WO2020175245A1 - フォトクロミック材料用ナノ粒子及びフォトクロミック材料用ナノ粒子水分散液 - Google Patents

フォトクロミック材料用ナノ粒子及びフォトクロミック材料用ナノ粒子水分散液 Download PDF

Info

Publication number
WO2020175245A1
WO2020175245A1 PCT/JP2020/006330 JP2020006330W WO2020175245A1 WO 2020175245 A1 WO2020175245 A1 WO 2020175245A1 JP 2020006330 W JP2020006330 W JP 2020006330W WO 2020175245 A1 WO2020175245 A1 WO 2020175245A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
photochromic material
photochromic
transition metal
irradiation
Prior art date
Application number
PCT/JP2020/006330
Other languages
English (en)
French (fr)
Inventor
小林 洋一
玉蓮 韓
Original Assignee
学校法人立命館
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人立命館 filed Critical 学校法人立命館
Priority to JP2021502036A priority Critical patent/JPWO2020175245A1/ja
Priority to US17/434,146 priority patent/US20220162085A1/en
Publication of WO2020175245A1 publication Critical patent/WO2020175245A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/08Sulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present invention relates to nanoparticles for photochromic materials and aqueous dispersions of nanoparticles for photochromic materials.
  • Photochromic materials can be used in various fields. In particular, it is useful for eyewear such as spectacles, sunglasses, and goggles because it can protect the eyes and secure the field of view under the sunlight.
  • semiconductor nanoparticles As the semiconductor nanoparticles, semiconductor nanoparticles having a core/shell structure have been proposed, and a method for producing a semiconductor nanoparticle assembly containing the semiconductor nanoparticles has been proposed (for example, Patent Document 1 See).
  • Patent Document 1 does not describe the n 3 semiconductor nanoparticles, and no photochromic reaction is observed even if the semiconductor nanoparticles of Patent Document 1 are used. It cannot be used as a photochromic material.
  • Patent Document 1 Patent No. 5 9 1 5 5 29
  • the present invention relates to the following nanoparticles for photochromic material and an aqueous dispersion of nanoparticles for photochromic material.
  • Nanoparticles for photochromic material represented by
  • Transition metal is doped and/or adsorbed
  • Nanoparticles for photochromic materials characterized by the above.
  • the X is at least selected from the group consisting of ⁇ , 3, 36 and D6. ⁇ 2020/175 245 3 (:171? 2020/006330
  • Item 1 The nanoparticles for photochromic materials according to Item 1, which are one type.
  • the organic ligand has the following general formula (2) , ⁇ 20 represents an organic group. )
  • Item 3 The nanoparticles for a photochromic material according to Item 1 or 2, which is an organic ligand represented by.
  • nanoparticles for photochromic materials according to any one of Items 1 to 3, having an average particle diameter of 1 n or more and 100 n or less.
  • An aqueous dispersion of nanoparticles for photochromic material wherein the nanoparticles for photochromic material according to any one of Items 1 to 4 are dispersed in water.
  • the nanoparticles for photochromic material of the present invention can produce a photochromic material having a short reaction time of photochromic reaction.
  • Fig. 1 is a schematic view showing an example of a structure of nanoparticles for a photochromic material of the present invention.
  • Fig. 2 is a view showing the measurement results of the nanoparticle for photochromic material of Example 1 (opening (X-ray diffraction)).
  • FIG. 3 is a diagram showing the measurement results of the absorbance change in the spectrum of FIG.
  • FIG. 4 is a diagram showing a photograph of the nanoparticles for photochromic material of Example 1 after being irradiated with ultraviolet rays.
  • FIG. 5 300 to 800 after 1 second from ultraviolet irradiation of the nanoparticles for photochromic material of Example 1. It is a figure which shows the measurement result of the light absorbency change in the spectrum of the range.
  • FIG. 6 300 to 800 after irradiation of the nanoparticles for photochromic material of Example 1 with ultraviolet light for 10 seconds.
  • FIG. 6 300 to 800 after irradiation of the nanoparticles for photochromic material of Example 1 with ultraviolet light for 10 seconds.
  • FIG. 7 Nanoparticles for photochromic material of Example 1 300 to 800 after UV irradiation for 40 seconds It is a figure which shows the measurement result of the light absorbency change in the spectrum of the range.
  • FIG. 8 300 ⁇ 800 after 1 second of UV irradiation of nanoparticles for photochromic material of Comparative Example 2 It is a figure which shows the measurement result of the light absorbency change in the spectrum of the range.
  • FIG. 9 300 to 800 after irradiation of the nanoparticles for photochromic material of Comparative Example 2 with ultraviolet light for 10 seconds. It is a figure which shows the measurement result of the light absorbency change in the spectrum of the range.
  • FIG. 10 Nanoparticles for photochromic material of Comparative Example 2 300 to 800 n after UV irradiation for 40 seconds
  • FIG. 5 is a diagram showing the measurement results of absorbance change in a spectrum in the range.
  • FIG. 11 Nanoparticles for photochromic material of Comparative Example 3 300 to 800 after 1 second of UV irradiation It is a figure which shows the measurement result of the light absorbency change in the spectrum of the range.
  • FIG. 5 is a diagram showing the measurement results of absorbance change in a spectrum in the range.
  • FIG. 13 Nanoparticles for a photochromic material of Comparative Example 3 300 to 800 n after UV irradiation for 40 seconds
  • FIG. 5 is a diagram showing the measurement results of absorbance change in a spectrum in the range.
  • FIG. 14 Nanoparticles for photochromic material of Example 3 300 to 800 after 1 second of ultraviolet irradiation It is a figure which shows the measurement result of the light absorbency change in the spectrum of the range.
  • FIG. 15 300 to 800 n after irradiation of the nanoparticles of the photochromic material of Example 3 with ultraviolet light for 10 seconds
  • FIG. 5 is a diagram showing the measurement results of absorbance change in a spectrum in the range. 20/175 245 5 ⁇ (: 171? 2020 /006330
  • FIG. 5 is a diagram showing the measurement results of absorbance change in a spectrum in the range.
  • FIG. 17 is a diagram showing measurement results of electron spin resonance (N 8) of nanoparticles for photochromic material of Example 1.
  • FIG. 18 is a diagram showing measurement results of electron spin resonance (N 8) of nanoparticles for photochromic material of Example 2.
  • FIG. 19 is a diagram showing measurement results of electron spin resonance (Nomito 8) of nanoparticles for photochromic material of Example 3.
  • FIG. 20 is a diagram showing a result of measurement of electron spin resonance (N 8) of nanoparticles for photochromic material of Comparative Example 1.
  • FIG. 21 is a diagram showing measurement results of absorbance change after 200 nanoseconds of irradiation of a picosecond pulse laser on an aqueous dispersion of nanoparticles for photochromic material of Example 2.
  • FIG. 22 A diagram showing measurement results of absorbance change 600 nanoseconds after irradiation of a picosecond pulse laser to an aqueous dispersion of nanoparticles for photochromic material of Example 2.
  • FIG. 23 is a diagram showing the measurement results of absorbance change 1800 nanoseconds after irradiation of the aqueous dispersion of nanoparticles for photochromic material of Example 2 with a picosecond pulse laser.
  • FIG. 24 The aqueous dispersions of nanoparticles for photochromic materials of Example 1 and Comparative Example 1 were irradiated with a picosecond pulse laser to give a wavelength of 600 It is a figure which shows the measurement result of the light absorbency change which probed.
  • FIG. 25 is a view showing a result of observing the nanoparticles for the photochromic material of Example 2 with a transmission electron microscope (Dingmi 1 ⁇ /1).
  • Fig. 26 is a view showing a result of observing the nanoparticles for the photochromic material of Example 2 with a transmission electron microscope (Chome 1 ⁇ /1).
  • FIG. 27 The photodurability measurement results of the nanoparticles for photochromic material of Example 1 are shown. ⁇ 2020/175 245 6 ⁇ (:171? 2020 /006330
  • FIG. 1 A first figure.
  • FIG. 28 is a diagram showing the results of absorption spectrum measurements of nanoparticles for photochromic materials of Example 1 and Comparative Example 1.
  • FIG. 30 is a diagram showing measurement results of absorbance changes before and after drying of nanoparticles for a photochromic material of Example 1.
  • FIG. 31 is a diagram showing measurement results of changes in light absorption of the nanoparticles for photochromic material of Example 1 under different temperature conditions.
  • the nanoparticles for the photochromic material of the present invention have the following general formula (1)
  • the nanoparticle for a photochromic material represented by, wherein the transition metal is doped and/or adsorbed, and has an organic ligand containing a sulfur element on its surface.
  • Figure 1 shows that in the general formula (1), the number is 3, the doped transition metal is 0, and the organic ligand is 3 _ ⁇ 2 ! ⁇ 1 4 _ ⁇ ⁇ ⁇ 1 to 1.
  • the schematic diagram of an example of the structure of the nanoparticle for photochromic materials of this invention in a certain case is shown.
  • the carboxyl group at the terminal of the organic ligand exists in the state of -XX- in the aqueous solution. In FIG.
  • nano particles 1 for a photochromic material of the present invention have n 3 nanoparticles 2 doped with ⁇ as a transition metal 3, and as an organic ligand containing a sulfur element on the surface of the particle: 3 and has a _ ⁇ 2! ⁇ 1 4 structure having a _ ⁇ _ ⁇ ⁇ -.
  • the nanoparticle for photochromic material of the present invention having the above-mentioned structure has a structure represented by the above general formula (1), and is colored when irradiated with light of a specific wavelength, and becomes unirradiated when irradiated with light of a specific wavelength. It can exhibit the function as a so-called photochromic material in which coloring disappears and the discoloration is repeated. Further, according to the present invention ⁇ 2020/175 245 7 ⁇ (:171? 2020 /006330
  • Nanoparticles for photochromic materials are doped with transition metal and/or adsorbed, and have organic ligands containing elemental sulfur on the surface, so the time it takes for light to be colored and , The reaction time from coloring to returning to the original state is shortened, and a photochromic material with a short reaction time of the photochromic reaction can be manufactured.
  • nanoparticles for photochromic material of the present invention are represented by the following general formula (1).
  • X represents a Group 16 element. Specifically, X is ⁇ ,
  • 3 6, include Ding 6.
  • 3, and O are preferable, and 3 is more preferable, because the coloring when irradiated with light is more clear.
  • the above X may be used singly or as a mixture of two or more.
  • the nanoparticles for photochromic material of the present invention are doped with a transition metal and/or are adsorbed. That is, in the nanoparticle for a photochromic material of the present invention, when the transition metal is doped, a part of is substituted with the transition metal in the particle nucleus represented by n X. Further, in the nanoparticles for photochromic material of the present invention, when the transition metal is adsorbed, the transition metal is adsorbed on the surface of the particle nucleus indicated by n X.
  • the transition metal may be doped, may be adsorbed to the transition metal, part of which is de _-flop to the transition metal, partially adsorbed to the transition metal It may have been done.
  • the transition metal is not particularly limited, and examples thereof include manganese, cobalt, nickel, iron, chromium, copper, molybdenum, vanadium, titanium, zirconium, niobium, silver and bismuth.
  • copper is preferable because the coloring when irradiated with light is more distinct.
  • transition metals may be used alone or in a mixture of two or more. Good.
  • the doping amount of the transition metal is 1
  • the amount of 0 mol% is preferably 0.1 mol% or more, more preferably 0.5 mol% or more. Further, the doping amount of the transition metal is preferably 10 mol% or less, more preferably 5 mol% or less.
  • the adsorption of the transition metal is not particularly limited as long as the transition metal can be adsorbed on the surface of the particle nucleus represented by Z n X, and physical adsorption is preferable.
  • the form of physical adsorption is not clear, but the transition metal is adsorbed on the surface of the particle nucleus represented by Z n X by an electric action such as Van der Waalsca The form may be mentioned.
  • the adsorption amount of the transition metal is preferably 0.1 mass% or more, more preferably 0.5 mass% or more, based on 100 mass% of the nanoparticles for the photochromic material.
  • the amount of transition metal adsorbed is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the nanoparticle for photochromic material of the present invention has an organic ligand containing a sulfur element on the surface.
  • organic ligand is not particularly limited, and examples thereof include the following general formula (2)-S-R-COOH (2).
  • R is an organic group having 1 to 20 carbon atoms.
  • R is not particularly limited as long as the carbon number is within the above range, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
  • Examples of the aliphatic hydrocarbon group include a linear hydrocarbon group, a branched hydrocarbon group, and an alicyclic hydrocarbon group. Among these, the amount of discoloration is further improved. ⁇ 2020/175 245 9 (:171? 2020/006330
  • a straight chain hydrocarbon group and a branched chain hydrocarbon group are preferable.
  • [0030] may contain elements other than carbon, such as nitrogen, sulfur, and oxygen.
  • the carbon number of [0031] is preferably 1 or more. Also, The carbon number of is preferably 20 or less, more preferably 12 or less, and further preferably 6 or less. When the lower limit of the number of carbon atoms in the above range is within the above range, the amount of color change is further improved. Further, when the upper limit of the carbon number of 8 is within the above range, the amount of color change is further improved.
  • the above-mentioned number of carbon atoms is particularly preferably 2, that is, the organic ligand is particularly preferably an organic ligand represented by the following formula.
  • the average particle size of the nanoparticles for photochromic materials of the present invention is preferably 1 nm or more, 2 The above is more preferable.
  • the average particle size of the nanoparticles for photochromic material of the present invention is preferably 100 or less, and more preferably 10 n or less.
  • the lower limit of the average particle diameter is within the above range, the amount of color change is further improved.
  • the upper limit of the average particle diameter is within the above range, the amount of color change is further improved.
  • the above-mentioned average particle diameter is a sample horizontal type multipurpose X-ray diffractometer (product name II, I, manufactured by Rigaku Corporation). It is the average particle size calculated from the line width of the scattering peak measured by IV).
  • the nanoparticles for a photochromic material of the present invention it is possible to produce a photochromic material in which the reaction time of the photochromic reaction is short.
  • the photochromic material produced using the nanoparticles for the photochromic material of the present invention has a short reaction time from irradiation to light and coloring, and a short reaction time from the coloring to the original state.
  • the nanoparticles for photochromic material of the present invention can be preferably used for photochromic material.
  • the nanoparticle aqueous dispersion for photochromic material of the present invention is ⁇ 2020/175 245 10 boxes (:171? 2020 /006330
  • aqueous dispersion of nanoparticles for photochromic materials in which nanoparticles for coating materials are dispersed in water.
  • the reaction time of the photochromic reaction of the nanoparticles for photochromic materials in the aqueous dispersion becomes extremely short, and extremely fast photochromism is exhibited. be able to.
  • the content of the nanoparticles for the photochromic material in the aqueous dispersion of the nanoparticles for the photochromic material is preferably 0.1 to 30% by mass based on 100% by mass of the aqueous dispersion, and 0.3. To 20% by mass is more preferable, 0.5 to 10% by mass is further preferable, and 1.0 to 7% by mass is particularly preferable. When the lower limit of the content of the nano particles for the photochromic material is within the above range, the color developing property is further improved.
  • the temperature of the nanoparticle aqueous dispersion for photochromic material is preferably from 0 to 50 ° , more preferably from 0 to 30 ° .
  • the amount of color development is further improved.
  • the upper limit of the temperature of the aqueous dispersion of nanoparticles for photochromic material is within the above range, the reaction time of the photochromic reaction of the nanoparticles for photochromic material in the aqueous dispersion is further shortened.
  • the production method for producing the nanoparticles for photochromic material of the present invention is not particularly limited.
  • the nanoparticles for photochromic material are doped with a transition metal, the nanoparticles can be produced by the following production method 1.
  • Step 1 of adding a zinc-containing compound, a doped metal source, and a sulfur-containing compound to a solvent to prepare a solution
  • a method for producing nanoparticles for a photochromic material which has a step 2 of adding a Group 16 element-containing compound to a solution and heating the solution.
  • Step 1 is a step of adding a zinc-containing compound, a doped metal source, and a sulfur-containing compound to a solvent. ⁇ 2020/175 245 1 1 ⁇ (:171? 2020 /006330
  • the solvent is not particularly limited as long as it can dissolve the zinc-containing compound, the dope metal source, and the sulfur-containing compound, and examples thereof include water, octadecene, toluene, and maleic acid. Among these, water and toluene are preferable, and water is more preferable, because the compound can be synthesized at a low temperature.
  • the zinc-containing compound is not particularly limited as long as it is soluble in a solvent, and examples thereof include zinc acetate (Z n ( ⁇ 3 1 to 1 3 0000) 2 ), zinc nitrate (Z n N ⁇ 3 ), zinc chloride (Z n ⁇ I 2 ), zinc (z n ), and the like.
  • zinc acetate is preferable because it is more easily dissolved in the solvent.
  • the above zinc compounds may be used alone or in combination of two or more.
  • the amount of the zinc-containing compound in the solution is 0.1-1.
  • the source of the doped metal is not particularly limited as long as it contains a transition metal substitutable with n.
  • a transition metal substitutable with n.
  • bis(acetylacetonato)copper ( ⁇ ) ( ⁇ ri ( ⁇ 5 1 to 17 ⁇ 2) 2), copper chloride ( ⁇ Li ⁇ I 2), copper sulfate ( ⁇ Li 3_Rei 4), and copper nitrate ( ⁇ Li 1 ⁇ 1_Rei 3), and the like.
  • bis(acetylacetonato) copper ( ⁇ ) and copper nitrate ( ⁇ ri 1 ⁇ 10 3 ) are preferable, because coloring when irradiated with light is even more clear, and bis(acetyl) Acetonato) Copper ( ⁇ ) is more preferred.
  • the above-mentioned doped metal sources may be used alone or in combination of two or more.
  • the amount of the dope metal source in the solution is preferably 0.001 to 0. 05% by mass, more preferably 0. 055 to 0. 03% by mass based on 100% by mass of the solution. preferable.
  • the lower limit of the content of the doped metal source is within the above range, the yield of nanoparticles for photochromic material is further improved.
  • the content of the doped metal source ⁇ 2020/175 245 12 boxes (:171? 2020 /006330
  • the sulfur-containing compound is a ligand source for forming the ligand of the nanoparticles for the photochromic material of the present invention described above.
  • the sulfur-containing compound is not particularly limited as long as it is soluble in a solvent.
  • Examples include 3-mercaptopropionic acid (IV! 8), thioglycolic acid (8), 11-mercaptoundecanoic acid, 4-mercaptobenzoic acid and the like. Of these, 3-mercaptopropionic acid (IV!8) and thioglycolic acid (8) are preferable, because the coloring when irradiated with light is more clear, and 3-mercaptopropion is preferable. Acid (1 ⁇ /1 8) is more preferred.
  • the above-mentioned sulfur-containing compounds may be used alone or in combination of two or more.
  • the amount of the sulfur-containing compound in the solution is preferably 0.5 to 5% by mass, more preferably 1 to 3% by mass, based on 100% by mass of the solution.
  • the yield of nanoparticles for photochromic material is further improved.
  • the upper limit of the content of the sulfur-containing compound is within the above range, the amount of discoloration is further improved.
  • step 1 other additives may be added to the solvent.
  • Other additives include 1 to 1 modifier.
  • step 1 to 1 of the solution is preferably 8 or more, and more preferably 9 or more.
  • the yield of nanoparticle for photochromic material is further improved.
  • the upper limit of 1 to 1 of the solution is not particularly limited, and may be about 10.
  • Examples 1 ⁇ 1 adjusting agent for adjusting to the range from 1 to 1 solution sodium hydroxide (3 Rei_1-1), potassium hydroxide Among these, sodium hydroxide (301 to 1) can be preferably used.
  • the lower limit of the temperature of the solution is preferably 0°, more preferably 20°.
  • the yield of nanoparticles for photochromic material is further improved.
  • the upper limit of the temperature of the solution is especially limited. ⁇ 2020/175 245 13 ⁇ (:171? 2020 /006330
  • the reaction time in step 1 is not particularly limited and is preferably 5 minutes or longer, more preferably 10 minutes or longer. When the lower limit of the reaction time is within the above range, the yield of nanoparticles for photochromic material is further improved.
  • the upper limit of the reaction time is not particularly limited and is about 1 hour.
  • step 1 the solution is preferably stirred within the above temperature range. By stirring, the reaction efficiency in step 1 is further improved.
  • the solution used in the step 2 is prepared.
  • Step 2 is a step of adding a Group 16 element-containing compound to the solution and heating.
  • Ding 6 is mentioned, and among these, 3, and 0 are preferable, and 3 is more preferable, because the coloring when irradiated with light is more clear.
  • the group 16 element-containing compound is not particularly limited, 3 etc. Of these, 3 2 3 is preferable because the coloring when irradiated with light is more distinct.
  • the addition amount of the Group 16 element-containing compound is preferably 0.005 to 1% by mass, based on 100% by mass of the solution after addition of the Group 16 element-containing compound, and 0.1 to ⁇ 0.5 mass% is more preferable.
  • the lower limit of the content of the group 16 element-containing compound is within the above range, the yield of nanoparticles for photochromic materials is further improved.
  • the upper limit of the content of the Group 16 element-containing compound is within the above range, the amount of discoloration is further improved.
  • step 2 the solution to which the Group 16 element-containing compound is added is heated.
  • the lower limit of the temperature of the solution is preferably 50° and more preferably 70°.
  • the yield of nanoparticles for photochromic material is further improved.
  • the upper limit of the temperature of the solution is not particularly limited. In step 2, it is more preferable to heat at the boiling point of the solvent. ⁇ 2020/175 245 14 ⁇ (:171? 2020 /006330
  • the reaction time in Step 2 is not particularly limited and is preferably 2 hours or longer, more preferably 8 hours or longer.
  • the upper limit of the reaction time is not particularly limited and is preferably 48 hours or less, more preferably 24 hours or less.
  • step 2 the solution is preferably vigorously stirred. By vigorous stirring, the reaction efficiency in step 2 is further improved.
  • the nanoparticles for the photochromic material are manufactured.
  • step 3 in which nanoparticles for photochromic material obtained in step 2 are added to a poor solvent to cause aggregation in a dispersion medium and centrifugation is performed. You may have.
  • the obtained nanoparticles for photochromic material become large, and the nanoparticles for photochromic material having a desired average particle diameter can be prepared.
  • the dispersion medium is not particularly limited, and water or the like can be used.
  • the poor solvent is not particularly limited, and examples thereof include alcohols such as ethanol, methanol, propanol, and isopropanol; and polar organic solvents such as acetone and acetonitrile. Among these, alcohol is preferable and ethanol is more preferable because water can be used as the dispersion medium.
  • the nanoparticles for the photochromic material may be aggregated in the dispersion medium by allowing the dispersion medium containing the nanoparticles for the photochromic material to stand.
  • Temperature of Temperature of static ⁇ dispersion medium photochromic material for nanoparticles, is added is preferably ⁇ _ ⁇ 3 0 ° ⁇ , more preferably 1. 5 to 2 5 ° ⁇ . Since the temperature of the dispersion medium to which the nanoparticles for photochromic material are added is within the above range, the nanoparticles for photochromic material are more likely to aggregate.
  • the yield of nanoparticles for photochromic material is further improved.
  • the upper limit of the reaction time is not particularly limited and is about 1 hour. When the upper limit of the reaction time is within the above range, the nanoparticles for the photochromic material are more easily redispersed in water.
  • the production method for producing nanoparticles for photochromic material of the present invention can be produced by the following production method 2 when the transition metal is adsorbed on the nanoparticles for photochromic material.
  • a step 1'of preparing a solution by adding a zinc-containing compound and a sulfur-containing compound to a solvent
  • a method for producing nanoparticles for photochromic materials which comprises:
  • Step 1' is a step of adding a zinc-containing compound and a sulfur-containing compound to a solvent to prepare a solution.
  • step 1 ′ in step 1 of production method 1 in which the nanoparticles for photochromic material are doped with a transition metal, a solution is prepared without adding a dope metal source to the solvent. That is, the solvent, the zinc-containing compound, and the sulfur-containing compound in step 1′ are the same as those in step 1 of the above production method 1. Further, in step 1', a solution is prepared in the same manner as step 1 of the above production method 1 except that the dope metal source is not added to the solvent.
  • Step 2′ is a step of adding a Group 16 element-containing compound to a solution and heating the solution to prepare a dispersion liquid of nanoparticles for a transition metal-unadsorbed photochromic material. ⁇ 2020/175 245 16 ⁇ (:171? 2020/006330
  • Step 2' is the same as step 2 of the above production method 1.
  • Step 3′ is a step of adding a transition metal source to the dispersion liquid to adsorb the transition metal on the surface of the nanoparticles for a transition metal-unadsorbed photochromic material.
  • a transition metal source By adding a transition metal source to the dispersion prepared in step 2′, the transition metal is adsorbed on the surface of the particle nucleus indicated by n X in the dispersion.
  • a part of the transition metal is doped into the particle nucleus represented by n X, and the nanoparticle for photochromic material of the present invention is doped with the transition metal and/or adsorbed. It may be in a state.
  • the same one as the doped metal source in the step 1 of the above production method 1 can be used.
  • the addition amount of the transition metal source is preferably 0.01 to 0.5 mass% and more preferably 0.005 to 0.3 mass% based on 100 mass% of the dispersion liquid.
  • the lower limit of the content of the transition metal source is within the above range, the yield of nanoparticles for photochromic material is further improved.
  • the upper limit of the content of the transition metal source is within the above range, the amount of discoloration is further improved.
  • the lower limit of the temperature of the dispersion liquid is preferably 0° and more preferably 20°.
  • the yield of nanoparticles for photochromic material is further improved.
  • the upper limit of the temperature of the dispersion liquid is not particularly limited, and may be equal to or lower than the boiling point of the solvent.
  • the reaction time in Step 3' is not particularly limited and is preferably 5 minutes or longer, more preferably 10 minutes or longer.
  • the lower limit of the reaction time is within the above range, the yield of nanoparticles for photochromic material is further improved.
  • the upper limit of the reaction time is not particularly limited and is about 1 hour.
  • step 3' it is preferable to stir the dispersion within the above temperature range. By stirring, the reaction efficiency in step 3'is further improved.
  • the method 2 for producing nanoparticles for photochromic materials described above is the step 3′. ⁇ 2020/175 245 17 ⁇ (:171? 2020/006330
  • step 4' wherein the nanoparticles for the photochromic material obtained in the step 3'are added to a poor solvent to cause aggregation in a dispersion medium and centrifugation.
  • dispersion medium and the poor solvent it is possible to use the same ones as the dispersion medium and the poor solvent in step 3 of the above production method 1.
  • step 4′ the dispersion medium to which the nanoparticles for photochromic material have been added is allowed to stand to aggregate the nanoparticles for photochromic material in the dispersion medium.
  • Temperature of the temperature of the dispersing medium photochromic material for the nanoparticles are added for electrostatic ⁇ is preferably ⁇ _ ⁇ 3 0 ° ⁇ , more preferably 1. 5 to 2 5 ° ⁇ .
  • the temperature of the dispersion medium to which the nanoparticles for photochromic material are added is within the above range, the nanoparticles for photochromic material are more likely to aggregate.
  • the standing time of the solvent to which the nanoparticles for photochromic material are added in step 4' is not particularly limited, and is preferably 30 seconds or more, more preferably 1 minute or more.
  • the yield of nanoparticle for photochromic material is further improved.
  • the upper limit of the reaction time is not particularly limited and is about 1 hour. When the upper limit of the reaction time is within the above range, the nanoparticles for photochromic material are more easily redispersed in water.
  • a solution was prepared by adding.
  • the solution had a !!
  • Nitrogen gas was caused to flow into the solution while stirring at room temperature for 30 minutes to remove the gas generated from the solution.
  • Nanocrystals of nanoparticles for photochromic materials were prepared by heating at 0°C for 24 hours.
  • Ethanol was added to the nanocrystals of the photochromic material nanoparticles to aggregate the photochromic material nanoparticles.
  • the photochromic material was precipitated with a centrifuge to obtain nanoparticles for the photochromic material.
  • the doping amount of ⁇ 3 element of the nanoparticles for photochromic material was 1 mole% when the total number of moles of n element and (3 element) was 100 mole %.
  • the average particle size of the obtained nanoparticles for photochromic material was measured by a sample horizontal multipurpose X-ray diffractometer (trade name II, I, I, manufactured by Rigaku Corporation). It was calculated from the line width of the scattering peak measured by IV).
  • the nanoparticles for the Mick material were found to have a cubic crystal structure.
  • Example 1 when the ultraviolet rays were irradiated for 5 seconds, the nanoparticles for the photochromic material became a colored state, and after about 1 minute, they returned to the original state.
  • Comparative Example 1 it was found that the nanoparticles for the photochromic material were hardly colored even when irradiated with ultraviolet rays, and the nanoparticles for the photochromic material were hardly colored even when irradiated with ultraviolet rays. ..
  • the nanoparticles for the photochromic material obtained in Example 1 were exposed to ultraviolet light having a wavelength of 365 nm for 17.5. Irradiation was carried out under the condition of irradiation time of 5 seconds, and the ultraviolet absorption was measured in the range of 300 to 8001 using an absorption spectrum measuring instrument (Ocean Optics Co., Ltd., product name ⁇ 6 3 1 ⁇ X). It was measured by the change in absorbance in the spectrum.
  • Figure 5 shows the result 1 second after the completion of UV irradiation
  • Figure 6 shows the result after 10 seconds
  • Figure 7 shows the result after 40 seconds.
  • Example 1 From the results of Figs. 5 to 7, it was found that in Example 1, the nanoparticles for the photochromic material became a colored state after being irradiated with ultraviolet rays, and returned to the original state after about 40 seconds.
  • n an integer of 1 or more.
  • Nitrogen gas was passed through the solution while stirring at room temperature for 30 minutes to remove oxygen dissolved in the solution.
  • Nanoparticles for photochromic material were prepared by stirring for 15 minutes.
  • the nanoparticles for photochromic material were prepared as a solid by precipitating with a centrifuge.
  • UV absorption, absorption spectrum measuring instrument manufactured by Ocean Optics Co., Ltd., product name X was used to measure the absorbance change at a spectrum in the range of 300 to 8001.
  • the results of 1 second after the completion of the ultraviolet irradiation of Comparative Example 2 are shown in Fig. 8, the results after 10 seconds are shown in Fig. 9, and the results after 40 seconds are shown in Fig. 10.
  • the results of Comparative Example 3 after 1 second from the completion of UV irradiation are shown in Figure 11 and 10 seconds, and the results after 40 seconds are shown in Figure 12 and Figure 13 respectively.
  • transition metal source transition metal ion
  • transition metal ion transition metal ion
  • the photochromic reaction can be exhibited by doping and/or adsorbing the same with nanoparticles for photochromic materials afterward, similarly to the case where the transition metal is doped during the synthesis of nanoparticles for photochromic materials.
  • Example 3 shows.
  • ⁇ Li doped have not photochromic materials for nanoparticles to (n 3 nanoparticles) 2 0 9 ⁇ . 5! Dispersed in _ of water to prepare an aqueous dispersion. Separately, bis(acetylacetonato)copper (II) ( ⁇ ri ( ⁇ 5 1 to 1 7 ⁇ 2 ) 2 ) ⁇ 0.59 was dissolved in 2!_ water to prepare an aqueous solution. The aqueous dispersion of the photochromic material for nanoparticles, ⁇ Li (0 ⁇ 7 0 2) 2 aqueous solution was added pressurizing the mixture was prepared and stirred for about 2 minutes at room temperature.
  • nanoparticles for the photochromic material were precipitated with a centrifuge to obtain nanoparticles for the photochromic material.
  • the obtained nanoparticles for photochromic materials showed photochromism by UV irradiation (3650), as well as those doped with 0 at the time of synthesis.
  • the nanoparticles for the photochromic material obtained in Example 3 had a wavelength of 365 nm. ⁇ 2020/175 245 22 ⁇ (:171? 2020 /006330
  • UV light of 17.5 ⁇ // ⁇ ! 2 for 5 seconds of irradiation time and the absorption of the ultraviolet light is measured by an absorption spectrum measurement device (Ocean Optics, product name ⁇ 6 3 1 ⁇ X ) was used to measure the absorbance change in the spectrum in the range of 300 to 8001.
  • An absorption spectrum measurement device (Ocean Optics, product name ⁇ 6 3 1 ⁇ X ) was used to measure the absorbance change in the spectrum in the range of 300 to 8001.
  • the results 1 second after the UV irradiation is completed are shown in Figure 14 and the results after 10 seconds are shown in Figure 15 and the results after 40 seconds are shown in Figure 16.
  • Example 3 From the results of FIGS. 14 to 16, it was found that in Example 3, the nanoparticles for the photochromic material became colored after being irradiated with ultraviolet rays, and the absorbance change decreased after about 40 seconds. ..
  • Example 1 1 ⁇ /1 3 6 5 1_? 1) excited the sample. Electron spin resonance under conditions of microwave power of 0.3 ⁇ / and modulation amplitude of 0.4 was measured.
  • the results of Example 1 are shown in FIG. 17, the results of Example 2 are shown in FIG. 18, the results of Example 3 are shown in FIG. 19 and the results of Comparative Example 1 are shown in FIG.
  • the nanoparticles for photochromic material prepared in Example 2 were dispersed in water to prepare an aqueous dispersion.
  • the content of the nanoparticles for photochromic material in the aqueous dispersion was 2.9% by mass based on 100% by mass of the aqueous dispersion.
  • the temperature of the water dispersion was about 25 ° . It cannot be visually observed using the aqueous dispersion.
  • the absorption spectrum change (transient absorption spectrum) in a very short time region was measured. The measurement was carried out with the cooperation of Unisoku Co., Ltd., using pi coTAS by the RIPT (Randomly Interleaved Pulse Train Methods) method.
  • a 35 5 nm picosecond pulsed laser was used as the excitation light.
  • the intensity of the picosecond pulsed laser was 20 MJ / P u se.
  • Figure 21 shows the results after 200 nanoseconds after the completion of picosecond pulsed laser irradiation
  • Figure 22 shows the results after 600 nanoseconds
  • Figure 23 shows the results after 180 seconds. ..
  • the nanoparticles for the photochromic material prepared in Example 2 were observed with a transmission electron microscope (Dingo IV!). The observation was carried out using a transmission electron microscope (manufactured by JEOL Ltd.) under the conditions of accelerating voltage 20001 ⁇ V. Specifically, the nanoparticles for photochromic material prepared in Example 2 were dispersed in water to prepare a dispersion liquid. The grid was immersed in the dispersion to attach the nanoparticles, and an image of Ding-Mi! IV! was taken to measure the average particle diameter of the nanoparticles for the photochromic material. The results are shown in Figures 25 and 26. Nanoparticles for photochromic material were observed as dark black lumps in the images of Tingmi IV! in Figures 25 and 26. The average particle size of nanoparticles for photochromic materials is The measured value was slightly larger than the above.
  • Ultraviolet light nanoparticle for photochromic material prepared in Example 1 (solid) (wavelength 3 6 5 n m, strength 6. Was irradiated for a long time and the change in absorbance was measured. Specifically, the nanoparticles for the photochromic material prepared in Example 1 were irradiated with the ultraviolet light for 7 hours, and the change in absorbance was measured. Absorbance change was measured before, 10 minutes, 20 minutes, 50 minutes, 50 minutes, 2 hours, 4 hours, and 7 hours after irradiation with ultraviolet light, after stopping irradiation with ultraviolet light.
  • the nanoparticles 39 for photochromic material prepared in Example 1 were placed in a vial and vacuum dried at 60° for 2 hours. Pre- and post-drying nanoparticles for photochromic materials The spectrum was measured. The results are shown in Figure 29. The drying ultraviolet irradiation before and after the photochromic material for nanoparticles (wavelength 3 6 5 n m, the strength of 1 7. Then, the change in absorbance was measured. The results are shown in Figure 30.
  • the nanoparticles for photochromic materials of the present invention are high-speed rewritable recording materials suitable for applications such as eyewear such as eyeglasses, sunglasses, goggles, and moving image holograms; prevention of counterfeiting of credit cards, banknotes, brand products, etc. It can be suitably used for materials and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

フォトクロミック反応の反応時間が短いフォトクロミック材料を製造することができるフォトクロミック材料用ナノ粒子を提供する。 下記一般式(1) ZnX (1) (式(1)中、Xは第16族元素を示す。) で表わされるフォトクロミック材料用ナノ粒子であって、 遷移金属がドープ、及び/又は、吸着されており、 表面に、硫黄元素を含有する有機配位子を有する ことを特徴とするフォトクロミック材料用ナノ粒子。

Description

\¥0 2020/175245 1 卩(:17 2020 /006330 明 細 書
発明の名称 :
フォトクロミック材料用ナノ粒子及びフォトクロミック材料用ナノ粒子水 分散液
技術分野
[0001 ] 本発明は、 フォトクロミック材料用ナノ粒子及びフォトクロミック材料用 ナノ粒子水分散液に関する。
背景技術
[0002] 近年、 特定の波長の光を照射されると着色し、 照射されなくなると着色が 消え、 当該変色が繰り返される、 いわゆるフォトクロミック材料が研究され ている。
[0003] フォトクロミック材料は様々な分野に利用することができる。 特に、 眼鏡 、 サングラス、 ゴーグル等のアイウェアに用いることにより、 太陽光等の照 射下で目を保護し、 視界を確保することができるため有用である。
[0004] 本発明者は鋭意検討の結果、 フォトクロミック材料として半導体ナノ粒子 を用いることができることを見い出した。
[0005] 半導体ナノ粒子として、 コア/シェル構造を持つ半導体ナノ粒子が提案さ れており、 当該半導体ナノ粒子を含有する半導体ナノ粒子集積体の製造方法 が提案されている (例えば、 特許文献 1参照) 。
[0006] しかしながら、 特許文献 1では、 n 3半導体ナノ粒子については記載さ れておらず、 特許文献 1の半導体ナノ粒子を用いてもフォトクロミック反応 は観測されないため、 特許文献 1の半導体ナノ粒子をフォトクロミック材料 としては用いることができない。
[0007] また、 上述のアイウェア等のフォトクロミック材料が用いられる製品には 、 短時間で状況に適した状態になることが望まれており、 フォトクロミック 材料には、 光が照射されて着色するまでの時間、 及び、 着色してから元の状 態に戻るまでの反応時間が短いことが要求される。 \¥0 2020/175245 2 卩(:17 2020 /006330
[0008] 従って、 フォトクロミック反応の反応時間が短いフォトクロミック材料を 製造することができるフォトクロミック材料用ナノ粒子の開発が求められて いる。
先行技術文献
特許文献
[0009] 特許文献 1 :特許第 5 9 1 5 5 2 9号公報
発明の概要
発明が解決しようとする課題
[0010] 本発明は、 フォトクロミック反応の反応時間が短いフォトクロミック材料 を製造することができるフォトクロミック材料用ナノ粒子を提供することを 目的とする。
課題を解決するための手段
[001 1 ] 本発明者は、 鋭意研究を重ねた結果、 一般式 z n c (式中、 Xは第 1 6族 元素を示す。 ) で表され、 遷移金属がドープ、 及び/又は、 吸着されており 、 表面に、 硫黄元素を含有する有機配位子を有するフォトクロミック材料用 ナノ粒子によれば、 上記目的を達成できることを見出し、 本発明を完成する に至った。
[0012] 即ち、 本発明は、 下記のフォトクロミック材料用ナノ粒子、 及びフォトク ロミック材料用ナノ粒子水分散液に関する。
1 . 下記一般式 ( 1)
门 X ( 1)
(式 (1) 中、 Xは第 1 6族元素を示す。 )
で表わされるフォトクロミック材料用ナノ粒子であって、
遷移金属がドープ、 及び/又は、 吸着されており、
表面に、 硫黄元素を含有する有機配位子を有する
ことを特徴とするフォトクロミック材料用ナノ粒子。
2 . 前記 Xは、 〇、 3、 3 6及び丁 6からなる群より選択される少なくとも 〇 2020/175245 3 卩(:171? 2020 /006330
1種である、 項 1 に記載のフォトクロミック材料用ナノ粒子。
3 . 前記有機配位子は、 下記一般式 (2)
Figure imgf000005_0001
、 〜 2 0の有機基を示す。 )
で表わされる有機配位子である、 項 1又は 2に記載のフォトクロミック材料 用ナノ粒子。
4 . 平均粒子径が 1 n 以上 1 0 0 n 以下である、 項 1〜 3のいずれかに 記載のフォトクロミック材料用ナノ粒子。
5 . 項 1〜 4のいずれかに記載のフォトクロミック材料用ナノ粒子が水に分 散してなる、 フォトクロミック材料用ナノ粒子水分散液。
発明の効果
[0013] 本発明のフォトクロミック材料用ナノ粒子は、 フォトクロミック反応の反 応時間が短いフォトクロミック材料を製造することができる。
図面の簡単な説明
[0014] [図 1]本発明のフォトクロミック材料用ナノ粒子の構造の一例を示す模式図で ある。
[図 2]実施例 1のフォトクロミック材料用ナノ粒子の乂[¾口 (X線回折) 測定 結果を示す図である。
[図 3]実施例 1及び比較例 1で得られたフォトクロミック材料用ナノ粒子に紫 外線を照射した際の、 5 0 0
Figure imgf000005_0002
のスぺクトルでの吸光度変化の測定結果を 示す図である。
[図 4]実施例 1のフォトクロミック材料用ナノ粒子の紫外線照射後の様子の写 真を示す図である。
[図 5]実施例 1のフォトクロミック材料用ナノ粒子の紫外線照射 1秒後の 3 0 〇〜 8 0 0
Figure imgf000005_0003
の範囲のスぺクトルでの吸光度変化の測定結果を示す図であ る。
[図 6]実施例 1のフォトクロミック材料用ナノ粒子の紫外線照射 1 0秒後の 3 0 0〜 8 0 0
Figure imgf000005_0004
の範囲のスぺクトルでの吸光度変化の測定結果を示す図で 20/175245 4 卩(:171? 2020 /006330
ある。
[図 7]実施例 1のフォトクロミック材料用ナノ粒子の紫外線照射 4 0秒後の 3 0 0〜 8 0 0
Figure imgf000006_0001
の範囲のスぺクトルでの吸光度変化の測定結果を示す図で ある。
[図 8]比較例 2のフォトクロミック材料用ナノ粒子の紫外線照射 1秒後の 3 0 〇〜 8 0 0
Figure imgf000006_0002
の範囲のスぺクトルでの吸光度変化の測定結果を示す図であ る。
[図 9]比較例 2のフォトクロミック材料用ナノ粒子の紫外線照射 1 0秒後の 3 0 0〜 8 0 0
Figure imgf000006_0003
の範囲のスぺクトルでの吸光度変化の測定結果を示す図で ある。
[図 10]比較例 2のフォトクロミック材料用ナノ粒子の紫外線照射 4 0秒後の 3 0 0〜 8 0 0 n
Figure imgf000006_0004
の範囲のスぺクトルでの吸光度変化の測定結果を示す図 である。
[図 1 1]比較例 3のフォトクロミック材料用ナノ粒子の紫外線照射 1秒後の 3 0 0〜 8 0 0
Figure imgf000006_0005
の範囲のスぺクトルでの吸光度変化の測定結果を示す図で ある。
[図 12]比較例 3のフォトクロミック材料用ナノ粒子の紫外線照射 1 0秒後の 3 0 0〜 8 0 0 n
Figure imgf000006_0006
の範囲のスぺクトルでの吸光度変化の測定結果を示す図 である。
[図 13]比較例 3のフォトクロミック材料用ナノ粒子の紫外線照射 4 0秒後の 3 0 0〜 8 0 0 n
Figure imgf000006_0007
の範囲のスぺクトルでの吸光度変化の測定結果を示す図 である。
[図 14]実施例 3のフォトクロミック材料用ナノ粒子の紫外線照射 1秒後の 3 0 0〜 8 0 0
Figure imgf000006_0008
の範囲のスぺクトルでの吸光度変化の測定結果を示す図で ある。
[図 15]実施例 3のフォトクロミック材料用ナノ粒子の紫外線照射 1 0秒後の 3 0 0〜 8 0 0 n
Figure imgf000006_0009
の範囲のスぺクトルでの吸光度変化の測定結果を示す図 である。 20/175245 5 卩(:171? 2020 /006330
[図 16]実施例 3のフォトクロミック材料用ナノ粒子の紫外線照射 4 0秒後の 3 0 0〜 8 0 0 n
Figure imgf000007_0001
の範囲のスぺクトルでの吸光度変化の測定結果を示す図 である。
[図 17]実施例 1のフォトクロミック材料用ナノ粒子の電子スピン共鳴 (巳 8) の測定結果を示す図である。
[図 18]実施例 2のフォトクロミック材料用ナノ粒子の電子スピン共鳴 (巳 8) の測定結果を示す図である。
[図 19]実施例 3のフォトクロミック材料用ナノ粒子の電子スピン共鳴 (巳 8) の測定結果を示す図である。
[図 20]比較例 1のフォトクロミック材料用ナノ粒子の電子スピン共鳴 (巳 8) の測定結果を示す図である。
[図 21]実施例 2のフォトクロミック材料用ナノ粒子の水分散液に、 ピコ秒パ ルスレーザーを照射 2 0 0ナノ秒後の吸光度変化の測定結果を示す図である
[図 22]実施例 2のフォトクロミック材料用ナノ粒子の水分散液に、 ピコ秒パ ルスレーザーを照射 6 0 0ナノ秒後の吸光度変化の測定結果を示す図である
[図 23]実施例 2のフォトクロミック材料用ナノ粒子の水分散液に、 ピコ秒パ ルスレーザーを照射 1 8 0 0ナノ秒後の吸光度変化の測定結果を示す図であ る。
[図 24]実施例 1及び比較例 1のフォトクロミック材料用ナノ粒子の水分散液 に、 ピコ秒パルスレーザーを照射し、 波長 6 0 0
Figure imgf000007_0002
プローブした吸光度 変化の測定結果を示す図である。
[図 25]実施例 2のフォトクロミック材料用ナノ粒子を、 透過型電子顕微鏡 ( 丁巳1\/1) により観察した結果を示す図である。
[図 26]実施例 2のフォトクロミック材料用ナノ粒子を、 透過型電子顕微鏡 ( 丁巳1\/1) により観察した結果を示す図である。
[図 27]実施例 1のフォトクロミック材料用ナノ粒子の光耐久性の測定結果を 〇 2020/175245 6 卩(:171? 2020 /006330
示す図である。
[図 28]実施例 1及び比較例 1のフォトクロミック材料用ナノ粒子の吸収スぺ クトル測定の結果を示す図である。
Figure imgf000008_0001
スぺク トルの測定の結果を示す図である。
[図 30]実施例 1のフォトクロミック材料用ナノ粒子の乾燥前後の吸光度変化 の測定結果を示す図である。
[図 31]実施例 1のフォトクロミック材料用ナノ粒子の異なる温度条件での吸 光度変化の測定結果を示す図である。
発明を実施するための形態
[0015] 1 . フォトクロミック材料用ナノ粒子
本発明のフォトクロミック材料用ナノ粒子は、 下記一般式 (1) 门 X ( 1)
(式 (1) 中、 Xは第 1 6族元素を示す。 )
で表わされるフォトクロミック材料用ナノ粒子であって、 遷移金属がドープ 、 及び/又は、 吸着されており、 表面に、 硫黄元素を含有する有機配位子を 有することを特徴とする。 図 1 に、 一般式 (1) において、 乂が3であり、 ドープされた遷移金属が〇リであり、 有機配位子が一 3 _〇2 !~1 4 _〇〇〇 1~1 である場合の本発明のフォトクロミック材料用ナノ粒子の構造の一例の模式 図を示す。 なお、 有機配位子の末端のカルボキシル基は水溶液中において、 -〇〇〇-の状態で存在する。 図 1では、 本発明のフォトクロミック材料用ナ ノ粒子 1は、 n 3ナノ粒子 2に遷移金属 3として〇リがドープされており 、 粒子の表面に硫黄元素を含有する有機配位子として、 _ 3 _〇2 !~1 4 _〇〇 〇-を有する構造となっている。
[0016] 上記構成を備える本発明のフォトクロミック材料用ナノ粒子は、 上記一般 式 (1) で示される構造を有しており、 特定の波長の光が照射されると着色 し、 照射されなくなると着色が消え、 当該変色が繰り返される、 いわゆるフ ォトクロミック材料としての機能を発揮することができる。 また、 本発明の 〇 2020/175245 7 卩(:171? 2020 /006330
フォトクロミック材料用ナノ粒子は、 遷移金属がドープ、 及び/又は、 吸着 されており、 且つ、 表面に硫黄元素を含有する有機配位子を有するので、 光 が照射されて着色するまでの時間、 及び、 着色してから元の状態に戻るまで の反応時間が短くなり、 フォトクロミック反応の反応時間が短いフォトクロ ミック材料を製造することができる。
[0017] 以下、 本発明について詳細に説明する。
[0018] 本発明のフォトクロミック材料用ナノ粒子は、 下記一般式 (1) で表わさ れる。
门 X ( 1)
[0019] 上記一般式 (1) 中、 Xは第 1 6族元素を示す。 具体的には、 Xは、 〇、
3、 3 6 , 丁 6が挙げられる。 これらの中でも、 光が照射された際の着色が より一層明確であるため、 3、 〇が好ましく、 3がより好ましい。
[0020] 上記 Xは、 一種単独で用いてもよいし、 二種以上を混合して用いてもよい
[0021 ] 本発明のフォトクロミック材料用ナノ粒子は、 遷移金属がドープ、 及び/ 又は、 吸着されている。 すなわち、 本発明のフォトクロミック材料用ナノ粒 子は、 遷移金属がドープされている場合、 n Xで示される粒子核において の一部が遷移金属に置き換わっている。 また、 本発明のフォトクロミッ ク材料用ナノ粒子は、 遷移金属が吸着されている場合、 n Xで示される粒 子核の表面に、 遷移金属が吸着している。 本発明のフォトクロミック材料用 ナノ粒子は、 遷移金属がドープされていてもよいし、 遷移金属に吸着されて いてもよいし、 一部が遷移金属にド _プされ、 一部が遷移金属に吸着されて いてもよい。
[0022] 遷移金属としては特に限定されず、 マンガン、 コバルト、 ニッケル、 鉄、 クロム、 銅、 モリブデン、 バナジウム、 チタン、 ジルコニウム、 ニオブ、 銀 、 ビスマス等が挙げられる。 これらの中でも、 光が照射された際の着色がよ り一層明確であるため、 銅が好ましい。
[0023] 上記遷移金属は、 一種単独で用いてもよいし、 二種以上を混合して用いて もよい。
[0024] 遷移金属のドープ量は、 Z n元素及び遷移金属元素のモル数の合計を 1 0
0モル%として、 0 . 1モル%以上が好ましく、 0 . 5モル%以上がより好 ましい。 また、 遷移金属のドープ量は、 1 0モル%以下が好ましく、 5モル %以下がより好ましい。 遷移金属のドープ量の下限が上記範囲であることに より、 光が照射された際の着色がより一層明確となる。 また、 遷移金属のド —プ量の下限が上記範囲であることにより、 変色量がより一層向上する。
[0025] 遷移金属の吸着は、 Z n Xで示される粒子核の表面に、 遷移金属が吸着で きれば特に限定されず、 物理吸着が好ましい。 本発明のフォトクロミック材 料用ナノ粒子では、 物理吸着の形態は明確ではないが、 Z n Xで示される粒 子核の表面において、 遷移金属がファンデルワールスカ等の電気的作用によ り吸着する形態が挙げられる。
[0026] 遷移金属の吸着量は、 フォトクロミック材料用ナノ粒子を 1 0 0質量%と して、 〇 . 1質量%以上が好ましく、 〇 . 5質量%以上がより好ましい。 ま た、 遷移金属の吸着量は、 1 〇質量%以下が好ましく、 5質量%以下がより 好ましい。 遷移金属の吸着量の下限が上記範囲であることにより、 光が照射 された際の着色がより一層明確となる。 また、 遷移金属の吸着量の下限が上 記範囲であることにより、 変色量がより一層向上する。
[0027] (有機配位子)
本発明のフォトクロミック材料用ナノ粒子は、 表面に、 硫黄元素を含有す る有機配位子を有する。 このような有機配位子としては特に限定されず、 例 えば、 下記一般式 (2) - S - R - C O O H (2)
で表わされる有機配位子が挙げられる。
[0028] 上記一般式 (2) 中、 Rは、 炭素数 1〜 2 0の有機基である。 Rとしては 、 炭素数が上記範囲であれば特に限定されず、 脂肪族炭化水素基、 芳香族炭 化水素基、 脂環式炭化水素基等が挙げられる。
[0029] 脂肪族炭化水素基としては、 直鎖状炭化水素基、 分枝鎖状炭化水素基、 脂 環式炭化水素基が挙げられる。 これらの中でも、 より一層変色量が向上する 〇 2020/175245 9 卩(:171? 2020 /006330
点で、 直鎖状炭化水素基、 分枝鎖状炭化水素基が好ましい。
[0030] は、 炭素以外の窒素、 硫黄、 酸素等の元素を含んでいてもよい。
[0031 ] の炭素数は 1以上が好ましい。 また、
Figure imgf000011_0001
の炭素数は 2 0以下が好ましく 、 1 2以下がより好ましく、 6以下が更に好ましい。
Figure imgf000011_0002
の炭素数の下限が上 記範囲であることにより、 より一層変色量が向上する。 また、 8の炭素数の 上限が上記範囲であることにより、 より一層変色量が向上する。 上記 の炭 素数は、 2であることが特に好ましく、 すなわち、 有機配位子は、 下記式で 示される有機配位子であることが特に好ましい。
- 3 C 2 H 4 C O O H
[0032] 本発明のフォトクロミック材料用ナノ粒子の平均粒子径は、 1 n m以上が 好ましく、 2
Figure imgf000011_0003
以上がより好ましい。 また、 本発明のフォトクロミック材 料用ナノ粒子の平均粒子径は、 1 0 0门 以下が好ましく、 1 0 n 以下が より好ましい。 平均粒子径の下限が上記範囲であることにより、 より一層変 色量が向上する。 また、 平均粒子径の上限が上記範囲であることにより、 よ り一層変色量が向上する。
[0033] 本明細書において、 上記平均粒子径は、 試料水平型多目的 X線回折装置 ( リガク社製 製品名 II 丨 I 丨
Figure imgf000011_0004
I V) により測定される散乱ピークの線 幅から算出される平均粒子径である。
[0034] 以上説明した本発明のフォトクロミック材料用ナノ粒子によれば、 フォト クロミック反応の反応時間が短いフォトクロミック材料を製造することがで きる。 本発明のフォトクロミック材料用ナノ粒子を用いて製造されたフォト クロミック材料は、 光が照射されて着色するまでの時間、 及び、 着色してか ら元の状態に戻るまでの反応時間が短く、 アイウェア等の製品を製造した場 合に、 状況に適した状態になるまでに時間が短い。 このため、 本発明のフォ トクロミック材料用ナノ粒子は、 フォトクロミック材料用として好適に用い ることができる。
[0035] 2 . フォトクロミック材料用ナノ粒子水分散液
本発明のフォトクロミック材料用ナノ粒子水分散液は、 上記フォトクロミ 〇 2020/175245 10 卩(:171? 2020 /006330
ック材料用ナノ粒子が水に分散してなる、 フォトクロミック材料用ナノ粒子 水分散液である。 上記フォトクロミック材料用ナノ粒子が水に分散した水分 散液とすることにより、 水分散液中のフォトクロミック材料用ナノ粒子のフ 才トクロミック反応の反応時間が非常に短くなり、 極めて速いフォトクロミ ズムを示すことができる。
[0036] フォトクロミック材料用ナノ粒子水分散液中のフォトクロミック材料用ナ ノ粒子の含有量は、 水分散液を 1 〇〇質量%として〇. 1〜 3 0質量%が好 ましく、 〇. 3〜 2 0質量%がより好ましく、 〇. 5〜 1 0質量%が更に好 ましく、 1 . 〇〜 7質量%が特に好ましい。 フォトクロミック材料用ナノ粒 子の含有量の下限が上記範囲であることにより、 発色特性がより一層向上す る。
[0037] フォトクロミック材料用ナノ粒子水分散液の温度は、 〇〜 5 0 °〇が好まし く、 〇〜 3 0 °〇がより好ましい。 フォトクロミック材料用ナノ粒子水分散液 の温度の下限が上記範囲であることにより、 発色量がより一層向上する。 フ ォトクロミック材料用ナノ粒子水分散液の温度の上限が上記範囲であること により、 水分散液中のフォトクロミック材料用ナノ粒子のフォトクロミック 反応の反応時間がより一層短くなる。
[0038] 3 . フォトクロミック材料用ナノ粒子の製诰方法
本発明のフォトクロミック材料用ナノ粒子を製造する製造方法は特に限定 されず、 例えば、 フォトクロミック材料用ナノ粒子に遷移金属がドープされ ている場合、 下記製造方法 1 により製造することができる。
( 1 ) 溶媒に、 亜鉛含有化合物、 ドープ金属源、 及び、 硫黄含有化合物を添 加して溶液を調製する工程 1、 及び、
( 2 ) 溶液に、 第 1 6族元素含有化合物を添加して加熱する工程 2 を有する、 フォトクロミック材料用ナノ粒子の製造方法。
以下、 当該製造方法について説明する。
[0039] (工程 1 )
工程 1は、 溶媒に、 亜鉛含有化合物、 ドープ金属源、 及び、 硫黄含有化合 〇 2020/175245 1 1 卩(:171? 2020 /006330
物を添加して溶液を調製する工程である。
[0040] 溶媒としては亜鉛含有化合物、 ドープ金属源、 及び、 硫黄含有化合物を溶 解させることができれば特に限定されず、 水、 オクタデセン、 トルエン、 才 レイン酸等が挙げられる。 これらの中でも、 低い温度で化合物を合成できる 点で、 水、 トルエンが好ましく、 水がより好ましい。
[0041 ] 亜鉛含有化合物としては溶媒に可溶であれば特に限定されず、 例えば、 酢 酸亜鉛 (Z n (<3 1~1 3〇〇〇) 2) 、 硝酸亜鉛 (Z n N〇3) 、 塩化亜鉛 (Z n 〇 I 2) 、 亜鉛 (z n) 等が挙げられる。 これらの中でも、 より一層溶媒に溶 解し易い点で、 酢酸亜鉛が好ましい。
[0042] 上記亜鉛化合物は、 一種単独で用いてもよいし、 二種以上を混合して用い てもよい。
[0043] 溶液中の亜鉛含有化合物の量は、 溶液を 1 0 0質量%として〇. 1〜 1 .
5質量%が好ましく、 〇. 3〜〇. 8質量%がより好ましい。 亜鉛含有化合 物の含有量の下限が上記範囲であることにより、 フォトクロミック材料用ナ ノ粒子の収率がより一層向上する。 また、 亜鉛含有化合物の含有量の上限が 上記範囲であることにより、 変色量がより一層向上する。
[0044] ドープ金属源としては、 nと置換可能な遷移金属を含有していれば特に 限定されず、 例えば、 ビス (アセチルアセトナト) 銅 (丨 丨) (〇リ (〇5 1~1 7〇22) 、 塩化銅 (〇リ〇 I 2) 、 硫酸銅 (〇リ 3〇4) 、 硝酸銅 (〇リ 1\1〇 3) 等が挙げられる。 これらの中でも、 光が照射された際の着色がより一層明 確であるため、 ビス (アセチルアセトナト) 銅 (丨 丨) 、 硝酸銅 (〇リ 1\1〇3 ) が好ましく、 ビス (アセチルアセトナト) 銅 (丨 丨) がより好ましい。
[0045] 上記ドープ金属源は、 一種単独で用いてもよいし、 二種以上を混合して用 いてもよい。
[0046] 溶液中のドープ金属源の量は、 溶液を 1 0 0質量%として〇. 0 0 1〜〇 . 0 5質量%が好ましく、 〇. 0 0 5〜〇. 0 3質量%がより好ましい。 ド —プ金属源の含有量の下限が上記範囲であることにより、 フォトクロミック 材料用ナノ粒子の収率がより一層向上する。 また、 ドープ金属源の含有量の 〇 2020/175245 12 卩(:171? 2020 /006330
上限が上記範囲であることにより、 変色量がより一層向上する。
[0047] 工程 1 において、 硫黄含有化合物は、 上記説明した本発明のフォトクロミ ック材料用ナノ粒子の配位子を形成するための配位子源である。
[0048] 硫黄含有化合物としては、 溶媒に可溶であれば特に限定されず、 例えば、
3 -メルカプトプロピオン酸 (IV! 八) 、 チオグリコール酸 (丁〇八) 、 1 1 —メルカプトウンデカン酸、 4—メルカプト安息香酸等が挙げられる。 こ れらの中でも、 光が照射された際の着色がより一層明確であるため、 3—メ ルカプトプロピオン酸 (IV! 八) 、 チオグリコール酸 (丁〇八) が好ましく 、 3 -メルカプトプロピオン酸 (1\/1 八) がより好ましい。
[0049] 上記硫黄含有化合物は、 一種単独で用いてもよいし、 二種以上を混合して 用いてもよい。
[0050] 溶液中の硫黄含有化合物の量は、 溶液を 1 〇〇質量%として〇. 5〜 5質 量%が好ましく、 1〜 3質量%がより好ましい。 硫黄含有化合物の含有量の 下限が上記範囲であることにより、 フォトクロミック材料用ナノ粒子の収率 がより一層向上する。 また、 硫黄含有化合物の含有量の上限が上記範囲であ ることにより、 変色量がより一層向上する。
[0051 ] 工程 1では、 溶媒に、 他の添加物を添加してもよい。 他の添加物としては 、 1~1調整剤が挙げられる。
[0052] 工程 1では、 溶液の 1~1は、 8以上が好ましく、 9以上がより好ましい。
溶液の 1~1の下限が上記範囲であることにより、 フォトクロミック材料用ナ ノ粒子の収率がより一層向上する。 また、 溶液の 1~1の上限は特に限定され ず、 1 〇程度であればよい。
[0053] 溶液の 1~1を上記範囲に調整するための 1~1調整剤としては、 水酸化ナト リウム ( 3〇1~1) 、 水酸化カリウム
Figure imgf000014_0001
等が挙げられ、 これらの中 でも、 水酸化ナトリウム ( 3〇1~1) を好適に用いることができる。
[0054] 工程 1 において、 溶液の温度の下限は 0 °〇が好ましく、 2 0 °〇がより好ま しい。 溶液の温度の下限が上記範囲であることにより、 フォトクロミック材 料用ナノ粒子の収率がより一層向上する。 また、 溶液の温度の上限は特に限 〇 2020/175245 13 卩(:171? 2020 /006330
定されず、 溶媒の沸点以下であればよい。
[0055] 工程 1での反応時間は特に限定されず、 5分以上が好ましく、 1 0分以上 がより好ましい。 反応時間の下限が上記範囲であることにより、 フォトクロ ミック材料用ナノ粒子の収率がより一層向上する。 また、 反応時間の上限は 特に限定されず、 1時間程度である。
[0056] 工程 1では、 上記温度範囲で、 溶液を撹拌することが好ましい。 撹拌する ことにより、 工程 1での反応効率がより一層向上する。
[0057] 以上説明した工程 1 により、 工程 2に供される溶液が調製される。
[0058] (工程 2)
工程 2は、 溶液に、 第 1 6族元素含有化合物を添加して加熱する工程であ る。
[0059] 第 1 6族元素含有化合物に含まれる第 1 6族元素としては〇、 3、
Figure imgf000015_0001
6が挙げられ、 これらの中でも、 光が照射された際の着色がより一層明確 であるため、 3、 〇が好ましく、 3がより好ましい。
[0060] 第 1 6族元素含有化合物としては特に限定されず、
Figure imgf000015_0002
3等が挙げら れる。 これらの中でも、 光が照射された際の着色がより一層明確であるため 、 3 2 3が好ましい。
[0061 ] 第 1 6族元素含有化合の添加量は、 第 1 6族元素含有化合物を添加後の溶 液を 1 0 0質量%として〇. 〇 5〜 1質量%が好ましく、 〇. 1〜〇. 5質 量%がより好ましい。 第 1 6族元素含有化合物の含有量の下限が上記範囲で あることにより、 フォトクロミック材料用ナノ粒子の収率がより一層向上す る。 また、 第 1 6族元素含有化合物の含有量の上限が上記範囲であることに より、 変色量がより一層向上する。
[0062] 工程 2では、 第 1 6族元素含有化合が添加された溶液が加熱される。 工程
2において、 溶液の温度の下限は 5 0 °〇が好ましく、 7 0 °〇がより好ましい 。 溶液の温度の下限が上記範囲であることにより、 フォトクロミック材料用 ナノ粒子の収率がより一層向上する。 また、 溶液の温度の上限は特に限定さ れない。 工程 2では、 溶媒の沸点で加熱することが更に好ましい。 〇 2020/175245 14 卩(:171? 2020 /006330
[0063] 工程 2での反応時間は特に限定されず、 2時間以上が好ましく、 8時間以 上がより好ましい。 反応時間の下限が上記範囲であることにより、 フォトク ロミック材料用ナノ粒子の収率がより一層向上する。 また、 反応時間の上限 は特に限定されず、 4 8時間以下が好ましく、 2 4時間以下がより好ましい
[0064] 工程 2では、 溶液を強撹拌することが好ましい。 強撹拌することにより、 工程 2での反応効率がより一層向上する。
[0065] 以上説明した工程 2により、 フォトクロミック材料用ナノ粒子が製造され る。
[0066] (工程 3)
以上説明したフォトクロミック材料用ナノ粒子の製造方法 1は、 工程 2の 後に、 工程 2で得られたフォトクロミック材料用ナノ粒子を貧溶媒に添加し て分散媒中で凝集させ、 遠心分離させる工程 3を有していてもよい。 工程 3 を有することにより、 得られたフォトクロミック材料用ナノ粒子が大きくな り、 所望の大きさの平均粒子径のフォトクロミック材料用ナノ粒子を調製す ることができる。
[0067] 分散媒としては特に限定されず、 水等を用いることができる。
[0068] 貧溶媒としては特に限定されず、 エタノール、 メタノール、 プロパノール 、 イソプロパノール等のアルコール; アセトン、 アセトニトリル等の極性有 機溶媒が挙げられる。 これらの中でも、 水を分散媒として用いることができ る点でアルコールが好ましく、 エタノールがより好ましい。
[0069] 工程 3では、 フォトクロミック材料用ナノ粒子が添加された分散媒を静置 することにより、 分散媒中でフォトクロミック材料用ナノ粒子を凝集させれ ばよい。 静置中のフォトクロミック材料用ナノ粒子が添加された分散媒の温 度の温度は〇〜 3 0 °〇が好ましく、 1 5〜 2 5 °〇がより好ましい。 フォトク ロミック材料用ナノ粒子が添加された分散媒の温度が上記範囲であることに より、 フォトクロミック材料用ナノ粒子がより一層凝集し易くなる。
[0070] 工程 3でのフォトクロミック材料用ナノ粒子が添加された溶媒の静置時間 〇 2020/175245 15 卩(:171? 2020 /006330
は特に限定されず、 3 0秒以上が好ましく、 1分以上がより好ましい。 反応 時間の下限が上記範囲であることにより、 フォトクロミック材料用ナノ粒子 の収率がより一層向上する。 また、 反応時間の上限は特に限定されず、 1時 間程度である。 反応時間の上限が上記範囲であることにより、 フォトクロミ ック材料用ナノ粒子がより一層水に再分散し易くなる。
[0071 ] 本発明のフォトクロミック材料用ナノ粒子を製造する製造方法は、 また、 フォトクロミック材料用ナノ粒子に遷移金属が吸着されている場合、 下記製 造方法 2により製造することができる。
( 1 ) 溶媒に、 亜鉛含有化合物、 及び、 硫黄含有化合物を添加して溶液を調 製する工程 1’ 、
( 2 ) 溶液に、 第 1 6族元素含有化合物を添加して加熱し、 遷移金属未吸着 フォトクロミック材料用ナノ粒子の分散液を調製する工程 2’ 、 及び、
( 3 ) 分散液に遷移金属源を添加して、 遷移金属未吸着フォトクロミック材 料用ナノ粒子の表面に遷移金属を吸着させる工程 3’ 、
を有する、 フォトクロミック材料用ナノ粒子の製造方法 2。
以下、 当該製造方法について説明する。
[0072] (工程 1’ )
工程 1’ は、 溶媒に、 亜鉛含有化合物、 及び、 硫黄含有化合物を添加して 溶液を調製する工程である。
[0073] 上記工程 1’ では、 上述のフォトクロミック材料用ナノ粒子に遷移金属が ドープされている場合の製造方法 1の工程 1 において、 溶媒にドープ金属源 を添加せずに溶液を調製する。 すなわち、 工程 1’ における溶媒、 亜鉛含有 化合物、 及び、 硫黄含有化合物については、 上記製造方法 1の工程 1 と同様 である。 また、 工程 1’ では、 溶媒にドープ金属源を添加しない以外は上記 製造方法 1の工程 1 と同様にして、 溶液が調製される。
[0074] (工程 2’ )
工程 2’ は、 溶液に、 第 1 6族元素含有化合物を添加して加熱し、 遷移金 属未吸着フォトクロミック材料用ナノ粒子の分散液を調製する工程である。 〇 2020/175245 16 卩(:171? 2020 /006330
工程 2’ は、 上記製造方法 1の工程 2と同様である。
[0075] (工程 3’ )
工程 3’ は、 分散液に遷移金属源を添加して、 遷移金属未吸着フォトクロ ミック材料用ナノ粒子の表面に遷移金属を吸着させる工程である。 工程 2’ で調製された分散液に、 遷移金属源を添加することにより、 分散液中で n Xで示される粒子核の表面に、 遷移金属が吸着される。 また、 工程 3’ では 、 遷移金属のうち一部が n Xで示される粒子核にドープされ、 本発明のフ ォトクロミック材料用ナノ粒子が、 遷移金属がドープ、 及び/又は、 吸着さ れている状態となっていてもよい。
[0076] 遷移金属源としては、 上記製造方法 1の工程 1 におけるドープ金属源と同 —のものを用いることができる。
[0077] 遷移金属源の添加量は、 分散液を 1 0 0質量%として〇. 0 1〜 0 . 5質 量%が好ましく、 〇. 0 5〜〇. 3質量%がより好ましい。 遷移金属源の含 有量の下限が上記範囲であることにより、 フォトクロミック材料用ナノ粒子 の収率がより一層向上する。 また、 遷移金属源の含有量の上限が上記範囲で あることにより、 変色量がより一層向上する。
[0078] 工程 3’ において、 分散液の温度の下限は 0 °〇が好ましく、 2 0 °〇がより 好ましい。 分散液の温度の下限が上記範囲であることにより、 フォトクロミ ック材料用ナノ粒子の収率がより一層向上する。 また、 分散液の温度の上限 は特に限定されず、 溶媒の沸点以下であればよい。
[0079] 工程 3’ での反応時間は特に限定されず、 5分以上が好ましく、 1 0分以 上がより好ましい。 反応時間の下限が上記範囲であることにより、 フォトク ロミック材料用ナノ粒子の収率がより一層向上する。 また、 反応時間の上限 は特に限定されず、 1時間程度である。
[0080] 工程 3’ では、 上記温度範囲で、 分散液を撹拌することが好ましい。 撹拌 することにより、 工程 3’ での反応効率がより一層向上する。
[0081 ] (工程 4’ )
以上説明したフォトクロミック材料用ナノ粒子の製造方法 2は、 工程 3’ 〇 2020/175245 17 卩(:171? 2020 /006330
の後に、 工程 3’ で得られたフォトクロミック材料用ナノ粒子を貧溶媒に添 加して分散媒中で凝集させ、 遠心分離させる工程 4’ を有していてもよい。 工程 4’ を有することにより、 未反応の原料や副反応生成物を取り除き、 よ り一層純度の高いフォトクロミック材料用ナノ粒子を調製することができる
[0082] 分散媒、 貧溶媒としては、 上記製造方法 1の工程 3における分散媒及び貧 溶媒と同一のものを用いることができる。
[0083] 工程 4’ では、 フォトクロミック材料用ナノ粒子が添加された分散媒を静 置することにより、 分散媒中でフォトクロミック材料用ナノ粒子を凝集させ ればよい。 静置中のフォトクロミック材料用ナノ粒子が添加された分散媒の 温度の温度は〇〜 3 0 °〇が好ましく、 1 5〜 2 5 °〇がより好ましい。 フォト クロミック材料用ナノ粒子が添加された分散媒の温度が上記範囲であること により、 フォトクロミック材料用ナノ粒子がより一層凝集し易くなる。
[0084] 工程 4’ でのフォトクロミック材料用ナノ粒子が添加された溶媒の静置時 間は特に限定されず、 3 0秒以上が好ましく、 1分以上がより好ましい。 反 応時間の下限が上記範囲であることにより、 フォトクロミック材料用ナノ粒 子の収率がより一層向上する。 また、 反応時間の上限は特に限定されず、 1 時間程度である。 反応時間の上限が上記範囲であることにより、 フォトクロ ミック材料用ナノ粒子がより一層水に再分散し易くなる。
実施例
[0085] 以下に実施例及び比較例を示して本発明を具体的に説明する。 但し、 本発 明は実施例に限定されない。
[0086] 実施例 1
(工程 1)
フラスコに水
Figure imgf000019_0001
を入れ、 酢酸亜鉛 ( n (〇 1~1 3〇〇〇) 2) 5 4 7 9、 ビス (アセチルアセトナト) 銅 (丨 丨) (<3リ (〇5 1~1 722) 7 9、 及び、 3 -メルカプトプロピオン酸 (1\/1 八) 1 1_を添加した。
[0087] 次いで、 撹拌しながら 1~1調整剤として水酸化ナトリウム (N a〇H) を 〇 2020/175245 18 卩(:171? 2020 /006330
添加し溶液を調製した。 溶液の ! !は 1 0であった。
[0088] 室温で 3 0分間撹拌しながら窒素ガスを溶液に流し、 溶液から発生するガ スを抜いた。
[0089] (工程 2)
工程 1で調製された溶液を強撹拌しながら、 第 1 6族元素含有化合物であ
Figure imgf000020_0001
した。 次いで、 N 3 2 3を添加して溶液を 1 0 0
°〇で 2 4時間加熱し、 フォトクロミック材料用ナノ粒子のナノ結晶を調製し た。
[0090] フォトクロミック材料用ナノ粒子のナノ結晶にエタノールを添加し、 フォ トクロミック材料用ナノ粒子を凝集させた。 遠心分離機でフォトクロミック 材料を沈殿させ、 フォトクロミック材料用ナノ粒子を得た。 フォトクロミッ ク材料用ナノ粒子の<3リ元素のドープ量は、 n元素及び(3リ元素のモル数 の合計を 1 0 0モル%として、 1モル%であった。
[0091 ] 得られたフォトクロミック材料用ナノ粒子の平均粒子径を、 試料水平型多 目的 X線回折装置 (リガク社製 商品名 II 丨 I 丨
Figure imgf000020_0002
I V) により測定さ れる散乱ピークの線幅から算出した。
[0092] 実施例 2
ビス (アセチルアセトナト) 銅 (丨 丨) (〇リ (〇5 1~1 722) の添加量 を変え、 フォトクロミック材料用ナノ粒子の〇リ元素のドープ量を 3 %とし た以外は実施例 1 と同様にして、 フォトクロミック材料用ナノ粒子を得た。
[0093] 比較例 1
ビス (アセチルアセトナト) 銅 (丨 丨) (<3リ (〇5 1~1 722) を添加せ ず、 フォトクロミック材料用ナノ粒子の〇リ元素のドープ量を 0 %とした以 外は実施例 1 と同様にして、 フォトクロミック材料用ナノ粒子を得た。
[0094] 得られたフォトクロミック材料用ナノ粒子の X
Figure imgf000020_0003
口 (X線回折) を、 乂[¾ 口測定装置 (リガク社製 製品名 II 丨 I 丨
Figure imgf000020_0004
I V) を用いて散乱ピーク の線幅から算出した。 結果を図 2に示す。
[0095] 図 2の結果から、 実施例 1、 実施例 2及び比較例 1で得られたフォトクロ 〇 2020/175245 19 卩(:171? 2020 /006330
ミック材料用ナノ粒子は、 立方晶の結晶構造を有することが分かった。
[0096] 実施例 1及び比較例 1で得られたフォトクロミック材料用ナノ粒子に、 波 長 3 6 5 n の紫外線を 1 7 .
Figure imgf000021_0001
照射時間 5秒間の条件で照射 し、 吸収スペクトル測定機 (才ーシャンオプティクス社製、 製品名〇 0 6 3
Figure imgf000021_0002
、 のスペクトルでの吸光度変化を測定した。 結果を図 3に示す。 また、 実施例 1のフォトクロミック材料用ナノ粒子の様 子の写真を図 4に示す。
[0097] 図 3及び図 4の結果から、 実施例 1では紫外線を 5秒間照射するとフォト クロミック材料用ナノ粒子が着色状態になり、 1分程度経過後には元の状態 に戻ることが分かった。
[0098] これに対し、 比較例 1では紫外線を照射してもフォトクロミック材料用ナ ノ粒子が殆ど着色状態にならず、 紫外線を照射してもフォトクロミック材料 用ナノ粒子が殆ど着色しないことが分かった。
[0099] 実施例 1で得られたフォトクロミック材料用ナノ粒子に、 波長 3 6 5 n m の紫外線を 1 7 .
Figure imgf000021_0003
照射時間 5秒間の条件で照射し、 紫外線の 吸収を、 吸収スペクトル測定機 (オーシャンオプティクス社製、 製品名〇〇 6 3 1^ X) を用いて、 3 0 0〜 8 0 0 01の範囲のスペクトルでの吸光 度変化により測定した。 紫外線照射完了後 1秒の結果を図 5、 1 0秒後の結 果を図 6、 4 0秒後の結果を図 7に す。
[0100] 図 5〜 7の結果から、 実施例 1では紫外線照射後フォトクロミック材料用 ナノ粒子が着色状態になり、 4 0秒程度経過後には元の状態に戻ることが分 かった。
[0101 ] 比較例 2
(工程 1)
フラスコに水 1 4 0 !_を入れ、 酢酸亜鉛 ( n (〇1~1 3〇〇〇) 2) 1 5 3 6 9、 ビス (アセチルアセトナト) 銅 (丨 丨) (〇リ (〇5 1~1 722) 1 9 . 及び、 下記式で示されるポリ (エチレングリコール) ビス (力 ルボキシメチル) エーテルを〇. 6 3 1_添加し、 1 0 0 °〇まで加熱した。 〇 2020/175245 20 卩(:171? 2020 /006330
(工程 2)
工程 1で調製された溶液を強撹拌しながら、 第 1 6族元素含有化合物であ る 3 2 3を 1 3 1 0 01 9添加した。 次いで、 N 3 2 3を添加して溶液を 1 0 0 °〇で 2 4時間加熱し、 フォトクロミック材料用ナノ粒子のナノ結晶を調製 した。 次いで、 遠心分離機でフォトクロミック材料を沈殿させ、 フォトクロ ミック材料用ナノ粒子を得た。
[0102] [化 1 ]
Figure imgf000022_0001
(式中、 nは 1以上の整数を示す。 )
[0103] 比較例 3
(工程 1)
フラスコに水 1 0 0 1_を入れ、 酢酸亜鉛 (Z n (〇1~1 3〇〇〇) 2) 5 4 7〇^、 ビス (アセチルアセトナト) 銅 (丨 丨) (<3リ (〇5 1~1 722) 7 111 9を添加した。
[0104] 次いで、 撹拌しながら 1~1調整剤として水酸化ナトリウム (N a〇H) を 添加し溶液を調製した。 溶液の 1~1は 1 0であった。
[0105] 室温で 3 0分間撹拌しながら窒素ガスを溶液に流し、 溶液に溶解する酸素 を取り除いた。
[0106] (工程 2)
工程 1で調製された溶液を強撹拌しながら、 第 1 6族元素含有化合物であ
Figure imgf000022_0002
1 5分撹拌することにより、 フォトクロミッ ク材料用ナノ粒子を調製した。 当該フォトクロミック材料用ナノ粒子は、 遠 心分離機により沈殿させ、 固体として調製した。
[0107] 比較例 2及び比較例 3で得られたフォトクロミック材料用ナノ粒子に、 波 長 3 6 5 n の紫外線を 1 7 .
Figure imgf000022_0003
照射時間 5秒間の条件で照射 〇 2020/175245 21 卩(:171? 2020 /006330
し、 紫外線の吸収を、 吸収スペクトル測定機 (オーシヤンオプティクス社製 、 製品名
Figure imgf000023_0001
X) を用いて、 3 0 0〜 8 0 0 01の範囲のスぺク トルでの吸光度変化により測定した。 比較例 2の紫外線照射完了後 1秒の結 果を図 8、 1 0秒後の結果を図 9、 4 0秒後の結果を図 1 0に示す。 また、 比較例 3の紫外線照射完了後 1秒の結果を図 1 1、 1 0秒後の結果を図 1 2 、 4 0秒後の結果を図 1 3に す。
[0108] 図 8〜図 1 3の結果から、 比較例 2及び比較例 3では、 紫外線を照射して もフォトクロミック材料用ナノ粒子が殆ど着色状態にならないことが分かっ た。
[0109] 遷移金属をドープしていない遷移金属未吸着フォトクロミック材料用ナノ 粒子を調製後に、 遷移金属未吸着フォトクロミック材料用ナノ粒子分散液に 遷移金属源 (遷移金属イオン) を添加して、 遷移金属を後からフォトクロミ ック材料用ナノ粒子にドープ及び/又は吸着させることによっても、 フォト クロミック材料用ナノ粒子合成時に遷移金属をドープした場合と同様にフォ トクロミック反応を示すことを、 以下の実施例 3に示す。
[01 10] 実施例 3
比較例 1で調製した、 〇リをドープしていないフォトクロミック材料用ナ ノ粒子 ( n 3ナノ粒子) 2 0 9を〇. 5 !_の水に分散させ、 水分散液 を調製した。 また、 別途ビス (アセチルアセトナト) 銅 ( I I) (〇リ (〇5 1~1 722) 〇. 5 9を 2 !_の水に溶解させ、 水溶液を調製した。 フォト クロミック材料用ナノ粒子の水分散液に、 〇リ (0 ^ 7 0 22の水溶液を添 加して混合液を調製し、 室温で約 2分間撹拌した。 〇リ (0 ^ 7 0 22の添 加量は、 混合液を 1 〇〇質量%として 2 . 4質量%であった。 次いで、 混合 液にエタノールを添加し、 遠心分離機でフォトクロミック材料用ナノ粒子を 沈殿させ、 フォトクロミック材料用ナノ粒子を得た。 得られたフォトクロミ ック材料用ナノ粒子は合成時に 0リをドープしたものと同様に、 紫外光照射 (3 6 5 〇〇 によってフォトクロミズムを示した。
[01 1 1 ] 実施例 3で得られたフォトクロミック材料用ナノ粒子に、 波長 3 6 5 n m 〇 2020/175245 22 卩(:171? 2020 /006330
の紫外線を 1 7 . 5 \^//〇〇! 2、 照射時間 5秒間の条件で照射し、 紫外線の 吸収を、 吸収スペクトル測定機 (オーシャンオプティクス社製、 製品名〇〇 6 3 1^ X) を用いて、 3 0 0〜 8 0 0 01の範囲のスペクトルでの吸光 度変化により測定した。 紫外線照射を完了して 1秒後の結果を図 1 4、 1 0 秒後の結果を図 1 5、 4 0秒後の結果を図 1 6に す。
[01 12] 図 1 4〜 1 6の結果から、 実施例 3では紫外線照射後フォトクロミック材 料用ナノ粒子が着色状態になり、 4 0秒程度経過後には吸光度変化が減少す ることが分かった。
[01 13] 実施例 1〜 3、 及び、 比較例 1で調製した試料の電子スピン共鳴 (巳 [¾
) を、 紫外光照射前、 及び、 照射後において測定した。 具体的には、 試料を 石英管内で脱気した。 Xバンドの巳 測定は
Figure imgf000024_0001
巳1\/1 Xシステムを使用して行った。
Figure imgf000024_0002
1\/1 3 6 5 1_ ? 1) によって試料を励起した。 マイクロ波電力〇. 3 \^/、 変 調振幅〇. 4 丁の条件で、 電子スピン共鳴
Figure imgf000024_0003
を測定した。 実施例 1の結果を図 1 7、 実施例 2の結果を図 1 8、 実施例 3の結果を図 1 9、 比 較例 1の結果を図 2 0に示す。
[01 14] 図 1 7〜図 1 9の結果から、 実施例 1〜 3では、 紫外光照射前に〇リ2 +由 来のシグナルが見られないことから、 ナノ粒子に含まれる〇リは〇リ +になっ ていることを示している。 また、 紫外光照射後の磁場 3 4〇 丁以下の領域 で、 チャートの上下にブロードの〇リ 2 +由来のピークが見られ、 紫外光照射 により 0リ+が 0リ 2 +に酸化されていることが確認された。 これに対し、 図 2 0の結果から、 比較例 1では、 紫外光照射後にチャートの上下にシャープな 3のラジカルアニオンのピークのみが観察された。
[01 15] (水分散液中での吸収スぺクトル変化)
実施例 2で調製したフォトクロミック材料用ナノ粒子を水に分散させて、 水分散液を調製した。 水分散液中のフォトクロミック材料用ナノ粒子の含有 量は、 水分散液を 1 〇〇質量%として 2 . 9質量%であった。 また、 水分散 液の温度は約 2 5 °〇であった。 当該水分散液を用いて、 目視では観測できな い程短い時間領域における吸収スぺクトル変化 (過渡吸収スぺクトル) の測 定を行った。 測定は、 株式会社ユニソクの協力を経て行い、 RIPT (Random ly Inter leaved Pu lse Tra i n Methods) 法による p i coTASを用いて行った。 励起 光として 3 5 5 n mのピコ秒パルスレーザーを用いた。 ピコ秒パルスレーザ —の強度は 2 0 M J / P u 丨 s eであった。 ピコ秒パルスレーザー照射を完 了して 2 0 0ナノ秒後の結果を図 2 1、 6 0 0ナノ秒後の結果を図 2 2、 1 8 0 0秒後の結果を図 2 3に示す。
[01 16] 実施例 1で調製したフォトクロミック材料用ナノ粒子 (C u 1 %) 、 及 び、 比較例 1で調製したフォトクロミック材料用ナノ粒子 (C u 0 %) に おいても、 上記実施例 2と同様に水に分散させて水分散液を調製し、 過渡吸 収スペクトルの測定を行った。 図 2 4に、 波長 6 0 0 n mでプローブした吸 光度変化の測定結果を示す。
[01 17] 図 2 1〜図 2 4の結果から、 光励起直後から、 可視光から近赤外領域にか けて幅広い吸収が観測された。 この吸収スぺクトル形状は秒オーダーの長い 時間スケール観測された吸収スぺクトルとはわずかに異なる。 その吸収バン ドは 1マイクロ秒程度で減衰し、 別のスぺクトル形状の吸収バンドが観測さ れた。 その後、 その吸収バンドは数百マイクロ秒以上観測され続けており、 この吸収バンドが固体で着色変化として観測された吸収バンドであることが 示唆された。 この現象は繰り返し観測され、 実施例 2で調製したフォトクロ ミック材料用ナノ粒子 (C uをドープした Z n Sナノ粒子) は、 水分散液中 で極めて速いフォトクロミズムを示すことが分かった。 また、 マイクロ秒才 —ダーの速い時間領域において、 より大きな吸収変化を誘起していることが 分かった。
[01 18] また、 図 2 4の結果から、 実施例 1で調製したフォトクロミック材料用ナ ノ粒子 (C u 1 %) を水に分散させて調製した水分散液は、 水分散液中で 極めて速いフォトクロミズムを示すことが分かった。 これに対し、 C u元素 をドープしていない比較例 1で調製したフォトクロミック材料用ナノ粒子 ( C u 0 %) を水に分散させて調製した水分散液は、 水分散液中でフォトク 〇 2020/175245 24 卩(:171? 2020 /006330
ロミズムを示さないことが確認された。
[01 19] (フォトクロミック材料用ナノ粒子の丁巳1\/1観察)
実施例 2で調製されたフォトクロミック材料用ナノ粒子を、 透過型電子顕 微鏡 (丁巳 IV!) により観察した。 観察は、 」 巳1\/1 - 2 1 0 0 1 1_1 3透過電 子顕微鏡 (日本電子株式会社製) を用いて、 加速電圧 2 0 0 1< Vの条件で行 った。 具体的には、 実施例 2で調製したフォトクロミック材料用ナノ粒子を 水に分散して分散液を調製した。 当該分散液にグリッ ドを浸潰してナノ粒子 を付着させて、 丁巳 IV!画像を撮影し、 フォトクロミック材料用ナノ粒子の平 均粒子径を測定した。 結果を図 2 5及び図 2 6に示す。 図 2 5及び図 2 6の 丁巳 IV!画像において、 フォトクロミック材料用ナノ粒子が濃い黒色の固まり として観察された。 また、 フォトクロミック材料用ナノ粒子の平均粒子径は
Figure imgf000026_0001
よりもわずかに大きな測定値となった。
[0120] (フォトクロミック材料用ナノ粒子の光耐久性)
実施例 1で調製されたフォトクロミック材料用ナノ粒子 (固体) に紫外光 (波長 3 6 5 n m、 強度 6 .
Figure imgf000026_0002
を長時間照射し、 吸光度変化を 測定した。 具体的には、 実施例 1で調製されたフォトクロミック材料用ナノ 粒子に上記紫外光を 7時間照射して、 吸光度変化を測定した。 吸光度変化の 測定は、 紫外光照射前、 1 0分後、 2 0分後、 5 0分後、 2時間後、 4時間 後、 7時間後の各時点において、 紫外光照射を一旦止めて行った。 吸光度変 化の測定は、 フォトクロミック材料用ナノ粒子に、 波長 3 6 5 n mの紫外線 を 1 7 . 5 \^//〇 2、 照射時間 5秒間の条件で照射し、 紫外線の吸収を、 吸収スぺクトル測定機 (オーシャンオプティクス社製、 製品名〇〇 6 3
Figure imgf000026_0003
乂) を用いて、 3 0 0〜 8 0 0门
Figure imgf000026_0004
の範囲のスペクトルでの吸光度変化に より測定した。 図 2 7に、 各時点での波長 6 0 0 n でプローブした吸光度 変化の測定結果を示す。
[0121 ] 図 2 7の結果から、 実施例 1で調製したフォトクロミック材料用ナノ粒子 は、 紫外線を長時間照射した後であっても、 照射前と同程度のフォトクロミ ック反応を示し、 光耐久性を示すことが確認された。 〇 2020/175245 25 卩(:171? 2020 /006330
[0122] (フォトクロミック材料用ナノ粒子 (固体) の吸収スペクトル測定)
実施例 1 («3 ^1 1 %) 、 及び、 比較例 1 («3 ^1 0 %) で調製されたフ ォトクロミック材料用ナノ粒子 (固体) の吸収スペクトルを測定した。 測定 は、 分光光度計 (日立ハイテクノロジーズ社製 H 丨 T A C H 丨 11 - 4 1 0 0 (積分球付き) ) を用いて、 3 0 0〜 5 0 0门
Figure imgf000027_0001
の範囲のスペクトルで の吸光度変化により行った。 結果を図 2 8に示す。
[0123] 図 2 8の結果から、 実施例 1で調製したフォトクロミック材料用ナノ粒子 は、 0リ元素をドープすることにより吸収が長波長側ヘシフトし、 比較例 1 で調製したフォトクロミック材料用ナノ粒子と比較して、 光感度が可視光側 に伸びていることが分かった。
[0124] (フォトクロミック材料用ナノ粒子表面の吸着水のフォトクロミズムへの影 響)
実施例 1で調製したフォトクロミック材料用ナノ粒子 3〇 9をバイアル 瓶に入れ、 6 0 °〇で 2時間真空乾燥した。 乾燥前後のフォトクロミック材料 用ナノ粒子の丨
Figure imgf000027_0002
スペクトルを測定した。 結果を図 2 9に示す。 また、 乾燥 前後のフォトクロミック材料用ナノ粒子に紫外光照射 (波長 3 6 5 n m、 強 度 1 7 .
Figure imgf000027_0003
を行い、 吸光度変化を測定した。 結果を図 3 0に示 す。
[0125] 図 2 9の結果から、 フォトクロミック材料用ナノ粒子を真空乾燥すること によって、 丨
Figure imgf000027_0004
スペクトルにおけるフォトクロミック材料用ナノ粒子表面の 吸着水の水素結合に由来する波長 3 5 0 0〜 3 0 0 0〇
Figure imgf000027_0005
のブロードなピ —クが減少し、 フォトクロミック材料用ナノ粒子の吸着水が減少したことが わかった。 また、 図 3 0の結果から、 表面に吸着水を有するフォトクロミッ ク材料用ナノ粒子 (乾燥前) は、 紫外光を照射してからの消色速度が極めて 速くなることがわかった。
[0126] (フォトクロミック材料用ナノ粒子のフォトクロミズムの温度依存性)
実施例 1で調製したフォトクロミック材料用ナノ粒子の紫外光照射での吸 光度減衰を、 測定温度を 2 5 °〇から 5 5 °〇の温度範囲で 5 °〇ずつ昇温させて 〇 2020/175245 26 卩(:171? 2020 /006330
測定した。 結果を図 3 1 に示す。 2 5 °〇から 5 5 °〇の温度範囲で温度が変化 しても、 紫外光照射による吸光度変化量及び減衰速度は殆ど変化がないこと がわかった。 温度依存性を示す従来のフォトクロミック材料は、 上記使用条 件ではフォトクロミック反応が速すぎて発色が悪いという問題があり、 また 、 遅すぎて調光サングラスとして機能しないという問題がある。 温度依存が 抑制されたフォトクロミック材料は極めて少なく、 このようなフォトクロミ ック材料は、 季節や場所に制限されることなくフォトクロミック特性を発現 することができる。 温度依存が抑制されていることにより、 例えば、 真夏の ビーチ、 スキー場でのサングラスとして利用することができる。
産業上の利用可能性
[0127] 本発明のフォトクロミック材料用ナノ粒子は、 眼鏡、 サングラス、 ゴーグ ル等のアイウェア、 動画ホログラムなどの応用に適した高速書き換え可能な 記録材料; クレジッ トカード、 紙幣、 ブランド品等の偽造防止材等に好適に 使用することができる。
符号の説明
[0128] 1 . フォトクロミック材料用ナノ粒子
2 . n 3ナノ粒子
3 . 遷移金属

Claims

\¥0 2020/175245 27 卩(:17 2020 /006330 請求の範囲
[請求項 1 ] 下記一般式 (1)
门 X ( 1)
(式 (1) 中、 Xは第 1 6族元素を示す。 )
で表わされるフォトクロミック材料用ナノ粒子であって、
遷移金属がドープ、 及び/又は、 吸着されており、
表面に、 硫黄元素を含有する有機配位子を有する ことを特徴とするフォトクロミック材料用ナノ粒子。
[請求項 2] 前記 Xは、 〇、 3、 3 6及び丁 6からなる群より選択される少なく とも 1種である、 請求項 1 に記載のフォトクロミック材料用ナノ粒子
[請求項 3] 前記有機配位子は、 下記一般式 (2)
Figure imgf000029_0001
、 〜 2 0の有機基を示す。 )
で表わされる有機配位子である、 請求項 1又は 2に記載のフォトクロ ミック材料用ナノ粒子。
[請求項 4] 平均粒子径が 1
Figure imgf000029_0002
以下である、 請求項 1〜 3のい ずれかに記載のフォトクロミック材料用ナノ粒子。
[請求項 5] 請求項 1〜 4のいずれかに記載のフォトクロミック材料用ナノ粒子 が水に分散してなる、 フォトクロミック材料用ナノ粒子水分散液。
PCT/JP2020/006330 2019-02-27 2020-02-18 フォトクロミック材料用ナノ粒子及びフォトクロミック材料用ナノ粒子水分散液 WO2020175245A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021502036A JPWO2020175245A1 (ja) 2019-02-27 2020-02-18
US17/434,146 US20220162085A1 (en) 2019-02-27 2020-02-18 Nanoparticles for photochromic material and aqueous dispersion of nanoparticles for photochromic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-033852 2019-02-27
JP2019033852 2019-02-27

Publications (1)

Publication Number Publication Date
WO2020175245A1 true WO2020175245A1 (ja) 2020-09-03

Family

ID=72239513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006330 WO2020175245A1 (ja) 2019-02-27 2020-02-18 フォトクロミック材料用ナノ粒子及びフォトクロミック材料用ナノ粒子水分散液

Country Status (3)

Country Link
US (1) US20220162085A1 (ja)
JP (1) JPWO2020175245A1 (ja)
WO (1) WO2020175245A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296708A (ja) * 1997-04-28 1998-11-10 Dainichiseika Color & Chem Mfg Co Ltd セメントモルタル体またはコンクリート体の製造方法、並びにその製造用型枠
JP2001323202A (ja) * 2000-05-19 2001-11-22 Sakura Color Prod Corp ボールペン用フォトクロミック水性インキ組成物
JP2004352770A (ja) * 2003-05-27 2004-12-16 Fuji Photo Film Co Ltd 2光子吸収発色材料、2光子吸収発光材料、2光子吸収発色方法および2光子吸収発光方法
JP2007152113A (ja) * 2005-12-05 2007-06-21 L'oreal Sa フォトクロミック(光互変性Photochromic)マスク
JP2010080689A (ja) * 2008-09-26 2010-04-08 Sony Corp 半導体薄膜の形成方法及び電子デバイスの製造方法
US20150017109A1 (en) * 2013-07-12 2015-01-15 Photoprotective Technologies, Inc Phototherapeutic Near IR Fluorescent Light Filters

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060610A2 (en) * 2003-12-11 2005-07-07 The Trustees Of Columbia University In The City Ofnew York Nano-sized particles, processes of making, compositions and uses thereof
CA2649513A1 (en) * 2006-04-12 2007-10-25 Nanomas Technologies, Inc. Nanoparticles, methods of making, and applications using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296708A (ja) * 1997-04-28 1998-11-10 Dainichiseika Color & Chem Mfg Co Ltd セメントモルタル体またはコンクリート体の製造方法、並びにその製造用型枠
JP2001323202A (ja) * 2000-05-19 2001-11-22 Sakura Color Prod Corp ボールペン用フォトクロミック水性インキ組成物
JP2004352770A (ja) * 2003-05-27 2004-12-16 Fuji Photo Film Co Ltd 2光子吸収発色材料、2光子吸収発光材料、2光子吸収発色方法および2光子吸収発光方法
JP2007152113A (ja) * 2005-12-05 2007-06-21 L'oreal Sa フォトクロミック(光互変性Photochromic)マスク
JP2010080689A (ja) * 2008-09-26 2010-04-08 Sony Corp 半導体薄膜の形成方法及び電子デバイスの製造方法
US20150017109A1 (en) * 2013-07-12 2015-01-15 Photoprotective Technologies, Inc Phototherapeutic Near IR Fluorescent Light Filters

Also Published As

Publication number Publication date
JPWO2020175245A1 (ja) 2020-09-03
US20220162085A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
JP4665499B2 (ja) 金属微粒子とその製造方法とその含有組成物ならびにその用途
KR101125491B1 (ko) 금속 미립자의 제조 방법, 및 그것에 의해 제조된 금속미립자, 그리고 그것을 함유하여 이루어지는 조성물,광흡수재, 응용품
US8088839B2 (en) Method of producing hybrid polymer-inorganic materials
JP5598995B2 (ja) プルシアンブルー型金属錯体超微粒子、その分散液
JP5035767B2 (ja) プルシアンブルー型金属錯体超微粒子、その分散液、及びそれらの製造方法
JP5425764B2 (ja) スピン転移材料
US20070148081A1 (en) Surface modified nanoparticle and method of preparing same
KR20160053352A (ko) 다기능성 고분자와 환원제를 이용한 금속나노입자의 제조방법
EP2204249A1 (en) Aqueous dispersions of metallic particles
EP2104714A1 (en) Process for producing nanoparticles
JP4529160B2 (ja) 金属微粒子とその製造方法とその含有組成物ならびにその用途
Vodnik et al. Anisotropic silver nanoparticles as filler for the formation of hybrid nanocomposites
Titkov et al. Synthesis of silver nanoparticles stabilized by carboxylated methoxypolyethylene glycols: the role of carboxyl terminal groups in the particle size and morphology
Jaymand Synthesis and characterization of well-defined poly (4-chloromethyl styrene-g-4-vinylpyridine)/TiO 2 nanocomposite via ATRP technique
Samadi-Maybodi et al. Synthesis, optical properties and tuning size of CdSe quantum dots by variation capping agent
Zhang et al. Development of optically transparent ZnS/poly (vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers
WO2020175245A1 (ja) フォトクロミック材料用ナノ粒子及びフォトクロミック材料用ナノ粒子水分散液
JP6140634B2 (ja) 合金微粒子分散液およびその製造方法
Tapia et al. Solvent-induced morphological changes of polyhedral silver nanoparticles in epoxy resin
KR101905282B1 (ko) 금속 나노입자-보호 중합체 및 금속 콜로이드 용액, 및 그의 제조 방법
Kuroiwa et al. Morphological control of hybrid amphiphilic poly (N-isopropylacrylamide)/metal cyanide complexes
Vishakha et al. Carboxymethyl starch as a reducing and capping agent in the hydrothermal synthesis of selenium nanostructures for use with three-dimensional-printed hydrogel carriers
CN113185964B (zh) 一种具有超大Stokes位移的环保型三元量子点材料的制备
JP5874436B2 (ja) 酸化亜鉛粒子及びその製造方法
KR101827218B1 (ko) 다기능성 고분자와 환원제를 이용한 금속나노입자의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502036

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763050

Country of ref document: EP

Kind code of ref document: A1