WO2020175041A1 - 溶接線データ生成装置、溶接システム、溶接線データ生成方法及びプログラム - Google Patents

溶接線データ生成装置、溶接システム、溶接線データ生成方法及びプログラム Download PDF

Info

Publication number
WO2020175041A1
WO2020175041A1 PCT/JP2020/004196 JP2020004196W WO2020175041A1 WO 2020175041 A1 WO2020175041 A1 WO 2020175041A1 JP 2020004196 W JP2020004196 W JP 2020004196W WO 2020175041 A1 WO2020175041 A1 WO 2020175041A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
combination
members
line data
welding line
Prior art date
Application number
PCT/JP2020/004196
Other languages
English (en)
French (fr)
Inventor
有卓 焦
定廣 健次
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN202080016127.6A priority Critical patent/CN113474114B/zh
Priority to KR1020217026839A priority patent/KR102537026B1/ko
Priority to US17/433,783 priority patent/US20220134464A1/en
Priority to CA3130902A priority patent/CA3130902C/en
Publication of WO2020175041A1 publication Critical patent/WO2020175041A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/006Welding metals by means of an electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a welding line data generation device, a welding system, a welding line data generation method, and a program.
  • Patent Document 1 describes a technique for speeding up the selection of a welding line by an operator.
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-184182
  • An object of the present invention is to enable a portion to be welded or a candidate thereof to be efficiently and automatically specified by a welding robot.
  • a welding line data generation device for generating welding line data for identifying a position to be welded by a welding robot, the welding robot for each combination of constituent names of members.
  • the recording part that records the availability information indicating whether or not welding is possible, and the extraction part that extracts the combination of two or more adjacent parts from the three-dimensional data of the structure manufactured by welding, and the extracted 2
  • the generator that generates the welding line data that specifies the part to be welded between two or more members corresponding to the corresponding combination.
  • the welding line data generation device uses the configuration name of each member forming the structure based on the shape of each member forming the three-dimensional data and/or the positional relationship between the member and another member. It is preferable to further include a configuration name specifying unit for specifying.
  • the composition name identification section here identifies the members that do not require welding by the welding robot as non-welded members, and the generation section selects the corresponding combination if one of the extracted member combinations is a non-welded member. You may exclude from the object of welding.
  • the configuration name specifying unit may specify the configuration name of the member having a plate-like shape based on the area of the member forming the three-dimensional data.
  • information on the shape of the member used to specify the configuration name may include information on the groove shape.
  • the configuration name identification unit may identify the configuration name of a member adjacent to another member based on the positional relationship with respect to the other member for which the configuration name is specified.
  • the configuration name specifying unit calculates at least one of the inclination angle, the rotation angle, and the twist angle of one member with respect to the other member as the positional relationship between the extracted two members, and calculates If the calculated value is greater than or equal to the threshold value, the other member is identified as a non-welded member, and the generation unit, if the extracted combination of adjacent members is a non-welded member, It may be excluded from the target.
  • configuration name specifying part here is the shape of the member and the positional relationship between the member and other members. ⁇ 2020/175041 3 ⁇ (:171? 2020 /004196
  • the configuration name of each member that constitutes the structure may be specified by using a learned model that has learned the relationship between both or one of the members and the configuration name of the member.
  • the generator further determines the presence or absence of a groove in the part where the two members are adjacent to each other.
  • the welding line data may be generated according to information.
  • a welding system having a welding robot that welds members to each other, and a welding control device that controls the operation of the welding robot based on a welding line data. Extraction that extracts the combination of two or more adjacent members from the recording part that records the availability information indicating the availability of welding by the welding robot for each combination of configuration names and the three-dimensional data of the structure manufactured by welding If the combination of the part and the configuration name corresponding to the combination of the extracted two or more members is weldable, the welding line data that identifies the part to be welded between the two or more members corresponding to the combination is generated.
  • a welding system having a generating unit for generating is provided.
  • a welding line data generation method for generating welding line data for specifying a portion to be welded by a welding robot, wherein the three-dimensional data of a structure manufactured by welding are adjacent to each other.
  • the process of extracting the combination of two or more members and the welding propriety of the combination of the constituent names corresponding to the extracted combination of the two or more members are indicated by the prepared propriety information for each combination of the constituent names.
  • the process of determining by referring to is possible between the two or more members corresponding to the corresponding combination.
  • a process for generating the welding line data for specifying a portion to be welded to provide a welding line data generation method.
  • [001 1] Furthermore, as another invention, a process of extracting a combination of two or more adjacent members from the three-dimensional data of a structure manufactured by welding, and a combination of the extracted two or more members The process of determining the weldability of the combination of configuration names corresponding to the above by referring to the prepared availability information for each combination of configuration names, and the configuration name corresponding to the extracted combination of two or more members.
  • a program is provided that causes the computer to perform processing to generate welding line data that specifies the portion to be welded between two or more materials corresponding to the corresponding combination.
  • a site to be welded or a candidate thereof can be efficiently and automatically specified by a welding robot.
  • FIG. 1 is a diagram showing a configuration example of a welding system according to the present embodiment.
  • Fig. 2 is a diagram illustrating a positional relationship such as inclination, rotation, and twist.
  • Fig. 3 is a diagram illustrating a structural body and members that are its constituent elements.
  • FIG. 4 is a diagram showing a structural example of welding propriety information recorded in a propriety information recording unit.
  • FIG. 5 is a diagram showing an example of a relationship between members determined to have a groove.
  • FIG. 6 is a diagram showing an example of a relationship between members determined to have no groove.
  • FIG. 7 A flowchart for explaining the processing operation executed by the welding line data generation device.
  • FIG. 8 is a diagram showing an example of a screen for accepting correction of welding line candidates.
  • FIG. 1 is a diagram showing a configuration example of a welding system 1 according to the present embodiment.
  • the welding system 1 shown in Fig. 1 consists of a welding robot 10 that welds members to be welded together, a welding controller 20 that controls the movement of the welding robot 10 and welding line data that gives the welding position.
  • the welding line data generator 30 that gives the data to the welding controller 20 and the structure data that stores the three-dimensional data that describes the shape of each member that constitutes the structure manufactured by welding and the positional relationship between the members.
  • Base 40 ⁇ 2020/175041 5 (:171? 2020/004196
  • welding robots 10 There are various types of welding robots 10 depending on the application. For example, there are steel frame welding robots used for welding of steel frames, building parts welding robots, bridge welding robots, bogie parts welding robots, forklift parts welding robots, and welding robots for the marine sector.
  • a steel frame welding robot is assumed as the welding robot 10.
  • the welding control device 20 is composed of, for example, a computer, and controls the movement of one or a plurality of welding robots 10.
  • the computer is a computing unit that executes the control program, a non-volatile semiconductor memory that stores the start-up program, a volatile semiconductor memory that executes the control program, and operating parameters collected from the welding robot 10. It consists of a hard disk drive that stores welding line data that specifies the part to be welded.
  • An input device such as a keyboard and a touch panel, and a display device for displaying information on the progress of welding are also connected to the welding control device 20 as a computer.
  • the welding line data in the present embodiment refers to a set of data that defines a portion (welding line) to be welded out of two or more materials that are adjacent to each other.
  • Adjacent relationships include, for example, a relationship in which one member contacts another member, a relationship in which a gap exists between one member and another member, and a relationship in which another member bites into one member.
  • the gap means a space in which members can be connected by welding and which has a predetermined distance or less.
  • the welding line data generation device 30 is also configured by, for example, a computer.
  • the computer here is a computing unit that executes an application program, a non-volatile semiconductor memory that stores a startup program, a volatile semiconductor memory that executes the application program, an application program, and a welding program.
  • Hard disk device that records data including line data, input device It is composed of a display and a display device.
  • welding availability information information indicating whether welding is possible or not
  • welding availability information information indicating whether welding is possible or not
  • the area portion of the hard disk device in which the welding propriety information is recorded is called the propriety information recording section 31.
  • the availability information recording unit 31 is an example of a recording unit.
  • a hard disk device is illustrated as a recording device for application programs and the like, but a device for reading/writing data from/to a recording medium such as a semiconductor memory may be used. Further, the hard disk device may be a device built in the welding line data generation device 30 or an external device.
  • the welding control device 20 and the welding line data generation device 30 are drawn as independent devices, but some or all of the functions of the welding line data generation device 30 are included in the welding control device 20. It is also possible.
  • the welding line data generation device 30 is connected to the welding control device 20 through a communication line or a network.
  • the network here is, for example, LAN (Local Area Network) or the Internet (including cloud network).
  • the role of the welding line data generator 30 is to generate the welding line data necessary for welding, and the connection between the welding line data generator 30 and the welding controller 20 is not essential. For example, if the welding line data generator 30 and the welding controller 20 are not connected by a communication line or the like, the welding line data generated by the welding line data generator 30 is recorded on a portable recording medium. And write it in the welding controller 20.
  • the welding line data generation device 30 realizes a function of efficiently and automatically identifying a welding line or a candidate of a welding line through execution of an application program by the calculation unit.
  • the configuration name specifying unit 3 2 and the combination extracting unit 3 3 and welding line data generator 3 4 3 Represents one.
  • the configuration name identification unit 32 is provided.
  • the combination extraction unit 3 3 and the welding line data generation unit 3 4 are used to identify the welding line or the candidate of the welding line. Will be possible. If a component name has already been assigned to each member on the 3D CAD data (hereinafter also referred to as “3D data”), the component name identification unit 32 is unnecessary or provided. Stop the execution of the configuration name identification part 32.
  • the configuration name identification unit 32 reads information regarding the shape of each member constituting the structure and the positional relationship between the members from the three-dimensional data recorded in the structure database 40. , It is a functional unit that automatically identifies the constituent names of each member that makes up the structure. The method used to identify a configuration name may vary from structure to structure.
  • the configuration name identifying unit 32 first identifies the configuration name of a member having a characteristic shape such as area, and then determines the positional relationship with respect to the member for which the configuration name is identified. Based on this, the component names of other members are specified. It should be noted that the configuration name is given in advance the condition that the corresponding member must satisfy.
  • non-welded members Members that do not require welding (hereinafter referred to as “non-welded members”) are also classified as “other”.
  • the configuration name specifying unit 32 also uses at least one of the inclination angle, the rotation angle, and the twist angle of one member with respect to the other member as the positional relationship between the two members. .. If the values of the tilt angle, the rotation angle, and the twist angle calculated based on the three-dimensional data are equal to or greater than the threshold value, the configuration name specifying unit 32 in this embodiment classifies the other member as a non-welded member. To do. By including the information such as the inclination angle in the positional relationship, the accuracy of identifying the configuration name is improved.
  • the member having the larger area is defined as "one member”. ⁇ 2020/175041 8 ⁇ (:171? 2020 /004196
  • the member with the smaller area is called the "other member”.
  • the positional relationship between members becomes clear, and the accuracy of identifying the component name of each member increases.
  • the member whose constituent name has already been specified is "one member", and the member whose constituent name has not been specified.
  • Fig. 2 is a diagram for explaining the positional relationship such as inclination, rotation, and twist.
  • FIG. 2 illustrates a member (3 to ⁇ positional relationship to a structure defined by a flat plate member having the largest area and a flat plate member having the second largest area.
  • the largest face of the eight is parallel to the X-plane, and the largest face of the member is parallel to the plane, that is, the member eight and the member are perpendicular to each other. It is attached to the member so as to extend in the axial direction.
  • the member ⁇ represents a positional relationship in which there is neither inclination nor rotation.
  • the largest surface of the member (3 is parallel to the lower surface. Therefore, the member (3 is perpendicular to both the member 8 and the member wall).
  • the member mouth is the positional relationship rotated around the normal axis of the largest surface (here, the X axis). This positional relationship is called "twist".
  • the member's mean is the positional relationship rotated around the side in contact with the member (here, the axis). In this case, the member wall is only perpendicular to the member wall. This positional relationship is called "tilt”.
  • a member refers to a positional relationship in which it is rotated around the side (here, the vertical axis) that is in contact with the member's body. In this case, the member is only perpendicular to the member. This positional relationship is called "rotation".
  • Member ⁇ means a positional relationship that includes both inclination and rotation.
  • It may be a general-purpose model that learned the relationship between the shape and the positional relationship between members and the configuration name, or a dedicated model that learned the relationship between the shape of the member and the positional relationship between the members and the configuration name for each application. But it's okay.
  • the configuration name identification unit 32 obtains the configuration name of each member by giving the learned model three-dimensional data corresponding to the structure to be manufactured.
  • the learned model When generating a learned model, you may learn the relationship between the shape of the member and the configuration name, or you may learn the relationship between the positional relationship between the members and the configuration name.
  • the evaluation result of the worker etc. with respect to the output result may be given as a reward (so-called ⁇ value), and the learned model may be modified.
  • the component name of each member can be efficiently specified.
  • the combination extraction unit 33 reads the positional relationship between the members that make up the structure from the 3D data recorded in the structure database 40, and combines the two or more members that are in an adjacent relationship. Is a functional unit that automatically extracts The combination extraction unit 33 here is an example of the extraction unit.
  • the combination extraction part 33 will be And the combination of the member date, the combination of the member and the member and the member, and the combination of the member and the member and the member O. However, in each combination, the calculated tilt angle, rotation angle, and twist angle The value is less than the threshold.
  • the member ⁇ is located next to the member ⁇ in the X-axis direction.
  • member ⁇ and member ⁇ can be broadly regarded as an adjacent relationship. ⁇ 2020/175041 10 boxes (:171? 2020 /004196
  • the combination of the members is excluded from the combination of two or more adjacent members.
  • the minimum distance here is equal to or less than a predetermined distance at which members can be connected by welding as described above.
  • the minimum distance may be determined for each member according to the area and thickness of the largest surface, or may be uniformly determined based on the distance at which welding is possible.
  • member ⁇ 3 and member ⁇ are excluded from the combination of two or more parts that are in an adjacent relationship.
  • the welding line data generation unit 34 registers the combination of the constituent names of the members that make up the combination as weldable. Function part that performs the function of determining whether or not there is a weld and, if welding is possible, the function of specifying the part to be welded between two or more members corresponding to the applicable combination and outputting it as welding line data. Is.
  • the welding line data generation unit 34 here is an example of a generation unit.
  • Fig. 3 is a diagram illustrating a structure and members that are its constituent elements.
  • the structure shown in FIG. 3 has a configuration in which a plurality of members are attached to the 1 to 1 shaped steels arranged in a square shape on the lower plane. It should be noted that “member 1" to "part 7" and “other” in the figure represent the names of the members (that is, the part names) in the present embodiment.
  • the 1 to 1 shaped steels are composed of three flat plate portions of “member 1”, “member 3” and “member 4”.
  • the parts are distinguished from each other, and the ⁇ member 1'' Members 3” and 4”. ⁇ 0 2020/175041 1 1 ⁇ (: 17 2020 /004196
  • Member 2 is the name of reinforcing materials used to prevent the deformation of the 1-1 to 1 shaped steels.
  • “Member 5" is the name of the attachment et al are member to the end of the 1 to 1 type member is used binding to non Figure ⁇ member.
  • “Other” is a collective name of members that cannot be specified as “member 1” to “member 7”. Members that correspond to the above “non-welded members” are also included in “Others”.
  • FIG. 4 is a diagram showing a structural example of the welding propriety information recorded in the propriety information recording section 31 (see FIG. 1).
  • Weldability information has a structure in which information indicating whether or not welding is possible by the welding robot 10 (see Fig. 1) is recorded for each combination of different members.
  • Fig. 4 there are two pieces of information indicating whether or not it is possible to weld (O in the figure) and non-weldable (X in the figure).
  • member 1 there are two member names that can be welded: “member 5" and “member 6”.
  • the welding line data generation unit 34 determines whether or not the combination of the member names constituting each combination extracted by the combination extraction unit 33 includes a combination of weldable ( ⁇ in FIG. 4). It has a judgment function. The judgment here is based on the relationship between the two materials.
  • the welding line data generation unit 34 decomposes one combination to be judged into a combination of two members, and obtains it after decomposition. It is determined whether or not welding is possible for each of a plurality of combinations.
  • the welding line data generation unit 34 determines, based on the three-dimensional data, the portion where multiple members contact each other or the portion where the gap between the members is less than the weldable distance. Identify and register as weld line or weld line candidate.
  • the weld line data generation unit 34 specifies the candidate part of the weld line according to the groove shape information.
  • the portion where the groove is provided is specified as the welding line or the candidate for the welding line.
  • the welding line data generation unit 34 of the present embodiment is provided with a function of determining the presence or absence of a groove.
  • FIG. 5 is a diagram showing an example of a relationship between members determined to have a groove.
  • FIG. 6 is a diagram showing an example of a relationship between members determined to have no groove.
  • Figure 5 shows three examples that are considered to have a groove.
  • the entire surface adjacent to "member” is processed into a slope.
  • the angle formed by the slope of the member “and the member ⁇ is the groove angle.
  • the groove depth is given by the length of the slope of the member ⁇ in the X-axis direction.
  • a part of the surface adjacent to "member” is machined into a slope, and the remaining surface is in contact with "member”.
  • the angle formed by the “member” and the slope portion of the member 1_ is the groove angle.
  • the groove depth is given by the length of the slope portion of the member 1_ in the X-axis direction.
  • Member IV! has the same shape as member 1_, but there is a gap between it and member 1_.
  • the angle formed by the extension line of the sloped part of member 1 ⁇ /1 as "member” is the groove angle.
  • the groove depth is given by the length of the sloped part in the X-axis direction of member 1 ⁇ /1.
  • the shape of the groove is not limited to the rectangular shape shown in Fig. 5, and may be a ⁇ shape, I shape, V shape, "shape, X shape, reshape, double-sided” shape, double-sided 11 shape, and the like.
  • FIG. 6 shows three examples that are considered to have no groove. ⁇ 2020/175041 13 ⁇ (:171? 2020/004196
  • member 1 ⁇ 1 and member The relationship between "member 1 ⁇ 1 and member” is called a hinge joint, and the rectangular member 1 ⁇ 1 and member” form a letter. In this case, it is determined that member 1 ⁇ 1 has no groove.
  • member ⁇ and member The relationship between “member ⁇ and member” is called natural groove, and the members” are in contact at the corners of the rectangular member ⁇ .
  • a triangle-shaped gap is formed in the X plane between the member ⁇ and the member, but this is due to the mounting relationship and is not treated as a groove.
  • the relationship between members is called a full groove.
  • the member has the same shape as the member (see Fig. 5), but since the entire slope is in contact with the surface of the member ", it is not treated as a groove like member 1 ⁇ 1.
  • By using the presence/absence of the groove it is possible to improve not only the accuracy of identifying the composition name but also the accuracy of identifying the welding line or the part that is a candidate for the welding line.
  • FIG. 7 is a flow chart for explaining the processing operation executed by the welding line data generation device 30 (see FIG. 1).
  • the procedure shown in Fig. 7 is an example of a welding line data generation method.
  • the symbol 3 in the figure indicates a step.
  • the welding line data generation device 30 takes in three-dimensional data of the structure manufactured by welding from the structure database 40 (see Fig. 1) (step 1).
  • the 3D data to be imported is specified by the operator through an operation screen (not shown), for example.
  • the welding line data generation device 30 extracts all combinations of two or more adjacent members (step 2). This processing operation is executed by the combination extraction unit 33 (see Fig. 1).
  • the welding line data generator 30 selects one unprocessed combination from all the extracted combinations (step 3).
  • the welding line data generation device 30 identifies the constituent names of a plurality of members that make up the selected combination (step 4). Parts at each position that makes up the structure ⁇ 2020/175041 14 ⁇ (:171? 2020 /004196
  • the constituent name of the material is specified by the constituent name specification unit 3 2 (see Fig. 1).
  • the welding line data generation device 30 determines whether or not a welding-possible combination is included through matching with the welding propriety information ( Step 5). This processing operation is executed by the weld line data generator 34 (see Fig. 1).
  • step 5 the welding line data generation device 30 identifies the portion to be welded between the weldable members (step 6) and registers it as a welding line candidate (step 7).
  • the welding line data generation device 30 determines whether or not there is an unprocessed combination (step 8).
  • step 5 If a negative result is obtained in step 5, the welding line data generation device 30 executes the determination in step 8 without executing steps 6 and 7.
  • step 8 While a negative result is obtained in step 8, the welding line data generation device 30 returns to step 3 and executes the series of processes described above for the newly selected one combination.
  • the welding line data generation device 30 determines whether or not confirmation of candidates is necessary (step 9). This determination process is not essential, but in the present embodiment, it is possible to select whether or not the operator confirms the automatically registered welding line candidates.
  • step 11 When a positive result is obtained in step 9 (that is, when confirmation is unnecessary), the welding line data generation device 30 outputs all of the automatically registered welding line candidates as welding line data. (Step 11).
  • step 9 when a negative result is obtained in step 9 (that is, when confirmation is performed by the operator), the welding line data generation device 30 receives correction of the welding line candidate (step 10).
  • FIG. 8 is a diagram showing an _ example of Step 1 0 screen 1 0 Keru to accept any modification of the candidate of the weld line is available in 0 in FIG.
  • the screen 100 shown in Figure 8 confirms to display the 3D model corresponding to the structure. ⁇ 2020/175041 15 ⁇ (:171? 2020 /004196
  • Screen 1 10 a candidate field 1 20 that displays a list of welding line candidates, and a confirm button 1 3 0 that is operated to confirm the candidate specified by force-sol 1 2 1 as a welding line.
  • the configuration name specified by the welding line data generator 30 is displayed with a leader line from the corresponding member.
  • the confirmation screen 110 is displayed so that the operator can see the part corresponding to the candidate specified by force-sol 1 21.
  • the site on the structure corresponding to "candidate 2" specified by force-sol 1 2 1 is changed to highlighted.
  • highlighting for example, thick line display, high brightness display, preset color display, leader line display, or a combination thereof may be used.
  • the operator when including a part not included in the candidate in the welding line, the operator operates the new button 150, for example, to generate a new record, and then on the confirmation screen 110. Specify the part to add.
  • the welding line data generation device 30 transfers to step 11 and outputs the corrected set of welding line candidates as welding line data.
  • the information on the presence or absence of the groove is used to identify the welding line or a part that serves as a candidate for the welding line, but it may be used to identify the component name of the member that constitutes the structure. ..
  • the welding line data generation unit 34 it is possible to select whether or not to correct the welding line candidates registered by the welding line data generation unit 34 (see FIG. 1).
  • the part 34 does not have to have the function of selecting whether or not to modify.
  • the portion specified by the welding line data generation unit 34 becomes the welding line as it is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Robotics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)
  • Arc Welding Control (AREA)

Abstract

溶接ロボットによって溶接する部位を特定する溶接線データを生成する溶接線データ生成装置は、部材の構成名の組み合わせ別に前記溶接ロボットによる溶接の可否を示す可否情報が記録される記録部と、溶接により製造される構造体の3次元データから、隣り合う2つ以上の部材の組み合わせを抽出する抽出部と、抽出された2つ以上の部材の組み合わせに対応する構成名の組み合わせが溶接可である場合、組み合わせに対応する2つ以上の部材間で溶接する部位を特定する溶接線データを生成する生成部とを有する。

Description

\¥02020/175041 1 卩(:17 2020/004196
明 細 書
発明の名称 :
溶接線データ生成装置、 溶接システム、 溶接線データ生成方法及びプログ ラム
技術分野
[0001 ] 本発明は、 溶接線データ生成装置、 溶接システム、 溶接線データ生成方法 及びプログラムに関する。
背景技術
[0002] 今日、 多くの分野で溶接ロボッ トが使用され、 溶接作業の自動化が進めら れている。 溶接ロボッ トによる溶接には、 事前に、 溶接対象とする構造物全 体の溶接パス (又は溶接線) を決定し、 溶接ロボッ トに設定しておく必要が ある。 特許文献 1 には、 オペレータによる溶接線の選定を迅速化する技術が 記載されている。
先行技術文献
特許文献
[0003] 特許文献 1 : 日本国特開 2 0 1 0 - 1 8 4 2 7 8号公報
発明の概要
発明が解決しようとする課題
[0004] しかし、 特許文献 1 に記載された技術により溶接線を特定するには、 オペ レータがマニュアル操作で各面を指定する必要があり、 手作業による労力が 掛かっていた。 また、 溶接線の特定を自動的に行う技術も一部普及している が、 各面に対して総当たりで溶接線とするか否かを判定する処理を行う必要 があり、 溶接線を特定するには非常に時間がかかっていた。
[0005] 本発明の目的は、 溶接ロボッ トによって溶接する部位又はその候補を効率 的かつ自動的に特定できるようにすることである。
課題を解決するための手段 〇 2020/175041 2 卩(:171? 2020 /004196
[0006] かかる目的のもと、 1つの発明として、 溶接ロボッ トによって溶接する部 位を特定する溶接線データを生成する溶接線データ生成装置であって、 部材 の構成名の組み合わせ別に溶接ロボッ トによる溶接の可否を示す可否情報が 記録される記録部と、 溶接により製造される構造体の 3次元データから、 隣 り合う 2つ以上の部材の組み合わせを抽出する抽出部と、 抽出された 2つ以 上の部材の組み合わせに対応する構成名の組み合わせが溶接可である場合、 該当する組み合わせに対応する 2つ以上の部材間で溶接する部位を特定する 溶接線データを生成する生成部とを有する溶接線データ生成装置を提供する
[0007] なお、 溶接線データ生成装置は、 3次元データを構成する各部材の形状及 び部材と他の部材の位置関係の両方又は一方に基づいて、 構造体を構成する 各部材の構成名を特定する構成名特定部を更に有することが好ましい。 ここでの構成名特定部は、 溶接ロボッ トによる溶接が不要な部材を非溶接 部材として特定し、 生成部は、 抽出された部材の組み合わせの一方が非溶接 部材である場合、 該当する組み合わせを溶接の対象から除外してもよい。 また、 構成名特定部は、 3次元データを構成する部材の面積に基づいて、 板状の形状を有する部材の構成名を特定してもよい。
なお、 構成名の特定に使用する部材の形状の情報には、 開先形状の情報が 含まれてもよい。
[0008] また、 構成名特定部は、 構成名が特定されている他の部材に対する位置関 係に基づいて他の部材に隣り合う部材の構成名を特定してもよい。
また、 構成名特定部は、 抽出された 2つの部材間の位置関係として、 一方 の部材に対する他方の部材の傾斜角、 回転角、 捻じれ角のうち少なくとも 1 つ以上の値を算出し、 算出された値が閾値以上である場合、 他方の部材を非 溶接部材として特定し、 生成部は、 抽出された隣り合う部材の組み合わせの _方が非溶接部材である場合、 該当する組み合わせを溶接の対象から除外し てもよい。
また、 ここでの構成名特定部は、 部材の形状及び部材と他の部材の位置関 〇 2020/175041 3 卩(:171? 2020 /004196
係の両方又は一方と、 部材の構成名との関係を学習した学習済みモデルを用 い、 構造体を構成する各部材の構成名を特定してもよい。
なお、 生成部は、 抽出された 2つの部材が溶接可である場合には、 2つの 部材同士が隣り合う部分における開先の有無を更に判定し、 開先有りのとき には開先形状の情報に従って前記溶接線データを生成してもよい。
[0009] また、 別の発明として、 部材同士を溶接する溶接ロボッ トと、 溶接線デー 夕に基づいて溶接ロボッ トの動作を制御する溶接制御装置とを有する溶接シ ステムであって、 部材の構成名の組み合わせ別に溶接ロボッ トによる溶接の 可否を示す可否情報が記録される記録部 と、 溶接により製造される構造体の 3次元データから、 隣り合う 2つ以上の部材の組み合わせを抽出する抽出部 と、 抽出された 2つ以上の部材の組み合わせに対応する構成名の組み合わせ が溶接可である場合、 該当する組み合わせに対応する 2つ以上の部材間で溶 接する部位を特定する溶接線データを生成する生成部とを有する溶接システ ムを提供する。
[0010] さらに、 別の発明として、 溶接ロボッ トによって溶接する部位を特定する 溶接線データを生成する溶接線データ生成方法であって、 溶接により製造さ れる構造体の 3次元データから、 隣り合う 2つ以上の部材の組み合わせを抽 出する処理と、 抽出された 2つ以上の部材の組み合わせに対応する構成名の 組み合わせの溶接の可否を、 予め用意された構成名の組み合わせ別の可否情 報を参照することにより判定する処理と、 抽出された 2つ以上の部材の組み 合わせに対応する構成名の組み合わせが溶接可である場合、 該当する組み合 わせに対応する 2つ以上の部材間で溶接する部位を特定する前記溶接線デー 夕を生成する処理とを有する溶接線データ生成方法を提供する。
[001 1 ] さらに、 別の発明として、 溶接により製造される構造体の 3次元データか ら、 隣り合う 2つ以上の部材の組み合わせを抽出する処理と、 抽出された 2 つ以上の部材の組み合わせに対応する構成名の組み合わせの溶接の可否を、 予め用意された構成名の組み合わせ別の可否情報を参照することにより判定 する処理と、 抽出された 2つ以上の部材の組み合わせに対応する構成名の組 〇 2020/175041 4 卩(:171? 2020 /004196
み合わせが溶接可である場合、 該当する組み合わせに対応する 2つ以上の部 材間で溶接する部位を特定する溶接線データを生成する処理とをコンピュー 夕に 実行させるプログラムを提供する。
発明の効果
[0012] 本発明によれば、 溶接ロボッ トによって溶接する部位又はその候補を効率 的かつ自動的に特定できる。
図面の簡単な説明
[0013] [図 1]本実施の形態に係る溶接システムの構成例を示す図である。
[図 2]傾斜、 回転、 捻じれなどの位置関係を説明する図である。
[図 3]構造体とその構成要素である部材を説明する図である。
[図 4]可否情報記録部に記録される溶接の可否情報の構造例を示す図である。 [図 5]開先有りと判定される部材間の関係の例を示す図である。
[図 6]開先無しと判定される部材間の関係の例を示す図である。
[図 7]溶接線データ生成装置によって実行される処理動作を説明するフローチ ャートである。
[図 8]溶接線の候補の修正を受け付ける画面の一例を示す図である。
発明を実施するための形態
[0014] 以下、 添付図面を参照して、 本発明に係る溶接電源、 溶接システム、 溶接 電源の制御方法及びプログラムの実施形態の例を説明する。 なお、 各図は、 本発明の説明のために作成されたものであり、 本発明の実施の形態は、 図示 の内容に限らない。
[0015] <システムの全体構成>
図 1は、 本実施の形態に係る溶接システム 1の構成例を示す図である。 図 1 に示す溶接システム 1は、 溶接の対象である部材同士を溶接する溶接 ロボッ ト 1 0と、 溶接ロボッ ト 1 0の動きを制御する溶接制御装置 2 0と、 溶接位置を与える溶接線データを溶接制御装置 2 0に与える溶接線データ生 成装置 3 0と、 溶接によって製造する構造体を構成する各部材の形状や部材 間の位置関係等を記述した 3次元データを記憶する構造体データべース 4 0 〇 2020/175041 5 卩(:171? 2020 /004196
とを有している。
[0016] 溶接ロボッ ト 1 0は、 用途に応じて様々な種類がある。 例えば鉄骨の溶接 に使用される鉄骨溶接ロボッ ト、 建築部品溶接ロボッ ト、 橋梁溶接ロボッ ト 、 台車部品溶接ロボッ ト、 フォークリフト部品溶接ロボッ ト、 船舶分野向け 溶接ロボッ トがある。
本実施の形態では、 溶接ロボッ ト 1 〇として鉄骨溶接ロボッ トを想定する
[0017] 溶接制御装置 2 0は、 例えばコンピュータによって構成され、 1台又は複 数台の溶接ロボッ ト 1 〇の動きを制御する。
コンビュータは、 制御プログラムを実行する演算部と、 起動プログラム等 を記憶する不揮発性の半導体メモリと、 制御プログラムが実行される揮発性 の半導体メモリと、 溶接ロボッ ト 1 0から収集される動作パラメータや溶接 する部位を指定する溶接線データを記憶するハードディスク装置等で構成さ れている。
コンビュータとしての溶接制御装置 2 0には、 キーボードやタッチパネル 等の入力装置、 溶接の進行に関する情報を表示する表示装置も接続されてい る。
[0018] 本実施の形態における溶接線データは、 隣り合う関係にある 2つ以上の部 材のうち溶接する部位 (溶接線) を規定するデータの集合をいう。
隣り合う関係には、 例えばある部材と別の部材が接触する関係、 ある部材 と別の部材との間に隙間がある関係、 ある部材に別の部材が食込む関係など がある。 本実施の形態の場合、 隙間とは、 溶接による部材の接続が可能な、 予め定めた距離以下の空間をいう。
[0019] 溶接線データ生成装置 3 0も、 例えばコンピュータによって構成される。
ここでのコンピュータは、 アプリケーシヨンプログラムを実行する演算部と 、 起動プログラム等を記憶する不揮発性の半導体メモリと、 アプリケーシヨ ンプログラムが実行される揮発性の半導体メモリと、 アプリケーシヨンプロ グラムや溶接線データを含むデータを記録するハードディスク装置、 入力装 置、 表示装置等で構成されている。
本実施の形態におけるハードディスク装置には、 部材の構成名の組み合わ せ別に溶接の可否を示す情報 (以下 「溶接の可否情報」 という) も記録され ている。 本実施の形態では、 ハードディスク装置のうち溶接の可否情報が記 録されている領域部分を可否情報記録部 3 1 という。 可否情報記録部 3 1は 、 記録部の一例である。
[0020] 本実施の形態では、 アプリケーションプログラム等の記録装置としてハー ドディスク装置を例示しているが、 半導体メモリその他の記録媒体にデータ を読み書きする装置でもよい。 また、 ハードディスク装置は、 溶接線データ 生成装置 3 0に内蔵された装置でも外付けされた装置でもよい。
図 1では、 溶接制御装置 2 0と溶接線データ生成装置 3 0をそれぞれ独立 した装置として描いているが、 溶接線データ生成装置 3 0の機能の一部又は 全部を溶接制御装置 2 0に 含めることも可能である。
[0021 ] 本実施の形態の場合、 溶接線データ生成装置 3 0は、 溶接制御装置 2 0に 通信線やネッ トワークを通じて接続されている。 ここでのネッ トワークは、 例えば L A N (Loca l Area Network) やインターネッ ト (クラウドネッ トワ —クを含む) である。
もっとも、 溶接線データ生成装置 3 0の役割は、 溶接に必要な溶接線デー 夕を生成することであり、 溶接線データ生成装置 3 0と溶接制御装置 2 0の 接続は必須ではない。 例えば溶接線データ生成装置 3 0と溶接制御装置 2 0 とが通信線等で接続されていない場合、 溶接線データ生成装置 3 0で生成さ れた溶接線データは、 可搬型の記録媒体を用いて溶接制御装置 2 0に書き込 めばよい。
[0022] 溶接線データ生成装置 3 0は、 演算部によるアプリケーションプログラム の実行を通じ、 溶接線又は溶接線の候補を効率的かつ自動的に特定する機能 を実現する。 図 1では、 溶接線データ生成装置 3 0が実行する機能のうち溶 接線又は溶接線の候補を効率的かつ自動的に特定する機能の要素として、 構 成名特定部 3 2と、 組み合わせ抽出部 3 3と、 溶接線データ生成部 3 4の 3 つを表している。
本実施の形態では、 3次元 C A D (Computer-A i ded Des i gn) データ上の各 部材に構成名が与えられていない場合を想定するため、 構成名特定部 3 2が 用意されている。 構成名特定部 3 2を設けることにより、 各部材に構成名が 与えられていない場合にも、 組み合わせ抽出部 3 3と溶接線データ生成部 3 4を用いた溶接線又は溶接線の候補の特定が可能になる。 なお、 3次元 C A Dデータ (以下 「3次元データ」 ともいう) 上の各部材に既に構成名が与 えられている場合には、 構成名特定部 3 2は不要であるか、 設けられている 構成名特定部 3 2の実行を停止する。
[0023] 構成名特定部 3 2は、 構造体データべース 4 0に記録されている 3次元デ _夕から構造 体を構成する各部材の形状ゃ部材間の位置関係等に関する情報 を読み出し、 構造体を構成 する各部材の構成名を自動的に特定する機能部で ある。 構成名を特定するために用いる手法は、 構造体によって異なってもよ い。
本実施の形態の場合、 構成名特定部 3 2は、 先ず、 面積などの形状に特徴 がある部材について構成名を特定し、 続いて、 構成名が特定された部材に対 する位置関係などに基づいて他の部材の構成名を特定する。 なお、 構成名に は、 対応する部材が満たすべき条件が予め与えられている。
本実施の形態の場合、 予め定めた条件を満たさない部材の構成名として 「 その他」 が用いられる。 溶接が不要な部材 (以下 「非溶接部材」 という) も 「その他」 に分類される。
[0024] 構成名特定部 3 2は、 2つの部材間の位置関係として、 一方の部材に対す る他方の部材の傾斜角、 回転角、 捻じれ角のうち少なくとも 1つ以上の値も 使用する。 本実施の形態における構成名特定部 3 2は、 3次元データに基づ いて算出された傾斜角、 回転角、 捻じれ角の値が閾値以上の場合、 他方の部 材を非溶接部材に分類する。 傾斜角等の情報を位置関係に含めることにより 、 構成名の特定精度が高くなる。
本実施の形態では、 相対的に面積が大きい方の部材を 「一方の部材」 とし 〇 2020/175041 8 卩(:171? 2020 /004196
、 相対的に面積が小さい方の部材を 「他方の部材」 とする。 客観的に比較可 能な面積を用いることで、 部材間の位置関係が明確となり、 各部材の構成名 の特定精度が高くなる。 また、 既に構成名が特定されている部材と構成名が 特定されていない部材との関係では、 既に構成名が特定されている部材を 「 一方の部材」 とし、 構成名が特定されていない部材を 「他方の部材」 とする 。 _方の構成名が特定されている場合、 他方の部材の構成名の特定精度が高 くなる。
[0025] 図 2は、 傾斜、 回転、 捻じれなどの位置関係を説明する図である。
図 2には、 最も面積が大きい平板状の部材 と 2番目に面積が大きい平板 状の部材巳とで規定される構造物に対する部材(3〜◦の位置関係が例示され ている。 なお、 部材八のうち最も大きい面は X 面に平行であり、 部材巳の うち最も大きい面は乂丫面に平行である。 すなわち、 部材八と部材巳は互い に垂直である。 また、 部材巳は乂軸方向に延長するように部材 に対して取 り付けられている。
[0026] 図中、 部材〇は、 傾斜も回転もない位置関係を表している。 図 2の場合、 部材(3のうち最も大きい面は、 丫 面に平行である。 従って、 部材(3は、 部 材八と部材巳の両方に垂直である。
部材口は、 その最も大きい面の法線軸 (ここでは X軸) の周りに回転した 位置関係をいう。 この位置関係を 「捻じれ」 という。
部材巳は、 部材 と接する辺 (ここでは 軸) の周りに回転した位置関係 をいう。 この場合、 部材巳は、 部材巳とだけ垂直である。 この位置関係を 「 傾斜」 という。
部材 は、 部材巳と接する辺 (ここでは丫軸) の周りに回転した位置関係 をいう。 この場合、 部材 は部材 とだけ垂直である。 この位置関係を 「回 転」 という。
部材〇は、 傾斜と回転の両方を含む位置関係をいう。
[0027] なお、 各部材の構成名の特定には、 ディーブラーニングなどの手法で学習 された学習済みモデルを用いてもよい。 ここでの学習済みモデルは、 部材の 〇 2020/175041 9 卩(:171? 2020 /004196
形状と部材同士の位置関係と構成名との関係を学習した汎用的なモデルであ つてもよいし、 用途別に部材の形状と部材同士の位置関係と構成名との関係 を学習した専用のモデルでもよい。
学習済みモデルを用いる場合、 構成名特定部 3 2は、 製造する構造体に対 応する 3次元データを学習済みモデルに与えることで、 各部材の構成名を得 る。
なお、 学習済みモデルの生成時には、 部材の形状と構成名との関係を学習 させてもよいし、 部材同士の位置関係と構成名との関係を学習させてもよい 学習済みモデルを使用する場合には、 出力結果に対する作業員等の評価結 果を報酬 (いわゆる〇値) として与え、 学習済みモデルに修正を加えてもよ い。
学習済みモデルを利用することで、 各部材の構成名を効率的に特定できる
[0028] 図 1の説明に戻る。
組み合わせ抽出部 3 3は、 構造体データべース 4 0に記録されている 3次 元データから構造体を構成する部材間の位置関係を読み出し、 隣り合う関係 にある 2つ以上の部材の組み合わせを自動的に抽出する機能部である。 ここ での組み合わせ抽出部 3 3は、 抽出部の一例である。
例えば図 2に示す構造体の 3次元データが与えられた場合、 組み合わせ抽 出部 3 3は、 部材 と部材巳と部材(3の組み合わせ、 部材 と部材巳と部材 口の組み合わせ、 部材 と部材巳と部材日の組み合わせ、 部材 と部材巳と 部材 の組み合わせ、 部材 と部材巳と部材〇の組み合わせを抽出する。 た だし、 いずれの組み合わせも、 算出された傾斜角、 回転角、 捻じれ角の各値 が閾値未満であるものとする。
[0029] 図 2の場合、 部材〇は、 X軸の方向について部材〇の隣に位置している。
このため、 部材〇と部材〇の組み合わせも、 広義には、 隣り合う関係とみな すことが可能である。 〇 2020/175041 10 卩(:171? 2020 /004196
本実施の形態では、 部材同士の間の距離が予め定めた最小距離を超える場 合には、 当該部材の組み合わせは、 隣り合う 2つ以上の部材の組み合わせか ら除外する。
ここでの最小距離は、 前述した溶接による部材の接続が可能な、 予め定め た距離以下に当たる。
例えば部材が平板状の場合、 最小距離は、 最も大きい面の面積と厚みとに よって部材毎に定めてもよいし、 溶接が可能な距離を基準に一律に定めても よい。
以上の条件により、 部材<3と部材〇は、 隣り合う関係にある 2つ以上の部 材の組み合わせからは除外される。
[0030] 溶接線データ生成部 3 4は、 組み合わせ抽出部 3 3で抽出された 2つ以上 の部材の組み合わせのそれぞれについて、 組み合わせを構成する各部材の構 成名の組み合わせが溶接可として登録されているか否かを判定する機能と、 溶接可である場合には、 該当する組み合わせに対応する 2つ以上の部材間で 溶接する部位を特定し、 溶接線データとして出力する機能とを実行する機能 部である。
ここで、 溶接可であるか否かの判定には、 可否情報記録部 3 1 に記録され ている情報が用いられる。 なお、 ここでの溶接線データ生成部 3 4は、 生成 部の一例である。
[0031 ] 図 3は、 構造体とその構成要素である部材を説明する図である。
図 3に示す構造体は、 丫 平面において 丨字に配置された1~1形鋼に対して 複数の部材を取り付けた構成を有している。 なお、 図中の 「部材 1」 〜 「部 材 7」 及び 「その他」 は、 本実施の形態における各部材の名称 (すなわち部 材名) を表している。
図 3の場合、 1~1形鋼は、 「部材 1」 、 「部材 3」 及び 「部材 4」 の 3つの 平板部で構成されている。 本実施の形態では、 1~1形鋼が 3つの平板状の部材 の溶接により製造される場合だけでなく、 圧延によって一体的に製造される 場合も、 各部を区別して 「部材 1」 、 「部材 3」 及び 「部材 4」 という。 \¥0 2020/175041 1 1 卩(:17 2020 /004196
「部材 2」 、 「部材 6」 、 「部材 7」 は、 1~1形鋼の変形を防ぐために用い られる補強材の名称である。 「部材 5」 は、 1~1型の部材の端部に取り付けら れる部材の名称であり、 不図^^の部材との結合 用いられる。
なお、 「その他」 は、 「部材 1」 〜 「部材 7」 として特定することができ ない部材の集合名である。 前述の 「非溶接部材」 に該当する部材も 「その他 」 に含まれる。
[0032] 図 4は、 可否情報記録部 3 1 (図 1参照) に記録される溶接の可否情報の 構造例を示す図である。
溶接の可否情報は、 異なる部材の組み合わせ毎に、 溶接ロボッ ト 1 0 (図 1参照) による溶接の可否等を示す情報を記録した構造を有している。 図 4の場合、 可否等を示す情報は、 溶接可 (図中の〇) と溶接不可 (図中 の X) の 2つである。
図 4に示す 「部材 1」 〜 「部材 7」 及び 「その他」 は、 図 3の 「部材 1」 〜 「部材 7」 及び 「その他」 に対応する。
部材 1の場合、 溶接可となる部材名は、 「部材 5」 と 「部材 6」 の 2つで ある。
[0033] 図 1の説明に戻る。
溶接線データ生成部 3 4は、 組み合わせ抽出部 3 3で抽出された個々の組 み合わせを構成する部材名の組み合わせが、 溶接可 (図 4では〇) の組み合 わせを含むか否かを判定する機能を有している。 ここでの判定は、 2つの部 材間の関係を単位とする。
例えば抽出された 1つの組み合わせが 3つの部材で構成される場合、 溶接 線データ生成部 3 4は、 判定の対象とする 1つの組み合わせを 2つの部材の 組み合わせに分解し、 分解後によって得られた複数の組み合わせのそれぞれ について溶接可であるか否かを判定する。
[0034] ここで、 抽出された部材の組み合わせの一方が非溶接部材 (すなわち 「そ の他」 ) である場合、 その組み合わせは溶接の対象から除外される。 溶接さ れない部位を事前に除くことで、 溶接線又は溶接線の候補を効率的に特定で 〇 2020/175041 12 卩(:171? 2020 /004196
きる。
溶接可である部材名の組み合わせが含まれる場合、 溶接線データ生成部 3 4は、 複数の部材が互いに接触する部位又は部材間の隙間が溶接可能な距離 未満の部位を 3次元データに基づいて特定し、 溶接線又は溶接線の候補とし て登録する。
なお、 溶接可の組み合わせの一方の部材の一部に開先が有る場合、 溶接線 データ生成部 3 4は、 開先形状の情報に従って溶接線の候補とする部位を特 定する。 本実施の形態では、 開先が設けられている部位が溶接線又は溶接線 の候補に特定される。
このため、 本実施の形態の溶接線データ生成部 3 4には、 開先の有無を判 定する機能が設けられている。
[0035] 図 5は、 開先有りと判定される部材間の関係の例を示す図である。 図 6は 、 開先無しと判定される部材間の関係の例を示す図である。
図 5には、 開先有りとみなされる 3つの例が示されている。
部材<の場合、 部材」と隣り合う面の全体が斜面に加工されている。 この 場合、 部材」と部材<の斜面が形成する角度が開先角度となる。 また、 開先 深さは、 部材<のうち、 X軸方向についての斜面の長さで与えられる。 部材1_の場合、 部材」と隣り合う面の一部分が斜面に加工されており、 残 りの面は部材」と接している。 この場合、 部材」と部材1_の斜面部分が形成 する角度が開先角度となる。 また、 開先深さは、 部材1_のうち、 X軸方向に ついての斜面部分の長さで与えられる。
部材 IV!は、 部材 1_と同じ形状であるが、 部材 1_との間に隙間が形成されて いる。 この場合、 部材1\/1の斜面部分の延長線が部材」と形成する角度が開先 角度となる。 また、 開先深さは、 部材1\/1のうち、 X軸方向についての斜面部 分の長さで与えられる。
なお、 開先の形状は、 図 5に示したレ形に限らず、 <形、 I形、 V形、 」 形、 X形、 リ形、 両面」形、 両面 11形などでもよい。
[0036] 図 6には、 開先無しとみなされる 3つの例が示されている。 〇 2020/175041 13 卩(:171? 2020 /004196
部材1\1と部材」の関係は丁継ぎ手と呼ばれるもので、 矩形形状の部材1\1と 部材」とが丁字を形成している。 この場合、 部材1\1には開先がないと判定さ れる。
部材〇と部材」の関係は自然開先と呼ばれるもので、 矩形形状の部材〇の 角で部材」が接している。 部材〇と部材」の間には、 X 面において三角形 状の隙間が形成されているが、 これは取り付けの関係で生じたものであり、 開先とは扱わない。
部材 と部材」の関係は全開先と呼ばれるものである。 部材 は、 部材 (図 5参照) と同じ形状であるが、 斜面の全体が部材」の表面に接している ので、 部材1\1と同じく開先とは扱わない。 開先の有無を利用することで、 構 成名の特定精度は勿論、 溶接線又は溶接線の候補とする部位の特定精度を高 めることができる。
[0037] <溶接線データ生成装置の処理動作 >
図 7は、 溶接線データ生成装置 3 0 (図 1参照) によって実行される処理 動作を説明するフローチヤートである。 図 7に示す手順は、 溶接線データ生 成方法の一例である。 なお、 図中の記号 3はステップを示す。
[0038] まず、 溶接線データ生成装置 3 0は、 溶接によって製造する構造体の 3次 元データを構造体データべース 4 0 (図 1参照) から取り込む (ステップ 1 ) 。 取り込みの対象である 3次元データは、 例えば不図示の操作画面を通じ て作業者が指定する。
次に、 溶接線データ生成装置 3 0は、 隣り合う関係の 2つ以上の部材の組 み合わせを全て抽出する (ステップ 2) 。 この処理動作は、 組み合わせ抽出 部 3 3 (図 1参照) が実行する。
3次元データからの抽出が完了すると、 溶接線データ生成装置 3 0は、 抽 出された全ての組み合わせの中から未処理の 1つの組み合わせを選択する ( ステップ 3) 。
[0039] 次に、 溶接線データ生成装置 3 0は、 選択された組み合わせを構成する複 数の部材の構成名を特定する (ステップ 4) 。 構造体を構成する各位置の部 〇 2020/175041 14 卩(:171? 2020 /004196
材の構成名は、 構成名特定部 3 2 (図 1参照) によって特定されている。 選択された組み合わせを構成する部材の構成名が特定されると、 溶接線デ —夕生成装置 3 0は、 溶接の可否情報との照合を通じ、 溶接可の組み合わせ を含むか否かを判定する (ステップ 5) 。 この処理動作は、 溶接線データ生 成部 3 4 (図 1参照) が実行する。
ステップ 5で肯定結果が得られた場合、 溶接線データ生成装置 3 0は、 溶 接可の部材間で溶接する部位を特定し (ステップ 6) 、 溶接線の候補に登録 する (ステップ 7) 。
この後、 溶接線データ生成装置 3 0は、 未処理の組み合わせは無いか否か を判定する (ステップ 8) 。
なお、 ステップ 5で否定結果が得られた場合、 溶接線データ生成装置 3 0 は、 ステップ 6及び 7を実行することなくステップ 8の判定を実行する。
[0040] ステップ 8で否定結果が得られる間、 溶接線データ生成装置 3 0は、 ステ ップ 3に戻り、 新たに選択した 1つの組み合わせについて前述した一連の処 理を実行する。
ステップ 8で肯定結果が得られると、 溶接線データ生成装置 3 0は、 候補 の確認は不要か否かを判定する (ステップ 9) 。 この判定処理は必須ではな いが、 本実施の形態では、 自動的に登録された溶接線の候補を作業者が確認 するか否かを選択できるようになっている。
ステップ 9で肯定結果が得られた場合 (すなわち、 確認が不要である場合 ) 、 溶接線データ生成装置 3 0は、 溶接線データとして、 自動的に登録され た溶接線の候補の全てを出力する (ステップ 1 1) 。
一方、 ステップ 9で否定結果が得られた場合 (すなわち、 作業者による確 認が行われる場合) 、 溶接線データ生成装置 3 0は、 溶接線の候補の修正を 受け付ける (ステップ 1 0) 。
[0041 ] 図 8は、 図 7のステップ 1 0にて利用可能な溶接線の候補の修正を受け付 ける画面 1 0 0の _例を示す図である。
図 8に示す画面 1 0 0は、 構造体に対応する 3次元モデルを表示する確認 〇 2020/175041 15 卩(:171? 2020 /004196
画面 1 1 0と、 溶接線の候補の一覧が表示される候補欄 1 2 0と、 力ーソル 1 2 1で指定された候補を溶接線として確定する場合に操作する確定ボタン 1 3 0と、 力ーソル 1 2 1で指定された候補を溶接線から除外する場合に操 作する除外ボタン 1 4 0と、 候補には含まれていない部位を溶接線として追 加する場合に使用する新規ボタン 1 5 0と、 修正作業の終了時に操作する終 了ボタン 1 6 0とを含んでいる。
[0042] 図 8に示す確認画面 1 1 0には、 図 3に示す構造体が表示されている。 図
8に示す確認画面 1 1 0では、 溶接線データ生成装置 3 0によって特定され た構成名が、 対応する部材からの引出線付きで表示されている。
また、 確認画面 1 1 0では、 力ーソル 1 2 1 によって指定された候補に対 応する部位が作業者に分かるように表示される。 図 8の例では、 力ーソル 1 2 1で指定された 「候補 2」 に対応する構造体上の部位が強調表示に変更さ れている。 ここでの強調表示には、 例えば太線による表示、 高輝度による表 示、 予め設定された色による表示、 引出線による表示、 これらの組み合わせ が用いられてよい。
[0043] なお、 候補には含まれていない部位を溶接線に含める場合、 作業者は、 例 えば新規ボタン 1 5 0を操作して新たなレコードを生成した後に、 確認画面 1 1 0上で追加する部位を指定する。
自動的に登録された溶接線の候補が誤っている場合には、 力ーソル 1 2 1 で誤っている候補を指定した後に、 除外ボタン 1 4 0を操作すればよい。 終了ボタン 1 6 0が操作されると、 溶接線データ生成装置 3 0は、 ステッ プ 1 1 に移行し、 修正後の溶接線の候補の集合を溶接線データとして出力す る。
[0044] <他の実施の形態 >
以上、 本発明の実施の形態について説明したが、 本発明の技術的範囲は上 述の実施の形態に記載の範囲に限定されない。 上述の実施の形態に、 種々の 変更又は改良を加えたものも、 本発明の技術的範囲に含まれることは、 特許 請求の範囲の記載から明らかである。 〇 2020/175041 16 卩(:171? 2020 /004196
例えば前述の実施の形態では、 開先の有無の情報を溶接線又は溶接線の候 補となる部位の特定に用いているが、 構造体を構成する部材の構成名の特定 に用いてもよい。
また、 前述の実施の形態においては、 溶接線データ生成部 34 (図 1参照 ) によつて登録された溶接線の候補を修正するか否かを選択できるようにし ているが、 溶接線データ生成部 34は、 修正の有無を選択する機能を有して いなくてもよい。 この場合は、 溶接線データ生成部 34が特定した部位がそ のまま溶接線となる。
[0045] なお、 本出願は、 201 9年 2月 26日出願の日本特許出願 (特願 201
9-032635) に基づくものであり、 その内容はここに参照として取り 込まれる。 符号の説明
[0046] 1 溶接システム、 1 0 溶接ロボッ ト、 20 溶接制御装置、 30 溶接 線データ生成装置、 3 1 可否情報記録部、 32 構成名特定部、 33 組 み合わせ抽出部、 34 溶接線データ生成部、 40 構造体データべース

Claims

〇 2020/175041 17 卩(:171? 2020 /004196 請求の範囲
[請求項 1 ] 溶接ロボッ トによって溶接する部位を特定する溶接線データを生成 する溶接線データ生成装置において、
部材の構成名の組み合わせ別に前記溶接ロボッ トによる溶接の可否 を示す可否情報が記録される記録部と、
溶接により製造される構造体の 3次元データから、 隣り合う 2つ以 上の部材の組み合わせを抽出する抽出部と、
抽出された 2つ以上の部材の組み合わせに対応する構成名の組み合 わせが溶接可である場合、 当該組み合わせに対応する 2つ以上の部材 間で溶接する部位を特定する前記溶接線データを生成する生成部と を有する溶接線データ生成装置。
[請求項 2] 前記 3次元データを構成する各部材の形状及び部材間の位置関係の 両方又は _方に基づいて、 前記構造体を構成する各部材の構成名を特 定する構成名特定部
を更に有することを特徴とする請求項 1 に記載の溶接線データ生成 装置。
[請求項 3] 前記構成名特定部は、 前記溶接ロボッ トによる溶接が不要な部材を 非溶接部材として特定し、
前記生成部は、 抽出された部材の組み合わせの _方が前記非溶接部 材である場合、 当該組み合わせを溶接の対象から除外する、 ことを特 徴とする請求項 2に記載の溶接線データ生成装置。
[請求項 4] 前記構成名特定部は、 前記 3次元データを構成する部材の面積に基 づいて、 板状の形状を有する部材の構成名を特定する、 ことを特徴と する請求項 2又は 3に記載の溶接線データ生成装置。
[請求項 5] 前記部材の形状の情報には、 開先形状の情報が含まれる、 ことを特 徴とする請求項 2に記載の溶接線データ生成装置。
[請求項 6] 前記構成名特定部は、 構成名が特定されている他の部材に対する位 置関係に基づいて当該他の部材に隣り合う部材の構成名を特定する、 〇 2020/175041 18 卩(:171? 2020 /004196
請求項 2に記載の溶接線データ生成装置。
[請求項 7] 前記構成名特定部は、 抽出された 2つの部材間の位置関係として、
_方の部材に対する他方の部材の傾斜角、 回転角、 捻じれ角のうち少 なくとも 1つ以上の値を算出し、 算出された値が閾値以上である場合 、 当該他方の部材を非溶接部材として特定し、
前記生成部は、 抽出された隣り合う部材の組み合わせにおける一方 の部材が前記非溶接部材である場合、 当該組み合わせを溶接の対象か ら除外する、 ことを特徴とする請求項 2に記載の溶接線データ生成装 置。
[請求項 8] 前記構成名特定部は、 部材の形状及び部材間の位置関係の両方又は 一方と、 部材の構成名との関係を学習した学習済みモデルを用い、 前 記構造体を構成する各部材の構成名を特定する、 請求項 2に記載の溶 接線データ生成装置。
[請求項 9] 前記生成部は、 抽出された 2つの部材が溶接可である場合には、 2 つの部材同士が隣り合う部分における開先の有無を更に判定し、 開先 有りのときには開先形状の情報に従って前記溶接線データを生成する ことを特徴とする請求項 1 に記載の溶接線データ生成装置。
[請求項 10] 部材同士を溶接する溶接ロボッ トと、 溶接線データに基づいて溶接 ロボッ トの動作を制御する溶接制御装置とを有する溶接システムにお いて、
部材の構成名の組み合わせ別に前記溶接ロボッ トによる溶接の可否 を示す可否情報が記録される記録部と、
溶接により製造される構造体の 3次元データから、 隣り合う 2つ以 上の部材の組み合わせを抽出する抽出部と、
抽出された 2つ以上の部材の組み合わせに対応する構成名の組み合 わせが溶接可である場合、 当該組み合わせに対応する 2つ以上の部材 間で溶接する部位を特定する前記溶接線データを生成する生成部と を有する溶接システム。 〇 2020/175041 19 卩(:171? 2020 /004196
[請求項 1 1 ] 溶接ロボッ トによって溶接する部位を特定する溶接線データを生成 する溶接線データ生成方法において、
溶接により製造される構造体の 3次元データから、 隣り合う 2つ以 上の部材の組み合わせを抽出する処理と、
抽出された 2つ以上の部材の組み合わせに対応する構成名の組み合 わせの溶接の可否を、 予め用意された構成名の組み合わせ別の可否情 報を参照することにより判定する処理と、
抽出された 2つ以上の部材の組み合わせに対応する構成名の組み合 わせが溶接可である場合、 当該組み合わせに対応する 2つ以上の部材 間で溶接する部位を特定する前記溶接線データを生成する処理と を有する溶接線データ生成方法。
[請求項 12] コンピュータに、
溶接により製造される構造体の 3次元データから、 隣り合う 2つ以 上の部材の組み合わせを抽出する処理と、
抽出された 2つ以上の部材の組み合わせに対応する構成名の組み合 わせの溶接の可否を、 予め用意された構成名の組み合わせ別の可否情 報を参照することにより判定する処理と、
抽出された 2つ以上の部材の組み合わせに対応する構成名の組み合 わせが溶接可である場合、 当該組み合わせに対応する 2つ以上の部材 間で溶接する部位を特定する溶接線デー タを生成する処理と を実行させるプログラム。
PCT/JP2020/004196 2019-02-26 2020-02-04 溶接線データ生成装置、溶接システム、溶接線データ生成方法及びプログラム WO2020175041A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080016127.6A CN113474114B (zh) 2019-02-26 2020-02-04 焊接线数据生成装置、焊接系统、焊接线数据生成方法及记录介质
KR1020217026839A KR102537026B1 (ko) 2019-02-26 2020-02-04 용접선 데이터 생성 장치, 용접 시스템, 용접선 데이터 생성 방법 및 기록 매체
US17/433,783 US20220134464A1 (en) 2019-02-26 2020-02-04 Weld line data generation device, welding system, weld line data generation method, and computer readable medium
CA3130902A CA3130902C (en) 2019-02-26 2020-02-04 Weld line data generation device, welding system, weld line data generation method, and computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-032635 2019-02-26
JP2019032635A JP7174647B2 (ja) 2019-02-26 2019-02-26 溶接線データ生成装置、溶接システム、溶接線データ生成方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2020175041A1 true WO2020175041A1 (ja) 2020-09-03

Family

ID=72240000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004196 WO2020175041A1 (ja) 2019-02-26 2020-02-04 溶接線データ生成装置、溶接システム、溶接線データ生成方法及びプログラム

Country Status (6)

Country Link
US (1) US20220134464A1 (ja)
JP (1) JP7174647B2 (ja)
KR (1) KR102537026B1 (ja)
CN (1) CN113474114B (ja)
CA (1) CA3130902C (ja)
WO (1) WO2020175041A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116600952A (zh) * 2020-12-18 2023-08-15 川崎重工业株式会社 控制装置、机器人系统以及学习装置
KR102615646B1 (ko) * 2022-01-28 2023-12-19 삼성엔지니어링 주식회사 용접 그루브 형성 방법 및 중공형 물품

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953294B2 (ja) * 1976-02-23 1984-12-24 帝人化成株式会社 コ−テイング用組成物
JPH11224119A (ja) * 1998-02-09 1999-08-17 Mitsubishi Heavy Ind Ltd ロボット動作パターン決定装置および方法
JP2004001226A (ja) * 2003-07-18 2004-01-08 Jfe Engineering Kk 溶接ロボット動作プログラムの自動生成システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578791B2 (ja) * 2009-02-13 2014-08-27 株式会社神戸製鋼所 溶接線選定方法
JP5965859B2 (ja) 2013-03-28 2016-08-10 株式会社神戸製鋼所 溶接線情報設定装置、プログラム、自動教示システム、および溶接線情報設定方法
JP5968294B2 (ja) * 2013-11-29 2016-08-10 株式会社神戸製鋼所 溶接条件の検索支援システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953294B2 (ja) * 1976-02-23 1984-12-24 帝人化成株式会社 コ−テイング用組成物
JPH11224119A (ja) * 1998-02-09 1999-08-17 Mitsubishi Heavy Ind Ltd ロボット動作パターン決定装置および方法
JP2004001226A (ja) * 2003-07-18 2004-01-08 Jfe Engineering Kk 溶接ロボット動作プログラムの自動生成システム

Also Published As

Publication number Publication date
JP2020131279A (ja) 2020-08-31
US20220134464A1 (en) 2022-05-05
CN113474114B (zh) 2023-03-28
CA3130902C (en) 2023-08-29
JP7174647B2 (ja) 2022-11-17
KR102537026B1 (ko) 2023-05-26
KR20210118896A (ko) 2021-10-01
CN113474114A (zh) 2021-10-01
CA3130902A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US8779324B2 (en) Welding-line selecting method
WO2020175041A1 (ja) 溶接線データ生成装置、溶接システム、溶接線データ生成方法及びプログラム
US11883909B2 (en) Systems and methods to design part weld processes
US20130218303A1 (en) Methods and Systems for Machine-Related Information Delivery
US10759050B2 (en) Robot off-line programming method and apparatus using the same
US20090299526A1 (en) Device and method for processing a robot control program
WO2016136831A1 (ja) 設定支援装置、設定支援方法及びプログラム
Sarivan et al. Automatic welding-robot programming based on product-process-resource models
CA2978686A1 (en) Spatter analysis method and device
JP2001255916A (ja) 形彫放電加工装置のncプログラムの管理装置および管理方法
JPH08328829A (ja) パラメータ変更履歴管理システム
US20090327967A1 (en) Engineering tool
KR101163330B1 (ko) 조업 지원 장치, 조업 지원 방법 및 기록 매체
JP7384000B2 (ja) 協調作業システム、解析収集装置および解析プログラム
JP4243384B2 (ja) 溶接条件設定方法及びシステム
Sarivan et al. Automatic Welding-Robot Programming Based on PPR Models
Kumar Introductory Chapter: Welding in the Era of Industry 5.0
JPH01210242A (ja) 工具段取り装置
JP2007115185A (ja) プラント運転支援装置
JPH09167007A (ja) 作業プログラム自動生成装置
JPS6061866A (ja) 図形処理システムにおける面取り処理方式
Putnik et al. Spatial Visual Feedback for Robotic Arc-Welding Enforced by Inductive Machine Learning
Schmidt et al. Intuitive Optimization of Kinesthetic Programmed Trajectories for Fiber Spraying
CN118159833A (zh) 注释辅助系统以及利用了该注释辅助系统的外观检查用模型的学习辅助系统
JPS6238908A (ja) 数値制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3130902

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20217026839

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762281

Country of ref document: EP

Kind code of ref document: A1