that the temperature is 1. 5 to 3 0 ° ⁇ .
- the first protective film forming sheet can be manufactured by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship.
- the method for forming each layer is as described above.
- the first pressure-sensitive adhesive layer or the first intermediate layer when the first pressure-sensitive adhesive layer or the first intermediate layer is laminated on the first base material when manufacturing the first support sheet, the above-mentioned first pressure-sensitive adhesive composition is formed on the first base material.
- the first pressure-sensitive adhesive layer or the first intermediate layer can be laminated by applying the composition for forming the first intermediate layer and, if necessary, drying it or irradiating it with energy rays.
- thermosetting resin layer-forming composition When laminating a thermosetting resin layer (thermosetting resin film), the thermosetting resin layer-forming composition is applied onto the first pressure-sensitive adhesive layer to directly form the thermosetting resin layer. It is possible to Similarly, when further laminating the first pressure-sensitive adhesive layer on the first intermediate layer that has already been laminated on the first substrate, apply the first pressure-sensitive adhesive composition on the first intermediate layer. It is possible to directly form the first adhesive layer. In this way, when using any of the compositions to form a continuous two-layer laminated structure, another composition is applied onto the layer formed from the composition and a new composition is formed. It is possible to form a layer on.
- the layer to be laminated later is formed beforehand on another release film using the composition, and the side of the formed layer which is in contact with the release film is It is preferable to form a continuous two-layer laminated structure by bonding the exposed surface on the opposite side to the exposed surface of the remaining layer that has already been formed.
- the composition is preferably applied to the release-treated surface of the release film.
- the release film may be removed as needed after the laminated structure is formed.
- a first protective film-forming sheet in which a first pressure-sensitive adhesive layer is laminated on a first base material, and a thermosetting resin layer is laminated on the first pressure-sensitive adhesive layer.
- first pressure-sensitive adhesive layer is coated on the first base material, and The first pressure-sensitive adhesive layer is laminated on the first base material by drying according to the above conditions, and the thermosetting resin layer-forming composition is separately applied on the release film and dried if necessary.
- thermosetting resin layer is formed on the release film, and the exposed surface of this thermosetting resin layer is attached to the exposed surface of the first adhesive layer already laminated on the first base material.
- the first protective film forming sheet can be obtained.
- the first base material is used.
- the composition for forming a first intermediate layer on the above, by drying as necessary, or by irradiating with an energy ray, the first intermediate layer is laminated on the first substrate, ⁇ 2020/175 421 55 ⁇ (: 171? 2020 /007293
- the first support sheet is obtained by laminating the first pressure-sensitive adhesive layer on the exposed surface of the first intermediate layer that has already been laminated on the first base material, and laminating the first adhesive layer on the first intermediate layer.
- a thermosetting resin layer-forming composition is separately applied onto a release film, and dried if necessary to form a curable resin layer on the release film.
- the first pressure-sensitive adhesive composition or the first intermediate layer is formed on the first substrate.
- the first adhesive composition or the first intermediate-layer forming composition is applied on the release film and dried as necessary, or energy rays are applied.
- the first adhesive layer or the first intermediate layer is formed on the peeling film by irradiating with, and the exposed surface of these layers is bonded to one surface of the first base material to form the first adhesive layer.
- the agent layer or the first intermediate layer may be laminated on the first base material.
- the release film may be removed at any timing after the intended laminated structure is formed.
- any layer other than the first base material forming the first protective film-forming sheet is formed on the release film in advance, and is laminated on the surface of the target layer. Since it can be laminated by, the layer for which such a step is adopted can be appropriately selected as necessary to manufacture the first protective film forming sheet.
- the first protective film-forming sheet is usually stored with a release film attached to the surface of the outermost layer (eg, thermosetting resin layer) on the side opposite to the first support sheet. It Therefore, a composition for forming a layer constituting the outermost layer, such as a thermosetting resin layer-forming composition, is coated on this release film (preferably the release treatment surface), and if necessary, And dry it to form a layer that forms the outermost layer on the release film, and then contact this layer with the release film. ⁇ 2020/175 421 56 ⁇ (: 171? 2020 /007293
- the first protective film-forming sheet can also be formed by laminating the remaining layers on the exposed surface on the side opposite to the side on which the release film is attached by any of the above methods and leaving the release film adhered without removing the release film. can get.
- a commercially available product may be used as the first support sheet.
- a method for manufacturing a work piece with a first protective film which uses a thermosetting resin film or a sheet for forming a first protective film according to an embodiment of the present invention, is a surface having a projecting electrode of a work.
- a step of sticking a thermosetting resin film that is, a surface on which the protruding electrodes are formed
- sticking step a step of heating the thermosetting resin film after sticking.
- a step of curing to form a first protective film in the present specification, it may be abbreviated as “first protective film forming step”); and a step of forming the first protective film on the work.
- a step of forming a modified layer inside the work by irradiating a laser beam from the side provided with the first protective film (abbreviated as “modified layer forming step” in the present specification).
- modify layer forming step By expanding the work after the formation of the modified layer together with the first protective film in the direction parallel to the circuit surface, While dividing the work, the first protective film is cut, and the first protective film formed on the workpiece and the surface of the workpiece that has the protruding electrode (that is, the surface on which the protruding electrode is formed).
- a step of obtaining a work piece with a first protective film provided with in the present specification, it may be abbreviated as “dividing/cutting step”).
- Figs. 58 to 50 and Figs. 68 to 6 are enlarged cross-sectional views for schematically explaining the method for manufacturing the first work piece with a protective film.
- a manufacturing method using the first protective film forming sheet 1 shown in FIG. 2 will be described.
- thermosetting resin film 12 is attached to the surface (that is, the surface 9 13 of the protruding electrode 91 and the circuit surface 90 3 of the work 90).
- the thermosetting resin film 12 spreads among a large number of projecting electrodes 91, and adheres to the projecting electrode forming surface, as well as the surface 9 1 of the projecting electrode 9 1. 3.
- the surface 913 of the workpiece 90 which is in the vicinity of the circuit surface 903, can be covered and the projecting electrodes 91 can be embedded to cover these regions.
- the upper portion of the protruding electrode 91 including the crown portion 910 penetrates the thermosetting resin film 12 and projects from the thermosetting resin film 12.
- thermosetting resin film 12 may be used alone, but as shown here, the thermosetting resin film 12 may be formed on the first support sheet 10 1 and the first support sheet 10 1. It is preferable to use the first protective film-forming sheet 1 including the thermosetting resin film 12 and the thermosetting resin film 12. As will be described later, when grinding the back surface 90 of the work 90, a back grinding surface protection tape can be used as the first support sheet 10 1.
- thermosetting resin film 12 in the first protective film-forming sheet 1 is attached to the work piece 90 by the protrusion of the work 90.
- the first protective film forming sheet 1 itself may be attached to the protruding electrode forming surface of the workpiece 90 by attaching the first protective film forming sheet 1 to the protruding electrode forming surface.
- first laminated structure body a structure in which a sheet for forming a first protective film is attached to the protruding electrode formation surface of a work as shown here. It may be called.
- first laminated structure body 201 is formed by adhering the first protective film forming sheet 1 to the projecting electrode forming surface of the work 90.
- thermosetting resin film 12 facing the workpiece 90 may be referred to as "first surface” in the present specification.
- the thermosetting resin film is formed by pressing 1 2 3 onto the protruding electrode forming surface of the workpiece 90 (that is, the surface 9 13 of the protruding electrode 91 and the circuit surface 90 3 of the workpiece 90). 1 2 can be attached to the protruding electrode forming surface. ⁇ 2020/175 421 58 ⁇ (:171? 2020 /007293
- thermosetting resin film 12 is attached to the protruding electrode forming surface while heating.
- thermosetting resin film 12 and the protruding electrode forming surface that is, between the thermosetting resin film 12 and the circuit surface 903 of the work 90.
- the heating temperature of the thermosetting resin film 12 at the time of attachment need not be an excessively high temperature, and is preferably, for example, 60 to 100 ° .
- “excessively high temperature” means a temperature at which the thermosetting resin film 12 exhibits an unintended action, for example, thermosetting of the thermosetting resin film 12 progresses. ..
- thermosetting resin film 12 when the thermosetting resin film 12 is attached to the protruding electrode forming surface (in the present specification, sometimes referred to as "attachment pressure") Is preferably 0.3 to 1 IV! 3.
- the first laminated structure 20 1 After forming the first laminated structure 20 1 by the attaching step, the first laminated structure 20 1 may be used as it is in the next step, but if necessary, the work 9
- the thickness of the workpiece 90 may be adjusted by grinding the back surface 9013 of the workpiece.
- the first laminated structure 20 1 after grinding the back surface 90 of the work 90 is also in the state shown in FIG. 58, except that the thickness of the work 90 is different.
- the back surface 90 of the work 90 can be ground by a known method such as a method using a grinder.
- the thickness of the part of the work 90 excluding the protruding electrodes 91 before and after grinding the back surface 90b of the work 90 is as described above.
- the first laminated structure is
- thermosetting resin film 12 is provided on the projecting electrode forming surface of the work 90, and the first supporting sheet 10 1 is provided.
- a second laminated structure (in other words, a work with a thermosetting resin film) 202 which is configured without the above is obtained.
- the upper portion of the protruding electrode 91 including the crown portion 910 penetrates the thermosetting resin film 12, projects, and is exposed.
- the first pressure-sensitive adhesive layer 13 is energy ray-curable, the first pressure-sensitive adhesive layer 13 is cured by irradiation with energy rays, so that the first pressure-sensitive adhesive layer 13 is made to have adhesiveness. After lowering, it is preferable to remove the first support sheet 10 1 from the thermosetting resin film 12.
- the thermosetting resin film 12 after being attached is thermally cured to form a first protective film 12' as shown in FIG.
- the first protective film forming step can be performed after removing the first support sheet 10 1.
- the first protective film forming step can be performed after the back surface 90 is ground.
- the third laminated structure having the first protective film 12 ′ on the protruding electrode forming surface of the work 90 (in other words, the work with the first protective film) is formed. 2 0 3 is obtained.
- Fig. 50 Indicates the contact surface of the first protective film 12 ′ with the work 90 (may be referred to as “first surface” in this specification).
- thermosetting resin film 12 The curing conditions for the thermosetting resin film 12 are not particularly limited as long as the first protective film 12' has a degree of curing sufficient to exert its function, and the thermosetting resin film 1 2 It may be appropriately selected according to the type of.
- thermosetting resin film 12 For example, the heating temperature and the heating time during thermosetting of the thermosetting resin film 12 are as described above.
- thermosetting the thermosetting resin film 1 2 ⁇ 2020/175421 60 ⁇ (:171? 2020 /007293
- the pressure applied in that case is preferably 0.3 to 11 ⁇ /13.
- thermosetting resin film was formed on the upper part including the crown 910 of the protruding electrode 91. The remaining of 1 2 is suppressed. Therefore, after the completion of this step, the first protective film 12' is also prevented from remaining on the upper portion of the protruding electrode 91.
- a laser is applied to the work 90 from the side having the first protective film 12′ through the first protective film 12′.
- the modified layer 900 is formed inside the workpiece 90.
- the modified layer forming step is performed in the third laminated structure (first work with protective film) 203. It is preferable that the dicing sheet or the second protective film forming sheet is attached to the back surface 90 of the work 90 after the work.
- the projecting electrode forming surface of the work is thus provided with the first protective film, and the back surface of the work is provided with the dicing sheet or the second protective film forming sheet.
- What is referred to as a “fourth laminated structure” is sometimes called.
- a structure having a modified layer formed inside the work in the fourth laminated structure may be referred to as a “fifth laminated structure”.
- the first protective film 12' is provided on the projecting electrode forming surface of the work 90, and the second protective film is formed on the back surface 9013 of the work 90.
- the figure shows a structure including a production sheet 8 and a modified layer 900 formed inside a work 90.
- the second protective film forming sheet 8 shown here is the second base material 81, the second adhesive layer 8 3 provided on the second base material 81, and the second adhesive layer 8 1.
- the resin layer (resin film) 82 provided on the upper surface 3 is provided.
- the laminated body of the second base material 81 and the second pressure-sensitive adhesive layer 8 3 is a second support sheet 8 01. ⁇ 2020/175 421 61 ⁇ (: 171-1? 2020/007293
- the second protective film forming sheet 8 includes the second supporting sheet 8 01 and one surface 8 01 3 of the second supporting sheet 8 01, in other words, one of the second adhesive layer 8 3 and the second supporting sheet 8 01. It can be said that it is provided with a resin layer (resin film) 82 provided on the surface 8 3 3.
- the resin layer (resin film) 82 is for forming the second protective film on the back surface 9013 of the work 90.
- the second protective film covers and protects the back surface 90 of the work 90. More specifically, the second protective film is used to process the work during the division of the work and before packaging the work pieces obtained by dividing the work into the target substrate device. Prevents cracks from occurring in objects.
- the resin layer 82 may have a property of only one of thermosetting property and energy ray-curable property, may have both properties, or may have both properties. It does not have to have.
- the resin layer 82 is curable (that is, has at least one of thermosetting property and energy ray curable property)
- the cured product is the second protective film.
- the resin layer 8 2 is non-curable (that is, does not have both thermosetting property and energy ray-curable property)
- the resin layer 8 2 was attached to the back surface 90 of the work 90. At the stage, it is considered that the second protective film is provided.
- the second adhesive layer 8 3 may be either energy ray curable or non-energy ray curable, as with the first adhesive layer 13.
- the energy ray-curable second pressure-sensitive adhesive layer 83 can easily adjust the physical properties before and after curing.
- the second base material 81 is, for example, the first base material in the first protective film forming sheet described above (for example, the first base material 11 in the first protective film forming sheet 1). May be the same as.
- a sheet other than the second protective film forming sheet 8 may be used as the second protective film forming sheet.
- the second protective film forming sheet 8 not only the second protective film forming sheet 8 but also known sheets can be used as the second protective film forming sheet.
- a known dicing sheet can be used.
- a focus is set on a specific region inside the work 90, which is a division of the work 90, and laser _ light ⁇ is irradiated so as to focus on this focus. To do.
- the modified layer 900 is formed in the irradiation region.
- thermosetting resin film 12 and the first protective film 12' have transparency to light having a wavelength of 1 3 4 2 n , and preferably the thermosetting resin film 12 and the first protective film.
- the transmittance of the light of wavelength 1 3 4 2 n of 1 2' is high as described above, the laser light of wavelength 1 3 4 2 n transmits well through the first protective film 1 2'. To do. Therefore, even if the laser beam is applied to the workpiece 90 from the side having the first protective film 12′ through the first protective film 12′, the inside of the workpiece 90 is modified.
- the layer 900 can be well formed.
- the work 90 is divided at the modified layer 900, and the first protective film 12′ is cut.
- the workpiece calorie 9 and the protruding electrode forming surface of the workpiece 9 that is, the surface of the protruding electrode 91.
- the first protective film-formed work product 990 including the first protective film (the first protective film 120' after cutting) formed on the substrate is obtained.
- the work piece 9 having the first protective film 120' after cutting on the protruding electrode forming surface (that is, the work piece 990 with the first protective film) has the second support.
- reference numeral 120 indicates a contact surface of the first protective film 120′ after cutting with the workpiece 9 (may be referred to as “first surface” in this specification)
- the reference numeral 9 indicates the back surface of the work piece 9.
- the first protective film 12' is formed from the thermosetting resin film 12 which satisfies the condition of the total value of the X values, the first protective film 1'is formed in the dividing/cutting step. 2'can be easily cut. As a result, the work piece 9 provided with the first protective film 120' after cutting on the protruding electrode forming surface can be manufactured with high efficiency. In this step, the first protective film 12 ′ is cut along the divided portions of the work 90, and finally cut along the outer circumference of the work 9 to be processed.
- the expanding is preferably performed under a temperature condition of _15 to 5 ° .
- the temperature at the time of expansion is not more than the upper limit value, the first protective film 12′ can be cut more easily.
- the temperature during expansion is at least the above lower limit value, excessive cooling can be avoided.
- the case where the resin layer 82 in the second protective film forming sheet 8 is also cut by performing the dividing/cutting step is shown.
- the cutting of the resin layer 82 is divided into After the cutting step, it may be separately performed by a known method.
- the resin layer 82 after cutting is denoted by reference numeral 820.
- the second protective film obtained by curing the resin layer 82 may be cut without cutting the resin layer 82. ..
- the resin layer 82 or the second protective film is cut along the divided portions of the work 90, as in the case of the first protective film 12'.
- the laminated structure of the second supporting sheet and the resin layer (in other words, the second supporting sheet and the resin layer after cutting) is maintained even after the resin layer is cut.
- This laminated structure is referred to as a "second protective film forming sheet" as long as it is provided.
- the work piece with the first protective film (in other words, the sixth laminated layer structure) is obtained by the above manufacturing method, the work piece with the first protective film is processed by a known method. ⁇ 2020/175 421 64 ⁇ (: 171-1? 2020 /007293
- the desired board device can be manufactured by using this package (not shown).
- the intended semiconductor device can be manufactured by using this semiconductor package. Further, when the semiconductor chip having the first protective film and the second protective film is used, the semiconductor chip with the protective film can be flip-chip connected to manufacture a target semiconductor device.
- each target product manufactured in the comparative examples shown below has the same name as each target product manufactured in the examples.
- thermosetting resin layer-forming composition [0247] The components used in the production of the thermosetting resin layer-forming composition are shown below.
- (Minami 1)-1 Bisphenol 8-type epoxy resin (0 ⁇ ⁇ "Minami Yaichi 4 8 1 0 — 1 0 0 0 0", epoxy equivalent 4 0 4 to 4 1 2 9 6)
- (Mi 1) -2 Dicyclopentadiene type epoxy resin ("Mi 1 ⁇ !_ ⁇ !! I 7 2 0 0", manufactured by 0 ⁇ company, epoxy equivalent 2 6 5 9 / 6) 20/175421 65 ⁇ (: 171? 2020 /007293
- (Min 1) -4 Mixture of liquid bisphenol octadecyl epoxy resin and fine particles of acrylic rubber (“Min 328” manufactured by Nippon Shokubai Co., Ltd., epoxy equivalent)
- (o)-1 Silane coupling agent (Mitsubishi Chemical Corporation Silicate IV! ⁇ 2020/175 421 66 ⁇ (: 171-1? 2020/007293
- thermosetting resin film and first protective film forming sheet «Manufacture of thermosetting resin film and first protective film forming sheet»
- thermosetting Agent (62)-1 (1 8.1 parts by mass
- curing accelerator ⁇ -1 ( ⁇ 0.2 parts by mass)
- filler mouth
- thermosetting resin layer forming composition does not contain the component.
- “Ratio (mass %) of the total content of all types of thermosetting components” in Table 1 means "the total mass of the thermosetting resin film in the thermosetting resin film”. To the total content of thermosetting components of all types”.
- thermosetting resin film ⁇ Production of thermosetting resin film>
- a release film in which one side of a polyethylene terephthalate film is peeled off by silicone treatment (“3 Izumi 381 03 1” by Lintec Co., Ltd.)
- thermosetting resin layer-forming composition ( ⁇ ⁇ I -1) obtained above to the release treated surface and dry at 100 ° ⁇ for 2 minutes.
- a thermosetting resin film having a thickness of 30 was produced.
- thermosetting resin film in other words, the surface opposite to the side provided with the release film
- the surface protection for back grinding was applied.
- a first protective film-forming sheet was produced by sticking one surface of a tape (“8 ⁇ ⁇ ⁇ Miichi 8 1 8 0 1 to 1 [3 ⁇ 4” manufactured by Lintec Co., Ltd.) to each other.
- the surface protection tape corresponds to the first support sheet.
- the release film is removed, and the exposed surface of the thermosetting resin film generated in this way (in other words, the surface protective tape is provided.
- the first protective film forming sheet was attached to the bump forming surface of the semiconductor wafer by pressure-bonding the surface opposite to the bump forming surface) to the bump forming surface of the semiconductor wafer.
- the first protective film forming sheet was pasted by using a pasting device (mouth-roller type laminator, “[3 ⁇ 48 0-3 5 1 0/1 2” manufactured by Lintec Co.) at a table temperature of 90° , Sticking speed 2
- the application was performed while heating the thermosetting resin film under the conditions of application pressure of 0.51 ⁇ /1 3.
- the height of bumps is 210
- the width of bumps is 250
- the distance between adjacent bumps is 400!
- the thickness of the parts excluding bumps is A value of 750 was used.
- the surface protection tape (in other words, the first supporting sheet) was removed from the thermosetting resin film in the first laminated structure.
- the second laminated structure semiconductor wafer with thermosetting resin film having the thermosetting resin film on the bump formation surface of the semiconductor wafer was obtained.
- thermosetting resin film in the second laminated structure obtained above was used.
- the processing ⁇ 2020/175 421 68 ⁇ (:171? 2020 /007293
- the first protective film was formed by heat curing under the conditions of a temperature of 130°, a processing pressure of 0.5 IV! 3, and a processing time of 2 hours.
- the third laminated structure (in other words, the semiconductor wafer with the first protective film) having the first protective film on the bump formation surface of the semiconductor wafer was obtained.
- a dicing tape (“8 ⁇ ⁇ ⁇ -841" manufactured by Lintec Co., Ltd.) was applied to the back surface (in other words, the ground surface) of the semiconductor wafer in the obtained third laminated structure.
- a fourth laminated structure having a first protective film on the bump formation surface of the semiconductor wafer and a dicing tape on the back surface was obtained.
- the dicing tape corresponds to the second support sheet.
- a dicing device (“0 !_ 7 3 6 1" manufactured by Disco Co., Ltd.) was used to focus the semiconductor wafer in the fourth laminated structure at a focus set inside the semiconductor wafer. Then, the modified layer was formed inside the semiconductor wafer by irradiating laser light from the side having the first protective film through the first protective film. At this time, the wavelength of the laser light is 1 3 4 2 n , The output is ⁇ , and the frequency is did.
- the fifth laminated structure having a structure in which the modified layer was formed inside the semiconductor wafer in the fourth laminated structure was obtained.
- the semiconductor wafer after forming the modified layer (in other words, the fifth laminated structure) is placed in a direction parallel to the circuit surface of the first protective film.
- the semiconductor wafer was divided at the modified layer and the first protective film was cut along the division of the semiconductor wafer.
- a die separator (“0 0 3 2 3 0 0” manufactured by Disco Co., Ltd.) was used to place the second support sheet in the fifth laminated structure on the table in the die separator, and the fifth laminated structure.
- the peripheral edge of the body is fixed, and in this state, the semiconductor wafer and the first protective film are expanded by pushing up the table under the conditions of a push-up speed of 5001 01/3600 and a push-up amount of 2000011. did.
- the size of the obtained semiconductor chip is
- the semiconductor chip (the first protective film after cutting on the bump formation surface) ( ⁇ 2020/175 421 69 ⁇ (: 171? 2020 /007293
- a sixth laminated structure was obtained in which a plurality (a large number) of the first protective film-attached semiconductor chips) were aligned on the second support sheet (in other words, the dicing tape described above).
- thermosetting resin film The boundary between the bump and the thermosetting resin film can be confirmed, and it can be confirmed that the thermosetting resin film does not remain above the bump.
- Mami The boundary between the bump and the thermosetting resin film cannot be confirmed, and it can be confirmed that the thermosetting resin film remains on the upper part of the bump.
- thermosetting resin layer-forming composition (I I I-1) Except that the coating amount of the thermosetting resin layer-forming composition (I I I-1) was changed, the thermosetting resin for test was prepared in the same manner as in the production of the thermosetting resin film described above. Five films (thickness 40) were produced.
- thermosetting resin films for a test were laminated in the thickness direction to obtain a laminated film (thickness 200).
- the spectrophotometer 3 1 ⁇ 1 IMADZ ⁇ J company "11 ⁇ 1 3-1 ⁇ 1 1 [3 ⁇ 4 3
- the obtained sixth laminated structure was observed from the first protective film side.
- the observation area of the alignment surface of the semiconductor chip with the first protective film of the second support sheet
- a total of 5 areas were selected: the second area, the third area, the fourth area, and the fifth area, which are located on the side and are equally spaced from the first area. All of these five regions are regions including 25 semiconductor chips with the first protective film in 5 rows and 5 columns, assuming that the semiconductor wafer is normally divided.
- the first region exists approximately in the center of the first line segment that connects the second and third regions
- the first region approximately exists in the center of the second line segment that connects the fourth and fifth regions.
- the semiconductor wafer is normally divided in all 5 areas (all areas 1 to 5).
- At least one region (at least one of the first to fifth regions) has a portion where the semiconductor wafer is not normally divided.
- the first protective film is normally cut in all five areas (all areas from the first area to the fifth area).
- At least one region (at least one of the first to fifth regions) has a part where the first protective film is not normally cut.
- thermosetting resin layer-forming composition (I ⁇ I-1) was changed ⁇ 2020/175421 71 ⁇ (: 171-1? 2020/007293
- thermosetting resin film for testing (thickness 40) was produced in the same manner as in the production of the thermosetting resin film described above.
- thermosetting resin film for this test was heated at 130 ° C. for 2 hours to be thermoset.
- thermosetting resin film and first protective film forming sheet «Manufacture of thermosetting resin film and first protective film forming sheet»
- thermosetting resin film and sheet for forming first protective film ⁇ Production of thermosetting resin film and sheet for forming first protective film>
- thermosetting resin film and a first protective film-forming sheet were produced in the same manner as in Example 1 except that the resin layer-forming composition obtained above was used.
- the first protective film-provided semiconductor chip (in other words, the first protective film-forming sheet) was used in the same manner as in Example 1 except that the above-mentioned sheet was used. ⁇ 2020/175421 72 ⁇ (: 171-1? 2020/007293
- thermosetting resin film and the first protective film produced in this comparative example were evaluated in the same manner as in Example 1. The results are shown in Table 1.
- thermosetting resin film and first protective film forming sheet «Manufacture of thermosetting resin film and first protective film forming sheet»
- Polymer component () I 3 (21.0 parts by mass), Epoxy resin (Min 1) -4 (10.0 parts by mass), Epoxy resin (Min 1) -5 (2.0 parts by mass), Epoxy Resin (N 1) -6 (5.6 parts by mass), Thermosetting agent (N 2) -2 ( ⁇ 0.5 parts by mass), Curing accelerator ( ⁇ 3)-1 ( ⁇ 0.5 parts by mass), Filling Material (mouth) I 2 (6.0 mass parts), Filler (mouth) _3 (54.0 parts by mass), Coupling agent (Mitsumi) _ 1 ( ⁇ 0.4 parts by mass) and colorant (I) _ 1 (1.9 parts by mass) is mixed, further diluted with methyl ethyl ketone, and stirred at 23 ° ⁇ , so that the total concentration of 10 components other than the above methyl ethyl ketone is 55% by mass. A forming composition was prepared. Table 1 shows these components and their contents.
- thermosetting resin film and sheet for forming first protective film ⁇ Production of thermosetting resin film and sheet for forming first protective film>
- thermosetting resin film and a first protective film-forming sheet were produced in the same manner as in Example 1 except that the resin layer-forming composition obtained above was used.
- thermosetting resin film and first protective film
- thermosetting resin film and the first protective film produced in this comparative example were evaluated in the same manner as in Example 1. The results are shown in Table 1.
- thermosetting resin film of Example 1 has desirable characteristics because it can suppress the residual on the upper part of the bump when it is attached to the bump forming surface of the semiconductor wafer. Was there.
- thermosetting resin film of Example 1 the ratio of the total content of all types of thermosetting components to the total mass of the thermosetting resin film was 80.9% by mass. ⁇ 2020/175421 74 ⁇ (: 171-1? 2020/007293
- Example 1 Further, in Example 1, the dividability of the semiconductor wafer was good.
- thermosetting resin film of Example 1 had a high transmittance of light having a wavelength of 1 342 n , and as a result, the first protective film formed from this film also had a high transmittance of light, and thus the first protective film When the semiconductor wafer was irradiated with laser light through the film, the modified layer could be formed well inside the semiconductor wafer.
- Example 1 Further, in Example 1, the cutting property of the first protective film was good.
- thermosetting resin film of Comparative Example 2 was inferior in properties because it could not suppress the residual on the upper part of the bump when it was attached to the bump formation surface of the semiconductor wafer.
- the ratio of the total content of all types of thermosetting components to the total mass of the thermosetting resin film was 17.8% by mass.
- thermosetting resin film of Comparative Example 2 had a low transmittance of light having a wavelength of 1 342 n, and as a result, the light transmittance of the first protective film formed from this film was also low, and the first protective film When the semiconductor wafer was irradiated with laser light through the film, the modified layer could not be formed properly inside the semiconductor wafer. As a result, the semiconductor wafer could not be divided normally.
- the present invention can be used for manufacturing a work piece or the like having a projecting electrode in a connecting pad portion, which is used in a flip chip mounting method.
- Thermosetting resin layer thermosetting resin film
- 1 2′ 1st protective film 1 20′ 1st protective film after cutting
- 1 3rd 1 Adhesive layer 1 33 ⁇ 01 01 3, 1023, 1 03 3 Surface of 1st support sheet, 206 ⁇ 6th laminated structure, 90 ⁇ ⁇ ⁇ Work, 908 circuit surface of work, 9 1 ⁇ ⁇ ⁇ Projected electrode .9 1 3 ⁇ ⁇ ⁇ Projected electrode Surface, 900 ⁇ Modified layer, 990 ⁇ 1st work piece with protective film, [3 ⁇ 4 laser light
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Dicing (AREA)
- Adhesive Tapes (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Wire Bonding (AREA)
Abstract
本実施形態の熱硬化性樹脂フィルムは、ワークの突状電極を有する面に貼付し、熱硬化させることによって、前記面に第1保護膜を形成するための熱硬化性樹脂フィルムであって、熱硬化性樹脂フィルムは、エポキシ基を有するアクリル樹脂以外の、2種以上の熱硬化性成分を含有し、熱硬化性樹脂フィルムにおける、熱硬化性樹脂フィルムの総質量に対する、全種類の前記熱硬化性成分の合計含有量の割合が、40質量%以上であり、熱硬化性樹脂フィルムが含有する前記熱硬化性成分について、その種類ごとにX値を求め、全種類の前記熱硬化性成分におけるX値の合計値を求めたとき、前記合計値が400g/eq以下となる。
Description
\¥0 2020/175421 1 卩(:17 2020 /007293 明 細 書
発明の名称 : 熱硬化性樹脂フィルム及び第 1保護膜形成用シート 技術分野
[0001 ] 本発明は、 熱硬化性樹脂フィルム及び第 1保護膜形成用シートに関する。
本願は、 2 0 1 9年 2月 2 6日に日本に出願された特願 2 0 1 9 - 0 3 2 8 2 8号に基づき優先権を主張し、 その内容をここに援用する。
背景技術
[0002] 従来、 IV! IIやゲートアレー等に用いる多ピンの !_ 3 丨パツケージをプリ ント配線基板に実装する場合には、 突状電極 (例えば、 バンプ、 ピラー等) を備えたワーク (例えば、 半導体ウェハ等) を用い、 所謂フェースダウン方 式により、 ワーク加工物 (例えば、 半導体ウェハの分割物である半導体チツ プ等) 中の突状電極を、 基板上の相対応する端子部に対面、 接触させ、 溶融 /拡散接合するという、 フリツプチツプ実装方法が採用されてきた。
[0003] この実装方法を採用する場合、 ワークの回路面及び突状電極を保護する目 的で、 硬化性樹脂フィルムを、 突状電極の表面とワークの回路面に貼付し、 このフィルムを硬化させて、 これらの面に保護膜を形成することがある。 なお、 本明細書においては、 突状電極の表面と、 ワーク又はワーク加工物 の回路面と、 をあわせたものを、 「突状電極形成面」 と称することがある。
[0004] 硬化性樹脂フィルムは、 通常、 加熱により軟化した状態で、 ワークの突状 電極形成面に貼付される。 このようにすることにより、 突状電極の頭頂部を 含む上部は、 硬化性樹脂フィルムを貫通して、 硬化性樹脂フィルムから突出 する。 その一方で、 硬化性樹脂フィルムは、 ワークの突状電極を覆うように して突状電極間に広がり、 回路面に密着するとともに、 突状電極の表面、 特 に回路面の近傍部位の表面を覆って、 突状電極を埋め込む。 この後、 硬化性 樹脂フィルムは、 さらに硬化によって、 ワークの回路面と、 突状電極の回路 面の近傍部位の表面と、 を被覆して、 これらの領域を保護する保護膜となる
〇 2020/175421 2 卩(:171? 2020 /007293
[0005] 半導体ウェハを用いた場合、 この実装方法で用いる半導体チップは、 例え ば、 回路面に突状電極が形成された半導体ウェハの、 前記回路面とは反対側 の面を研削したり、 ダイシングして分割することにより得られる。
このような半導体チップを得る過程においては、 通常、 半導体ウェハの回 路面及び突状電極を保護する目的で、 硬化性樹脂フィルムを突状電極形成面 に貼付し、 このフィルムを硬化させて、 突状電極形成面に保護膜を形成する さらに、 半導体ウェハは、 半導体チップに分割され、 最終的に、 突状電極 形成面に保護膜を備えた半導体チップ (本明細書においては、 「保護膜付き 半導体チップ」 と称することがある) となる (特許文献 1参照) 。
[0006] このような突状電極形成面に保護膜を備えたワーク加工物 (本明細書にお いては、 「保護膜付きワーク加工物」 と称することがある) は、 さらに、 基 板上に搭載されてパッケージとなり、 さらにこのパッケージを用いて、 目的 とする装置が構成される。 保護膜付き半導体チップが基板上に搭載された場 合には、 これにより得られた半導体パッケージを用いて、 目的とする半導体 装置が構成される。
先行技術文献
特許文献
[0007] 特許文献 1 : 日本国特許第 5 5 1 5 8 1 1号公報
発明の概要
発明が解決しようとする課題
[0008] 特許文献 1で開示されているものをはじめとして、 従来の硬化性樹脂フィ ルムを用いた場合、 ワークの分割 (例えば、 半導体ウェハの半導体チップへ の分割) は、 通常、 ダイシングブレードを用いたブレードダイシングにより 行われていた。 しかし、 この方法は、 最も広く普及しているものの、 例えば 、 サイズが小さいワーク加工物又は厚さが薄いワーク加工物の製造には不向 きであった。 これは、 このようなワーク加工物で割れや欠けが生じ易いため
〇 2020/175421 3 卩(:171? 2020 /007293
である。
[0009] そこで本発明は、 ワーク又はワーク加工物の突状電極形成面を保護するた めの保護膜を形成可能な樹脂フィルムであって、 この樹脂フィルムを用いる ことにより、 ワークを分割するための新規の方法を適用可能とする樹脂フィ ルムを提供することを目的とする。 特に、 このような新規の方法を適用した 際、 突状電極形成面への貼付時に、 突状電極の上部における残存が抑制され 、 かつ、 ワークの分割時に、 硬化物である保護膜が良好に切断可能となる樹 脂フィルムを提供することを目的とする。
課題を解決するための手段
[0010] 本発明は、 ワークの突状電極を有する面に貼付し、 熱硬化させることによ って、 前記面に第 1保護膜を形成するための熱硬化性樹脂フィルムであって 、 前記熱硬化性樹脂フィルムは、 エポキシ基を有するアクリル樹脂以外の、
2種以上の熱硬化性成分を含有し、 前記熱硬化性樹脂フィルムにおける、 前 記熱硬化性樹脂フィルムの総質量に対する、 全種類の前記熱硬化性成分の合 計含有量の割合が、 4 0質量%以上であり、 前記熱硬化性樹脂フィルムが含 有する前記熱硬化性成分について、 その種類ごとに、 下記式:
乂= [熱硬化性成分の熱硬化反応に関わる官能基の当量 (9 / 6 9) ] X [熱硬化性樹脂フィルムの熱硬化性成分の含有量 (質量部) ] / [熱硬化性 樹脂フィルムの全種類の熱硬化性成分の合計含有量 (質量部) ]
で算出される X値を求め、 前記熱硬化性樹脂フィルムが含有する全種類の前 記熱硬化性成分における前記 X値の合計値を求めたとき、 前記合計値が 4 0 〇 9 / 6 9以下となる、 熱硬化性樹脂フィルムを提供する。
また、 本発明は、 第 1支持シートを備え、 前記第 1支持シートの一方の面 上に、 前記熱硬化性樹脂フィルムを備えた、 第 1保護膜形成用シートを提供 する。
発明の効果
[001 1] 本発明によれば、 ワーク又はワーク加工物の突状電極形成面を保護するた めの保護膜を形成可能な樹脂フィルムであって、 この樹脂フィルムを用いる
〇 2020/175421 4 卩(:171? 2020 /007293
ことにより、 ワークを分割するための新規の方法を適用可能とする樹脂フィ ルムが提供される。 特に、 このような新規の方法を適用した際、 突状電極形 成面への貼付時に、 突状電極の上部における残存が抑制され、 かつ、 ワーク の分割時に、 硬化物である保護膜が良好に切断可能となる樹脂フィルムが提 供される。
図面の簡単な説明
[0012] [図 1]本発明の一実施形態に係る硬化性樹脂フィルムを用いて、 突状電極形成 面に第 1保護膜を形成した状態の一例を模式的に示す断面図である。
[図 2]本発明の一実施形態に係る第 1保護膜形成用シートの一例を模式的に示 す断面図である。
[図 3]本発明の一実施形態に係る第 1保護膜形成用シートの他の例を模式的に 示す断面図である。
[図 4]本発明の一実施形態に係る第 1保護膜形成用シートのさらに他の例を模 式的に示す断面図である。
[図 5八]本発明の一実施形態に係る第 1保護膜形成用シートを用いた場合の、 第 1保護膜付きワーク加工物の製造方法を、 模式的に説明するための拡大断 面図である。
[図 58]本発明の一実施形態に係る第 1保護膜形成用シートを用いた場合の、 第 1保護膜付きワーク加工物の製造方法を、 模式的に説明するための拡大断 面図である。
[図 5(:]本発明の一実施形態に係る第 1保護膜形成用シートを用いた場合の、 第 1保護膜付きワーク加工物の製造方法を、 模式的に説明するための拡大断 面図である。
[図 6八]本発明の一実施形態に係る第 1保護膜形成用シートを用いた場合の、 第 1保護膜付きワーク加工物の製造方法を、 模式的に説明するための拡大断 面図である。
[図 68]本発明の一実施形態に係る第 1保護膜形成用シートを用いた場合の、 第 1保護膜付きワーク加工物の製造方法を、 模式的に説明するための拡大断
〇 2020/175421 5 卩(:171? 2020 /007293
面図である。
発明を実施するための形態
[0013] ◊熱硬化性樹脂フィルム、 第 1保護膜形成用シート
本発明の一実施形態に係る熱硬化性樹脂フィルムは、 ワークの突状電極を 有する面 (すなわち、 突状電極形成面) に貼付し、 熱硬化させることによっ て、 前記面に第 1保護膜を形成するための熱硬化性樹脂フィルムであって、 前記熱硬化性樹脂フィルムは、 ェポキシ基を有するアクリル樹脂以外の、 2 種以上の熱硬化性成分を含有し、 前記熱硬化性樹脂フィルムにおける、 前記 熱硬化性樹脂フィルムの総質量に対する、 全種類の前記熱硬化性成分の合計 含有量の割合が、 4 0質量%以上であり、 前記熱硬化性樹脂フィルムが含有 する前記熱硬化性成分について、 その種類ごとに、 下記式:
乂= [熱硬化性成分の熱硬化反応に関わる官能基の当量 (9 / 6 9) ] X [熱硬化性樹脂フィルムの熱硬化性成分の含有量 (質量部) ] / [熱硬化性 樹脂フィルムの全種類の熱硬化性成分の合計含有量 (質量部) ]
で算出される X値を求め、 前記熱硬化性樹脂フィルムが含有する全種類の前 記熱硬化性成分における前記 X値の合計値を求めたとき、 前記合計値が 4 0 以下となる。
[0014] また、 本発明の一実施形態に係る第 1保護膜形成用シートは、 第 1支持シ -卜を備え、 前記第 1支持シートの一方の面上に、 前記熱硬化性樹脂フィル ムを備えたものである。 前記第 1保護膜形成用シートにおいて、 前記 「熱硬 化性樹脂フィルム」 は、 「熱硬化性樹脂層」 と称することもある。
[0015] 本実施形態において、 ワークとしては、 例えば、 半導体ウェハ等が挙げら れる。
ワーク加工物としては、 例えば、 半導体ウェハの分割物である半導体チッ プ等が挙げられる。
ワークの加工には、 例えば、 分割が含まれる。
突状電極としては、 例えば、 バンプ、 ピラー等が挙げられる。 突状電極は 、 ワークの接続パッ ド部に設けられており、 共晶ハンダ、 高温ハンダ、 金又
〇 2020/175421 6 卩(:171? 2020 /007293
は銅等で構成される。
[0016] 前記第 1保護膜形成用シートは、 その熱硬化性樹脂フィルム (熱硬化性樹 脂層) を介して、 ワークの突状電極形成面 (すなわち、 突状電極の表面とワ —クの回路面) に貼付されて、 使用される。 そして、 貼付後の熱硬化性樹脂 フィルムは、 加熱によって流動性が増大し、 突状電極の頭頂部を含む上部は 、 熱硬化性樹脂フィルムを貫通して、 熱硬化性樹脂フィルムから突出する。 さらに、 熱硬化性樹脂フィルムは、 突状電極を覆うようにして突状電極間に 広がり、 前記回路面と密着するとともに、 突状電極の表面、 特に前記回路面 近傍部位の表面を覆って、 突状電極を埋め込む。 この状態の熱硬化性樹脂フ ィルムは、 さらに加熱によって硬化して、 最終的に第 1保護膜を形成し、 前 記回路面と突状電極とを、 これらに密着した状態で保護する。 このように、 本実施形態の熱硬化性樹脂フィルムを用いることで、 ワークの回路面と、 突 状電極の前記回路面近傍の部位、 すなわち基部とが、 第 1保護膜で十分に保 護される。
[0017] 第 1保護膜形成用シートを貼付した後のワークは、 例えば、 必要に応じて 前記回路面とは反対側の面が研削された後、 第 1支持シートが取り除かれ、 次いで、 熱硬化性樹脂フィルムの加熱による突状電極の埋め込み及び第 1保 護膜の形成が行われる。 さらに、 ワークの分割 (すなわちワーク加工物への 個片化) と第 1保護膜の切断が行われて、 これにより得られた、 切断後の第 1保護膜を突状電極形成面に備えたワーク加工物 (本明細書においては、 「 第 1保護膜付きワーク加工物」 と称することがある) を用いて、 半導体装置 等の目的とする基板装置が製造される。 これらの工程については、 後ほど詳 細に説明する。
[0018] なお、 本明細書においては、 特に断りのない限り、 単なる 「硬化性樹脂フ ィルム」 との記載は、 「硬化前の硬化性樹脂フィルム」 を意味し、 単なる 「 硬化性樹脂層」 との記載は、 「硬化前の硬化性樹脂層」 を意味する。 例えば 、 「熱硬化性樹脂フィルム」 とは、 「硬化前の熱硬化性樹脂フィルム」 を意 味し、 「第 1保護膜」 とは、 熱硬化性樹脂フィルムの硬化物を意味する。
〇 2020/175421 7 卩(:171? 2020 /007293
[0019] 本実施形態の熱硬化性樹脂フィルムは、 ワークをワーク加工物へ分割 (換 言すると個片化) する方法として、 従来とは異なる方法を適用するのに、 好 適である。 ここで、 「従来とは異なる方法」 としては、 例えば、 以下の方法 挙げられる。
すなわち、 前記熱硬化性樹脂フィルムから形成された第 1保護膜を突状電 極形成面に備えたワークに対して、 レーザー光を照射することにより、 ワー クの内部に改質層を形成する。 次いで、 この改質層を形成後のワークに対し て力を加える。 より具体的には、 本実施形態においては、 ワークをその回路 面に対して平行な方向にエキスパンドする。 これにより、 前記改質層の部位 において前記ワークを分割する。 このとき、 第 1保護膜にも力を加えること 、 より具体的には、 第 1保護膜をそのワークへの貼付面に対して平行な方向 にエキスパンドすること、 により、 同時に第 1保護膜も切断する。 このとき 、 第 1保護膜は、 ワークの分割箇所に沿って切断される。 以上により、 ワー ク加工物と、 前記ワーク加工物の前記突状電極形成面に形成された、 切断後 の第 1保護膜と、 を備えた第 1保護膜付きワーク加工物を製造する。 このよ うなワーク加工物の製造時において、 第 1保護膜が前記熱硬化性樹脂フィル ムの硬化物であることにより、 ワークをワーク加工物へと良好に分割できる 。 また、 第 1保護膜自体も、 前記熱硬化性樹脂フィルムの硬化物であること により、 ワークの分割時に、 ワークの分割箇所に沿って、 容易に切断できる
[0020] このような改質層の形成を伴うワークの分割方法は、 ステルスダイシング (登録商標) と呼ばれており、 ワークにレーザー光を照射することにより、 照射部位のワークを削り取りながら、 ワークをその表面から切断していくレ —ザーダイシングとは、 本質的に全く異なる。
[0021 ] «全種類の熱硬化性成分の合計含有量の割合》
前記熱硬化性樹脂フィルムにおいて、 上述の合計含有量の割合を規定する 「熱硬化性成分」 とは、 加熱によって硬化反応を示す成分である。 ただし、 エポキシ基を有するアクリル樹脂は、 この熱硬化性成分に含めない。 熱硬化
〇 2020/175421 8 卩(:171? 2020 /007293
性成分としては、 例えば、 後述する熱硬化性成分 (巳) が挙げられる。 熱硬化性成分 (巳) としては、 例えば、 エポキシ系熱硬化性樹脂、 ポリイ ミ ド樹脂、 不飽和ポリエステル樹脂等が挙げられる。 エポキシ系熱硬化性樹 脂は、 エポキシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) からなり、 これら 2種の 成分は、 いずれも、 上述の合計含有量の割合の規定対象となる。
一方、 熱硬化性成分に含めない、 エポキシ基を有するアクリル樹脂として は、 例えば、 後述する重合体成分 (八) におけるアクリル樹脂のうち、 エポ キシ基を有するものが挙げられる。 例えば、 グリシジル基を有するアクリル 樹脂は、 エポキシ基を有するアクリル樹脂に含まれる。
[0022] 前記熱硬化性樹脂フィルムが含有する前記熱硬化性成分は、 2種以上であ り、 それらの組み合わせ及び比率は、 任意に選択できる。
[0023] 前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 全種類の前記熱硬化性成分の合計含有量の割合 ( [熱硬化性樹脂 フィルムの、 全種類の熱硬化性成分の合計含有量 (質量部) ] / [熱硬化性 樹脂フィルムの総質量 (質量部) ] X I 0 0) は、 上述のとおり、 4 0質量 %以上である。 ここで、 全種類の熱硬化性成分の合計含有量 (質量部) とは 、 2種以上の全種類の熱硬化性成分の合計含有量 (質量部) を意味する。
[0024] このような前記合計含有量の割合の条件を満たすことで、 熱硬化性樹脂フ ィルムは、 ワークの突状電極形成面への貼付時に、 突状電極の頭頂部を含む 上部における残存を抑制でき、 第 1保護膜を形成するための樹脂フィルムと して、 適切な特性を有する。 このように、 熱硬化性樹脂フィルムの突状電極 形成面への貼付時に、 突状電極の上部において、 熱硬化性樹脂フィルムが残 存しない、 換言すると、 突状電極の上部が、 貼付した熱硬化性樹脂フィルム を貫通して突出する、 ことによって、 最終的に得られるワーク加工物は、 フ リップチップ実装した際に、 その突状電極によって、 基板と十分に電気的に 結合可能となる。 すなわち、 熱硬化性樹脂フィルムが、 突状電極の上部にお ける残存を抑制できるものでなければ、 ワーク加工物を実用に供することが できない。
〇 2020/175421 9 卩(:171? 2020 /007293
[0025] 上述の有利な効果がより顕著に得られる点で、 前記熱硬化性樹脂フィルム における、 前記熱硬化性樹脂フィルムの総質量に対する、 全種類の前記熱硬 化性成分の合計含有量の割合は、 例えば、 5 0質量%以上、 6 0質量%以上 、 7 0質量%以上、 及び 8 0質量%以上のいずれかであってもよい。
[0026] 前記合計含有量の割合の上限値は、 特に限定されない。 例えば、 熱硬化性 樹脂フィルムの造膜性がより良好となる点では、 前記合計含有量の割合は、
9 0質量%以下であることが好ましい。
[0027] 前記合計含有量の割合は、 上述の下限値及び上限値を任意に組み合わせて 設定される範囲内に、 適宜調節できる。 例えば、 一実施形態において、 前記 合計含有量の割合は、 4 0〜 9 0質量%、 5 0〜 9 0質量%、 6 0〜 9 0質 量%、 7 0〜 9 0質量%、 及び 8 0〜 9 0質量%のいずれかであってもよい
[0028] « X値の合計値》
前記乂値は、 前記熱硬化性樹脂フィルムが含有する 1種の熱硬化性成分に ついて、 前記式により算出する。
前記 X値の算出対象である 「熱硬化性成分」 とは、 前記熱硬化性樹脂フィ ルムにおいて、 上述の合計含有量の割合を規定する 「熱硬化性成分」 と同じ である。
[0029] X値を算出するための 「熱硬化性成分の熱硬化反応に関わる官能基」 とは 、 例えば、 後述するエポキシ樹脂 (巳 1) の場合には、 エポキシ基であり、 後述する熱硬化剤 (巳 2) の場合には、 フエノール性水酸基、 アルコール性 水酸基、 アミノ基、 カルボキシ基、 酸基が無水物化された基等である。 ただ し、 これらは、 前記官能基の一例である。
[0030] 前記熱硬化性樹脂フィルムが 種 ( は 2以上の整数である) の熱硬化性 成分を含有する場合を考える。 これら熱硬化性成分を、 その種類ごとに 1\^、 とする。 そして、 熱硬化性成分 IV!】の前記官能基の当量を (9 / 6 9) とし、 熱硬化性成分 IV! の前記官能基の当量を (9 / e q) とし、 熱硬化 性樹脂フィルムの熱硬化性成分 IV! !の含有量を(3 ! (質量部) とし、 熱硬化性
\¥0 2020/175421 10 卩(:17 2020 /007293
このとき、 熱硬化性成分 IV! !について、 前記乂値 (以下、 「X !値」 と称す る) は、 下記式により算出される。
[0031 ] [数 1 ]
XI =
[0034] そして、 前記熱硬化性樹脂フィルムが含有する全種類の熱硬化性成分 (IV! ! 、 へ 1\/^) における前記乂値 (X !、 へ 乂 ) の合計値は、 以下 のとおりとなる。
[0036] 熱硬化性成分の官能基の当量
(9 / 6 9) ) が、 一定値で特定さ れず、 幅を持って数値範囲で特定されている場合には、 その数値範囲の下限 値及び上限値から算出される平均値を、 官能基の当量として採用すればよい
このような前記 X値の合計値の条件を満たすことで、 前記熱硬化性樹脂フ ィルムの硬化物である第 1保護膜は、 ワークの分割時に容易に切断できる。 その結果、 突状電極形成面に切断後の第 1保護膜を備えたワーク加工物を、 高い効率で製造できる。
〇 2020/175421 11 卩(:171? 2020 /007293
[0038] 上述の有利な効果がより顕著に得られる点で、 前記熱硬化性樹脂フィルム において、 前記 X値の合計値は、 例えば、 3759/69以下、 3509 / 6 以下、 及び 3259/6 以下のいずれかであってもよい。
[0039] 前記 X値の合計値の下限値は、 特に限定されない。 例えば、 前記熱硬化性 樹脂フィルムにおいて、 過剰な架橋反応に起因する柔軟性の低下が抑制され る点では、 前記 X値の合計値は、 1 009
9以上であることが好ましい
[0040] 前記 X値の合計値は、 上述の下限値及び上限値を任意に組み合わせて設定 される範囲内に、 適宜調節できる。 例えば、 一実施形態において、 前記乂値 の合計値は、 1 00〜 400 /㊀ 、 1 00〜 3759/6 、 1 00〜 3503 X㊀ 、 及び 1 00〜 3259/6 のいずれかであってもよい。
[0041] «熱硬化性樹脂フィルムの光の透過率》
厚さが 200 である 1層の前記熱硬化性樹脂フィルムの、 波長 1 34 2 n の光の透過率は、 50%以上であることが好ましい。
また、 厚さが 200 未満である前記熱硬化性樹脂フィルムが 2層以上 積層されて構成された、 合計の厚さが 200 である積層フィルムの、 波 長 1 342 n の光の透過率は、 50%以上であることが好ましい。
[0042] ワークを分割してワーク加工物を作製する方法として、 先に説明した、 ワ —クの内部における改質層の形成を伴う方法を適用する場合、 波長 1 342 01のレーザー光をワークに照射することで、 改質層を形成できる。 このと き、 レーザー光は、 ワークに対して、 その回路面側から照射してもよいし、 その裏面側から照射してもよい。 ただし、 レーザー光を、 ワークに対して、 その回路面側から照射する場合には、 回路面に形成されている第 1保護膜を 介して、 レーザー光を照射することになる。
-方、 熱硬化性樹脂フィルムと、 その硬化物 (例えば、 第 1保護膜) とで は、 同じ波長の光の透過率は、 ほぼ又は全く同じとなる。 したがって、 厚さ が 200 である 1層の熱硬化性樹脂フィルムの、
の透過率が、 50%以上である場合、 その硬化物の波長 1 342 n の光の
〇 2020/175421 12 卩(:171? 2020 /007293
透過率も、 5 0 %以上となる。 同様に、 前記積層フィルムの、 波長 1 3 4 2 n の光の透過率が、 5 0 %以上である場合、 その硬化物の波長 1 3 4 2 n の光の透過率も、 5 0 %以上となる。 すなわち、 このような光の透過率の 条件を満たすものと同様の組成の熱硬化性樹脂フィルムを用いて形成された 第 1保護膜は、 波長 1 3 4 2 n のレーザー光を良好に透過させる。 したが って、 このような第 1保護膜を回路面に備えたワークは、 その回路面側から レーザー光を照射して、 ワークの内部に改質層を形成するためのものとして 、 好適である。
[0043] 上述の効果がより顕著となる点では、 厚さが 2 0 0 である 1層の熱硬 化性樹脂フィルム、 又は、 合計の厚さが 2 0 0 である積層フィルムの、
の光の透過率は、 例えば、 6 0 %以上、 7 0 %以上、 8 0 %以上及び 8 5 %以上のいずれかであってもよい。
[0044] 厚さが 2 0〇 である 1層の熱硬化性樹脂フィルム、 又は、 合計の厚さ が 2 0 0 である積層フィルムの、 波長 1 3 4 2 〇!の光の透過率の上限 値は、 特に限定されず、 高いほど好ましい。 例えば、 熱硬化性樹脂フィルム の製造が比較的容易である点では、 前記光の透過率は、 9 5 %以下であるこ とが好ましい。
[0045] 前記光の透過率は、 上述の下限値及び上限値を任意に組み合わせて設定さ れる範囲内に、 適宜調節できる。 _実施形態において、 前記光の透過率は、
5 0〜 9 5 %であることが好ましく、 例えば、 6 0〜 9 5 %、 7 0〜 9 5 % 、 8 0〜 9 5 %、 及び 8 5〜 9 5 %のいずれかであってもよい。
[0046] 厚さが 2 0〇 である 1層の熱硬化性樹脂フィルムと、 合計の厚さが 2
0〇 である前記積層フィルムとで、 これらの含有成分が同じであれば、 これら ( 1層の熱硬化性樹脂フィルムと積層フィルム) の光の透過率は、 光 の波長が 1 3 4 2 01である場合に限らず、 互いに同じとなる。
[0047] 前記積層フィルムを構成する、 厚さが 2 0〇 未満である熱硬化性樹脂 フィルムの層数は、 特に限定されないが、 2〜 6であることが好ましい。 こ のような層数であれば、 前記積層フィルムをより容易に作製できる。
〇 2020/175421 13 卩(:171? 2020 /007293
[0048] 前記積層フィルムを構成する、 厚さが 2 0 0 未満である熱硬化性樹脂 フィルムの厚さは、 すべて同一であってもよいし、 すべて異なっていてもよ いし、 一部のみ同一であってもよい。
[0049] 本実施形態において、 前記光の透過率の特定対象である、 1層の前記熱硬 化性樹脂フィルム又は積層フィルムにおいて、 厚さを 2 0〇 に規定する 理由は、 このような厚さの熱硬化性樹脂フィルム又は積層フィルムを用いる ことにより、 前記光の透過率をより高精度かつ容易に測定できるためである 本実施形態において、 1層の熱硬化性樹脂フィルム、 及び 2層以上の複数 層からなる熱硬化性樹脂フィルムの厚さはいずれも、 後述するように、 2 0 0 〇1に限定される訳ではない。
[0050] 前記光の透過率は、 例えば、 後述する着色剤 (丨) 、 充填材 (口) 等の、 熱硬化性樹脂フィルムの含有成分の種類及び含有量、 並びに、 熱硬化性樹脂 フィルムの表面状態、 等を調節することにより、 調節できる。
[0051 ] «第 1保護膜の破断強度》
大きさが 2 0 01 111 X 1 3 0〇1 111であり、 厚さが 4〇 である第 1保護膜 の、 下記方法で測定された破断強度は、 5 5 IV! 3以下であることが好まし い。 前記破断強度が前記上限値以下である第 1保護膜と同じ組成の第 1保護 膜は、 後述するエキスパンドによる切断が、 より容易である。
前記第 1保護膜の破断強度としては、 第 1保護膜におけるつかみ器具間距 離を 8 0 01 01とし、 第 1保護膜の引張り速度を 2 0 0〇1 111 / |11 丨
として、 つかみ器具により第 1保護膜をその表面に対して平行な方向において引っ張 ったときに測定される最大応力を採用できる。
最大応力の測定対象である第 1保護膜としては、 熱硬化性樹脂フィルムを 1 3 0 °〇で 2時間加熱することにより、 熱硬化させて得られたものを使用で きる。
れかであってもよい。
[0053] 第 1保護膜の前記破断強度の下限値は、 特に限定されない。 第 1保護膜の 保護能がより高くなる点では、 第 1保護膜の前記破断強度は、 〇. 1 IV! 3 以上であることが好ましい。
[0054] 第 1保護膜の前記破断強度は、 上述の下限値及び上限値を任意に組み合わ せて設定される範囲内に、 適宜調節できる。 一実施形態において、 第 1保護 膜の前記破断強度は、 〇. 1〜 5 5 IV! 3であることが好ましく、 例えば、
のいずれかであってもよい。
[0055] 第 1保護膜の前記破断強度は、 例えば、 後述する熱硬化性樹脂層形成用組 成物の含有成分、 特に、 重合体成分 ( ) 、 カップリング剤 (巳) 、 充填材 (〇) 等の種類及び含有量、 並びに、 第 1保護膜の厚さ (換言すると熱硬化 性樹脂フィルムの厚さ) 等を調節することにより、 調節できる。
[0056] 回路面上に突状電極を有するワーク及びワーク加工物において、 回路面と は反対側の面 (裏面) は剥き出しとなることがある。 そのため、 この裏面に は、 有機材料を含有する保護膜 (本明細書においては、 第 1保護膜と区別す るために、 「第 2保護膜」 と称することがある) が形成されることがある。 第 2保護膜は、 ワークの分割やパッケージングの後に、 ワーク加工物におい てクラックが発生するのを防止するために利用される。 このような裏面に第 2保護膜を備えた第 2保護膜付きワーク加工物は、 最終的には半導体装置等 の目的とする基板装置に取り込まれる。
_方、 第 2保護膜には、 ワーク加工物に関する情報がレーザーでマーキン グ可能であったり、 ワーク加工物の裏面を隠蔽したりする機能が求められる ことがある。 このような要求を充足するものとして、 硬化により第 2保護膜 を形成可能な、 光の透過特性が調節された硬化性樹脂フィルムが知られてい る。
しかし、 ワーク加工物の裏面を保護するための第 2保護膜と、 ワーク加工 物の突状電極形成面を保護するための第 1保護膜とでは、 ワーク加工物での
〇 2020/175421 15 卩(:171? 2020 /007293
形成位置が異なるため、 求められる特性も互いに異なる。 したがって、 第 2 保護膜を形成可能な熱硬化性樹脂フィルムを、 第 1保護膜の形成用として直 ちに用いることは、 通常困難である。
[0057] 図 1は、 本実施形態の熱硬化性樹脂フィルムを用いて、 突状電極形成面に 第 1保護膜を形成した状態の一例を模式的に示す断面図である。 なお、 以下 の説明で用いる図は、 本発明の特徴を分かり易くするために、 便宜上、 要部 となる部分を拡大して示している場合があり、 各構成要素の寸法比率等が実 際と同じであるとは限らない。
[0058] ここに示すワーク 9 0の回路面 9 0 3には、 複数個の突状電極 9 1が設け られている。 図 1中、 符号 9 0匕は、 ワーク 9 0の回路面 9 0 3とは反対側 の面 (裏面) を示す。
突状電極 9 1は、 球の一部が平面によって切り取られた形状を有しており 、 その切り取られて露出した部位に相当する平面が、 ワーク 9 0の回路面 9 〇 3に接触した状態となっている。
突状電極 9 1の形状は、 ほぼ球状である。
[0059] 第 1保護膜 1 2’ は、 本実施形態の熱硬化性樹脂フィルムを用いて形成さ れたものであり、 ワーク 9 0の回路面 9 0 3を被覆し、 さらに突状電極 9 1 の表面 9 1 3のうち、 突状電極 9 1の頭頂部 9 1 0とその近傍以外の領域を 被覆している。 このように、 第 1保護膜 1 2’ は、 突状電極 9 1の頭頂部 9 1 0とその近傍以外の表面 9 1 3に密着するとともに、 ワーク 9 0の回路面 9〇 3にも密着して、 突状電極 9 1 を埋め込んでいる。
突状電極 9 1の、 上記のようなほぼ球状という形状は、 前記硬化性樹脂フ ィルムを用いて第 1保護膜を形成するのに、 特に有利である。
[0060] 突状電極 9 1の高さ 1~1 9 1は特に限定されないが、 5 0〜 5 0 0 である ことが好ましい。 突状電極 9 1の高さ 1~1 9 !が前記下限値以上であることで、 突状電極 9 1の機能をより向上させることができる。 突状電極 9 1の高さ 1~1 が前記上限値以下であることで、 ワーク 9 0の突状電極形成面 (すなわち、 突状電極 9 1の表面 9 1 3と、 ワーク 9 0の回路面 9 0 3) への熱硬化性樹
〇 2020/175421 16 卩(:171? 2020 /007293
脂フィルムの貼付時に、 突状電極 9 1の頭頂部 9 1 0を含む上部における熱 硬化性樹脂フィルムの残存を抑制する効果がより高くなり、 その結果、 突状 電極 9 1の上部における第 1保護膜 1 2’ の形成を抑制する効果がより高く なる。
なお、 本明細書において、 「突状電極の高さ」 とは、 突状電極のうち、 ワ —ク又はワーク加工物の回路面から最も高い位置に存在する部位 (すなわち 頭頂部) での高さを意味する。
[0061 ] 突状電極 9 1の幅 \^/9 1は特に限定されないが、 5 0〜 6 0 0 であるこ とが好ましい。 突状電極 9 1の幅 \^/9 1が前記下限値以上であることで、 突状 電極 9 1の機能をより向上させることができる。 突状電極 9 1の幅 \^/9 1が前 記上限値以下であることで、 ワーク 9 0の突状電極形成面 (すなわち、 突状 電極 9 1の表面 9 1 3と、 ワーク 9 0の回路面 9 0 3) への熱硬化性樹脂フ ィルムの貼付時に、 突状電極 9 1の頭頂部 9 1 0を含む上部における熱硬化 性樹脂フィルムの残存を抑制する効果がより高くなり、 その結果、 突状電極 9 1の上部における第 1保護膜 1 2’ の形成を抑制する効果がより高くなる なお、 本明細書において、 「突状電極の幅」 とは、 ワーク又はワーク加工 物の回路面に対して垂直な方向から突状電極を見下ろして平面視したときに 、 突状電極表面上の異なる 2点間を直線で結んで得られる線分の最大値を意 味する。
[0062] 隣り合う突状電極 9 1間の距離 0 9 1は、 特に限定されないが、 1 0 0〜 8
0 0 であることが好ましい。 突状電極 9 1間の距離口 9 !が前記下限値以 上であることで、 ワーク 9 0の突状電極形成面 (すなわち、 突状電極 9 1の 表面 9 1 3と、 ワーク 9 0の回路面 9 0 3) への熱硬化性樹脂フィルムの貼 付時に、 突状電極 9 1の頭頂部 9 1 0を含む上部における熱硬化性樹脂フィ ルムの残存を抑制する効果がより高くなり、 その結果、 突状電極 9 1の上部 における第 1保護膜 1 2’ の形成を抑制する効果がより高くなる。 突状電極 9 1間の距離口 9 !が前記上限値以下であることで、 突状電極 9 1の配置形態
〇 2020/175421 17 卩(:171? 2020 /007293
の自由度がより高くなる。
なお、 本明細書において、 「隣り合う突状電極間の距離」 とは、 隣り合う 突状電極同士の表面間の距離の最小値を意味する。
[0063] ワーク 9 0の突状電極 9 1 を除いた部位の厚さ丁9 0は、 ワーク 9 0の使用 目的に応じて適宜選択すればよく、 特に限定されない。
例えば、 ワーク 9 0の裏面 9 0匕を研削した後の前記厚さ丁 9 0は、 5 0〜 5 0 0 であることが好ましい。 裏面 9 0匕を研削した後のワーク 9 0の 厚さ丁9 0が、 前記下限値以上であることで、 ワーク 9 0の分割 (換言すると 、 ワーク加工物への個片化) 時に、 ワーク加工物の破損を抑制する効果がよ り高くなる。 裏面 9 0匕を研削した後のワーク 9 0の厚さ丁9 0が、 前記上限 値以下であることで、 薄型のワーク加工物が得られる。
ワーク 9 0の裏面 9 0匕を研削する前の前記厚さ丁 9 0は、 2 5 0〜 1 5 0 0 であることが好ましい。
[0064] 本実施形態の熱硬化性樹脂フィルムの使用対象であるワークは、 図 1 に示 すものに限定されず、 本発明の効果を損なわない範囲内において、 一部の構 成が変更、 削除又は追加されたものであってもよい。
[0065] 例えば、 図 1では、 突状電極として上記のようなほぼ球状の形状 (球の一 部が平面によって切り取られた形状) のものを示しているが、 このようなほ ぼ球状の形状を、 高さ方向 (図 1 においては、 ワーク 9 0の回路面 9 0 3に 対して直交する方向) に引き伸ばしてなる形状、 すなわち、 ほぼ長球である 回転楕円体の形状 (換言すると、 長球である回転楕円体の長軸方向の一端を 含む部位が平面によって切り取られた形状) の突状電極や、 上記のようなほ ぼ球状の形状を、 高さ方向に押し潰してなる形状、 すなわち、 ほぼ扁球であ る回転楕円体の形状 (換言すると、 扁球である回転楕円体の短軸方向の一端 を含む部位が平面によって切り取られた形状) の突状電極も、 好ましい形状 の突状電極として挙げられる。 このような、 ほぼ回転楕円体の形状の突状電 極も、 上記のほぼ球状の突状電極と同様に、 本実施形態の熱硬化性樹脂フィ ルムを用いて第 1保護膜を形成するのに、 特に有利である。
〇 2020/175421 18 卩(:171? 2020 /007293
突状電極としては、 これら以外にも、 例えば、 円柱状、 楕円柱状、 角柱状 、 楕円錐状、 角錐状、 円錐台状、 楕円錐台状又は角錐台状、 であるもの;円 柱、 楕円柱、 角柱、 円錐台、 楕円錐台又は角錐台と、 上述のほぼ球又はほぼ 回転楕円体と、 が組み合わされた形状を有するものも挙げられる。
なお、 ここまでで説明した突状電極の形状は、 本実施形態の熱硬化性樹脂 フイルムの適用に際して、 好ましいものの一例に過ぎず、 本発明において、 突状電極の形状はこれらに限定されない。
以下、 本発明の構成について、 詳細に説明する。
[0066] ◎第 1支持シート
前記第 1支持シートは、 1層 (単層) からなるものであってもよいし、 2 層以上の複数層からなるものであってもよい。 支持シートが複数層からなる 場合、 これら複数層の構成材料及び厚さは、 互いに同一でも異なっていても よく、 これら複数層の組み合わせは、 本発明の効果を損なわない限り、 特に 限定されない。
なお、 本明細書においては、 第 1支持シートの場合に限らず、 「複数層が 互いに同一でも異なっていてもよい」 とは、 「すべての層が同一であっても よいし、 すべての層が異なっていてもよく、 一部の層のみが同一であっても よい」 ことを意味し、 さらに 「複数層が互いに異なる」 とは、 「各層の構成 材料及び厚さの少なくとも一方が互いに異なる」 ことを意味する。
[0067] 好ましい第 1支持シートとしては、 例えば、 第 1基材と、 前記第 1基材上 に設けられた第 1粘着剤層と、 を備えたもの (換言すると、 第 1基材及び第 1粘着剤層が、 これらの厚さ方向において積層されてなるもの) 、 第 1基材 と、 前記第 1基材上に設けられた第 1中間層と、 前記第 1中間層上に設けら れた第 1粘着剤層と、 を備えたもの (換言すると、 第 1基材、 第 1中間層及 び第 1粘着剤層がこの順に、 これらの厚さ方向において積層されてなるもの ) 、 第 1基材のみからなるもの、 等が挙げられる。
[0068] 本実施形態の第 1保護膜形成用シートの例を、 このような第 1支持シート の種類ごとに、 以下、 図面を参照しながら説明する。
〇 2020/175421 19 卩(:171? 2020 /007293
[0069] 図 2は、 本実施形態の第 1保護膜形成用シートの一例を模式的に示す断面 図である。
ここに示す第 1保護膜形成用シート 1は、 第 1支持シートとして、 第 1基 材及び第 1粘着剤層が、 これらの厚さ方向において積層されてなるものを用 いている。 すなわち、 第 1保護膜形成用シート 1は、 第 1基材 1 1 と、 第 1 基材 1 1の一方の面上に設けられた第 1粘着剤層 1 3と、 第 1粘着剤層 1 3 の第 1基材 1 1側とは反対側の面 1 3 3上に設けられた熱硬化性樹脂層 (熱 硬化性樹脂フィルム) 1 2と、 を備えて、 構成されている。
第 1支持シート 1 0 1は、 第 1基材 1 1及び第 1粘着剤層 1 3の積層体で ある。 そして、 第 1保護膜形成用シート 1は、 第 1支持シート 1 0 1 と、 第 1支持シート 1 〇 1の一方の面 1 0 1 3上、 換言すると第 1粘着剤層 1 3の 一方の面 1 3 3上、 に設けられた熱硬化性樹脂層 1 2と、 を備えたものであ るといえる。
[0070] 第 1保護膜形成用シート 1中の熱硬化性樹脂層 1 2において、 上述の熱硬 化性成分の合計含有量の割合は 4 0質量%以上であり、 上述の X値の合計値 は 4 0 0 9 /㊀ 以下である。
[0071 ] 図 3は、 本実施形態の第 1保護膜形成用シートの他の例を模式的に示す断 面図である。
なお、 図 3以降の図において、 既に説明済みの図に示すものと同じ構成要 素には、 その説明済みの図の場合と同じ符号を付し、 その詳細な説明は省略 する。
[0072] ここに示す第 1保護膜形成用シート 2は、 第 1支持シートとして、 第 1基 材、 第 1中間層及び第 1粘着剤層がこの順に、 これらの厚さ方向において積 層されてなるものを用いている。 すなわち、 第 1保護膜形成用シート 2は、 第 1基材 1 1 と、 第 1基材 1 1の一方の面上に設けられた第 1中間層 1 4と 、 第 1中間層 1 4の第 1基材 1 1側とは反対側の面上に設けられた第 1粘着 剤層 1 3と、 第 1粘着剤層 1 3の第 1中間層 1 4側とは反対側の面 1 3 3上 に設けられた熱硬化性樹脂層 (熱硬化性樹脂フィルム) 1 2と、 を備えて、
〇 2020/175421 20 卩(:171? 2020 /007293
構成されている。
第 1支持シート 1 0 2は、 第 1基材 1 1、 第 1中間層 1 4及び第 1粘着剤 層 1 3の積層体である。 そして、 第 1保護膜形成用シート 2は、 第 1支持シ —卜 1 〇 2を備え、 第 1支持シート 1 0 2の一方の面 1 0 2 3上、 換言する と第 1粘着剤層 1 3の一方の面 1 3 3上に、 熱硬化性樹脂層 1 2を備えてい るといえる。
[0073] 第 1保護膜形成用シート 2は、 換言すると、 図 2に示す第 1保護膜形成用 シート 1 において、 第 1基材 1 1 と第 1粘着剤層 1 3との間に、 さらに第 1 中間層 1 4を備えたものである。
[0074] 第 1保護膜形成用シート 2中の熱硬化性樹脂層 1 2において、 上述の熱硬 化性成分の合計含有量の割合は 4 0質量%以上であり、 上述のX値の合計値 は 4 0 0 9 /㊀ 以下である。
[0075] 図 4は、 本実施形態の第 1保護膜形成用シートのさらに他の例を模式的に 示す断面図である。
ここに示す第 1保護膜形成用シート 3は、 第 1支持シートとして、 第 1基 材のみからなるものを用いている。 すなわち、 第 1保護膜形成用シート 3は 、 第 1基材 1 1 と、 第 1基材 1 1上に設けられた熱硬化性樹脂層 (熱硬化性 樹脂フイルム) 1 2と、 を備えて、 構成されている。
第 1支持シート 1 0 3は、 第 1基材 1 1のみで構成されている。 そして、 第 1保護膜形成用シート 3は、 第 1支持シート 1 0 3を備え、 第 1支持シー 卜 1 0 3の一方の面 1 0 3 3上、 換言すると第 1基材 1 1の一方の面 1 1 3 上に、 熱硬化性樹脂層 1 2を備えているといえる。
[0076] 第 1保護膜形成用シート 3は、 換言すると、 図 2に示す第 1保護膜形成用 シート 1 において、 第 1粘着剤層 1 3が省略されたものである。
[0077] 第 1保護膜形成用シート 3中の熱硬化性樹脂層 1 2において、 上述の熱硬 化性成分の合計含有量の割合は 4 0質量%以上であり、 上述のX値の合計値 は 4 0 0 9 /㊀ 以下である。
[0078] 次に、 第 1支持シートの構成について説明する。
〇 2020/175421 21 卩(:171? 2020 /007293
本実施形態において、 第 1支持シートとしては、 公知のものを用いてもよ く、 目的に応じて適宜、 第 1支持シートを選択できる。
[0079] 〇第 1基材
前記第 1基材は、 シート状又はフィルム状であり、 その構成材料としては 、 例えば、 各種樹脂が挙げられる。
[0080] 第 1基材を構成する樹脂は、 1種のみであってもよいし、 2種以上であっ てもよく、 2種以上である場合、 それらの組み合わせ及び比率は任意に選択 できる。
[0081 ] 第 1基材は 1層 (単層) のみでもよいし、 2層以上の複数層でもよく、 複 数層である場合、 これら複数層は、 互いに同一でも異なっていてもよく、 こ れら複数層の組み合わせは特に限定されない。
[0082] 第 1基材の厚さは、 5 0〜 2 0 0 であることが好ましい。
ここで、 「第 1基材の厚さ」 とは、 第 1基材全体の厚さを意味し、 例えば 、 複数層からなる第 1基材の厚さとは、 第 1基材を構成するすべての層の合 計の厚さを意味する。
[0083] 第 1基材は、 前記樹脂等の主たる構成材料以外に、 充填材、 着色剤、 帯電 防止剤、 酸化防止剤、 有機滑剤、 触媒、 軟化剤 (可塑剤) 等の公知の各種添 加剤を含有していてもよい。
[0084] 第 1基材は、 透明であってもよいし、 不透明であってもよく、 目的に応じ て着色されていてもよいし、 他の層が蒸着されていてもよい。
後述する第 1粘着剤層又は熱硬化性樹脂層がエネルギー線硬化性を有する 場合、 第 1基材はエネルギー線を透過させるものが好ましい。
[0085] 第 1基材は、 例えば、 実施例で後述するような、 樹脂製フィルムの片面が シリコーン処理等によって剥離処理されてなる剥離フィルムであってもよい
[0086] 第 1基材は、 公知の方法で製造できる。 例えば、 樹脂を含有する第 1基材 は、 前記樹脂を含有する樹脂組成物を成形することで製造できる。
[0087] 〇第 1粘着剤層
\¥0 2020/175421 22 卩(:17 2020 /007293
前記第 1粘着剤層は、 シート状又はフィルム状であり、 粘着剤を含有する 前記粘着剤としては、 例えば、 アクリル樹脂、 ウレタン樹脂、 ゴム系樹脂 、 シリコーン樹脂、 エポキシ系樹脂、 ポリビニルエーテル、 ポリカーボネー 卜等の粘着性樹脂が挙げられ、 アクリル樹脂が好ましい。
[0088] なお、 本発明において、 「粘着性樹脂」 とは、 粘着性を有する樹脂と、 接 着性を有する樹脂と、 の両方を含む概念であり、 例えば、 樹脂自体が粘着性 を有するものだけでなく、 添加剤等の他の成分との併用により粘着性を示す 樹脂や、 熱又は水等のトリガーの存在によって接着性を示す樹脂等も含む。
[0089] 第 1粘着剤層は 1層 (単層) のみであってもよいし、 2層以上の複数層で あってもよく、 複数層である場合、 これら複数層は、 互いに同一でも異なっ ていてもよく、 これら複数層の組み合わせは特に限定されない。
[0090] 第 1粘着剤層の厚さは、 3〜 4 0 であることが好ましい。
ここで、 「第 1粘着剤層の厚さ」 とは、 第 1粘着剤層全体の厚さを意味し 、 例えば、 複数層からなる第 1粘着剤層の厚さとは、 第 1粘着剤層を構成す るすべての層の合計の厚さを意味する。
[0091 ] 第 1粘着剤層は、 エネルギー線硬化性粘着剤を用いて形成されたものであ ってもよいし、 非エネルギー線硬化性粘着剤を用いて形成されたものであっ てもよい。 エネルギー線硬化性の粘着剤を用いて形成された第 1粘着剤層は 、 硬化前及び硬化後での物性を、 容易に調節できる。
本明細書において、 「エネルギー線」 とは、 電磁波又は荷電粒子線の中で エネルギー量子を有するものを意味し、 その例として、 紫外線、 放射線、 電 子線等が挙げられる。
紫外線は、 例えば、 紫外線源として高圧水銀ランプ、 ヒュージョンランプ 、 キセノンランプ、 ブラックライ ト又は !_巳 0ランプ等を用いることで照射 できる。 電子線は、 電子線加速器等によって発生させたものを照射できる。 本発明において、 「エネルギー線硬化性」 とは、 エネルギー線を照射する ことにより硬化する性質を意味し、 「非エネルギー線硬化性」 とは、 エネル
〇 2020/175421 23 卩(:171? 2020 /007293
ギー線を照射しても硬化しない性質を意味する。
[0092] <第 1粘着剤組成物>
第 1粘着剤層は、 粘着剤を含有する第 1粘着剤組成物を用いて形成できる 。 例えば、 第 1粘着剤層の形成対象面に第 1粘着剤組成物を塗工し、 必要に 応じて乾燥させることで、 目的とする部位に第 1粘着剤層を形成できる。 第 1粘着剤層のより具体的な形成方法は、 他の層の形成方法とともに、 後ほど 詳細に説明する。
[0093] 第 1粘着剤組成物の塗工は、 公知の方法で行えばよく、 例えば、 エアーナ イフコーター、 ブレードコーター、 バーコーター、 グラビアコーター、 口一 ルコーター、 口ールナイフコーター、 力ーテンコーター、 ダイコーター、 ナ イフコーター、 スクリーンコーター、 マイヤーバーコーター、 キスコーター 等の各種コーターを用いる方法が挙げられる。
[0094] 第 1粘着剤組成物の乾燥条件は、 特に限定されないが、 第 1粘着剤組成物 は、 溶媒を含有している場合、 加熱乾燥させることが好ましい。 溶媒を含有 する第 1粘着剤組成物は、 例えば、 7 0〜 1 3 0 °〇で 1 0秒〜 5分の条件で 乾燥させてもよい。
[0095] 第 1粘着剤層がエネルギー線硬化性である場合、 エネルギー線硬化性粘着 剤を含有する第 1粘着剤組成物、 すなわち、 エネルギー線硬化性の第 1粘着 剤組成物としては、 例えば、 非エネルギー線硬化性の粘着性樹脂 (丨 _ 1 3 ) (以下、 「粘着性樹脂 ( 1 - 1 3) 」 と略記することがある) と、 エネル ギー線硬化性化合物と、 を含有する第 1粘着剤組成物 ( I 一 1) ;前記粘着 性樹脂 (丨 _ 1 3) の側鎖に不飽和基が導入されたエネルギー線硬化性の粘 着性樹脂 (丨 _ 2 3) (以下、 「粘着性樹脂 ( I _ 2 3) 」 と略記すること がある) を含有する第 1粘着剤組成物 ( I _ 2) ;前記粘着性樹脂 ( I - 2 3) と、 エネルギー線硬化性低分子化合物と、 を含有する第 1粘着剤組成物 ( I - 3) 等が挙げられる。
[0096] <第 1粘着剤組成物 ( I 一 ·!) 〜 ( I - 3) 以外の第 1粘着剤組成物> 第 1粘着剤組成物 (丨 一 1) 、 第 1粘着剤組成物 ( I - 2) 又は第 1粘着
〇 2020/175421 24 卩(:171? 2020 /007293
剤組成物 (丨 - 3) の含有成分は、 これら 3種の第 1粘着剤組成物以外の全 般的な第 1粘着剤組成物 (本明細書においては、 「第 1粘着剤組成物 ( I 一 1) 〜 ( I - 3) 以外の第 1粘着剤組成物」 と称する) でも、 同様に用いる ことができる。
[0097] 第 1粘着剤組成物 ( I 一 ·!) 〜 ( I - 3) 以外の第 1粘着剤組成物として は、 エネルギー線硬化性の粘着剤組成物以外に、 非エネルギー線硬化性の粘 着剤組成物も挙げられる。
非エネルギー線硬化性の第 1粘着剤組成物としては、 例えば、 前記粘着性 樹脂 (丨 一 1 3) を含有する第 1粘着剤組成物 (丨 - 4) が挙げられる。 第 1粘着剤組成物 (丨 _ 4) は、 前記粘着性樹脂 (丨 一 1 3) としてアク リル樹脂を含有するものが好ましく、 さらに、 1種又は 2種以上の架橋剤を 含有するものがより好ましい。
[0098] <第 1粘着剤組成物の製造方法>
第 1粘着剤組成物 ( I 一 ·!) 〜 ( I - 4) 等の前記第 1粘着剤組成物は、 前記粘着剤と、 必要に応じて前記粘着剤以外の成分等の、 第 1粘着剤組成物 を構成するための各成分を配合することで得られる。
各成分の配合時における添加順序は特に限定されず、 2種以上の成分を同 時に添加してもよい。
溶媒を用いる場合には、 溶媒を溶媒以外のいずれかの配合成分と混合して この配合成分を予め希釈しておくことで用いてもよいし、 溶媒以外のいずれ かの配合成分を予め希釈しておくことなく、 溶媒をこれら配合成分と混合す ることで用いてもよい。
配合時に各成分を混合する方法は特に限定されず、 撹拌子又は撹拌翼等を 回転させて混合する方法; ミキサーを用いて混合する方法;超音波を加えて 混合する方法等、 公知の方法から適宜選択すればよい。
各成分の添加及び混合時の温度並びに時間は、 各配合成分が劣化しない限 り特に限定されず、 適宜調節すればよいが、 温度は 1 5〜 3 0 °〇であること が好ましい。
〇 2020/175421 25 卩(:171? 2020 /007293
[0099] 〇第 1中間層
前記第 1中間層は、 シート状又はフィルム状であり、 その構成材料は目的 に応じて適宜選択すればよく、 特に限定されない。
例えば、 突状電極形成面に設けられている第 1保護膜に、 前記回路面上に 存在する突状電極の形状が反映されることによって、 第 1保護膜が変形して しまうことの抑制を目的とする場合、 前記第 1中間層の好ましい構成材料と しては、 第 1中間層の貼付性がより向上する点から、 ウレタン (メタ) アク リレート等が挙げられる。
[0100] 第 1中間層は 1層 (単層) のみであってもよいし、 2層以上の複数層であ ってもよく、 複数層である場合、 これら複数層は、 互いに同一でも異なって いてもよく、 これら複数層の組み合わせは特に限定されない。
[0101 ] 第 1中間層の厚さは、 保護対象となるヮーク又はヮーク加工物の表面に存 在する突状電極の高さに応じて適宜調節できる。 例えば、 比較的高さが高い 突状電極の影響も容易に吸収できる点では、 第 1中間層の厚さは、 5 0〜 6 0 0 01であることが好ましい。
ここで、 「第 1中間層の厚さ」 とは、 第 1中間層全体の厚さを意味し、 例 えば、 複数層からなる第 1中間層の厚さとは、 第 1中間層を構成するすべて の層の合計の厚さを意味する。
[0102] «第 1中間層形成用組成物》
第 1中間層は、 その構成材料を含有する第 1中間層形成用組成物を用いて 形成できる。 例えば、 第 1中間層の形成対象面に第 1中間層形成用組成物を 塗工し、 必要に応じて乾燥させたり、 エネルギー線の照射によって硬化させ ることで、 目的とする部位に第 1中間層を形成できる。 第 1中間層のより具 体的な形成方法は、 他の層の形成方法とともに、 後ほど詳細に説明する。
[0103] 第 1中間層形成用組成物は、 例えば、 第 1粘着剤組成物の場合と同じ方法 で塗工できる。
[0104] 第 1中間層形成用組成物の乾燥条件は、 特に限定されず、 例えば、 第 1粘 着剤組成物の乾燥条件と同様であってよい。
〇 2020/175421 26 卩(:171? 2020 /007293
第 1中間層形成用組成物は、 エネルギー線硬化性を有する場合、 乾燥後に 、 さらにエネルギー線の照射により硬化させてもよい。
[0105] <第 1中間層形成用組成物の製造方法>
第 1中間層形成用組成物は、 例えば、 配合成分が異なる点以外は、 前記第 1粘着剤組成物の場合と同じ方法で製造できる。
[0106] ◎熱硬化性樹脂フィルム (熱硬化性樹脂層)
前記熱硬化性樹脂フィルム (熱硬化性樹脂層) は、 ワーク及びワーク加工 物の回路面、 並びにこの回路面上に設けられた突状電極を保護するためのフ イルム (層) である。
前記熱硬化性樹脂フィルムは、 熱硬化によって第 1保護膜を形成する。
[0107] なお、 本明細書においては、 熱硬化性樹脂フィルムが硬化した後 (換言す ると、 第 1保護膜を形成した後) であっても、 第 1支持シート及び熱硬化性 樹脂フィルムの硬化物 (換言すると、 第 1支持シート及び第 1保護膜) の積 層構造が維持されている限り、 この積層構造体を 「第 1保護膜形成用シート 」 と称する。
[0108] 前記熱硬化性樹脂フィルムは、 熱硬化性の特性以外に、 エネルギー線硬化 性の特性を有していてもよいし、 有していなくてもよい。
ただし、 熱硬化性樹脂フィルムがエネルギー線硬化性の特性を有する場合 、 熱硬化性樹脂フィルムからの第 1保護膜の形成に対しては、 熱硬化性樹脂 フィルムの熱硬化の寄与が、 エネルギー線硬化の寄与よりも大きいものとす る。
[0109] 前記熱硬化性樹脂フィルムは、 エネルギー線硬化性の有無によらず、 1層 (単層) からなるものであってもよいし、 2層以上の複数層からなるもので あってもよい。 熱硬化性樹脂フィルムが複数層からなる場合、 これら複数層 は、 互いに同一でも異なっていてもよく、 これら複数層の組み合わせは特に 限定されない。
[01 10] 熱硬化性樹脂フィルムの厚さは、 エネルギー線硬化性の有無によらず、 1
〜 1 0 0 01であることが好ましく、 3〜 8 0 〇!であることがより好まし
〇 2020/175421 27 卩(:171? 2020 /007293
く、 5〜 6〇 であることが特に好ましい。 熱硬化性樹脂フィルムの厚さ が前記下限値以上であることで、 保護能がより高い第 1保護膜を形成できる 。 熱硬化性樹脂フィルムの厚さが前記上限値以下であることで、 ワークの突 状電極形成面への熱硬化性樹脂フィルムの貼付時に、 突状電極の上部におけ る熱硬化性樹脂フィルムの残存を抑制する効果がより高くなる。 さらに、 熱 硬化性樹脂フィルムの厚さが前記上限値以下であることで、 ワークの分割時 に、 第 1保護膜をより良好に切断できる。
ここで、 「熱硬化性樹脂フィルムの厚さ」 とは、 熱硬化性樹脂フィルム全 体の厚さを意味し、 例えば、 複数層からなる熱硬化性樹脂フィルムの厚さと は、 熱硬化性樹脂フィルムを構成するすべての層の合計の厚さを意味する。
[01 1 1 ] «熱硬化性樹脂層形成用組成物》
熱硬化性樹脂フィルムは、 その構成材料を含有する熱硬化性樹脂層形成用 組成物を用いて形成できる。 例えば、 熱硬化性樹脂フィルムは、 その形成対 象面に熱硬化性樹脂層形成用組成物を塗工し、 必要に応じて乾燥させること で、 形成できる。 熱硬化性樹脂層形成用組成物における、 常温で気化しない 成分同士の含有量の比率は、 通常、 熱硬化性樹脂フィルムにおける前記成分 同士の含有量の比率と同じとなる。
[01 12] 熱硬化性樹脂層形成用組成物の塗工は、 公知の方法で行えばよく、 例えば 、 エアーナイフコーター、 ブレードコーター、 バーコーター、 グラビアコー 夕一、 口ールコーター、 口ールナイフコーター、 力ーテンコーター、 ダイコ —夕一、 ナイフコーター、 スクリーンコーター、 マイヤーバーコーター、 キ スコーター等の各種コーターを用いる方法が挙げられる。
[01 13] 熱硬化性樹脂層形成用組成物の乾燥条件は、 熱硬化性樹脂フィルムのエネ ルギー線硬化性の有無によらず、 特に限定されない。 ただし、 熱硬化性樹脂 層形成用組成物は、 後述する溶媒を含有している場合、 加熱乾燥させること が好ましい。 溶媒を含有する熱硬化性樹脂層形成用組成物は、 例えば、 7 0 〜 1 3 0 °〇で 1 0秒〜 5分の条件で乾燥させてもよい。 ただし、 熱硬化性樹 脂層形成用組成物は、 この組成物自体と、 この組成物から形成された熱硬化
〇 2020/175421 28 卩(:171? 2020 /007293
性樹脂フィルムと、 が熱硬化しないように、 加熱乾燥させることが好ましい
[01 14] 熱硬化性樹脂フィルムを熱硬化させて、 第 1保護膜を形成するときの硬化 条件は、 第 1保護膜が十分にその機能を発揮する程度の硬化度となる限り、 特に限定されず、 熱硬化性樹脂フィルムの種類に応じて、 適宜選択すればよ い。
例えば、 熱硬化性樹脂フィルムの熱硬化時の加熱温度は、 1 0 0〜 2 0 0 °〇であることが好ましく、 1 1 0〜 1 8 0 °〇であることがより好ましく、 1 2 0 ~ 1 7 0 °〇であることが特に好ましい。 そして、 前記熱硬化時の加熱時 間は、 〇. 5〜 5時間であることが好ましく、 〇. 5〜 4時間であることが より好ましく、 1〜 3時間であることが特に好ましい。
[01 15] 好ましい熱硬化性樹脂フィルムとしては、 例えば、 重合体成分 (八) 及び 熱硬化性成分 (巳) を含有するものが挙げられる。 重合体成分 ( ) は、 重 合性化合物が重合反応して形成されたとみなせる成分である。 また、 熱硬化 性成分 (巳) は、 熱を反応のトリガーとして、 硬化 (重合) 反応し得る成分 である。 なお、 本明細書において重合反応には、 重縮合反応も含まれる。
[01 16] <熱硬化性樹脂層形成用組成物 ( I 丨 I - 1) >
好ましい熱硬化性樹脂層形成用組成物としては、 例えば、 前記重合体成分 (八) 及び熱硬化性成分 (8) を含有する熱硬化性樹脂層形成用組成物 ( I 1 1 - 1) (本明細書においては、 単に 「組成物 (丨 丨 丨 _ 1) 」 と略記す ることがある) 等が挙げられる。
[01 17] [重合体成分 (八) ]
重合体成分 ( ) は、 熱硬化性樹脂フィルムに造膜性や可撓性等を付与す るための重合体化合物である。 重合体成分 ( ) は、 熱可塑性を有し、 熱硬 化性を有しない。
組成物 (丨 丨 I - 1) 及び熱硬化性樹脂フィルムが含有する重合体成分 ( 八) は、 1種のみであってもよいし、 2種以上であってもよく、 2種以上で ある場合、 それらの組み合わせ及び比率は任意に選択できる。
〇 2020/175421 29 卩(:171? 2020 /007293
[01 18] 重合体成分 (八) としては、 例えば、 アクリル樹脂、 ウレタン樹脂、 フエ ノキシ樹脂、 シリコーン樹脂、 飽和ポリエステル樹脂等が挙げられる。 これらの中でも、 重合体成分 (八) は、 ポリビニルアセタール又はアクリ ル樹脂であることが好ましい。
[01 19] 重合体成分 (八) における前記ポリビニルアセタールとしては、 公知のも のが挙げられる。
なかでも、 好ましいポリビニルアセタールとしては、 例えば、 ポリビニル ホルマール、 ポリビニルプチラール等が挙げられ、 ポリビニルプチラールが より好ましい。
ポリビニルプチラールとしては、 下記式 (丨) _ 1、 (丨) _ 2及び ( I ) _ 3で表される構成単位を有するものが挙げられる。
[0120] [化 1 ]
[0121 ] ポリビニルアセタールの重量平均分子量 (IV! ) は、 5 0 0 0〜 2 0 0 0
0 0であることが好ましく、 8 0 0 0〜 1 0 0 0 0 0であることがより好ま しい。 ポリビニルアセタールの重量平均分子量がこのような範囲であること で、 熱硬化性樹脂フィルムを前記突状電極形成面に貼付したときに、 突状電 極の上部における熱硬化性樹脂フィルムの残存を抑制する効果がより高くな る。
[0122] ポリビニルアセタールのガラス転移温度 (丁 9) は、 4 0〜 8 0 °〇である ことが好ましく、 5 0〜 7 0 °〇であることがより好ましい。 ポリビニルアセ 夕ールの丁 9がこのような範囲であることで、 熱硬化性樹脂フィルムを前記
〇 2020/175421 30 卩(:171? 2020 /007293
突状電極形成面に貼付したときに、 突状電極の上部における熱硬化性樹脂フ ィルムの残存を抑制する効果がより高くなる。
[0123] ポリビニルアセタールを構成する 3種以上のモノマーの比率は任意に選択 できる。
[0124] 重合体成分 (八) におけるアクリル樹脂とは、 (メタ) アクリル酸又はそ の誘導体から誘導された構成単位を有する樹脂を意味する。
なお、 本明細書において、 「 (メタ) アクリル酸」 とは、 「アクリル酸」 及び 「メタクリル酸」 の両方を包含する概念とする。 (メタ) アクリル酸と 類似の用語についても同様であり、 例えば、 「 (メタ) アクリロイル基」 と は、 「アクリロイル基」 及び 「メタクリロイル基」 の両方を包含する概念で あり、 「 (メタ) アクリレート」 とは、 「アクリレート」 及び 「メタクリレ —卜」 の両方を包含する概念である。
また、 本明細書において、 ある特定の化合物の 「誘導体」 とは、 その化合 物の 1個以上の水素原子が水素原子以外の基 (置換基) で置換された構造を 有するものを意味する。 例えば、 (メタ) アクリル酸エステルは、 (メタ) アクリル酸の誘導体である。
[0125] 重合体成分 (八) における前記アクリル樹脂としては、 公知のアクリル重 合体が挙げられる。
アクリル樹脂の重量平均分子量 (IV! ) は、 1 0 0 0 0〜 2 0 0 0 0 0 0 であることが好ましく、 1 0 0 0 0 0〜 1 5 0 0 0 0 0であることがより好 ましい。 アクリル樹脂の重量平均分子量が前記下限値以上であることで、 熱 硬化性樹脂フィルムの形状安定性 (保管時の経時安定性) が向上する。 アク リル樹脂の重量平均分子量が前記上限値以下であることで、 被着体の凹凸面 へ熱硬化性樹脂フィルムが追従し易くなり、 被着体と熱硬化性樹脂フィルム との間でボイ ド等の発生がより抑制される。
なお、 本明細書において、 「重量平均分子量」 とは、 特に断りのない限り 、 ゲル ·パーミエーシヨン · クロマトグラフィー (◦ 〇) 法により測定さ れるポリスチレン換算値である。
〇 2020/175421 31 卩(:171? 2020 /007293
[0126] アクリル樹脂のガラス転移温度 (丁 9) は、 一6 0〜 7 0 °〇であることが 好ましく、 一3 0〜 5 0 °〇であることがより好ましい。 アクリル樹脂の丁 9 が前記下限値以上であることで、 例えば、 熱硬化性樹脂フィルムの硬化物と 支持シートとの接着力が抑制されて、 支持シートの剥離性が適度に向上する 。 アクリル樹脂の丁 9が前記上限値以下であることで、 熱硬化性樹脂フィル ム及びその硬化物の被着体との接着力が向上する。
[0127] アクリル樹脂としては、 例えば、 1種又は 2種以上の (メタ) アクリル酸 エステルの重合体; (メタ) アクリル酸、 イタコン酸、 酢酸ビニル、 アクリ ロニトリル、 スチレン及び 1\1—メチロールアクリルアミ ド等から選択される 2種以上のモノマーの共重合体等が挙げられる。
[0128] アクリル樹脂を構成する前記 (メタ) アクリル酸エステルとしては、 例え ば、 (メタ) アクリル酸メチル、 (メタ) アクリル酸エチル、 (メタ) アク リル酸 11 -プロピル、 (メタ) アクリル酸イソプロピル、 (メタ) アクリル 酸门ーブチル、 (メタ) アクリル酸イソプチル、 (メタ) アクリル酸 3
-ブチル、 (メタ) アクリル酸 ㊀ 「 1: -プチル、 (メタ) アクリル酸ペン チル、 (メタ) アクリル酸ヘキシル、 (メタ) アクリル酸ヘプチル、 (メタ ) アクリル酸 2 -エチルヘキシル、 (メタ) アクリル酸イソオクチル、 (メ 夕) アクリル酸 1·! -オクチル、 (メタ) アクリル酸 -ノニル、 (メタ) ア クリル酸イソノニル、 (メタ) アクリル酸デシル、 (メタ) アクリル酸ウン デシル、 (メタ) アクリル酸ドデシル ( (メタ) アクリル酸ラウリル) 、 ( メタ) アクリル酸トリデシル、 (メタ) アクリル酸テトラデシル ( (メタ) アクリル酸ミリスチル) 、 (メタ) アクリル酸ペンタデシル、 (メタ) アク リル酸へキサデシル ( (メタ) アクリル酸パルミチル) 、 (メタ) アクリル 酸へプタデシル、 (メタ) アクリル酸オクタデシル ( (メタ) アクリル酸ス テアリル) 等の、 アルキルエステルを構成するアルキル基が、 炭素数が 1〜 1 8の鎖状構造である、 (メタ) アクリル酸アルキルエステル;
(メタ) アクリル酸イソボルニル、 (メタ) アクリル酸ジシクロペンタニ ル等の (メタ) アクリル酸シクロアルキルエステル;
〇 2020/175421 32 卩(:171? 2020 /007293
(メタ) アクリル酸ベンジル等の (メタ) アクリル酸アラルキルエステル
(メタ) アクリル酸ジシクロペンテニルエステル等の (メタ) アクリル酸 シクロアルケニルエステル;
(メタ) アクリル酸ジシクロペンテニルオキシエチルエステル等の (メタ ) アクリル酸シクロアルケニルオキシアルキルエステル;
(メタ) アクリル酸イミ ド;
(メタ) アクリル酸グリシジル等のグリシジル基含有 (メタ) アクリル酸 エステノレ;
(メタ) アクリル酸ヒドロキシメチル、 (メタ) アクリル酸 2 -ヒドロキ シエチル、 (メタ) アクリル酸 2—ヒドロキシプロピル、 (メタ) アクリル 酸 3 -ヒドロキシプロピル、 (メタ) アクリル酸 2 -ヒドロキシブチル、 ( メタ) アクリル酸 3 -ヒドロキシブチル、 (メタ) アクリル酸 4 -ヒドロキ シブチル等の水酸基含有 (メタ) アクリル酸エステル;
(メタ) アクリル酸 1\1 -メチルアミノエチル等の置換アミノ基含有 (メタ ) アクリル酸エステル等が挙げられる。 ここで、 「置換アミノ基」 とは、 ア ミノ基の 1個又は 2個の水素原子が水素原子以外の基で置換されてなる基を 意味する。
[0129] アクリル樹脂は、 例えば、 前記 (メタ) アクリル酸エステル以外に、 (メ 夕) アクリル酸、 イタコン酸、 酢酸ビニル、 アクリロニトリル、 スチレン及 び 1\1 _メチロールアクリルアミ ド等から選択される 1種又は 2種以上のモノ マーが共重合してなるものであってもよい。
[0130] アクリル樹脂を構成するモノマーは、 1種のみであってもよいし、 2種以 上であってもよく、 2種以上である場合、 それらの組み合わせ及び比率は任 意に選択できる。
[0131 ] アクリル樹脂は、 ビニル基、 (メタ) アクリロイル基、 アミノ基、 水酸基 、 カルボキシ基、 イソシアネート基等の他の化合物と結合可能な官能基を有 していてもよい。 アクリル樹脂の前記官能基は、 後述する架橋剤 ( ) を介
〇 2020/175421 33 卩(:171? 2020 /007293
して他の化合物と結合してもよいし、 架橋剤 ( ) を介さずに他の化合物と 直接結合していてもよい。 アクリル樹脂が前記官能基により他の化合物と結 合することで、 第 1保護膜形成用シートを用いて得られたパッケージの信頼 性が向上する傾向がある。
[0132] 本発明においては、 例えば、 重合体成分 (八) として、 ポリビニルアセタ —ル及びアクリル樹脂以外の熱可塑性樹脂 (以下、 単に 「熱可塑性樹脂」 と 略記することがある) を、 ポリビニルアセタール及びアクリル樹脂を用いず に単独で用いてもよいし、 ポリビニルアセタール又はアクリル樹脂と併用し てもよい。 前記熱可塑性樹脂を用いることで、 第 1保護膜の第 1支持シート からの剥離性が向上したり、 被着体の凹凸面へ熱硬化性樹脂フィルムが追従 し易くなり、 被着体と熱硬化性樹脂フィルムとの間でボイ ド等の発生がより 抑制されることがある。
[0133] 前記熱可塑性樹脂の重量平均分子量は 1 0 0 0〜 1 0 0 0 0 0であること が好ましく、 3 0 0 0〜 8 0 0 0 0であることがより好ましい。
[0134] 前記熱可塑性樹脂のガラス転移温度 (丁 9) は、 一3 0〜 1 5 0 °〇である ことが好ましく、 _ 2 0 ~ 1 2 0 °〇であることがより好ましい。
[0135] 前記熱可塑性樹脂としては、 例えば、 ポリエステル樹脂、 ポリウレタン樹 月旨、 フエノキシ樹脂、 ポリブテン、 ポリブタジエン、 ポリスチレン等が挙げ られる。
[0136] 組成物 (丨 丨 I - 1) 及び熱硬化性樹脂フィルムが含有する前記熱可塑性 樹脂は、 1種のみであってもよいし、 2種以上であってもよく、 2種以上で ある場合、 それらの組み合わせ及び比率は任意に選択できる。
[0137] 組成物 ( I I I _ 1) において、 溶媒以外の全ての成分の総含有量に対す る重合体成分 ( ) の含有量の割合 (すなわち、 熱硬化性樹脂フィルムにお ける、 熱硬化性樹脂フィルムの総質量に対する、 重合体成分 ( ) の含有量 の割合) は、 例えば、 重合体成分 (八) の種類によらず、 5〜 6 0質量%、
5〜 4 5質量%、 5〜 3 0質量%、 及び 5〜 1 5質量%のいずれかであって もよい。
〇 2020/175421 34 卩(:171? 2020 /007293
[0138] 重合体成分 ( ) は、 熱硬化性成分 (巳) にも該当する場合がある。 本発 明においては、 組成物 (丨 丨 丨 _ 1) が、 このような重合体成分 ( ) 及び 熱硬化性成分 (巳) の両方に該当する成分を含有する場合、 組成物 ( I I I _ 1) は、 重合体成分 ( ) 及び熱硬化性成分 (巳) を含有するとみなす。
[0139] [熱硬化性成分 (巳) ]
熱硬化性成分 (巳) は、 熱硬化性を有し、 熱硬化性樹脂フィルムを熱硬化 させて、 硬質の第 1保護膜を形成するための成分である。
また、 熱硬化性樹脂フィルムにおいて、 上述の合計含有量の割合を規定す る 「熱硬化性成分」 と、 前記 X値の算出対象である 「熱硬化性成分」 と、 の 両方に、 熱硬化性成分 (巳) は該当する。
[0140] 組成物 ( I I I - 1) 及び熱硬化性樹脂フィルムが含有する熱硬化性成分 (巳) は、 1種のみであってもよいし、 2種以上であってもよく、 2種以上 である場合、 それらの組み合わせ及び比率は任意に選択できる。
[0141 ] 熱硬化性成分 (巳) としては、 例えば、 エポキシ系熱硬化性樹脂、 ポリイ ミ ド樹脂、 不飽和ポリエステル樹脂等が挙げられる。
これらの中でも、 熱硬化性成分 (巳) は、 エポキシ系熱硬化性樹脂である ことが好ましい。
[0142] (エポキシ系熱硬化性樹脂)
エポキシ系熱硬化性樹脂は、 エポキシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) からなる。
熱硬化性樹脂フィルムにおいて、 上述の合計含有量の割合を規定する 「熱 硬化性成分」 と、 前記 X値の算出対象である 「熱硬化性成分」 と、 の両方に 、 エポキシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) はともに該当する。
[0143] 組成物 (丨 丨 丨 _ 1) 及び熱硬化性樹脂フィルムが含有するエポキシ系熱 硬化性樹脂は、 1種のみであってもよいし、 2種以上であってもよく、 2種 以上である場合、 それらの組み合わせ及び比率は任意に選択できる。
[0144] エポキシ樹脂 (巳 1)
エポキシ樹脂 (巳 1) としては、 公知のものが挙げられ、 例えば、 多官能
〇 2020/175421 35 卩(:171? 2020 /007293
系ェポキシ樹脂、 ビフェニル化合物、 ビスフェノール八ジグリシジルェーテ ル及びその水添物、 オルソクレゾールノボラックェポキシ樹脂、 ジシクロべ ンタジェン型ェポキシ樹脂、 ビフェニル型ェポキシ樹脂、 ビスフェノール八 型ェポキシ樹脂、 ビスフェノール 型ェポキシ樹脂、 フェニレン骨格型ェポ キシ樹脂等、 2官能以上のェポキシ化合物が挙げられる。
[0145] ェポキシ樹脂 (巳 1) としては、 不飽和炭化水素基を有するェポキシ樹脂 を用いてもよい。 不飽和炭化水素基を有するェポキシ樹脂は、 不飽和炭化水 素基を有しないェポキシ樹脂よりもアクリル樹脂との相溶性が高い。 そのた め、 不飽和炭化水素基を有するェポキシ樹脂を用いることで、 第 1保護膜形 成用シートを用いて得られた第 1保護膜付きワーク加工物の信頼性が向上す る。
[0146] 不飽和炭化水素基を有するェポキシ樹脂としては、 例えば、 多官能系ェポ キシ樹脂のェポキシ基の一部が不飽和炭化水素基を有する基に変換されてな る化合物が挙げられる。 このような化合物は、 例えば、 ェポキシ基へ (メタ ) アクリル酸又はその誘導体を付加反応させることにより得られる。
また、 不飽和炭化水素基を有するェポキシ樹脂としては、 例えば、 ェポキ シ樹脂を構成する芳香環等に、 不飽和炭化水素基を有する基が直接結合した 化合物等が挙げられる。
不飽和炭化水素基は、 重合性を有する不飽和基であり、 その具体的な例と しては、 ェテニル基 (ビニル基) 、 2 -プロべニル基 (アリル基) 、 (メタ ) アクリロイル基、 (メタ) アクリルアミ ド基等が挙げられ、 アクリロイル 基が好ましい。
[0147] ェポキシ樹脂 (巳 1) の数平均分子量は、 特に限定されないが、 熱硬化性 樹脂フィルムの硬化性、 並びに硬化後の樹脂膜の強度及び耐熱性の点から、
3 0 0〜 3 0 0 0 0であることが好ましく、 3 0 0〜 1 0 0 0 0であること がより好ましく、 3 0 0〜 3 0 0 0であることが特に好ましい。
[0148] ェポキシ樹脂 (巳 1) のェポキシ当量は、 1 0 0〜 1 0 0 0 9 / 6 であ ることが好ましく、 1 5 0〜 9 7 0 9であることがより好ましく、 2
〇 2020/175421 36 卩(:171? 2020 /007293
0 0〜 6 0 0 9 / 6 であることがさらに好ましい。
[0149] ェポキシ樹脂 (巳 1) は、 1種を単独で用いてもよいし、 2種以上を併用 してもよく、 2種以上を併用する場合、 それらの組み合わせ及び比率は任意 に選択できる。
[0150] 熱硬化剤 (巳 2)
熱硬化剤 (巳 2) は、 ェポキシ樹脂 (巳 1) に対する硬化剤として機能す る。
熱硬化剤 (巳 2) としては、 例えば、 1分子中にェポキシ基と反応し得る 官能基を 2個以上有する化合物が挙げられる。 前記官能基としては、 例えば 、 フヱノール性水酸基、 アルコール性水酸基、 アミノ基、 カルボキシ基、 酸 基が無水物化された基等が挙げられ、 フェノール性水酸基、 アミノ基、 又は 酸基が無水物化された基であることが好ましく、 フェノール性水酸基又はア ミノ基であることがより好ましい。
[0151 ] 熱硬化剤 (巳 2) のうち、 フェノール性水酸基を有するフェノール系硬化 剤としては、 例えば、 多官能フェノール樹脂、 ビフェノール、 ノボラック型 フェノール樹脂、 ジシクロペンタジェン型フェノール樹脂、 アラルキル型フ ェノール樹脂等が挙げられる。
熱硬化剤 (巳 2) のうち、 アミノ基を有するアミン系硬化剤としては、 例 えば、 ジシアンジアミ ド等が挙げられる。
[0152] 熱硬化剤 (巳 2) は、 不飽和炭化水素基を有していてもよい。
不飽和炭化水素基を有する熱硬化剤 (巳 2) としては、 例えば、 フェノー ル樹脂の水酸基の一部が、 不飽和炭化水素基を有する基で置換されてなる化 合物、 フェノール樹脂の芳香環に、 不飽和炭化水素基を有する基が直接結合 してなる化合物等が挙げられる。
熱硬化剤 (巳 2) における前記不飽和炭化水素基は、 上述の不飽和炭化水 素基を有するェポキシ樹脂における不飽和炭化水素基と同様のものである。
[0153] 熱硬化剤 (巳 2) としてフェノール系硬化剤を用いる場合には、 第 1保護 膜の第 1支持シートからの剥離性が向上する点から、 熱硬化剤 (巳 2) は、
〇 2020/175421 37 卩(:171? 2020 /007293
軟化点又はガラス転移温度が高いものが好ましい。
[0154] 熱硬化剤 (巳 2) のうち、 例えば、 多官能フェノール樹脂、 ノボラック型 フェノール樹脂、 ジシクロペンタジェン型フェノール樹脂、 アラルキル型フ ェノール樹脂等の樹脂成分の数平均分子量は、 3 0 0〜 3 0 0 0 0であるこ とが好ましく、 4 0 0〜 1 0 0 0 0であることがより好ましく、 5 0 0〜 3 0 0 0であることが特に好ましい。
熱硬化剤 (巳 2) のうち、 例えば、 ビフェノール、 ジシアンジアミ ド等の 非樹脂成分の分子量は、 特に限定されないが、 例えば、 6 0〜 5 0 0である ことが好ましい。
[0155] 熱硬化剤 (巳 2) は、 1種を単独で用いてもよいし、 2種以上を併用して もよく、 2種以上を併用する場合、 それらの組み合わせ及び比率は任意に選 択できる。
[0156] 組成物 (丨 丨 丨 _ 1) 及び熱硬化性樹脂フィルムにおいて、 熱硬化剤 (巳
2) の含有量は、 ェポキシ樹脂 (巳 1) の含有量 1 〇〇質量部に対して、 例 えば、 0 . 1〜 5 0 0質量部、 1〜 2 5 0質量部、 1〜 1 5 0質量部、 ·!〜 1 0 0質量部、 1〜 7 5質量部、 及び 1〜 5 0質量部のいずれかであっても よい。 熱硬化剤 (巳 2) の前記含有量が前記下限値以上であることで、 熱硬 化性樹脂フィルムの硬化がより進行し易くなる。 熱硬化剤 (巳 2) の前記含 有量が前記上限値以下であることで、 熱硬化性樹脂フィルムの吸湿率が低減 されて、 第 1保護膜形成用シートを用いて得られたパッケージの信頼性がよ り向上する。
[0157] 組成物 ( I I I _ 1) 及び熱硬化性樹脂フィルムにおいて、 熱硬化性成分 (B) の含有量 (例えば、 ェポキシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) の総 含有量) は、 重合体成分 ( ) の含有量 1 〇〇質量部に対して、 例えば、 3 0 0〜 1 4 0 0質量部、 4 0 0〜 1 3 0 0質量部、 5 0 0〜 1 1 0 0質量部 、 6 0 0〜 1 0 0 0質量部、 及び 7 0 0〜 9 0 0質量部のいずれかであって もよい。 熱硬化性成分 (巳) の前記含有量がこのような範囲であることで、 例えば、 第 1保護膜と第 1支持シートとの接着力が抑制されて、 第 1支持シ
〇 2020/175421 38 卩(:171? 2020 /007293
-卜の剥離性が向上する。
[0158] [硬化促進剤 (〇 ]
組成物 (丨 丨 丨 _ 1) 及び熱硬化性樹脂フィルムは、 硬化促進剤 (<3) を 含有していてもよい。 硬化促進剤 (<3) は、 組成物 ( I I I - 1) の硬化速 度を調整するための成分である。
好ましい硬化促進剤 (〇) としては、 例えば、 トリエチレンジアミン、 ベ ンジルジメチルアミン、 トリエタノールアミン、 ジメチルアミノエタノール 、 トリス (ジメチルアミノメチル) フエノール等の第 3級アミン; 2 -メチ ルイミダゾール、 2—フエニルイミダゾール、 2—フエニルー 4—メチルイ ミダゾール、 2—フエニルー 4 , 5—ジヒドロキシメチルイミダゾール、 2 —フエニルー 4—メチルー 5—ヒドロキシメチルイミダゾール等のイミダゾ —ル類 ( 1個以上の水素原子が水素原子以外の基で置換されたイミダゾール ) ; トリブチルホスフイン、 ジフエニルホスフイン、 トリフエニルホスフイ ン等の有機ホスフィン類 ( 1個以上の水素原子が有機基で置換されたホスフ イン) ;テトラフエニルホスホニウムテトラフエニルボレート、 トリフエニ ルホスフィンテトラフエニルボレート等のテトラフエニルボロン塩等が挙げ られる。
[0159] 組成物 (丨 丨 I - 1) 及び熱硬化性樹脂フィルムが含有する硬化促進剤 ( 〇) は、 1種のみであってもよいし、 2種以上であってもよく、 2種以上で ある場合、 それらの組み合わせ及び比率は任意に選択できる。
[0160] 硬化促進剤 (<3) を用いる場合、 組成物 (丨 丨 丨 _ 1) 及び熱硬化性樹脂 フィルムにおいて、 硬化促進剤 (<3) の含有量は、 熱硬化性成分 (巳) の含 有量 1 〇〇質量部に対して、 例えば、 〇. 〇 1〜 1 〇質量部、 及び 0 . 1〜 7質量部のいずれかであってもよい。 硬化促進剤 (<3) の前記含有量が前記 下限値以上であることで、 硬化促進剤 (〇) を用いたことによる効果がより 顕著に得られる。 硬化促進剤 (<3) の含有量が前記上限値以下であることで 、 例えば、 高極性の硬化促進剤 (<3) が、 高温 ·高湿度条件下で熱硬化性樹 脂フィルム中において被着体との接着界面側に移動して偏析することを抑制
〇 2020/175421 39 卩(:171? 2020 /007293
する効果が高くなる。 その結果、 第 1保護膜形成用シートを用いて得られた 第 1保護膜付きワーク加工物の信頼性がより向上する。
[0161 ] [充填材 ⑴) ]
組成物 (丨 丨 I - 1) 及び熱硬化性樹脂フィルムは、 充填材 (口) を含有 していてもよい。 熱硬化性樹脂フィルムが充填材 (口) を含有することによ り、 熱硬化性樹脂フィルムを硬化して得られた第 1保護膜は、 熱膨張係数の 調整が容易となる。 そして、 この熱膨張係数を第 1保護膜の形成対象物に対 して最適化することで、 第 1保護膜形成用シートを用いて得られた第 1保護 膜付きワーク加工物の信頼性がより向上する。 また、 熱硬化性樹脂フィルム が充填材 (口) を含有することにより、 第 1保護膜の吸湿率を低減したり、 放熱性を向上させたりすることもできる。
[0162] 充填材 (口) は、 有機充填材及び無機充填材のいずれであってもよいが、 無機充填材であることが好ましい。
好ましい無機充填材としては、 例えば、 シリカ、 アルミナ、 タルク、 炭酸 カルシウム、 チタンホワイ ト、 ベンガラ、 炭化ケイ素、 窒化ホウ素等の粉末 ; これら無機充填材を球形化したビーズ; これら無機充填材の表面改質品; これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
これらの中でも、 無機充填材は、 シリカ又はアルミナであることが好まし く、 シリカであることがより好ましい。
[0163] 充填材 (口) の平均粒子径は、 目的に応じて適宜選択すればよく、 特に限 定されず、 例えば、 0 . 0 2〜 2 であってもよい。
なお、 本明細書において 「平均粒子径」 とは、 特に断りのない限り、 レー ザー回折散乱法によって求められた粒度分布曲線における、 積算値 5 0 %で の粒子径 (口5 0) の値を意味する。
[0164] 組成物 ( I I I - 1) 及び熱硬化性樹脂フィルムが含有する充填材 (口) は、 1種のみであってもよいし、 2種以上であってもよく、 2種以上である 場合、 それらの組み合わせ及び比率は任意に選択できる。
[0165] 組成物 (丨 丨 丨 _ 1) において、 溶媒以外の全ての成分の総含有量に対す
〇 2020/175421 40 卩(:171? 2020 /007293
る、 充填材 (〇) の含有量の割合 (すなわち、 熱硬化性樹脂フィルムにおけ る、 熱硬化性樹脂フィルムの総質量に対する、 充填材 (〇) の含有量の割合 ) は、 例えば、 3〜 6 0質量%、 4〜 4 0質量%、 5〜 3 0質量%、 5〜 2 〇質量%、 及び 5〜 1 5質量%のいずれかであってもよい。 前記割合がこの ような範囲であることで、 上記の、 第 1保護膜の熱膨張係数の調整がより容 易となる。
[0166] [カップリング剤 (巳) ]
組成物 (丨 丨 丨 _ 1) 及び熱硬化性樹脂フィルムは、 カップリング剤 (巳 ) を含有していてもよい。 カップリング剤 (巳) として、 無機化合物又は有 機化合物と反応可能な官能基を有するものを用いることにより、 熱硬化性樹 脂フィルムの被着体に対する接着性及び密着性を向上させることができる。 また、 カップリング剤 (巳) を用いることで、 熱硬化性樹脂フィルムの硬化 物は、 耐熱性を損なうことなく、 耐水性が向上する。
[0167] カップリング剤 (巳) は、 重合体成分 (へ) 、 熱硬化性成分 (巳) 等が有 する官能基と反応可能な官能基を有する化合物であることが好ましく、 シラ ンカップリング剤であることがより好ましい。
好ましい前記シランカップリング剤としては、 例えば、 3—グリシジルオ キシプロピルトリメ トキシシラン、 3—グリシジルオキシプロピルメチルジ ェトキシシラン、 3—グリシジルオキシプロピルトリェトキシシラン、 3 - グリシジルオキシメチルジェトキシシラン、 2 - (3 , 4—ェポキシシクロ ヘキシル) ェチルトリメ トキシシラン、 3—メタクリロイルオキシプロピル トリメ トキシシラン、 3—アミノプロピルトリメ トキシシラン、 3 - (2 - アミノェチルアミノ) プロピルトリメ トキシシラン、 3 - (2—アミノェチ ルアミノ) プロピルメチルジェトキシシラン、 3 - (フェニルアミノ) プロ ピルトリメ トキシシラン、 3—アニリノプロピルトリメ トキシシラン、 3 - ウレイ ドプロピルトリェトキシシラン、 3—メルカプトプロピルトリメ トキ シシラン、 3—メルカプトプロピルメチルジメ トキシシラン、 ビス (3—卜 リェトキシシリルプロピル) テトラスルファン、 メチルトリメ トキシシラン
〇 2020/175421 41 卩(:171? 2020 /007293
、 メチルトリエトキシシラン、 ビニルトリメ トキシシラン、 ビニルトリアセ トキシシラン、 イミダゾールシラン等が挙げられる。
[0168] 組成物 (丨 丨 丨 _ 1) 及び熱硬化性樹脂フィルムが含有するカップリング 剤 (巳) は、 1種のみであってもよいし、 2種以上であってもよく、 2種以 上である場合、 それらの組み合わせ及び比率は任意に選択できる。
[0169] カップリング剤 (巳) を用いる場合、 組成物 (丨 丨 丨 一 1) 及び熱硬化性 樹脂フィルムにおいて、 カップリング剤 (巳) の含有量は、 重合体成分 (八 ) 及び熱硬化性成分 (巳) の総含有量 1 0 0質量部に対して、 例えば、 〇. 0 3〜 2 0質量部、 〇. 0 5〜 1 0質量部、 及び〇. 1〜 5質量部のいずれ かであってもよい。 カップリング剤 (巳) の前記含有量が前記下限値以上で あることで、 充填材 (口) の樹脂への分散性の向上や、 熱硬化性樹脂フィル ムの被着体との接着性の向上など、 カップリング剤 (巳) を用いたことによ る効果がより顕著に得られる。 カップリング剤 (日) の前記含有量が前記上 限値以下であることで、 アウトガスの発生がより抑制される。
[0170] [架橋剤 ( ) ]
重合体成分 ( ) として、 上述のアクリル樹脂等の、 他の化合物と結合可 能なビニル基、 (メタ) アクリロイル基、 アミノ基、 水酸基、 カルボキシ基 、 イソシアネート基等の官能基を有するものを用いる場合、 組成物 (丨 丨 丨 - 1) 及び熱硬化性樹脂フィルムは、 架橋剤 ( ) を含有していてもよい。 架橋剤 ( ) は、 重合体成分 ( ) 中の前記官能基を他の化合物と結合させ て架橋するための成分であり、 このように架橋することにより、 熱硬化性樹 脂フィルムの初期接着力及び凝集力を調節できる。
[0171 ] 架橋剤 ( ) としては、 例えば、 有機多価イソシアネート化合物、 有機多 価イミン化合物、 金属キレート系架橋剤 (金属キレート構造を有する架橋剤 ) 、 アジリジン系架橋剤 (アジリジニル基を有する架橋剤) 等が挙げられる
[0172] 前記有機多価イソシアネート化合物としては、 例えば、 芳香族多価イソシ アネート化合物、 脂肪族多価イソシアネート化合物及び脂環族多価イソシア
〇 2020/175421 42 卩(:171? 2020 /007293
ネート化合物 (以下、 これら化合物をまとめて 「芳香族多価イソシアネート 化合物等」 と略記することがある) ;前記芳香族多価イソシアネート化合物 等の三量体、 イソシアヌレート体及びアダクト体;前記芳香族多価イソシア ネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネ —トウレタンプレポリマー等が挙げられる。 前記 「アダクト体」 は、 前記芳 香族多価イソシアネート化合物、 脂肪族多価イソシアネート化合物又は脂環 族多価イソシアネート化合物と、 エチレングリコール、 プロピレングリコー ル、 ネオペンチルグリコール、 トリメチロールプロパン又はヒマシ油等の低 分子活性水素含有化合物と、 の反応物を意味する。 前記アダクト体の例とし ては、 後述するようなトリメチロールプロパンのキシリレンジイソシアネー 卜付加物等が挙げられる。 また、 「末端イソシアネートウレタンプレポリマ —」 とは、 ウレタン結合を有するとともに、 分子の末端部にイソシアネート 基を有するプレボリマーを意味する。
[0173] 前記有機多価イソシアネート化合物として、 より具体的には、 例えば、 2 , 4—トリレンジイソシアネート ; 2 , 6—トリレンジイソシアネート ; 1 , 3—キシリレンジイソシアネート ; 1 , 4—キシリレンジイソシアネート ;ジフエニルメタンー 4 , 4’ ージイソシアネート ;ジフエニルメタンー 2 , 4’ ージイソシアネート ; 3—メチルジフエニルメタンジイソシアネート ;ヘキサメチレンジイソシアネート ;イソホロンジイソシアネート ;ジシク ロヘキシルメタンー 4 , 4’ ージイソシアネート ;ジシクロヘキシルメタン — 2 , 4’ ージイソシアネート ; トリメチロールプロパン等のポリオールの すべて又は一部の水酸基に、 トリレンジイソシアネート、 ヘキサメチレンジ イソシアネート及びキシリレンジイソシアネートのいずれか 1種又は 2種以 上が付加した化合物; リジンジイソシアネート等が挙げられる。
[0174] 前記有機多価イミン化合物としては、 例えば、 1\1 , 1\1’ ージフエニルメタ ンー4 , 4’ ービス (1 —アジリジンカルボキシアミ ド) 、 トリメチロール プロパンートリー /3—アジリジニルプロビオネート、 テトラメチロールメタ ンートリー/ 3—アジリジニルプロビオネート、 !\1 , !\1, ートルエン _ 2 , 4
〇 2020/175421 43 卩(:171? 2020 /007293
-ビス ( 1 -アジリジンカルボキシアミ ド) トリエチレンメラミン等が挙げ られる。
[0175] 架橋剤 ( ) として有機多価イソシアネート化合物を用いる場合、 重合体 成分 ( ) としては、 水酸基含有重合体を用いることが好ましい。 架橋剤 ( ) がイソシアネート基を有し、 重合体成分 ( ) が水酸基を有する場合、 架橋剤 ( ) と重合体成分 ( ) との反応によって、 熱硬化性樹脂フィルム に架橋構造を簡便に導入できる。
[0176] 組成物 (丨 丨 I - 1) 及び熱硬化性樹脂フィルムが含有する架橋剤 ( ) は、 1種のみであってもよいし、 2種以上であってもよく、 2種以上である 場合、 それらの組み合わせ及び比率は任意に選択できる。
[0177] 架橋剤 ( ) を用いる場合、 組成物 (丨 丨 丨 一 1) において、 架橋剤 ( ) の含有量は、 重合体成分 ( ) の含有量 1 〇〇質量部に対して、 例えば、 0 . 0 1〜 2 0質量部、 0 . 1〜 1 0質量部、 及び 0 . 5〜 5質量部のいず れかであってもよい。 架橋剤 ( ) の前記含有量が前記下限値以上であるこ とで、 架橋剤 ( ) を用いたことによる効果がより顕著に得られる。 架橋剤 ( ) の前記含有量が前記上限値以下であることで、 架橋剤 ( ) の過剰使 用が抑制される。
[0178] [エネルギー線硬化性樹脂 (◦) ]
組成物 (丨 丨 I - 1) 及び熱硬化性樹脂フィルムは、 エネルギー線硬化性 樹脂 (◦) を含有していてもよい。 熱硬化性樹脂フィルムは、 エネルギー線 硬化性樹脂 (◦) を含有していることにより、 エネルギー線の照射によって 特性を変化させることができる。
[0179] エネルギー線硬化性樹脂 (◦) は、 エネルギー線硬化性化合物を重合 (硬 化) して得られたものである。
前記エネルギー線硬化性化合物としては、 例えば、 分子内に少なくとも 1 個の重合性二重結合を有する化合物が挙げられ、 (メタ) アクリロイル基を 有するアクリレート系化合物が好ましい。
[0180] 前記アクリレート系化合物としては、 例えば、 トリメチロールプロパント
〇 2020/175421 44 卩(:171? 2020 /007293
リ (メタ) アクリレート、 テトラメチロールメタンテトラ (メタ) アクリレ -卜、 ペンタエリスリ トールトリ (メタ) アクリレート、 ペンタエリスリ ト —ルテトラ (メタ) アクリレート、 ジペンタエリスリ トールモノヒドロキシ ペンタ (メタ) アクリレート、 ジペンタエリスリ トールへキサ (メタ) アク リレート、 1 , 4—ブチレングリコールジ (メタ) アクリレート、 1 , 6— ヘキサンジオールジ (メタ) アクリレート等の鎖状脂肪族骨格含有 (メタ) アクリレート ;ジシクロペンタニルジ (メタ) アクリレート等の環状脂肪族 骨格含有 (メタ) アクリレート ;ポリエチレングリコールジ (メタ) アクリ レート等のポリアルキレングリコール (メタ) アクリレート ;オリゴエステ ル (メタ) アクリレート ; ウレタン (メタ) アクリレートオリゴマー;エポ キシ変性 (メタ) アクリレート ;前記ポリアルキレングリコール (メタ) ア クリレート以外のポリエーテル (メタ) アクリレート ;イタコン酸オリゴマ 一等が挙げられる。
[0181 ] 前記エネルギー線硬化性化合物の重量平均分子量は、 1 0 0〜 3 0 0 0 0 であることが好ましく、 3 0 0〜 1 0 0 0 0であることがより好ましい。
[0182] 重合に用いる前記エネルギー線硬化性化合物は、 1種のみであってもよい し、 2種以上であってもよく、 2種以上である場合、 それらの組み合わせ及 び比率は任意に選択できる。
[0183] 組成物 (丨 丨 丨 _ 1) 及び熱硬化性樹脂フィルムが含有するエネルギー線 硬化性樹脂 (◦) は、 1種のみであってもよいし、 2種以上であってもよく 、 2種以上である場合、 それらの組み合わせ及び比率は任意に選択できる。
[0184] エネルギー線硬化性樹脂 (◦) を用いる場合、 組成物 (丨 丨 丨 一 1) にお いて、 組成物 (丨 丨 丨 _ 1) の総質量に対する、 エネルギー線硬化性樹脂 ( ◦) の含有量の割合は、 例えば、 1〜 9 5質量%、 5〜 9 0質量%、 及び 1 〇〜 8 5質量%のいずれかであってもよい。
[0185] [光重合開始剤 (! !) ]
組成物 (丨 丨 I - 1) 及び熱硬化性樹脂フィルムは、 エネルギー線硬化性 樹脂 (◦) を含有する場合、 エネルギー線硬化性樹脂 (◦) の重合反応を効
〇 2020/175421 45 卩(:171? 2020 /007293
率よく進めるために、 光重合開始剤 (1~1) を含有していてもよい。
[0186] 組成物 ( I I 1 - 1) における光重合開始剤 ( としては、 例えば、 ベ ンゾイン、 ベンゾインメチルエーテル、 ベンゾインエチルエーテル、 ベンゾ インイソプロピルエーテル、 ベンゾインイソプチルエーテル、 ベンゾイン安 息香酸、 ベンゾイン安息香酸メチル、 ベンゾインジメチルケタール等のベン ゾイン化合物; アセトフエノン、 2 -ヒドロキシー 2 -メチルー 1 -フエニ ループロパン _ 1 —オン、 2 , 2—ジメ トキシ _ 1 , 2—ジフエニルエタン
- 1 -オン等のアセトフエノン化合物; ビス (2 , 4 , 6 -トリメチルベン ゾイル) フエニルフォスフィンオキサイ ド、 2 , 4 , 6—トリメチルべンゾ イルジフエニルフォスフインオキサイ ド等のアシルフォスフインオキサイ ド 化合物;ベンジルフエニルスルフイ ド、 テトラメチルチウラムモノスルフイ ド等のスルフィ ド化合物; 1 —ヒドロキシシクロヘキシルフエニルケトン等 の《—ケトール化合物; アゾビスイソプチロニトリル等のアゾ化合物;チタ ノセン等のチタノセン化合物;チオキサントン等のチオキサントン化合物; パーオキサイ ド化合物;ジアセチル等のジケトン化合物;ベンジル;ジベン ジル;ベンゾフエノン; 2 , 4—ジエチルチオキサントン; 1 , 2—ジフエ ニルメタン; 2—ヒドロキシ _ 2—メチルー 1 — [ 4— (1 —メチルビニル ) フエニル] プロパノン; 2 -クロロアントラキノン等が挙げられる。 また、 前記光重合開始剤としては、 例えば、 1 —クロロアントラキノン等 のキノン化合物; アミン等の光増感剤等も挙げられる。
[0187] 組成物 ( I I I - 1) 及び熱硬化性樹脂フィルムが含有する光重合開始剤 (1~1) は、 1種のみであってもよいし、 2種以上であってもよく、 2種以上 である場合、 それらの組み合わせ及び比率は任意に選択できる。
[0188] 光重合開始剤 (1~1) を用いる場合、 組成物 (丨 丨 丨 _ 1) において、 光重 合開始剤 (! !) の含有量は、 エネルギー線硬化性樹脂 (◦) の含有量 1 0 0 質量部に対して、 例えば、 〇. 1〜 2 0質量部、 1〜 1 0質量部、 及び 2〜 5質量部のいずれかであってもよい。
[0189] [着色剤 ( I) ]
〇 2020/175421 46 卩(:171? 2020 /007293
組成物 (丨 丨 I - 1) 及び熱硬化性樹脂フィルムは、 着色剤 (丨) を含有 していてもよい。
着色剤 ( I) としては、 例えば、 無機系顔料、 有機系顔料、 有機系染料等 、 公知のものが挙げられる。
[0190] 前記有機系顔料及び有機系染料としては、 例えば、 アミニウム系色素、 シ アニン系色素、 メロシアニン系色素、 クロコニウム系色素、 スクアリウム系 色素、 アズレニウム系色素、 ポリメチン系色素、 ナフトキノン系色素、 ピリ リウム系色素、 フタロシアニン系色素、 ナフタロシアニン系色素、 ナフトラ クタム系色素、 アゾ系色素、 縮合アゾ系色素、 インジゴ系色素、 ペリノン系 色素、 ペリレン系色素、 ジオキサジン系色素、 キナクリ ドン系色素、 イソイ ンドリノン系色素、 キノフタロン系色素、 ピロール系色素、 チオインジゴ系 色素、 金属錯体系色素 (金属錯塩染料) 、 ジチオール金属錯体系色素、 イン ドールフエノール系色素、 トリアリルメタン系色素、 アントラキノン系色素 、 ナフトール系色素、 アゾメチン系色素、 ベンズイミダゾロン系色素、 ピラ ンスロン系色素及びスレン系色素等が挙げられる。
[0191 ] 前記無機系顔料としては、 例えば、 力ーボンブラック、 コバルト系色素、 鉄系色素、 クロム系色素、 チタン系色素、 バナジウム系色素、 ジルコニウム 系色素、 モリブデン系色素、 ルテニウム系色素、 白金系色素、 丨 丁〇 (イン ジウムスズオキサイ ド) 系色素、 八丁〇 (アンチモンスズオキサイ ド) 系色 素等が挙げられる。
[0192] 組成物 ( I I I - 1) 及び熱硬化性樹脂フィルムが含有する着色剤 (丨) は、 1種のみであってもよいし、 2種以上であってもよく、 2種以上である 場合、 それらの組み合わせ及び比率は任意に選択できる。
[0193] 着色剤 (丨) を用いる場合、 熱硬化性樹脂フィルムの着色剤 (丨) の含有 量は、 目的に応じて適宜調節すればよい。 例えば、 組成物 (丨 丨 丨 _ 1) に おいて、 溶媒以外の全ての成分の総含有量に対する、 着色剤 (丨) の含有量 の割合 (すなわち、 熱硬化性樹脂フィルムにおける、 熱硬化性樹脂フィルム の総質量に対する、 着色剤 (丨) の含有量の割合) は、 〇. 1〜 5質量%で
〇 2020/175421 47 卩(:171? 2020 /007293
あってもよい。 前記割合が前記下限値以上であることで、 着色剤 (丨) を用 いたことによる効果がより顕著に得られる。 前記割合が前記上限値以下であ ることで、 熱硬化性樹脂フィルムの光透過性の過度な低下が抑制される。
[0194] [巩用添加剤 (」) ]
組成物 (丨 丨 I - 1) 及び熱硬化性樹脂フィルムは、 本発明の効果を損な わない範囲内において、 汎用添加剤 (」) を含有していてもよい。
汎用添加剤 (」) は、 公知のものでよく、 目的に応じて任意に選択でき、 特に限定されないが、 好ましいものとしては、 例えば、 可塑剤、 帯電防止剤 、 酸化防止剤、 ゲッタリング剤等が挙げられる。
[0195] 組成物 (丨 丨 I - 1) 及び熱硬化性樹脂フィルムが含有する汎用添加剤 ( 」) は、 1種のみであってもよいし、 2種以上であってもよく、 2種以上で ある場合、 それらの組み合わせ及び比率は任意に選択できる。
組成物 (丨 丨 I - 1) 及び熱硬化性樹脂フィルムの汎用添加剤 (」) の含 有量は、 特に限定されず、 目的に応じて適宜選択すればよい。
[0196] [溶媒]
組成物 (丨 丨 丨 _ 1) は、 さらに溶媒を含有することが好ましい。 溶媒を 含有する組成物 (丨 丨 丨 _ 1) は、 取り扱い性が良好となる。
前記溶媒は特に限定されないが、 好ましいものとしては、 例えば、 トルエ ン、 キシレン等の炭化水素; メタノール、 エタノール、 2—プロパノール、 イソプチルアルコール (2—メチルプロパン _ 1 —オール) 、 1 —ブタノー ル等のアルコール;酢酸エチル等のエステル; アセトン、 メチルエチルケト ン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミ ド、
1\! -メチルピロリ ドン等のアミ ド (アミ ド結合を有する化合物) 等が挙げら れる。
組成物 (丨 丨 丨 _ 1) が含有する溶媒は、 1種のみであってもよいし、 2 種以上であってもよく、 2種以上である場合、 それらの組み合わせ及び比率 は任意に選択できる。
[0197] 組成物 ( I I I _ 1) が含有する溶媒は、 組成物 (丨 丨 丨 _ 1) 中の含有
〇 2020/175421 48 卩(:171? 2020 /007293
成分をより均一に混合できる点から、 メチルエチルケトン等であることが好 ましい。
[0198] 組成物 (丨 丨 丨 _ 1) の溶媒の含有量は、 特に限定されず、 例えば、 溶媒 以外の成分の種類に応じて適宜選択すればよい。
[0199] 本実施形態の好ましい熱硬化性樹脂フィルムの一例としては、 ワークの突 状電極を有する面に貼付し、 熱硬化させることによって、 前記面に第 1保護 膜を形成するための熱硬化性樹脂フィルムであって、
前記熱硬化性樹脂フィルムは、 エポキシ基を有するァクリル樹脂以外の、
2種以上の熱硬化性成分を含有し、
前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 全種類の前記熱硬化性成分の合計含有量の割合が、 4 0質量%以 上であり、
前記熱硬化性樹脂フィルムが含有する前記熱硬化性成分について、 その種 類ごとに、 下記式:
乂= [熱硬化性成分の熱硬化反応に関わる官能基の当量 (9 / 6 9) ] X [熱硬化性樹脂フィルムの熱硬化性成分の含有量 (質量部) ] / [熱硬化性 樹脂フィルムの全種類の熱硬化性成分の合計含有量 (質量部) ]
で算出される X値を求め、 前記熱硬化性樹脂フィルムが含有する全種類の前 記熱硬化性成分における前記 X値の合計値を求めたとき、 前記合計値が 4 0 〇 9 / 6 9以下となり、
厚さが 2 0〇 である 1層の前記熱硬化性樹脂フィルム、 又は、 厚さが 2 0〇 未満である前記熱硬化性樹脂フィルムが 2層以上積層されて構成 された、 合計の厚さが 2 0 0 〇1である積層フィルム、 の波長
の光の透過率が、 5 0 %以上である、 熱硬化性樹脂フィルムが挙げられる。
[0200] 本実施形態の好ましい熱硬化性樹脂フィルムの他の例としては、 ワークの 突状電極を有する面に貼付し、 熱硬化させることによって、 前記面に第 1保 護膜を形成するための熱硬化性樹脂フィルムであって、
前記熱硬化性樹脂フィルムは、 重合体成分 ( ) と、 エポキシ基を有する
〇 2020/175421 49 卩(:171? 2020 /007293
アクリル樹脂以外の、 2種以上の熱硬化性成分と、 充填材 (口) と、 を含有 し、
前記熱硬化性成分が、 エポキシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) からな り、
前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 全種類の前記熱硬化性成分の合計含有量 (換言すると、 前記エポ キシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) の総含有量) の割合が、 4 0質量% 以上であり、
前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 前記重合体成分 ( ) の含有量の割合が、 5〜 3 0質量%であり 前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 前記充填材 (口) の含有量の割合が、 5〜 2 0質量%であり、 前記熱硬化性樹脂フィルムが含有する前記熱硬化性成分について、 その種 類ごとに、 下記式:
乂= [熱硬化性成分の熱硬化反応に関わる官能基の当量 (9 / 6 9) ] X [熱硬化性樹脂フィルムの熱硬化性成分の含有量 (質量部) ] / [熱硬化性 樹脂フィルムの全種類の熱硬化性成分の合計含有量 (質量部) ]
で算出される X値を求め、 前記熱硬化性樹脂フィルムが含有する全種類の前 記熱硬化性成分における前記 X値の合計値を求めたとき、 前記合計値が 4 0 〇 9 / 6 9以下となる、 熱硬化性樹脂フィルムが挙げられる。
[0201] 本実施形態の好ましい熱硬化性樹脂フィルムの他の例としては、 ワークの 突状電極を有する面に貼付し、 熱硬化させることによって、 前記面に第 1保 護膜を形成するための熱硬化性樹脂フィルムであって、
前記熱硬化性樹脂フィルムは、 重合体成分 ( ) と、 エポキシ基を有する アクリル樹脂以外の、 2種以上の熱硬化性成分と、 充填材 (口) と、 を含有 し、
前記熱硬化性成分が、 エポキシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) からな
〇 2020/175421 50 卩(:171? 2020 /007293
り、
前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 全種類の前記熱硬化性成分の合計含有量 (換言すると、 前記エポ キシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) の総含有量) の割合が、 4 0質量% 以上であり、
前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 前記重合体成分 ( ) の含有量の割合が、 5〜 3 0質量%であり 前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 前記充填材 (口) の含有量の割合が、 5〜 2 0質量%であり、 前記熱硬化性樹脂フィルムが含有する前記熱硬化性成分について、 その種 類ごとに、 下記式:
乂= [熱硬化性成分の熱硬化反応に関わる官能基の当量 (9 / 6 9) ] X [熱硬化性樹脂フィルムの熱硬化性成分の含有量 (質量部) ] / [熱硬化性 樹脂フィルムの全種類の熱硬化性成分の合計含有量 (質量部) ]
で算出される X値を求め、 前記熱硬化性樹脂フィルムが含有する全種類の前 記熱硬化性成分における前記 X値の合計値を求めたとき、 前記合計値が 4 0 〇 9 / 6 9以下となり、
厚さが 2 0〇 である 1層の前記熱硬化性樹脂フィルム、 又は、 厚さが 2 0〇 未満である前記熱硬化性樹脂フィルムが 2層以上積層されて構成 された、 合計の厚さが 2 0 0 〇1である積層フィルム、 の波長
の光の透過率が、 5 0 %以上である、 熱硬化性樹脂フィルムが挙げられる。
[0202] 本実施形態の好ましい熱硬化性樹脂フィルムの他の例としては、 ワークの 突状電極を有する面に貼付し、 熱硬化させることによって、 前記面に第 1保 護膜を形成するための熱硬化性樹脂フィルムであって、
前記熱硬化性樹脂フィルムは、 重合体成分 ( ) と、 エポキシ基を有する アクリル樹脂以外の、 2種以上の熱硬化性成分と、 充填材 (口) と、 を含有 し、
〇 2020/175421 51 卩(:171? 2020 /007293
前記熱硬化性成分が、 エポキシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) からな り、
前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 全種類の前記熱硬化性成分の合計含有量 (換言すると、 前記エポ キシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) の総含有量) の割合が、 4 0質量% 以上であり、
前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 前記重合体成分 ( ) の含有量の割合が、 5〜 3 0質量%であり 前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 前記充填材 (口) の含有量の割合が、 5〜 2 0質量%であり、 前記熱硬化性樹脂フィルムが含有する前記熱硬化性成分について、 その種 類ごとに、 下記式:
乂= [熱硬化性成分の熱硬化反応に関わる官能基の当量 (9 / 6 9) ] X [熱硬化性樹脂フィルムの熱硬化性成分の含有量 (質量部) ] / [熱硬化性 樹脂フィルムの全種類の熱硬化性成分の合計含有量 (質量部) ]
で算出される X値を求め、 前記熱硬化性樹脂フィルムが含有する全種類の前 記熱硬化性成分における前記 X値の合計値を求めたとき、 前記合計値が 4 0 〇 9 / 6 9以下となり、
前記熱硬化性樹脂フィルムを 1 3 0 °〇で 2時間加熱することにより、 熱硬 化させて得られた、 大きさが
厚さが
である第 1保護膜を用い、 つかみ器具間距離を
引張り速度を 2 0 0 / 丨
として、 前記つかみ器具により前記第 1保護膜をその表 面に対して平行な方向において引っ張ったときの、 前記第 1保護膜の破断強 度が、 5 5 IV! 3以下である、 熱硬化性樹脂フィルムが挙げられる。
[0203] 本実施形態の好ましい熱硬化性樹脂フィルムの他の例としては、 ワークの 突状電極を有する面に貼付し、 熱硬化させることによって、 前記面に第 1保 護膜を形成するための熱硬化性樹脂フィルムであって、
〇 2020/175421 52 卩(:171? 2020 /007293
前記熱硬化性樹脂フィルムは、 重合体成分 ( ) と、 エポキシ基を有する アクリル樹脂以外の、 2種以上の熱硬化性成分と、 充填材 (口) と、 を含有 し、
前記熱硬化性成分が、 エポキシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) からな り、
前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 全種類の前記熱硬化性成分の合計含有量 (換言すると、 前記エポ キシ樹脂 (巳 1) 及び熱硬化剤 (巳 2) の総含有量) の割合が、 4 0質量% 以上であり、
前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 前記重合体成分 ( ) の含有量の割合が、 5〜 3 0質量%であり 前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの総質量 に対する、 前記充填材 (口) の含有量の割合が、 5〜 2 0質量%であり、 前記熱硬化性樹脂フィルムが含有する前記熱硬化性成分について、 その種 類ごとに、 下記式:
乂= [熱硬化性成分の熱硬化反応に関わる官能基の当量 (9 / 6 9) ] X [熱硬化性樹脂フィルムの熱硬化性成分の含有量 (質量部) ] / [熱硬化性 樹脂フィルムの全種類の熱硬化性成分の合計含有量 (質量部) ]
で算出される X値を求め、 前記熱硬化性樹脂フィルムが含有する全種類の前 記熱硬化性成分における前記 X値の合計値を求めたとき、 前記合計値が 4 0 〇 9 / 6 9以下となり、
厚さが 2 0〇 である 1層の前記熱硬化性樹脂フィルム、 又は、 厚さが 2 0〇 未満である前記熱硬化性樹脂フィルムが 2層以上積層されて構成 された、 合計の厚さが 2 0 0 〇1である積層フィルム、 の波長
の光の透過率が、 5 0 %以上であり、
である第 1保護膜を用い、 つかみ器具間距離を
引張り速度を 2 0 0 / 丨
として、 前記つかみ器具により前記第 1保護膜をその表 面に対して平行な方向において引っ張ったときの、 前記第 1保護膜の破断強 度が、 5 5 IV! 3以下である、 熱硬化性樹脂フィルムが挙げられる。
[0204] «熱硬化性樹脂層形成用組成物の製造方法》
組成物 (丨 I I - 1) 等の熱硬化性樹脂層形成用組成物は、 これを構成す るための各成分を配合することで得られる。
各成分の配合時における添加順序は特に限定されず、 2種以上の成分を同 時に添加してもよい。
溶媒を用いる場合には、 溶媒を溶媒以外のいずれかの配合成分と混合して この配合成分を予め希釈しておくことで用いてもよいし、 溶媒以外のいずれ かの配合成分を予め希釈しておくことなく、 溶媒をこれら配合成分と混合す ることで用いてもよい。
配合時に各成分を混合する方法は特に限定されず、 撹拌子又は撹拌翼等を 回転させて混合する方法; ミキサーを用いて混合する方法;超音波を加えて 混合する方法等、 公知の方法から適宜選択すればよい。
各成分の添加及び混合時の温度並びに時間は、 各配合成分が劣化しない限 り特に限定されず、 適宜調節すればよいが、 温度は 1 5〜 3 0 °〇であること が好ましい。
[0205] ◊第 1保護膜形成用シートの製造方法
前記第 1保護膜形成用シートは、 上述の各層を対応する位置関係となるよ うに順次積層することで製造できる。 各層の形成方法は、 先に説明したとお りである。
例えば、 第 1支持シートを製造するときに、 第 1基材上に第 1粘着剤層又 は第 1中間層を積層する場合には、 第 1基材上に上述の第 1粘着剤組成物又 は第 1中間層形成用組成物を塗工し、 必要に応じて乾燥させるか、 又はエネ ルギー線を照射することで、 第 1粘着剤層又は第 1中間層を積層できる。
[0206] —方、 例えば、 第 1基材上に積層済みの第 1粘着剤層の上に、 さらに熱硬
〇 2020/175421 54 卩(:171? 2020 /007293
化性樹脂層 (熱硬化性樹脂フィルム) を積層する場合には、 第 1粘着剤層上 に、 熱硬化性樹脂層形成用組成物を塗工して、 熱硬化性樹脂層を直接形成す ることが可能である。 同様に、 第 1基材上に積層済みの第 1中間層の上に、 さらに第 1粘着剤層を積層する場合には、 第 1中間層上に第 1粘着剤組成物 を塗工して、 第 1粘着剤層を直接形成することが可能である。 このように、 いずれかの組成物を用いて、 連続する 2層の積層構造を形成する場合には、 前記組成物から形成された層の上に、 さらに別の組成物を塗工して新たに層 を形成することが可能である。 ただし、 これら 2層のうちの後から積層する 層は、 別の剥離フィルム上に前記組成物を用いてあらかじめ形成しておき、 この形成済みの層の前記剥離フィルムと接触している側とは反対側の露出面 を、 既に形成済みの残りの層の露出面と貼り合わせることで、 連続する 2層 の積層構造を形成することが好ましい。 このとき、 前記組成物は、 剥離フィ ルムの剥離処理面に塗工することが好ましい。 剥離フィルムは、 積層構造の 形成後、 必要に応じて取り除けばよい。
[0207] 例えば、 第 1基材上に第 1粘着剤層が積層され、 前記第 1粘着剤層上に熱 硬化性樹脂層が積層されてなる第 1保護膜形成用シート (第 1支持シートが 第 1基材及び第 1粘着剤層の積層物である第 1保護膜形成用シート) を製造 する場合には、 第 1基材上に第 1粘着剤組成物を塗工し、 必要に応じて乾燥 させることで、 第 1基材上に第 1粘着剤層を積層しておき、 別途、 剥離フィ ルム上に熱硬化性樹脂層形成用組成物を塗工し、 必要に応じて乾燥させるこ とで、 剥離フィルム上に熱硬化性樹脂層を形成しておき、 この熱硬化性樹脂 層の露出面を、 第 1基材上に積層済みの第 1粘着剤層の露出面と貼り合わせ て、 熱硬化性樹脂層を第 1粘着剤層上に積層することで、 第 1保護膜形成用 シートが得られる。
また、 例えば、 第 1基材上に第 1中間層が積層され、 前記第 1中間層上に 第 1粘着剤層が積層されてなる第 1支持シートを製造する場合には、 第 1基 材上に第 1中間層形成用組成物を塗工し、 必要に応じて乾燥させるか、 又は エネルギー線を照射することで、 第 1基材上に第 1中間層を積層しておき、
〇 2020/175421 55 卩(:171? 2020 /007293
別途、 剥離フィルム上に第 1粘着剤組成物を塗工し、 必要に応じて乾燥させ ることで、 剥離フィルム上に第 1粘着剤層を形成しておき、 この第 1粘着剤 層の露出面を、 第 1基材上に積層済みの第 1中間層の露出面と貼り合わせて 、 第 1粘着剤層を第 1中間層上に積層することで、 第 1支持シートが得られ る。 この場合、 例えば、 さらに別途、 剥離フィルム上に熱硬化性樹脂層形成 用組成物を塗工し、 必要に応じて乾燥させることで、 剥離フィルム上に硬化 性樹脂層を形成しておき、 この硬化性樹脂層の露出面を、 第 1中間層上に積 層済みの第 1粘着剤層の露出面と貼り合わせて、 熱硬化性樹脂層を第 1粘着 剤層上に積層することで、 第 1保護膜形成用シートが得られる。
[0208] なお、 第 1基材上に第 1粘着剤層又は第 1中間層を積層する場合には、 上 述の様に、 第 1基材上に第 1粘着剤組成物又は第 1中間層形成用組成物を塗 エする方法に代えて、 剥離フィルム上に第 1粘着剤組成物又は第 1中間層形 成用組成物を塗工し、 必要に応じて乾燥させるか、 又はエネルギー線を照射 することで、 剥離フィルム上に第 1粘着剤層又は第 1中間層を形成しておき 、 これら層の露出面を、 第 1基材の一方の表面と貼り合わせることで、 第 1 粘着剤層又は第 1中間層を第 1基材上に積層してもよい。
いずれの方法においても、 剥離フィルムは目的とする積層構造を形成後の 任意のタイミングで取り除けばよい。
[0209] このように、 第 1保護膜形成用シートを構成する第 1基材以外の層はいず れも、 剥離フィルム上にあらかじめ形成しておき、 目的とする層の表面に貼 り合わせる方法で積層できるため、 必要に応じてこのような工程を採用する 層を適宜選択して、 第 1保護膜形成用シートを製造すればよい。
[0210] なお、 第 1保護膜形成用シートは、 通常、 その第 1支持シートとは反対側 の最表層 (例えば、 熱硬化性樹脂層) の面に剥離フィルムが貼り合わされた 状態で保管される。 したがって、 この剥離フィルム (好ましくはその剥離処 理面) 上に、 熱硬化性樹脂層形成用組成物等の、 最表層を構成する層を形成 するための組成物を塗工し、 必要に応じて乾燥させることで、 剥離フィルム 上に最表層を構成する層を形成しておき、 この層の剥離フィルムと接触して
〇 2020/175421 56 卩(:171? 2020 /007293
いる側とは反対側の露出面上に残りの各層を上述のいずれかの方法で積層し 、 剥離フィルムを取り除かずに貼り合わせた状態のままとすることでも、 第 1保護膜形成用シートが得られる。
[021 1 ] 第 1支持シートとしては、 市販品を用いてもよい。
[0212] ◊第 1保護膜付きワーク加工物の製造方法
本発明の一実施形態に係る熱硬化性樹脂フィルム又は第 1保護膜形成用シ —卜を用いた場合の、 第 1保護膜付きワーク加工物の製造方法は、 ワークの 突状電極を有する面 (すなわち突状電極形成面) に、 熱硬化性樹脂フィルム を貼付する工程 (本明細書においては、 「貼付工程」 と略記することがある ) と、 貼付後の前記熱硬化性樹脂フィルムを熱硬化させて、 第 1保護膜を形 成する工程 (本明細書においては、 「第 1保護膜形成工程」 と略記すること がある) と、 前記ワークに対して、 その前記第 1保護膜を備えている側から 、 前記第 1保護膜を介してレーザー光を照射することにより、 前記ワークの 内部に改質層を形成する工程 (本明細書においては、 「改質層形成工程」 と 略記することがある) と、 前記改質層を形成後の前記ワークを、 その回路面 に対して平行な方向に、 前記第 1保護膜とともにエキスパンドすることによ り、 前記改質層の部位において前記ワークを分割するとともに、 前記第 1保 護膜を切断し、 ワーク加工物と、 前記ワーク加工物の前記突状電極を有する 面 (すなわち突状電極形成面) に形成された第 1保護膜と、 を備えた第 1保 護膜付きワーク加工物を得る工程 (本明細書においては、 「分割 ·切断工程 」 と略記することがある) と、 を有する。
以下、 図面を参照しながら、 前記製造方法について詳細に説明する。
[0213] 図 5八~図 5〇、 及び図 6八~図 6巳は、 前記第 1保護膜付きワーク加工 物の製造方法を、 模式的に説明するための拡大断面図である。 ここでは、 図 2に示す第 1保護膜形成用シート 1 を用いた場合の製造方法について、 説明 する。
[0214] «貼付工程》
前記貼付工程においては、 図 5八に示すように、 ワーク 9 0の突状電極形
〇 2020/175421 57 卩(:171? 2020 /007293
成面 (すなわち、 突状電極 9 1の表面 9 1 3とワーク 9 0の回路面 9 0 3) に、 熱硬化性樹脂フィルム 1 2を貼付する。 本工程を行うことにより、 熱硬 化性樹脂フィルム 1 2が、 多数個存在する突状電極 9 1間に広がって、 突状 電極形成面に密着するとともに、 突状電極 9 1の表面 9 1 3、 特にワーク 9 0の回路面 9 0 3の近傍部位の表面 9 1 3を覆って、 突状電極 9 1 を埋め込 み、 これらの領域を被覆している状態とすることができる。 さらに、 本工程 を行うことにより、 突状電極 9 1の頭頂部 9 1 0を含む上部は、 熱硬化性樹 脂フィルム 1 2を貫通して、 熱硬化性樹脂フィルム 1 2から突出する。
[0215] 貼付工程においては、 例えば、 熱硬化性樹脂フィルム 1 2を単独で用いて もよいが、 ここに示すように、 第 1支持シート 1 0 1 と、 第 1支持シート 1 0 1上に設けられた熱硬化性樹脂フィルム 1 2と、 を備えて構成された、 第 1保護膜形成用シート 1 を用いることが好ましい。 後述するように、 ワーク 9 0の裏面 9 0匕を研削する場合には、 第 1支持シート 1 0 1 として、 バッ クグラインド用表面保護テープを用いることができる。
[0216] 貼付工程において、 ここに示すような第 1保護膜形成用シート 1 を用いる 場合には、 第 1保護膜形成用シート 1中の熱硬化性樹脂フィルム 1 2をワー ク 9 0の突状電極形成面に貼付することにより、 第 1保護膜形成用シート 1 自体を、 ワーク 9 0の突状電極形成面に貼付すればよい。
[0217] なお、 本明細書においては、 ここに示すような、 ワークの突状電極形成面 に、 第 1保護膜形成用シートが貼付されて構成されたものを、 「第 1積層構 造体」 と称することがある。 図 5八においては、 第 1積層構造体 2 0 1 とし て、 ワーク 9 0の突状電極形成面に、 第 1保護膜形成用シート 1が貼付され て構成されたものを示している。
[0218] 貼付工程においては、 熱硬化性樹脂フィルム 1 2のうち、 ワーク 9 0に対 向している側の露出面 (本明細書においては、 「第 1面」 と称することがあ る) 1 2 3を、 ワーク 9 0の突状電極形成面 (すなわち、 突状電極 9 1の表 面 9 1 3とワーク 9 0の回路面 9 0 3) に圧着させることで、 熱硬化性樹脂 フィルム 1 2を突状電極形成面に貼付できる。
〇 2020/175421 58 卩(:171? 2020 /007293
[0219] 貼付工程においては、 熱硬化性樹脂フィルム 1 2を加熱しながら突状電極 形成面に貼付することが好ましい。 このようにすることで、 熱硬化性樹脂フ ィルム 1 2と突状電極形成面との間、 すなわち、 熱硬化性樹脂フィルム 1 2 と、 ワーク 9 0の回路面 9 0 3と、 の間、 並びに、 熱硬化性樹脂フィルム 1 2と、 突状電極 9 1の表面 9 1 3と、 の間、 のいずれにおいても、 空隙部の 発生をより抑制できる。 また、 突状電極 9 1の頭頂部 9 1 0を含む上部にお いて、 熱硬化性樹脂フィルム 1 2の残存をより抑制でき、 最終的にこの上部 において、 第 1保護膜の残存をより抑制できる。
[0220] 貼付時の熱硬化性樹脂フィルム 1 2の加熱温度は、 過度な高温でなければ よく、 例えば、 6 0〜 1 0 0 °〇であることが好ましい。 ここで、 「過度な高 温」 とは、 例えば、 熱硬化性樹脂フィルム 1 2の熱硬化が進行するなど、 熱 硬化性樹脂フィルム 1 2に目的外の作用が発現してしまう温度を意味する。
[0221 ] 熱硬化性樹脂フィルム 1 2を突状電極形成面に貼付するときに、 熱硬化性 樹脂フィルム 1 2に加える圧力 (本明細書においては、 「貼付圧力」 と称す ることがある) は、 〇. 3〜 1 IV! 3であることが好ましい。
[0222] 貼付工程により、 第 1積層構造体 2 0 1 を形成した後は、 この第 1積層構 造体 2 0 1 をそのまま次工程で用いてもよいが、 必要に応じて、 ワーク 9 0 の裏面 9 0 13を研削することにより、 ワーク 9 0の厚さを調節してもよい。 ワーク 9 0の裏面 9 0匕を研削した後の第 1積層構造体 2 0 1 も、 ワーク 9 0の厚さが異なる点を除けば、 図 5八に示す状態となる。
[0223] ワーク 9 0の裏面 9 0匕の研削は、 グラインダーを用いる方法等、 公知の 方法で行うことができる。
[0224] ワーク 9 0の裏面 9 0 bを研削する前、 及び研削した後の、 ワーク 9 0の 突状電極 9 1 を除いた部位の厚さは、 先に説明したとおりである。
[0225] 貼付工程により、 第 1積層構造体 2 0 1 を形成した後は、 第 1積層構造体
2 0 1中の熱硬化性樹脂フィルム 1 2から、 第 1支持シート 1 0 1 を取り除 く。 ワーク 9 0の裏面 9 0匕を研削した場合には、 この研削後に、 第 1支持 シート 1 0 1 を取り除くことが好ましい。
〇 2020/175421 59 卩(:171? 2020 /007293
このような工程を行うことで、 図 5巳に示すように、 ワーク 9 0の突状電 極形成面に、 熱硬化性樹脂フィルム 1 2を備えており、 第 1支持シート 1 0 1 を備えずに構成された、 第 2積層構造体 (換言すると、 熱硬化性樹脂フィ ルム付きワーク) 2 0 2が得られる。
第 2積層構造体 2 0 2においては、 突状電極 9 1の頭頂部 9 1 0を含む上 部は、 熱硬化性樹脂フィルム 1 2を貫通して、 突出し、 露出している。
[0226] 第 1粘着剤層 1 3がエネルギー線硬化性である場合には、 エネルギー線の 照射により、 第 1粘着剤層 1 3を硬化させて、 第 1粘着剤層 1 3の粘着性を 低下させた後に、 熱硬化性樹脂フィルム 1 2から第 1支持シート 1 0 1 を取 り除くことが好ましい。
[0227] «第 1保護膜形成工程》
前記第 1保護膜形成工程においては、 貼付後の熱硬化性樹脂フィルム 1 2 を熱硬化させて、 図 5〇に示すように、 第 1保護膜 1 2’ を形成する。 第 1積層構造体 2 0 1 を形成した場合には、 第 1保護膜形成工程は、 第 1 支持シート 1 0 1 を取り除いた後に行うことができる。
また、 ワーク 9 0の裏面 9 0匕を研削した場合には、 第 1保護膜形成工程 は、 前記裏面 9 0匕の研削後に行うことができる。
本工程を行うことにより、 ワーク 9 0の突状電極形成面に、 第 1保護膜 1 2’ を備えて構成された、 第 3積層構造体 (換言すると、 第 1保護膜付きワ —ク) 2 0 3が得られる。 図 5〇中、
は、 第 1保護膜 1 2’ の ワーク 9 0との接触面 (本明細書においては、 「第 1面」 と称することがあ る) を示す。
[0228] 熱硬化性樹脂フィルム 1 2の硬化条件は、 第 1保護膜 1 2’ が十分にその 機能を発揮できる程度の硬化度となる限り特に限定されず、 熱硬化性樹脂フ ィルム 1 2の種類に応じて、 適宜選択すればよい。
例えば、 熱硬化性樹脂フィルム 1 2の熱硬化時における、 加熱温度及び加 熱時間は、 先に説明したとおりである。
熱硬化性樹脂フィルム 1 2の熱硬化時においては、 硬化性樹脂フィルム 1
〇 2020/175421 60 卩(:171? 2020 /007293
2を加圧してもよく、 その場合の加圧圧力は〇. 3〜 1 1\/1 3であることが 好ましい。
[0229] 図 5巳に示す第 2積層構造体 (熱硬化性樹脂フィルム付きワーク) 2 0 2 においては、 突状電極 9 1の頭頂部 9 1 0を含む上部において、 熱硬化性樹 脂フィルム 1 2の残存が抑制されている。 そのため、 本工程の終了後、 突状 電極 9 1の前記上部においては、 第 1保護膜 1 2’ の残存も抑制される。
[0230] «改質層形成工程》
前記改質層形成工程においては、 図 6八に示すように、 ワーク 9 0に対し て、 その第 1保護膜 1 2’ を備えている側から、 第 1保護膜 1 2’ を介して レーザー光 を照射することにより、 ワーク 9 0の内部に改質層 9 0 0を形 成する。
改質層形成工程後は、 後述するワーク 9 0の分割 (すなわち、 ダイシング ) を行うため、 改質層形成工程は、 第 3積層構造体 (第 1保護膜付きワーク ) 2 0 3中の、 ワーク 9 0の裏面 9 0匕に、 ダイシングシート又は第 2保護 膜形成用シートを貼付してから行うことが好ましい。
[0231 ] なお、 本明細書においては、 このように、 ワークの突状電極形成面に第 1 保護膜を備え、 ワークの裏面にダイシングシート又は第 2保護膜形成用シー 卜を備えて構成されたものを、 「第 4積層構造体」 と称することがある。 さらに、 第 4積層構造体中のワークの内部に改質層が形成された構成を有 するものを、 「第 5積層構造体」 と称することがある。
図 6八においては、 第 5積層構造体 2 0 5として、 ワーク 9 0の突状電極 形成面に第 1保護膜 1 2’ を備え、 ワーク 9 0の裏面 9 0 13に第 2保護膜形 成用シート 8を備え、 ワーク 9 0の内部に改質層 9 0 0が形成されて構成さ れたものを示している。
[0232] ここに示す第 2保護膜形成用シート 8は、 第 2基材 8 1 と、 第 2基材 8 1 上に設けられた第 2粘着剤層 8 3と、 第 2粘着剤層 8 3上に設けられた樹脂 層 (樹脂フィルム) 8 2と、 を備えて、 構成されている。
第 2基材 8 1及び第 2粘着剤層 8 3の積層体は、 第 2支持シート 8 0 1で
〇 2020/175421 61 卩(:171? 2020 /007293
ある。
したがって、 第 2保護膜形成用シート 8は、 第 2支持シート 8 0 1 と、 第 2支持シート 8 0 1の一方の面 8 0 1 3上、 換言すると第 2粘着剤層 8 3の 一方の面 8 3 3上、 に設けられた樹脂層 (樹脂フィルム) 8 2と、 を備えた ものであるといえる。
[0233] 樹脂層 (樹脂フィルム) 8 2は、 ワーク 9 0の裏面 9 0 13に、 第 2保護膜 を形成するためのものである。 第 2保護膜は、 ワーク 9 0の裏面 9 0匕を被 覆して保護する。 より具体的には、 第 2保護膜は、 ワークの分割時や、 ワー クの分割によって得られたワーク加工物をパッケージングして目的とする基 板装置を製造するまでの間に、 ワーク加工物においてクラックが発生するの を防止する。
[0234] 樹脂層 8 2は、 熱硬化性及びエネルギー線硬化性のいずれか一方のみの特 性を有していてもよいし、 両方の特性を有していてもよいし、 両方の特性を 有していなくてもよい。 樹脂層 8 2が硬化性である (すなわち、 熱硬化性及 びエネルギー線硬化性の少なくとも一方の特性を有する) 場合には、 その硬 化物が第 2保護膜である。 樹脂層 8 2が非硬化性である (すなわち、 熱硬化 性及びエネルギー線硬化性の両方の特性を有しない) 場合には、 樹脂層 8 2 がワーク 9 0の裏面 9 0匕に貼付された段階で、 第 2保護膜が設けられたと みなす。
[0235] 第 2粘着剤層 8 3は、 第 1粘着剤層 1 3と同様に、 エネルギー線硬化性及 び非エネルギー線硬化性のいずれであってもよい。 エネルギー線硬化性であ る第 2粘着剤層 8 3は、 その硬化前及び硬化後での物性を、 容易に調節でき る。
[0236] 第 2基材 8 1は、 例えば、 先に説明した第 1保護膜形成用シート中の第 1 基材 (例えば、 第 1保護膜形成用シート 1中の第 1基材 1 1) と同様のもの であつてよい。
[0237] 前記製造方法においては、 第 2保護膜形成用シートとして、 第 2保護膜形 成用シート 8以外のものを用いてもよい。
〇 2020/175421 62 卩(:171? 2020 /007293
前記製造方法においては、 第 2保護膜形成用シート 8に限らず、 第 2保護 膜形成用シートとして、 公知のものを用いることができる。
同様に、 前記製造方法においては、 ダイシングシートとして、 公知のもの を用いることができる。
[0238] 改質層形成工程においては、 ワーク 9 0の内部のうち、 ワーク 9 0の分割 箇所となる特定の領域に焦点を設定し、 この焦点に集束するように、 レーザ _光 ^を照射する。 このレーザー光 8の照射により、 照射領域に改質層 9 0 0が形成される。
[0239] 熱硬化性樹脂フィルム 1 2及び第 1保護膜 1 2’ が、 波長 1 3 4 2 n の 光の透過性を有し、 好ましくは、 熱硬化性樹脂フィルム 1 2及び第 1保護膜 1 2’ の、 波長 1 3 4 2 n の光の透過率が、 先に説明したように高い場合 には、 波長 1 3 4 2 n のレーザー光が第 1保護膜 1 2’ を良好に透過する 。 したがって、 ワーク 9 0に対して、 その第 1保護膜 1 2’ を備えている側 から、 第 1保護膜 1 2’ を介してレーザー光 を照射しても、 ワーク 9 0の 内部に改質層 9 0 0を良好に形成できる。
[0240] «分割 ·切断工程》
前記分割 ·切断工程においては、 改質層 9 0 0を形成後のワーク 9 0を第 1保護膜 1 2’ とともに、 換言すると第 5積層構造体 2 0 5を、 その回路面 9〇 3に対して平行な方向 (図 6八中、 矢印巳の方向) にエキスパンドする ことにより、 改質層 9 0 0の部位においてワーク 9 0を分割するとともに、 第 1保護膜 1 2’ を切断する。 これにより、 図 6巳に示すように、 ワークカロ エ物 9と、 ワーク加工物 9の突状電極形成面 (すなわち、 突状電極 9 1の表
に形成された第 1保護膜 (切断後 の第 1保護膜 1 2 0’ ) と、 を備えた第 1保護膜付きワーク加工物 9 9 0を 得る。
本工程を行うことにより、 突状電極形成面に切断後の第 1保護膜 1 2 0’ を備えたワーク加工物 9 (すなわち第 1保護膜付きワーク加工物 9 9 0) が 、 第 2支持シート 8 0 1上に、 複数個 (多数) 整列した状態の、 第 6積層構
〇 2020/175421 63 卩(:171? 2020 /007293
造体 2 0 6が得られる。 図 6巳中、 符号 1 2 0 : は、 切断後の第 1保護膜 1 2 0’ のワーク加工物 9との接触面 (本明細書においては、 「第 1面」 と 称することがある) を示し、 符号 9匕は、 ワーク加工物 9の裏面を示す。
[0241 ] 第 1保護膜 1 2’ が、 前記 X値の合計値の条件を満たす熱硬化性樹脂フィ ルム 1 2から形成されていることにより、 分割 ·切断工程において、 第 1保 護膜 1 2’ は容易に切断できる。 その結果、 突状電極形成面に切断後の第 1 保護膜 1 2 0’ を備えたワーク加工物 9を、 高い効率で製造できる。 本工程 において、 第 1保護膜 1 2’ は、 ワーク 9 0の分割箇所に沿って切断され、 最終的には、 ワーク加工物 9の外周に沿って切断された状態となる。
[0242] 分割 ·切断工程において、 前記エキスパンドは、 _ 1 5〜 5 °〇の温度条件 下で行うことが好ましい。 エキスパンド時の温度が前記上限値以下であるこ とで、 第 1保護膜 1 2’ の切断がより容易となる。 エキスパンド時の温度が 前記下限値以上であることで、 過剰冷却が避けられる。
[0243] ここでは、 前記分割 ·切断工程を行うことにより、 第 2保護膜形成用シー 卜 8中の樹脂層 8 2も切断した場合を示しているが、 樹脂層 8 2の切断は、 分割 ·切断工程後に、 公知の方法によって別途行ってもよい。 図 6巳中、 切 断後の樹脂層 8 2には、 符号 8 2 0を付している。 また、 ここでは、 樹脂層 8 2を切断した場合を示しているが、 樹脂層 8 2の段階では切断せずに、 こ れを硬化させて得られた第 2保護膜を切断してもよい。
[0244] 前記製造方法において、 樹脂層 8 2又は第 2保護膜は、 第 1保護膜 1 2’ の場合と同様に、 ワーク 9 0の分割箇所に沿って切断される。
なお、 本明細書においては、 前記樹脂層が切断された後であっても、 第 2 支持シート及び前記樹脂層 (換言すると、 第 2支持シート及び切断後の前記 樹脂層) の積層構造が維持されている限り、 この積層構造を 「第 2保護膜形 成用シート」 と称する。
[0245] ◊基板装置の製造方法
上述の製造方法により、 第 1保護膜付きワーク加工物 (換言すると第 6積 層構造体) を得た後は、 公知の方法により、 この第 1保護膜付きワーク加工
〇 2020/175421 64 卩(:171? 2020 /007293
物を、 基板の回路面にフリップチップ接続した後、 パッケージとし、 このパ ッケージを用いることにより、 目的とする基板装置を製造できる (図示略)
。 第 1保護膜付き半導体チップを用いた場合には、 半導体パッケージを作製 した後、 この半導体パッケージを用いることにより、 目的とする半導体装置 を製造できる。 また、 第 1保護膜及び第 2保護膜を備えた半導体チップを用 いた場合には、 これら保護膜付き半導体チップをフリップチップ接続し、 目 的とする半導体装置を製造できる。
実施例
[0246] 以下、 具体的実施例により、 本発明についてより詳細に説明する。 ただし 、 本発明は、 以下に示す実施例に、 何ら限定されるものではない。
なお、 以下に示す比較例で製造している各目的物には、 便宜上、 実施例で 製造している各目的物と同じ名称を付している。
[0247] 熱硬化性樹脂層形成用組成物の製造に用いた成分を以下に示す。
[重合体成分 (八) ]
(八) 一 1 :ポリビニルプチラール (積水化学工業社製 「ェスレック 3 V _ 1 〇」 、 重量平均分子量 6 5 0 0 0、 ガラス転移温度 6 6 °〇
(八) 一 2 :ポリビニルプチラール (積水化学工業社製 「ェスレック巳 !_ _ 1 〇」 、 重量平均分子量 2 5 0 0 0、 ガラス転移温度 5 9 °〇
(八) 一 3 : アクリル酸 n -ブチル (5 5質量部) 、 アクリル酸メチル ( 1 〇質量部) 、 メタクリル酸グリシジル (2 0質量部) 及びアクリル酸 2 - ヒドロキシェチル (1 5質量部) を共重合してなるアクリル樹脂 (重量平均 分子量 8 0 0 0 0 0、 ガラス転移温度一 2 8 °〇 。
[熱硬化性成分 (巳) ]
-ェポキシ樹脂 (巳 1)
(巳 1) - 1 : ビスフェノール八型ェポキシ樹脂 (0 丨 〇社製 「巳乂八一 4 8 1 0— 1 0 0 0」 、 ェポキシ当量 4 0 4〜 4 1 2 9 / 6 )
(巳 1) - 2 :ジシクロペンタジェン型ェポキシ樹脂 (0 丨 〇社製 「巳 1 〇!_〇 !! 一 7 2 0 0」 、 ェポキシ当量 2 6 5 9 / 6 )
20/175421 65 卩(:171? 2020 /007293
(巳 1) -3 :液状変性ェポキシ樹脂 (三菱化学社製 「丫乂7 1 1 0」 、 ェポキシ当量 9629/69)
9)
(巳 1) -6 :ジシクロペンタジェン型ェポキシ樹脂 (日本化薬社製 「X □- 1 000— !_」 、 ェポキシ当量 2489/6 )
-熱硬化剤 (巳 2)
(巳 2) - 1 : ノボラック型フェノール樹脂 (昭和電工社製 「シヨウノー ル巳[¾〇-556」 、 水酸基当量 1 049/69)
(巳 2) -2 :ジシアンジアミ ド (八〇巳 八社製 「アデカハードナー巳 !~1_3636 3」 、 固体分散型潜在性硬化剤、 活性水素量 2 1 9 / & q) [硬化促進剤 (〇) ]
(〇 - 1 : 2—フェニルー 4, 5—ジヒドロキシメチルイミダゾール ( 四国化成工業社製 「キュアゾール 2 1~1 」 )
[充填材 ⑴) ]
(0) - 1 :シリカフィラー (アドマテックス社製 「丫八〇 50〇一1\/1[< <」 、 平均粒子径〇. 05 )
(0) - 2 :シリカフィラー (アドマテックス社製 「3〇 20501\/1八」
、 ェポキシ系化合物で表面修飾されたシリカフィラー、 平均粒子径 500 n 01)
(0) -3 :シリカフィラー (タツモリ社製 「3 V - 1 0」 、 平均粒子径
8 )
[カップリング剤 (巳) ]
3巳 2」 、 ァーグリシドキシプロピルトリメ トキシシランを付加させたシ リケート化合物)
[着色剤 (丨) ]
( 1) - 1 :力ーボンブラック (三菱化学社製 「1\/1八一 600巳」 ) [0248] [実施例 1 ]
«熱硬化性樹脂フィルム及び第 1保護膜形成用シートの製造》
<熱硬化性樹脂層形成用組成物の製造>
重合体成分 ( ) 一 1 (9. 9質量部) 、 エポキシ樹脂 (巳 1) - 1 (3 7. 8質量部) 、 エポキシ樹脂 (巳 1) -2 (25. 0質量部) 、 熱硬化剤 (62) - 1 (1 8. 1質量部) 、 硬化促進剤 (〇 - 1 (〇. 2質量部) 及び充填材 (口) _ 1 (9. 0質量部) を混合し、 さらに、 メチルエチルケ トンで希釈して、 23 °〇で撹拌することで、 上述のメチルエチルケトン以外 の 6成分の合計濃度が 55質量%である熱硬化性樹脂層形成用組成物 ( I I I — 1) を調製した。 これら成分と、 その含有量を表 1 に示す。 なお、 表 1 中の含有成分の欄の 「一」 との記載は、 熱硬化性樹脂層形成用組成物がその 成分を含有していないことを意味する。 また、 表 1中の 「全種類の熱硬化性 成分の合計含有量の割合 (質量%) 」 とは、 「熱硬化性樹脂フィルムにおけ る、 熱硬化性樹脂フィルムの総質量に対する、 全種類の熱硬化性成分の合計 含有量の割合」 を意味する。
[0249] <熱硬化性樹脂フィルムの製造>
ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥 離処理された剥離フィルム (リンテック社製 「3 一 巳丁381 03 1」
、 厚さ 38 ) を用い、 その前記剥離処理面に、 上記で得られた熱硬化性 樹脂層形成用組成物 (丨 丨 I - 1) を塗工し、 1 00°〇で 2分乾燥させるこ とにより、 厚さ 3〇 の熱硬化性樹脂フィルムを作製した。
[0250] <第 1保護膜形成用シートの製造>
次いで、 得られた熱硬化性樹脂フィルムの露出面 (換言すると、 前記剥離 フィルムを備えている側とは反対側の面) に、 バックグラインド用表面保護
〇 2020/175421 67 卩(:171? 2020 /007293
テープ (リンテック社製 「八 丨 丨 丨 巳一 8 1 8 0 1~1 [¾」 ) の一方の面 を貼り合わせることにより、 第 1保護膜形成用シートを作製した。 前記表面 保護テープは、 第 1支持シートに相当する。
[0251 ] «第 1保護膜付き半導体チップの製造》
上記で得られた第 1保護膜形成用シート中の熱硬化性樹脂フィルムから、 前記剥離フィルムを取り除き、 これにより生じた熱硬化性樹脂フィルムの露 出面 (換言すると、 前記表面保護テープを備えている側とは反対側の面) を 、 半導体ウェハのバンプ形成面に圧着させることで、 半導体ウェハのバンプ 形成面に第 1保護膜形成用シートを貼付した。 このとき、 第 1保護膜形成用 シートの貼付は、 貼付装置 (口ーラー式ラミネータ、 リンテック社製 「[¾八 0 - 3 5 1 0 / 1 2」 ) を用いて、 テーブル温度 9 0 °〇、 貼付速度 2
貼付圧力〇. 5 1\/1 3の条件で、 熱硬化性樹脂フィルムを加熱 しながら行った。 半導体ウェハとしては、 バンプの高さが 2 1 〇 であり 、 バンプの幅が 2 5 0 であり、 隣り合うバンプ間の距離が 4 0 0 〇!で あり、 バンプを除いた部位の厚さが 7 5 0 であるものを用いた。
以上により、 半導体ウェハのバンプ形成面に、 第 1保護膜形成用シートが 貼付されて構成された、 第 1積層構造体を得た。
[0252] 次いで、 グラインダー (ディスコ社製 「口〇 8 7 6 0」 ) を用いて、 得 られた第 1積層構造体における半導体ウェハの、 バンプ形成面とは反対側の 面 (裏面) を研削した。 このとき、 半導体ウェハのバンプを除いた部位の厚 さが 2 5 0 となるまで、 前記裏面を研削した。
[0253] 次いで、 前記表面保護テープ (換言すると第 1支持シート) を第 1積層構 造体中の熱硬化性樹脂フィルムから取り除いた。
以上により、 半導体ウェハのバンプ形成面に、 熱硬化性樹脂フィルムを備 えて構成された、 第 2積層構造体 (熱硬化性樹脂フィルム付き半導体ウェハ ) を得た。
[0254] 次いで、 熱硬化装置 (リンテック社製 「[¾八0 - 9 1 0 0 〇! / 1 2」 ) を 用いて、 上記で得られた第 2積層構造体中の熱硬化性樹脂フィルムを、 処理
〇 2020/175421 68 卩(:171? 2020 /007293
温度 1 3 0 °〇、 処理圧力〇. 5 IV! 3、 処理時間 2時間の条件で加熱加圧処 理することにより熱硬化させて、 第 1保護膜を形成した。
以上により、 半導体ウェハのバンプ形成面に、 第 1保護膜を備えて構成さ れた、 第 3積層構造体 (換言すると第 1保護膜付き半導体ウェハ) を得た。
[0255] 次いで、 得られた第 3積層構造体中の、 半導体ウェハの前記裏面 (換言す ると研削面) に、 ダイシングテープ (リンテック社製 「八 丨 丨 丨 □- 8 4 1」 ) を貼付することにより、 半導体ウェハのバンプ形成面に第 1保護 膜を備え、 前記裏面にダイシングテープを備えて構成された、 第 4積層構造 体を得た。 前記ダイシングテープは、 第 2支持シートに相当する。
[0256] 次いで、 ダイシング装置 (ディスコ社製 「0 !_ 7 3 6 1」 ) を用いて、 第 4積層構造体中の半導体ウェハに対して、 その内部に設定された焦点に集 束するように、 その第 1保護膜を備えている側から、 第 1保護膜を介してレ —ザー光を照射することにより、 半導体ウェハの内部に改質層を形成した。 このとき、 レーザー光の波長は 1 3 4 2 n
とし、 出力は〇. ァ とし、 周 波数は
した。
以上により、 第 4積層構造体中の半導体ウェハの内部に改質層が形成され た構成を有する、 第 5積層構造体を得た。
[0257] 次いで、 0 °〇の環境下で、 この改質層を形成後の半導体ウェハ (換言する と第 5積層構造体) を、 その回路面に対して平行な方向に、 第 1保護膜とと もにェキスパンドすることにより、 改質層の部位において、 半導体ウェハを 分割するとともに、 第 1保護膜を半導体ウェハの分割箇所に沿って切断した 。 このとき、 ダイセパレーター (ディスコ社製 「0 0 3 2 3 0 0」 ) を用い 、 第 5積層構造体中の第 2支持シートをダイセパレーター中のテーブル上に 載置するとともに、 第 5積層構造体の周縁部を固定し、 この状態で、 突き上 げ速度 5 0 01 01 / 3 6〇、 突き上げ量 2 0 01 01の条件でテーブルを突き上げ ることにより、 半導体ウェハ及び第 1保護膜をェキスパンドした。 得られた 半導体チップの大きさは
以上により、 バンプ形成面に切断後の第 1保護膜を備えた半導体チップ (
〇 2020/175421 69 卩(:171? 2020 /007293
すなわち第 1保護膜付き半導体チップ) が、 第 2支持シート (換言すると前 記ダイシングテープ) 上に、 複数個 (多数) 整列した状態の、 第 6積層構造 体を得た。
[0258] «熱硬化性樹脂フィルムの評価»
<バンプの上部における熱硬化性樹脂フィルムの残存抑制性の確認> 上述の第 1保護膜付き半導体チップの製造時に、 半導体ウェハのバンプ形 成面側から、 走査型電子顕微鏡 (キーェンス社製 「 巳_ 9 8 0 0」 ) を用 い、 加速電圧を
として、 第 1積層構造体を観察した。 そして、 下記 評価基準に従って、 第 1積層構造体中のバンプの上部における熱硬化性樹脂 フィルムの残存抑制性を評価した。 結果を表 1 に示す。
(評価基準)
八 :バンプと熱硬化性樹脂フィルムとの境界を確認でき、 バンプの上部に 熱硬化性樹脂フィルムが残存していないことを確認できる。
巳 :バンプと熱硬化性樹脂フィルムとの境界を確認できず、 バンプの上部 に熱硬化性樹脂フィルムが残存していることを確認できる。
[0259] <熱硬化性樹脂フィルムの光の透過率の測定>
熱硬化性樹脂層形成用組成物 ( I 丨 I - 1) の塗工量を変更した点以外は 、 上述の熱硬化性樹脂フィルムの製造時と同じ方法で、 試験用の熱硬化性樹 脂フィルム (厚さ 4 0 ) を 5枚製造した。
次いで、 これら 5枚の試験用の熱硬化性樹脂フィルムを、 これらの厚さ方 向において積層することにより、 積層フィルム (厚さ 2 0 0 ) を得た。 次いで、 分光光度計 ( 3 1~1 I M A D Z \J社製 「11 ー 1 3 - 1\1 1 [¾ 3
[0260] «第 1保護膜の評価》
<半導体ウェハの分割性の評価>
デジタル顕微鏡 (キーェンス社製 「 1~1 - 2 1 0 0」 ) を用いて、 上記で
〇 2020/175421 70 卩(:171? 2020 /007293
得られた第 6積層構造体を、 その第 1保護膜側から観察した。 このとき、 観 察領域としては、 第 2支持シートの、 第 1保護膜付き半導体チップの整列面 のうち、 中央部に相当する第 1領域と、 第 1領域に対して点対称となる周縁 部側の位置にあり、 かつ、 第 1領域からの距離が同等である第 2領域、 第 3 領域、 第 4領域及び第 5領域と、 の合計 5領域を選択した。 これら 5領域は 、 いずれも、 半導体ウェハが正常に分割されたと仮定したとき、 5行 5列で 2 5個の第 1保護膜付き半導体チップを含む領域とした。 また、 第 2領域と 第 3領域を結ぶ第 1線分のほぼ中央部に第 1領域が存在し、 第 4領域と第 5 領域を結ぶ第 2線分のほぼ中央部に第 1領域が存在して、 時計回りに、 第 2 領域、 第 4領域、 第 3領域及び第 5領域がこの順に位置するように、 これら 5領域を選択した。 第 1線分と第 2線分は、 互いに直交することになる。 そ して、 これら 5領域を観察し、 下記評価基準に従って、 半導体ウェハの分割 性を評価した。 結果を表 1 に示す。
(評価基準)
八 : 5領域すベて (第 1領域〜第 5領域のすべての領域) において、 半導 体ウェハが正常に分割されている。
巳 :少なくとも 1領域 (第 1領域〜第 5領域の少なくともいずれかの領域 ) において、 半導体ウェハが正常に分割されていない箇所がある。
[0261 ] <第 1保護膜の切断性の評価>
上述の半導体ウェハの分割性の評価時に、 同時に、 下記評価基準に従って 、 第 1保護膜の切断性を評価した。 結果を表 1 に示す。
(評価基準)
八 : 5領域すベて (第 1領域〜第 5領域のすべての領域) において、 第 1 保護膜が正常に切断されている。
巳 :少なくとも 1領域 (第 1領域〜第 5領域の少なくともいずれかの領域 ) において、 第 1保護膜が正常に切断されていない箇所がある。
[0262] <第 1保護膜の破断強度の測定>
熱硬化性樹脂層形成用組成物 ( I 丨 I - 1) の塗工量を変更した点以外は
〇 2020/175421 71 卩(:171? 2020 /007293
、 上述の熱硬化性樹脂フィルムの製造時と同じ方法で、 試験用の熱硬化性樹 脂フィルム (厚さ 4 0 ) を製造した。
次いで、 この試験用の熱硬化性樹脂フィルムを、 1 3 0 °〇で 2時間加熱す ることにより、 熱硬化させた。
次いで、 この硬化物 (すなわち第 1保護膜) から、 大きさが 2 0 1 3 である切片を切り出し、 これを試験片とした。
万能引張試験機 (島津製作所社製 「オートグラフ 〇- I 3」 ) を用い、 つかみ器具間距離を 8 0〇!〇!とし、 引張り速度を 2 0 0〇! /〇! 丨 として 、 前記試験片をその表面に対して平行な方向において、 つかみ器具により引 っ張り、 このときの前記試験片の最大応力を測定し、 これを第 1保護膜の破 断強度として採用した。 結果を表 1 に示す。
[0263] [比較例 1 ]
«熱硬化性樹脂フィルム及び第 1保護膜形成用シートの製造》
<熱硬化性樹脂層形成用組成物の製造>
重合体成分 ( ) 一2 (1 〇. 0質量部) 、 エポキシ樹脂 (巳 1) - 2 ( 3 0 . 0質量部) 、 エポキシ樹脂 (巳 1) - 3 (3 3 . 0質量部) 、 熱硬化 剤 (巳 2) - 1 (1 6 . 0質量部) 、 硬化促進剤 (〇 - 1 (〇. 2質量部 ) 及び充填材 (口) _ 1 (1 1 . 0質量部) を混合し、 さらに、 メチルエチ ルケトンで希釈して、 2 3 °〇で撹拌することで、 上述のメチルエチルケトン 以外の 6成分の合計濃度が 5 5質量%である樹脂層形成用組成物を調製した 。 これら成分と、 その含有量を表 1 に示す。
[0264] <熱硬化性樹脂フィルム及び第 1保護膜形成用シートの製造>
樹脂層形成用組成物として、 上記で得られたものを用いた点以外は、 実施 例 1の場合と同じ方法で、 熱硬化性樹脂フィルム及び第 1保護膜形成用シー 卜を製造した。
[0265] «第 1保護膜付き半導体チップの製造》
第 1保護膜形成用シートとして、 上記で得られたものを用いた点以外は、 実施例 1の場合と同じ方法で、 第 1保護膜付き半導体チップ (換言すると第
〇 2020/175421 72 卩(:171? 2020 /007293
6積層構造体) の製造を試みた。
[0266] «熱硬化性樹脂フィルム及び第 1保護膜の評価》
本比較例で製造した熱硬化性樹脂フィルム及び第 1保護膜について、 実施 例 1の場合と同じ方法で評価を行った。 結果を表 1 に示す。
[0267] [比較例 2 ]
«熱硬化性樹脂フィルム及び第 1保護膜形成用シートの製造》
<熱硬化性樹脂層形成用組成物の製造>
重合体成分 ( ) 一3 (2 1. 0質量部) 、 エポキシ樹脂 (巳 1) -4 ( 1 0. 〇質量部) 、 エポキシ樹脂 (巳 1) -5 (2. 0質量部) 、 エポキシ 樹脂 (巳 1) -6 (5. 6質量部) 、 熱硬化剤 (巳 2) -2 (〇. 5質量部 ) 、 硬化促進剤 (<3) - 1 (〇. 5質量部) 、 充填材 (口) 一2 (6. 0質 量部) 、 充填材 (口) _3 (54. 0質量部) 、 カップリング剤 (巳) _ 1 (〇. 4質量部) 及び着色剤 ( I) _ 1 (1. 9質量部) を混合し、 さらに 、 メチルエチルケトンで希釈して、 23 °〇で撹拌することで、 上述のメチル エチルケトン以外の 1 0成分の合計濃度が 55質量%である樹脂層形成用組 成物を調製した。 これら成分と、 その含有量を表 1 に示す。
[0268] <熱硬化性樹脂フィルム及び第 1保護膜形成用シートの製造>
樹脂層形成用組成物として、 上記で得られたものを用いた点以外は、 実施 例 1の場合と同じ方法で、 熱硬化性樹脂フィルム及び第 1保護膜形成用シー 卜を製造した。
[0269] «第 1保護膜付き半導体チップの製造》
第 1保護膜形成用シートとして、 上記で得られたものを用いた点以外は、 実施例 1の場合と同じ方法で、 第 1保護膜付き半導体チップ (換言すると第 6積層構造体) の製造を試みた。
[0270] «熱硬化性樹脂フィルム及び第 1保護膜の評価》
本比較例で製造した熱硬化性樹脂フィルム及び第 1保護膜について、 実施 例 1の場合と同じ方法で評価を行った。 結果を表 1 に示す。
[0271]
〇 2020/175421 73 卩(:171? 2020 /007293
[表 1 ]
[0272] 上記結果から明らかなように、 実施例 1の熱硬化性樹脂フィルムは、 半導 体ウェハのバンプ形成面への貼付時に、 バンプの上部における残存を抑制で き、 好ましい特性を有していた。
実施例 1の熱硬化性樹脂フィルムにおける、 熱硬化性樹脂フィルムの総質 量に対する、 全種類の熱硬化性成分の合計含有量の割合は、 8 0 . 9質量% であった。
〇 2020/175421 74 卩(:171? 2020 /007293
[0273] また、 実施例 1 においては、 半導体ウェハの分割性が良好であった。
実施例 1の熱硬化性樹脂フィルムの、 波長 1 342 n の光の透過率が高 く、 その結果、 このフィルムから形成された第 1保護膜の光の透過率も同様 に高く、 第 1保護膜を介して半導体ウェハにレーザー光を照射したときに、 半導体ウェハの内部に改質層を良好に形成できた。
[0274] また、 実施例 1 においては、 第 1保護膜の切断性が良好であった。
実施例 1 において、 X値の合計値は 296 (= {408X37. 8/ (3 7. 8 + 25. 0+ 1 8. 1 ) } + {265 X 25. 0/ (37. 8 + 25 . 0+ 1 8. 1 ) } + {1 04X 1 8. 1 / (37. 8 + 25. 0+ 1 8. 1 ) } )
った。
[0275] これに対して、 比較例 1 においては、 第 1保護膜の切断性が劣っていた。
比較例 1 において、 X値の合計値は 524 (= {265 X30. 0/ (3 〇. 0 + 33. 0+ 1 6. 0) } + {962X33. 0/ (30. 0 + 33 . 0+ 1 6. 0) } + {1 04X 1 6. 0/ (30. 0 + 33. 0+ 1 6. 〇) } ) 9/69であり、 第 1保護膜の破断強度は、
った。
[0276] 比較例 2の熱硬化性樹脂フィルムは、 半導体ウェハのバンプ形成面への貼 付時に、 バンプの上部における残存を抑制できず、 特性が劣っていた。 比較例 2の熱硬化性樹脂フィルムにおける、 熱硬化性樹脂フィルムの総質 量に対する、 全種類の熱硬化性成分の合計含有量の割合は、 1 7. 8質量% であった。
[0277] また、 比較例 2においては、 半導体ウェハの分割性が劣っていた。
比較例 2の熱硬化性樹脂フィルムの、 波長 1 342 n の光の透過率が低 く、 その結果、 このフィルムから形成された第 1保護膜の光の透過率も同様 に低く、 第 1保護膜を介して半導体ウェハにレーザー光を照射したときに、 半導体ウェハの内部に改質層を適切に形成できなかった。 その結果、 半導体 ウェハを正常に分割できなかった。
比較例 2では、 第 1保護膜を切断できなかったが、 この結果に、 第 1保護 膜自体の特性がどの程度影響を与えているのかを判断できず、 第 1保護膜の
〇 2020/175421 75 卩(:171? 2020 /007293
切断性は評価不能であった。 ただし、 第 1保護膜の破断強度が 25 IV! 3と 小さかったことから、 第 1保護膜を切断できなかった原因は、 主に半導体ウ エハの分割性が劣っていたことにある、 と推測された。
産業上の利用可能性
[0278] 本発明は、 フリツプチツプ実装方法で使用される、 接続パツ ド部に突状電 極を有するワーク加工物等の製造に利用可能である。
符号の説明
[0279] 1 , 2, 3 第 1保護膜形成用シート、 1 1 · · 第 1基材、 1 1 3
- 第 1基材の一方の面、 1 2 · · 熱硬化性樹脂層 (熱硬化性樹脂フィ ルム) 、 1 2’ 第 1保護膜、 1 20’ 切断後の第 1保護膜、 1 3 第 1粘着剤層、 1 33 · · 第 1粘着剤層の一方の面、 1 4 · · · 第 1中間層、 1 01, 1 02, 1 03 第 1支持シート、 1 01 3, 1 023, 1 033 第 1支持シートの表面、 206 · · ·第 6積層構造 体、 90 · · · ワーク、 908 ワークの回路面、 9 1 · · ·突状電極 . 9 1 3 · · ·突状電極の表面、 900 · · ·改質層、 990 · · 第 1保 護膜付きワーク加工物、 [¾ レーザー光
Claims
\¥0 2020/175421 76 卩(:17 2020 /007293
請求の範囲
[請求項 1] ワークの突状電極を有する面に貼付し、 熱硬化させることによって
、 前記面に第 1保護膜を形成するための熱硬化性樹脂フィルムであっ て、
前記熱硬化性樹脂フィルムは、 エポキシ基を有するアクリル樹脂以 外の、 2種以上の熱硬化性成分を含有し、
前記熱硬化性樹脂フィルムにおける、 前記熱硬化性樹脂フィルムの 総質量に対する、 全種類の前記熱硬化性成分の合計含有量の割合が、
4 0質量%以上であり、
前記熱硬化性樹脂フィルムが含有する前記熱硬化性成分について、 その種類ごとに、 下記式:
乂= [熱硬化性成分の熱硬化反応に関わる官能基の当量 (9 / 6 9 ) ] X [熱硬化性樹脂フィルムの熱硬化性成分の含有量 (質量部) ] / [熱硬化性樹脂フィルムの全種類の熱硬化性成分の合計含有量 (質 量部) ]
で算出される X値を求め、 前記熱硬化性樹脂フィルムが含有する全種 類の前記熱硬化性成分における前記 X値の合計値を求めたとき、 前記 合計値が 4 0 0 9 / 6 9以下となる、 熱硬化性樹脂フィルム。
[請求項 2] 第 1支持シ_卜を備え、 前記第 1支持シ_卜の一方の面上に、 請求 項 1 に記載の熱硬化性樹脂フィルムを備えた、 第 1保護膜形成用シー 卜
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080005537.0A CN112805824A (zh) | 2019-02-26 | 2020-02-25 | 热固性树脂膜及第一保护膜形成用片 |
JP2021502230A JP7541502B2 (ja) | 2019-02-26 | 2020-02-25 | 熱硬化性樹脂フィルム及び第1保護膜形成用シート |
KR1020217009867A KR20210130696A (ko) | 2019-02-26 | 2020-02-25 | 열경화성 수지 필름 및 제1 보호막 형성용 시트 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-032828 | 2019-02-26 | ||
JP2019032828 | 2019-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020175421A1 true WO2020175421A1 (ja) | 2020-09-03 |
Family
ID=72239176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/007293 WO2020175421A1 (ja) | 2019-02-26 | 2020-02-25 | 熱硬化性樹脂フィルム及び第1保護膜形成用シート |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7541502B2 (ja) |
KR (1) | KR20210130696A (ja) |
CN (1) | CN112805824A (ja) |
TW (1) | TWI834820B (ja) |
WO (1) | WO2020175421A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012144667A (ja) * | 2011-01-14 | 2012-08-02 | Lintec Corp | 接着剤組成物、接着シートおよび半導体装置の製造方法 |
JP2012169482A (ja) * | 2011-02-15 | 2012-09-06 | Nitto Denko Corp | 保護層形成用フィルム |
JP2012169484A (ja) * | 2011-02-15 | 2012-09-06 | Nitto Denko Corp | 半導体装置の製造方法 |
JP2013203795A (ja) * | 2012-03-27 | 2013-10-07 | Lintec Corp | 接着剤組成物、接着シートおよび半導体装置の製造方法 |
WO2017078050A1 (ja) * | 2015-11-04 | 2017-05-11 | リンテック株式会社 | 硬化性樹脂フィルム及び第1保護膜形成用シート |
WO2017077958A1 (ja) * | 2015-11-04 | 2017-05-11 | リンテック株式会社 | 半導体装置の製造方法 |
WO2017188229A1 (ja) * | 2016-04-28 | 2017-11-02 | リンテック株式会社 | 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法 |
WO2018147097A1 (ja) * | 2017-02-09 | 2018-08-16 | リンテック株式会社 | 硬化性樹脂フィルム及び第1保護膜形成用シート |
JP2018171864A (ja) * | 2017-03-31 | 2018-11-08 | リンテック株式会社 | 樹脂膜形成用複合シート |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6438181B1 (ja) | 2017-05-17 | 2018-12-12 | リンテック株式会社 | 半導体装置及びその製造方法 |
-
2020
- 2020-02-25 KR KR1020217009867A patent/KR20210130696A/ko active IP Right Grant
- 2020-02-25 CN CN202080005537.0A patent/CN112805824A/zh active Pending
- 2020-02-25 JP JP2021502230A patent/JP7541502B2/ja active Active
- 2020-02-25 WO PCT/JP2020/007293 patent/WO2020175421A1/ja active Application Filing
- 2020-02-25 TW TW109105943A patent/TWI834820B/zh active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012144667A (ja) * | 2011-01-14 | 2012-08-02 | Lintec Corp | 接着剤組成物、接着シートおよび半導体装置の製造方法 |
JP2012169482A (ja) * | 2011-02-15 | 2012-09-06 | Nitto Denko Corp | 保護層形成用フィルム |
JP2012169484A (ja) * | 2011-02-15 | 2012-09-06 | Nitto Denko Corp | 半導体装置の製造方法 |
JP2013203795A (ja) * | 2012-03-27 | 2013-10-07 | Lintec Corp | 接着剤組成物、接着シートおよび半導体装置の製造方法 |
WO2017078050A1 (ja) * | 2015-11-04 | 2017-05-11 | リンテック株式会社 | 硬化性樹脂フィルム及び第1保護膜形成用シート |
WO2017077958A1 (ja) * | 2015-11-04 | 2017-05-11 | リンテック株式会社 | 半導体装置の製造方法 |
WO2017188229A1 (ja) * | 2016-04-28 | 2017-11-02 | リンテック株式会社 | 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法 |
WO2018147097A1 (ja) * | 2017-02-09 | 2018-08-16 | リンテック株式会社 | 硬化性樹脂フィルム及び第1保護膜形成用シート |
JP2018171864A (ja) * | 2017-03-31 | 2018-11-08 | リンテック株式会社 | 樹脂膜形成用複合シート |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020175421A1 (ja) | 2021-12-23 |
TWI834820B (zh) | 2024-03-11 |
KR20210130696A (ko) | 2021-11-01 |
TW202104508A (zh) | 2021-02-01 |
CN112805824A (zh) | 2021-05-14 |
JP7541502B2 (ja) | 2024-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI632217B (zh) | Semiconductor bonded bonding sheet and method of manufacturing semiconductor device | |
JPWO2014155756A1 (ja) | 粘着シートおよび保護膜形成用複合シートならびに保護膜付きチップの製造方法 | |
WO2018066302A1 (ja) | 第1保護膜形成用シート | |
JP2021013035A (ja) | 熱硬化性保護膜形成用フィルム、保護膜形成用複合シート、及びチップの製造方法 | |
JP6438181B1 (ja) | 半導体装置及びその製造方法 | |
WO2020189447A1 (ja) | 保護膜形成用シートおよび基板装置の製造方法 | |
CN108701640B (zh) | 保护膜形成用膜以及保护膜形成用复合片 | |
CN111279463B (zh) | 保护膜形成用膜、保护膜形成用复合片及半导体芯片的制造方法 | |
JP6979081B2 (ja) | 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法 | |
JP6978890B2 (ja) | ダイシングダイボンディングシート及び半導体チップの製造方法 | |
JP7129110B2 (ja) | 積層体及び硬化封止体の製造方法 | |
JP6427791B2 (ja) | チップ用樹脂膜形成用シート及び半導体装置の製造方法 | |
WO2021132680A1 (ja) | キット及び半導体チップの製造方法 | |
WO2020175421A1 (ja) | 熱硬化性樹脂フィルム及び第1保護膜形成用シート | |
JP7541503B2 (ja) | 熱硬化性樹脂フィルム及び第1保護膜形成用シート | |
WO2020175428A1 (ja) | 第1保護膜付きワーク加工物の製造方法 | |
JPWO2019189173A1 (ja) | 半導体チップの製造方法 | |
WO2020195761A1 (ja) | 熱硬化性樹脂フィルム、第1保護膜形成用シート、キット、及び第1保護膜付きワーク加工物の製造方法 | |
WO2023145610A1 (ja) | 硬化性樹脂フィルム、複合シート、半導体チップ、及び半導体チップの製造方法 | |
WO2021235005A1 (ja) | 半導体装置の製造方法 | |
JP2021147479A (ja) | フィルム状接着剤及びダイシングダイボンディングシート | |
JP2021147478A (ja) | フィルム状接着剤及びダイシングダイボンディングシート | |
JP2022146567A (ja) | 保護膜形成フィルム、保護膜形成用複合シート、保護膜付きワーク加工物の製造方法、及び保護膜付きワークの製造方法 | |
TW202348757A (zh) | 保護膜形成膜、保護膜形成用複合片、半導體裝置之製造方法、以及保護膜形成膜之使用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20763537 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021502230 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20763537 Country of ref document: EP Kind code of ref document: A1 |