WO2020174781A1 - インバータの制御装置および制御方法 - Google Patents
インバータの制御装置および制御方法 Download PDFInfo
- Publication number
- WO2020174781A1 WO2020174781A1 PCT/JP2019/045528 JP2019045528W WO2020174781A1 WO 2020174781 A1 WO2020174781 A1 WO 2020174781A1 JP 2019045528 W JP2019045528 W JP 2019045528W WO 2020174781 A1 WO2020174781 A1 WO 2020174781A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- axis
- current command
- voltage value
- rotation speed
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0021—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0025—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control implementing a off line learning phase to determine and store useful data for on-line control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/50—Vector control arrangements or methods not otherwise provided for in H02P21/00- H02P21/36
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
Definitions
- the present invention relates to a control device and a control method for an inverter that drives and controls a motor, and relates to, for example, a technology that can contribute to improving the overall efficiency of the inverter and the motor.
- a control device for an inverter that drives and controls a motor according to a current command or the like
- a pre-created current command table is used to input the rotation speed (rotation speed) or torque command of the motor.
- a desired current command can be appropriately determined and output based on the power parameter.
- the current command table is created, for example, by setting the DC power supply voltage of the inverter to a predetermined fixed voltage (rated voltage, etc.), the DC power supply voltage will be changed according to the load condition of the motor. If it fluctuates (eg, fluctuates below the rated voltage), it may not be possible to output the current command that is adapted to the fluctuation.
- a battery such as a storage battery is often applied as a DC power supply.
- the DC power supply voltage fluctuates due to the remaining capacity in addition to the load state of the motor. It is possible. If the current command corresponding to the fluctuation of the DC power supply voltage cannot be output, the drive control of the motor cannot be performed as desired, and there is a possibility of causing a failure (burnout, etc.). ⁇ 2020/174781 2 ⁇ (: 170?2019/045528
- Patent Document 1 Assuming such a case, for example, in the control device of Patent Document 1 (hereinafter, simply referred to as a conventional control device), it is created by setting the DC power supply voltage of the inverter to two fixed voltages. It is equipped with various types of current command tables.
- the larger of the two fixed voltages is the lower limit voltage in the normal voltage range of the DC power supply voltage (for example, when the remaining capacity of the DC power supply is sufficient, the motor is controlled to operate normally).
- the lower limit voltage of the range of DC power supply voltage is applicable.
- the smaller of the two fixed voltages is the minimum voltage that can control the drive of the motor at the DC power supply voltage (for example, when the remaining capacity of the DC power supply voltage is reduced, the motor is driven safely). The minimum voltage that can be controlled to perform safety-first operation is applied.
- Patent Document 1 Japanese Patent Application Laid-Open No. 20 0 4 — 0 8 0 8 9 6
- the lower limit voltage of the voltage range in which the DC power supply voltage is normal may fluctuate depending on the operating condition of the motor (that is, fluctuate depending on the input parameter). For example, rather than when the motor speed or torque command is relatively high, ⁇ 2020/174781 3 ⁇ (: 170?2019/045528
- a predetermined current command is output when the rotation speed of the input parameter is in a relatively low range, and the current command table is output in a region where the rotation speed is relatively high.
- the present invention has been made in view of the above technical problem, and an object thereof is to provide a technology that suppresses an unnecessary interpolation process so as to contribute to an improvement in overall efficiency.
- One aspect of the present invention is a control device including a control unit that derives a shaft and a shaft current command in accordance with a rotation speed and a torque command of a motor that is drive-controlled by an inverter.
- the control unit of this control device includes a voltage map unit that outputs a comparison voltage value corresponding to a rotation speed and a torque command, and a comparison voltage value that is input from the voltage map unit and is multiplied by a voltage margin. It has a voltage comparison unit that compares the detected voltage value obtained by detecting the DC power supply voltage of the inverter with the first and second current command tables. Based on the comparison result of the voltage comparison unit, A current command derivation unit for deriving a shaft current command is provided. ⁇ 2020/174781 4 ⁇ (: 170?2019/045528
- the first current command table is for the number of rotations and the number of rotations when the motor is operated at an arbitrary first voltage within the controllable voltage range of the DC power supply voltage at which the motor can be drive-controlled by the inverter. It is created by the axis and axis current commands for which the total efficiency is optimized corresponding to each torque command.
- the second current command table can be set to any value smaller than the first voltage in the controllable voltage range. When the motor is operated at the second voltage, the total efficiency is optimized corresponding to each rotation speed and torque command. It is created by the 1-axis and axis-current commands.
- the comparison voltage value in the voltage map is the minimum voltage value required to operate the motor for each rotation speed and torque command within the controllable voltage range, and it corresponds to each rotation speed and torque command. It is stored in the map section.
- the current command derivation unit responds to the rotation speed and torque commands in the first current command table. Axis and 9-axis current commands are derived. If the detected voltage value is greater than or equal to the lower limit of the controllable voltage range and less than the comparison voltage value, interpolation processing corresponding to the rotation speed and torque command is performed. The command is derived, and the interpolation processing axis and 9-axis current commands are extracted in the 1st and 2nd current command tables by extracting the ⁇ 1 axis and axis current commands corresponding to the rotation speed and torque command, respectively. It is characterized in that it is derived by performing interpolation processing corresponding to the detected voltage value in the axis and axis current commands.
- the current command deriving unit has one or more intermediate current command tables in addition to the first and second current command tables, and the intermediate current command table is smaller than the first voltage and smaller than the second voltage. It is created by the axis and axis current commands that optimize the overall efficiency corresponding to each rotation speed and torque command when the motor is operated at any intermediate voltage larger than If the voltage value is greater than or equal to the lower limit value of the controllable voltage range and less than the comparison voltage value, and if the detected voltage value is between any one of the first voltage, the second voltage, and the intermediate voltage that are close to each other.
- the interpolation processing axis and 9-axis current command corresponding to the rotation speed and torque command are derived, and the interpolation processing axis and 9-axis current command are ⁇ 2020/174781 5 ⁇ (: 170?2019/045528
- the respective current commands 7 to — each relating to each of the voltages that are approximate to each other, from the respective current command tables relating to the two voltages, the axis corresponding to the rotation speed and the torque command, It may be characterized in that the axis current commands are respectively extracted, and the extracted axes and axis current commands are interpolated and processed according to the detected voltage value.
- first voltage may be set to satisfy the equation (1)
- second voltage may be set to a lower limit voltage of the controllable voltage range.
- First voltage X (upper limit voltage of controllable voltage range) + n X lower limit voltage of controllable voltage range) (1)
- the operation of the motor includes a power running operation and a regenerative operation
- the DC power source stores regenerative electric power due to the regenerative operation of the motor and satisfies m> n in the equation (1). Anything is fine.
- control unit derives the axis and 9-axis current commands corresponding to the motor rotation speed and torque commands, and controls the drive based on the derived ⁇ 1 axis and axis current commands. And a control method similar to that of the control device according to the one aspect.
- FIG. 1 is a schematic configuration diagram for explaining an inverter control device 10 which is an example of the present embodiment.
- FIG. 2 is a schematic configuration diagram for explaining an example of the torque control unit 1.
- FIG. 3 A current command value characteristic diagram with respect to a voltage change showing the interpolation processing according to the first embodiment.
- FIG. 4 A characteristic diagram of a current command value with respect to a voltage change showing an interpolation process according to the second embodiment. MODE FOR CARRYING OUT THE INVENTION
- the inverter control device and the like include any of the first and second arbitrary controllable voltage ranges (the controllable voltage range of the DC power supply voltage at which the drive of the motor can be controlled by the inverter).
- the controllable voltage range of the DC power supply voltage at which the drive of the motor can be controlled by the inverter When the motor is operated at a voltage (1st voltage> 2nd voltage) (when the motor is operated so as to optimize the overall efficiency), the 1st and 9th axes created by the 1-axis and 9-axis current commands 2 Apply the current command table. Further, within the controllable voltage range, the minimum voltage value required for operation in each rotation speed and torque command is applied as the comparison voltage value.
- linear interpolation linear interpolation, It is determined whether or not interpolation processing such as broken line interpolation is required, and the axes that are not interpolated, the axis current command, or the axes that have been interpolated and the axis current command (hereinafter simply interpolated axes, 9-axis current command). This is a control configuration for appropriately deriving and outputting).
- the detected voltage If the value is below the upper limit value of the controllable voltage range and above the comparison voltage value, the axis and 9-axis current commands corresponding to the rotation speed and torque commands are derived and output in the first current command table (see Fig. 2 below). Output from the derivation function section 1 3 3).
- the interpolation processing axis corresponding to the rotation speed and torque command and the detected voltage value is processed.
- the 9-axis current command can be derived and output (in Fig. 2 to be described later, output from the derivation function unit 13).
- control configuration as in the present embodiment it is possible to prevent unnecessary interpolation processing from being performed, and it is possible to contribute to overall efficiency improvement.
- the inverter control device and control method of the inverter according to the present embodiment include a comparison voltage value corresponding to the motor rotation speed and the torque command, and a DC voltage of the inverter. ⁇ 2020/174781 7 ⁇ (: 170?2019/045528
- the necessity of interpolation processing is judged based on the comparison result of the detected voltage value obtained by detecting the power supply voltage, and the interpolation processing is executed as appropriate, and the axis and 9-axis currents corresponding to the rotation speed and torque command are determined.
- the control configuration can derive the command, it is possible to appropriately apply the common general knowledge in various fields (for example, the drive control technology of the inverter, the motor technology, the power supply technology, etc.) for designing.
- the items shown in are listed.
- FIG. 1 is a circuit configuration diagram for explaining an inverter control device 10 which is an example of the present embodiment.
- the control device 10 shown in Fig. 1 mainly includes a torque control unit 1 and a current control system indicated by a broken line block in Fig. 1, and supplies the current supplied to the motor 6 with an exciting current component and a torque current component.
- the control structure is divided into two axes.
- the torque control unit 1 includes, for example, as shown in Fig. 2 described later, a voltage map unit 1 1, a voltage comparison unit 1 2, a current command derivation unit 1 3, a table knife 1 and a knife 2, Motor 6 speed (rotation speed) ⁇ , torque command *, and the DC voltage (not shown) of the inverter 5 detected voltage value obtained by detecting the voltage And are used as input parameters, and the axis current command (excitation current command) * and the axis current command (torque current command) *: to be applied to the motor 6 can be derived.
- the invention is not particularly limited.
- the torque command * is given according to the accelerator operation of the electric vehicle, and the motor 6 can perform power running operation and regenerative operation.
- the DC power source is a battery that can be charged and discharged, such as a storage battery.
- the current control unit 2 is a torque control unit.
- Axis, 9-axis voltage command V/, V is configured to be derived ⁇ 02020/174781 8 ⁇ (: 17 2019/045528
- the reverse rotation coordinate transformation unit 4 uses the 0-axis and 9-axis voltage command V/
- the inverter 5 uses the three-phase voltage commands V 1, V 2, V
- the motor 6 By controlling the output voltage based on *, V/, the motor 6 is drive-controlled (armature current is controlled), and the motor 6 can be operated as desired.
- the detection unit 61 is composed of, for example, an encoder, generates a position position signal of the motor 6, and the position detector 62 derives the magnetic pole phase 0 from this signal, and the speed detector 6 It is configured so that the rotation speed ⁇ ) can be derived in 3.
- FIG. 2 shows a configuration example of the torque control unit 1.
- the same reference numerals are applied to the same components as those shown in FIG. 1, and the detailed description thereof will be appropriately omitted.
- the torque control unit 1 shown in FIG. 2 is mainly provided with a voltage map unit 11, a voltage comparison unit 12 and a current command derivation unit 13 and the current command derivation unit 13 has a desired first
- the second current command table, b], and Tb2 are stored.
- the table data of the axis and axis current command *, * for which the overall efficiency is optimized is stored so as to correspond to each rotation speed £ ⁇ and torque command * (that is, 1 and 2nd current command table Ting 1 and Ting 2 are tables with rotation speed £0 and torque command * as parameters.)
- the direct current power supply voltage of the inverter 5 is set to an arbitrary 1st and 2nd voltage, respectively, and the torque control unit 1 is set. ⁇ 2020/174781 9 ⁇ (: 170?2019/045528
- ⁇ can be created by searching (1 ⁇ is a margin coefficient
- 9-axis current command may be given and * , I / may be stored in a table, and even in this case, overall efficiency is considered to be optimized).
- the first and second voltages are, for example, the first voltage> the second voltage in the range of the DC power supply voltage where the drive control of the motor 6 by the inverter 5 is possible (hereinafter, simply referred to as the controllable voltage range).
- the voltage can be set to an arbitrary value so as to satisfy the relational expression of.
- the upper limit voltage and the lower limit voltage of the controllable voltage range Between and, set the first voltage to satisfy the following formula (1),
- the voltage map section 11 shows the comparative voltage value V corresponding to the rotation speed £ ⁇ and the torque command*. ..
- the map data is stored and the corresponding comparison voltage value can be appropriately derived and output each time the rotation speed ⁇ ) and the torque command * are input (the comparison voltage value output process is executed. It is configured so that it can be done.
- the map data can be created, for example, by performing a pre-operation while appropriately changing the rotation speed £ ⁇ and the torque command value* while the DC power supply voltage of the inverter 5 is in the controllable voltage range. .. Specifically, in the pre-operation, the minimum voltage value required for the operation of the motor 6 for each rotation speed ⁇ ) and torque command * is detected, and ⁇ 2020/174781 10 ⁇ (: 170?2019/045528
- the map data can be created so as to correspond to the rotation speed £0 and the torque command*.
- the voltage comparison unit 12 outputs the comparison voltage value V output from the voltage map unit 11. .. And the detected voltage value V # are both input, and the comparison result of the two is derived and output (configured to execute the voltage comparison process).
- the comparison voltage value V input from the voltage map section 1 1. .. In, for example, it may be applied after multiplying by the voltage margin (coefficient of 1 or more) that takes into account transient control stability. In the case of the torque control unit 1 in FIG. 2, the recording unit 14 in which the voltage margin is recorded is provided, and the comparison voltage value V is obtained via the multiplier 15. .. Can be multiplied by the voltage margin.
- the current command derivation unit 13 is provided with derivation function units 1 3 3 and 1 3 and inputs both the comparison result of the voltage comparison unit 12 and the detected voltage value V # , Based on the result of the comparison, whether or not interpolation processing is necessary is determined, and then it is possible to appropriately derive and output the ⁇ 1 axis, the axis current command*, and the command corresponding to the rotation speed £ ⁇ and the torque command*. It is configured (configured to execute the command derivation process).
- Whether or not the interpolation processing is necessary by the current command derivation unit 13 is determined based on the detected voltage value V d in the comparison result of the voltage comparison unit 12 for example. Is below the upper limit voltage of the controllable voltage range. .. In the above case (Hereafter, simply, .. In this case, it is determined that the interpolation processing is unnecessary. In addition, if the detected voltage value is equal to or higher than the control value, the comparison voltage value V. .. If less than (below, simply Therefore, it is determined that the interpolation processing is necessary.
- the deriving function unit 1 3 3 functions, the first current command table Cho ⁇ 1, corresponding to the rotational speed £ ⁇ and torque command Ding * , 9-axis current command*, is derived as appropriate, and output to the current control unit 2 shown in Fig. 1.
- the derivation function unit 13 ⁇ operates, and first, the rotation speed from the 1st and 2nd current command tables 1 and 2 ⁇ ) ⁇ 02020/174781 11 11 (: 17 2019/045528
- Axis 1 and axis current command* which correspond to the torque command *, and each are extracted. After that, interpolation processing corresponding to the detected voltage value is performed for each of the extracted ⁇ 1 axis, axis current command*, I to derive interpolation processing ⁇ 1 axis, axis current command*, ⁇ Output to the current control unit 2 shown in 1.
- Interpolation processing and necessity determination by the current command derivation unit 13 described above can be executed by various methods (for example, the method described in Patent Document 1), and specifically, the following will be described. It may be carried out as in Examples 1 to 3. The same reference numerals are applied to those similar to those shown in FIGS. 1 and 2, and detailed description thereof will be appropriately omitted.
- the current command derivation unit 13 sets the first voltage and the second voltage to the average voltage and the lower limit voltage V, respectively, to create the first and second current command tables Ting 1 and Ting 2. It is assumed that it has the current command value characteristic (function characteristic) with respect to the voltage change as shown in Fig. 3. In addition, in FIG. 3 (and FIG. 4 described later), the solid line in the figure is the current command value.
- the derivation function unit 13 works, and from the first and second current command table tables 1 and 2, based on the following equations (2) and (3), the rotation speed ⁇ ) and torque command An interpolation processing axis corresponding to Ding*, 9-axis current command *, and I: are derived.
- I is the table value of the 1st current command table
- ⁇ , ⁇ is the table value of the 2nd current command table.
- Equations (2) and (3) are equations when the first voltage is the average voltage.
- the first voltage is the average voltage
- equation (2) Is the first voltage obtained from Eq. (1).
- the derivation function unit 133 works, and simply from the first current command table table 1 to the rotation speed ⁇ ) and ⁇ 2020/174781 12 ⁇ (: 170?2019/045528
- the interpolation process and the necessity determination by the current command derivation unit 13 as in the first embodiment, for example, as compared with the case of the conventional control device, the interpolation process that is highly necessary is appropriately performed, It can be seen that interpolation processing, which is not necessary, can be suppressed so that it is not performed, which can contribute to overall efficiency.
- the current command derivation unit 13 includes both the first and second current command tables 1 and 2, and an intermediate current command table (hereinafter, simply 1) or more).
- the same reference numerals are applied to the same components as those in the first embodiment, and the detailed description thereof will be appropriately omitted.
- the intermediate current command table is, for example, an arbitrary intermediate voltage in which the DC power supply voltage of the inverter 5 is lower than the first voltage and higher than the second voltage (when there are a plurality of intermediate current command tables, different intermediate voltages).
- the first voltage and the second voltage are set to the average voltage V and the first voltage, respectively.
- the derivation function unit 1 3 3 functions.
- deriving function unit 1 3 3 from the first current command table Ding spoon 1, the axis corresponding to the rotation speed ⁇ ) and the torque command Ding *, 9-axis current command and *, ⁇ 2020/174781 13 (: 170?2019/045528 *) is properly derived and output to the current control unit 2 shown in Fig. 1.
- the derivation function unit 13 functions, and first, from the 1st and 2nd intermediate current command table, the axis corresponding to the rotation speed 0) and the torque command*, and the 9-axis current command*, ⁇ : Extract each. After that, in each of the extracted ⁇ 1 axis, axis current command *, *, interpolation processing corresponding to the detected voltage value is performed to derive interpolation processing ⁇ 1 axis, axis current command ⁇ /, I, Output to the current controller 2 shown in Fig. 1.
- Interpolation processing Axis, 9-axis current command *, * is derived based on the following equations (4) to (9).
- I is the table value of the first intermediate current command table
- I-I is the table value of the second intermediate current command table.
- the first voltage is the average voltage In the outer case, equation (4) ⁇ Is the first voltage obtained from Eq. (1).
- the operation of the motor 6 includes a power running operation and a regenerative operation
- the DC power supply of the inverter 5 is capable of storing regenerative power generated by the regenerative operation of the motor 6. Also, at the first voltage, set so that 0 1 >is satisfied in equation (1) (that is, the first voltage>average voltage).
- the following can be said. That is, for example, in a situation in which the regenerative operation of the motor 6 increases, the period during which the DC power is stored by the regenerative power and the DC power supply voltage is high becomes longer. Compared to the case where the setting is set to, there is a possibility that drive control can be performed according to the operating status of the motor 6.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Databases & Information Systems (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
Abstract
インバータ(5)によるモータ(6)の駆動制御が可能な直流電源電圧の制御可能電圧範囲のうち、任意の第1,第2電圧でモータ(6)の運転を行った場合のd軸,q軸電流指令(Id
*,Iq
*)により、第1,第2電流指令テーブル(Tb1,Tb2)を作成する。また、前記制御可能電圧範囲のうち、回転数(ω)およびトルク指令(T*)毎におけるモータ(6)の運転に必要な最小限電圧値を、比較用電圧値(Vco)として適用する。そして、回転数(ω)およびトルク指令(T*)に対応した比較用電圧値(Vco)と、インバータの直流電源電圧の検出電圧値(Vdc)と、の比較結果に基づいて補間処理の要否を判断し、補間処理をしていないd軸,q軸電流指令(Id
*,Iq
*)、または補間処理d軸,q軸電流指令(Id
*,Iq
*)を適宜導出して出力する。
Description
\¥02020/174781 1 卩(:17 2019/045528
明 細 書
発明の名称 : インバータの制御装置および制御方法
技術分野
[0001 ] 本発明は、 モータを駆動制御するインバータの制御装置および制御方法に 係るものであって、 例えばインバータとモータの総合効率向上に貢献可能な 技術に関するものである。
背景技術
[0002] 電流指令等に応じてモータを駆動制御して運転するインバータの制御装置 の一例としては、 予め作成された電流指令テーブルを用い、 モータの回転数 (回転速度) やトルク指令等の入カパラメータに基づいて所望の電流指令を 適宜決定し出力できるようにしたものがある。
[0003] 電流指令テーブルは、 例えば制御装置に入力される入カパラメータを適宜 変更しながら、 モータの試験運転等の事前運転 (例えばモータが許容する全 ての運転条件 (モータの回転数 (回転速度) やトルク指令等) による事前運 転等) を行って作成することが挙げられる。 この事前運転において、 当該入 カパラメータ毎に、 総合効率 (=インバータ効率 Xモータ効率) を考慮した 所望の電流指令を導出できるようにすることも可能である。
[0004] しかしながら、 電流指令テーブルが、 例えばインバータの直流電源電圧を 所定の固定電圧 (定格電圧等) に設定して作成したものであると、 モータの 負荷状態等に応じて当該直流電源電圧が変動 (例えば定格電圧未満に変動) した場合には、 当該変動に適応した電流指令を出力できなくなるおそれがあ る。
[0005] 具体例として、 車載用インバータにおいては、 蓄電池等のバッテリを直流 電源として適用されることが多く、 この場合、 モータの負荷状態の他に残存 容量によって、 直流電源電圧が変動してしまうことが考えられる。 そして、 直流電源電圧の変動に応じた電流指令を出力できなくなると、 モータの駆動 制御を所望通りに実施できないことや故障等 (焼損等) を招く可能性がある
〇 2020/174781 2 卩(:170?2019/045528
[0006] このような場合を想定し、 例えば特許文献 1の制御装置 (以下、 単に従来 制御装置と適宜称する) においては、 インバータの直流電源電圧を 2つの固 定電圧に設定して作成した 2種類の電流指令テーブルを、 備えている。
[0007] この従来制御装置では、 例えば直流電源電圧の検出電圧値に応じて、 2種 類の電流指令テーブルを適宜適用し、 当該検出電圧値が 2つの固定電圧の両 者間の範囲内であれば補間処理を実施して、 電流指令を出力できるようにし ている。
[0008] また、 2つの固定電圧のうち大きい方には、 直流電源電圧において正常な 電圧範囲の下限電圧 (例えば直流電源の残存容量が十分な場合において、 モ —夕を駆動制御して通常運転が可能な直流電源電圧の範囲のうち下限電圧) を適用している。 そして、 当該 2つの固定電圧のうち小さい方には、 当該直 流電源電圧においてモータの駆動制御が可能な最低限の電圧 (例えば直流電 源電圧の残存容量が低減した場合において、 モータを安全に駆動制御して安 全優先の運転ができる最低限の電圧) を適用している。
[0009] ここで、 インバータの効率に着目すると、 インバータ出力電圧と直流電源 電圧とが近似 (例えば変調率が 1 に近似;以下、 単に近似状態と適宜称する ) しているほど、 高効率になり易いとされている。 また、 直流電源電圧の変 動に対し、 インバータの駆動制御の最終的な電圧指令を適宜補正して電流指 令を一定にする場合には、 例えばインバータ出力電圧を一定にできるような 電流指令を出力して適宜駆動制御する手法が採られている。
先行技術文献
特許文献
[0010] 特許文献 1 :特開 2 0 0 4— 0 8 0 8 9 6号公報
発明の概要
[001 1 ] 従来制御装置において、 直流電源電圧が正常な電圧範囲の下限電圧は、 モ —夕の運転状況によって変動 (すなわち、 入カパラメータによって変動) し 得る。 例えば、 モータの回転数やトルク指令が比較的高い場合よりも、 当該
〇 2020/174781 3 卩(:170?2019/045528
回転数やトルク指令が低い場合の方が、 当該電圧範囲の下限電圧は低電圧方 向に偏倚する傾向がある。
[0012] すなわち、 従来制御装置においては、 例えば回転数やトルク指令が比較的 低く補間処理が不要の場合 (つまり、 モータの駆動制御不能や故障等 (焼損 等) を招くおそれがない場合) であっても、 直流電源電圧の検出電圧値が 2 つの固定電圧の両者間の範囲内であれば、 補間処理を実施してしまうことに なる。
[0013] また、 例えば最大トルクを発生させるような電流指令テーブルでは、 入力 パラメータの回転数が比較的低い領域にある場合には所定の電流指令を出力 し、 当該回転数が比較的高い領域にある場合にはインバータ出力電圧が一定 となるような電流指令を出力することが考えられるが、 これら両出力の境界 は、 直流電源電圧によって異なる。
[0014] このため、 補間処理においては、 近似状態にすることが困難となる場合が あり、 インバータ効率を低下させてしまうおそれもある。 したがって、 必要 性の高い補間処理は適宜実施し、 必要性の低い補間処理は実施しないように することが好ましい。
[0015] 本発明は、 かかる技術的課題を鑑みてなされたものであって、 必要性の低 い補間処理を実施しないように抑制して総合効率向上に貢献する技術を提供 することにある。
[0016] この発明の一態様は、 インバータによって駆動制御されるモータの回転数 およびトルク指令に対応して、 軸, 軸電流指令を導出する制御部を備え た制御装置である。
[0017] この制御装置の制御部は、 回転数およびトルク指令に対応した比較用電圧 値を出力する電圧マツプ部と、 電圧マツプ部から入力され電圧余裕度が乗じ られた比較用電圧値と、 インバータの直流電源電圧を検出して得た検出電圧 値と、 を比較する電圧比較部と、 第 1 , 第 2電流指令テーブルを有し、 電圧 比較部の比較結果に基づいて ¢1軸, 9軸電流指令を導出する電流指令導出部 と、 を備えたものである。
〇 2020/174781 4 卩(:170?2019/045528
[0018] 第 1電流指令テーブルは、 インバータによるモータの駆動制御が可能な直 流電源電圧の制御可能電圧範囲のうち、 任意の第 1電圧でモータの運転を行 った場合において、 回転数およびトルク指令毎に対応して総合効率が最適化 される 軸, 軸電流指令により作成されたものであり、 第 2電流指令テー ブルは、 制御可能電圧範囲のうち、 第 1電圧よりも小さい任意の第 2電圧で モータの運転を行った場合において、 回転数およびトルク指令毎に対応して 総合効率が最適化される ¢1軸, 軸電流指令により作成されたものである。 電圧マップ部の比較用電圧値は、 制御可能電圧範囲のうち、 回転数および卜 ルク指令毎におけるモータの運転に必要な最小限電圧値であり、 当該回転数 およびトルク指令毎に対応して電圧マップ部に格納されたものである。
[0019] そして、 電流指令導出部は、 検出電圧値が制御可能電圧範囲の上限値以下 で比較用電圧値以上の場合には、 第 1電流指令テーブルにおいて回転数およ びトルク指令に対応した 軸, 9軸電流指令を導出し、 検出電圧値が制御可 能電圧範囲の下限値以上で比較用電圧値未満の場合には、 回転数およびトル ク指令に対応した補間処理 軸, 9軸電流指令を導出し、 補間処理 軸, 9 軸電流指令は、 第 1 , 第 2電流指令テーブルにおいて回転数およびトルク指 令に対応した ¢1軸, 軸電流指令をそれぞれ抽出して、 当該抽出した各 軸 , 軸電流指令において検出電圧値に対応した補間処理をして導出したもの であることを特徴とする。
[0020] また、 電流指令導出部は、 第 1 , 第 2電流指令テーブルの他に、 一つ以上 の中間電流指令テーブルを有し、 中間電流指令テーブルは、 第 1電圧よりも 小さく第 2電圧よりも大きい任意の中間電圧でモータの運転を行った場合に おいて、 回転数およびトルク指令毎に対応して総合効率が最適化される 軸 , 軸電流指令により作成されたものであり、 検出電圧値が制御可能電圧範 囲の下限値以上で比較用電圧値未満の場合、 かつ当該検出電圧値が第 1電圧 , 第 2電圧, 中間電圧のうち何れかの近似する同士の各電圧間にある場合に は、 回転数およびトルク指令に対応した補間処理 軸, 9軸電流指令を導出 し、 補間処理 軸, 9軸電流指令は、 第 1 , 第 2電流指令テーブルおよび中
〇 2020/174781 5 卩(:170?2019/045528
間電流指令 7~ _ブルのうち、 前記近似する同士の各電圧に係る各電流指令 7~ —ブルから、 前記 2つの電圧に係る各電流指令テーブルから、 回転数および トルク指令に対応した 軸, 軸電流指令をそれぞれ抽出して、 当該抽出し た各 軸, 軸電流指令において検出電圧値に対応した補間処理をして導出 したものであることを特徴とするものでも良い。
[0021] また、 第 1電圧は、 式 (1) を満たすように設定され、 第 2電圧は、 制御 可能電圧範囲の下限電圧に設定されていることを特徴とするものでも良い。 [0022] 第 1電圧 = X (制御可能電圧範囲の上限電圧) + n X制御可能電圧範囲 の下限電圧) ( 1)
式 (1) 中において、 111 + 11 = 1、 0 <〇1 £ 1、 0 £ 1^ < 1 とする。
[0023] また、 モータの運転は、 力行運転と回生運転を含み、 直流電源は、 モータ の回生運転による回生電力を蓄電し、 式 (1) 中において、 m > nを満たす ことを特徴とするものでも良い。
[0024] 他の態様は、 モータの回転数およびトルク指令に対応した 軸, 9軸電流 指令を制御部により導出し、 当該導出した ¢1軸, 軸電流指令に基づいてモ —夕を駆動制御する制御方法であり、 前記一態様による制御装置と同様の制 御構成によって実現することを特徴とするものである。
[0025] 以上示したように本発明によれば、 必要性の低い補間処理を実施しないよ うに抑制して総合効率向上に貢献することが可能となる。
図面の簡単な説明
[0026] [図 1]本実施形態の一例であるインバータの制御装置 1 0を説明するための概 略構成図。
[図 2]トルク制御部 1の一例を説明するための概略構成図。
[図 3]実施例 1 による補間処理を示す電圧変化に対する電流指令値特性図。
[図 4]実施例 2による補間処理を示す電圧変化に対する電流指令値特性図。 発明を実施するための形態
[0027] 本発明の実施形態によるインバータの制御装置および制御方法は、 従来制 御装置にように単に検出電圧値が 2つの固定電圧の両者間の範囲内である場
〇 2020/174781 6 卩(:170?2019/045528
合に補間処理を実施するものとは、 全く異なるものである。
[0028] すなわち、 本実施形態によるインバータの制御装置等は、 制御可能電圧範 囲 (インバータによるモータの駆動制御が可能な直流電源電圧の制御可能電 圧範囲) のうち任意の第 1 , 第 2電圧 (第 1電圧>第 2電圧) でモータの運 転を行った場合 (総合効率を最適化できるように運転を行った場合) の〇1軸 , 9軸電流指令により作成した第 1 , 第 2電流指令テーブルを、 適用する。 また、 前記制御可能電圧範囲のうち、 回転数およびトルク指令毎におけるモ —夕の運転に必要な最小限電圧値を、 比較用電圧値として適用する。
[0029] そして、 モータの回転数およびトルク指令に対応した比較用電圧値と、 イ ンバータの直流電源電圧を検出して得た検出電圧値と、 の比較結果に基づい て補間処理 (直線補間, 折線補間等による補間処理) の要否を判断し、 補間 処理をしていない 軸, 軸電流指令、 または当該補間処理をした 軸, 軸電流指令 (以下、 単に補間処理 軸, 9軸電流指令と適宜称する) を適宜 導出して出力する制御構成である。
[0030] この本実施形態のような制御構成によれば、 例えば回転数やトルク指令が 比較的低い場合 (従来制御装置では補間処理をしてしまうような場合) であ っても、 検出電圧値が制御可能電圧範囲の上限値以下で比較用電圧値以上で あれば、 第 1電流指令テーブルにおいて回転数およびトルク指令に対応した 軸, 9軸電流指令を導出して出力 (後述図 2では導出機能部 1 3 3から出 力) する。
[0031 ] また、 検出電圧値が制御可能電圧範囲の下限値以上で比較用電圧値未満の 場合には、 回転数およびトルク指令と、 検出電圧値と、 に対応して補間処理 した補間処理 軸, 9軸電流指令を導出して出力 (後述図 2では導出機能部 1 3匕から出力) することができる。
[0032] すなわち、 本実施形態のような制御構成によれば、 必要性の低い補間処理 を実施しないように抑制でき、 総合効率向上に貢献可能となる。
[0033] 本実施形態のインバータの制御装置および制御方法は、 前述のようにモー 夕の回転数およびトルク指令に対応した比較用電圧値と、 インバータの直流
〇 2020/174781 7 卩(:170?2019/045528
電源電圧を検出して得た検出電圧値と、 の比較結果に基づいて補間処理の要 否を判断して当該補間処理を適宜実施し、 回転数およびトルク指令に対応し た 軸, 9軸電流指令を導出できる制御構成であれば、 種々の分野 (例えば インバータの駆動制御技術, モータ技術, 電源技術等の分野) の技術常識を 適宜適用して設計することが可能であり、 その一例として以下に示すものが 挙げられる。
[0034] 《本実施形態によるインバータの制御装置の構成例》
図 1は、 本実施形態の一例であるインバータの制御装置 1 〇を説明するた めの回路構成図である。 図 1 に示す制御装置 1 〇は、 トルク制御部 1 と、 図 1中の破線ブロックで示す電流制御系と、 を主として備えており、 モータ 6 に供給する電流を励磁電流成分とトルク電流成分との 2軸に分離した制御構 成となっている。
[0035] トルク制御部 1は、 例えば後述図 2に示すように電圧マップ部 1 1 , 電圧 比較部 1 2 , 電流指令導出部 1 3 , テーブル丁匕 1および丁匕 2を備えてお り、 モータ 6の回転数 (回転速度) 〇)と、 トルク指令丁*と、 インバータ 5の 直流電源 (図示省略) 電圧を検出して得た検出電圧値
と、 を入カパラメー 夕とし、 当該モータ 6に流す 軸電流指令 (励磁電流指令) *, 軸電流指 令 (トルク電流指令) 丨:を導出できるように構成されている。
[0036] トルク指令丁*, モータ 6 , 直流電源においては、 種々の態様を適用するこ とが可能であり、 特に限定されるものではない。 例えば制御装置 1 0が電気 自動車に適用されるものである場合、 トルク指令丁*は当該電機自動車のアク セル操作等に応じて与えられるものが挙げられ、 モータ 6は力行運転および 回生運転が可能なものが挙げられ、 直流電源は蓄電池等の充放電可能なバッ テリが挙げられる。
[0037] 破線ブロックで示す電流制御系において、 電流制御部 2は、 トルク制御部
1から出力された 軸, 軸電流指令し*, 丨 /と、 後述の回転座標変換部 3 から出力された電流検出値し, と、 を比較し、 当該比較結果および回転数 〇)に基づいて 軸, 9軸電圧指令 V/, V を導出できるように構成されてい
\¥02020/174781 8 卩(:17 2019/045528
る。
[0038] 回転座標変換部 3は、 モータ 6の 2相電流検出値し, しと V相電流計算値 (= - 一 ) をモータ 6の磁極位相 0に基づいて変換し、 , 9軸電流 検出値し, 丨 dを導出できるように構成されている。
[0039] 逆回転座標変換部 4は、 電流制御部 2から出力された〇1軸, 9軸電圧指令 V/
, を磁極位相 0に基づいて変換し、 三相電圧指令 V *, V /, V/を導出で きるように構成されている。
[0040] インバータ 5は、 逆回転座標変換部 4から出力された三相電圧指令 V , V ,
*, V/に基づいて出力電圧制御を行うことにより、 モータ 6を駆動制御 (電機 子電流を制御) して、 当該モータ 6において所望の運転をできるように構成 されている。
[0041 ] 検出部 6 1は、 例えばエンコーダによって構成され、 モータ 6の口ータ位 置信号を発生し、 この信号から位置検出器 6 2にて磁極位相 0を導出し、 速 度検出器 6 3にて回転数〇)を導出できるように構成されている。
[0042] <トルク制御部 1の構成例 ñ
図 2はトルク制御部 1の構成例を示すものである。 以下、 図 1 に示すもの と同様のものには、 同一符号を適用する等により、 その詳細な説明を適宜省 略する。
[0043] 図 2に示すトルク制御部 1は、 電圧マツプ部 1 1 , 電圧比較部 1 2 , 電流 指令導出部 1 3を主として備えており、 電流指令導出部 1 3には、 所望の第 1 , 第 2電流指令テーブル丁 b ] , T b 2が格納されている。
[0044] この第 1 , 第 2電流指令テーブル丁 b ] , T b 2には、 それぞれ任意の第
1 , 第 2電圧において、 総合効率が最適化される 軸, 軸電流指令し*, *のテーブルデータが、 回転数 £〇およびトルク指令丁 *毎に対応するように格納 されている (つまり第 1 , 第 2電流指令テーブル丁匕 1 , 丁匕 2は、 回転数 £0およびトルク指令丁*をパラメータとしたテーブルとなっている) 。
[0045] 第 1 , 第 2電流指令テーブル丁匕 1 , 丁匕 2は、 例えばインバータ 5の直 流電源電圧をそれぞれ任意の第 1 , 第 2電圧に設定して、 トルク制御部 1 に
〇 2020/174781 9 卩(:170?2019/045528
入力される回転数 £0とトルク指令丁*に対応する 軸, 9軸電流指令し*, * を適宜変更させるインバータ 5とモータ 6の事前運転を行い、 その都度総合 効率を計測して、 総合効率が最高値 X 1<となるときの〇1軸, 9軸電流指令し*
, 丨:を探索することによって作成することが可能である (1<は余裕係数で、
1< =〇. 9〜 1程度とする。 最高値よりも若干低い総合効率のときの 軸,
9軸電流指令し*, I /をテーブルに格納してもよく、 この場合でも総合効率 は最適化されているとみなす) 。
[0046] 第 1 , 第 2電圧は、 例えばインバータ 5によるモータ 6の駆動制御が可能 な直流電源電圧の範囲 (以下、 単に制御可能電圧範囲と適宜称する) におい て、 第 1電圧 >第 2電圧の関係式を満たすように、 それぞれ任意の電圧に設 定することが挙げられる。
に設定することが挙げられる。 なお、 式 (1) 中において、 01 + 11 = 1、 0 < |11 £ 1 % 0 £ 1^ < 1 とする。
[0048] 第 1電圧 =〇! X (制御可能電圧範囲の上限電圧) + n X制御可能電圧範囲 の下限電圧) ( 1)
式 (1) を満たす第 1電圧の具体例としては、 後述の図 3に示すように、 上限電圧
と下限電圧 V との平均 (すなわち式 (1) が m = n = 0 . 5 の場合) である平均電圧 V に設定することが挙げられる。
[0049] 電圧マップ部 1 1は、 回転数 £〇およびトルク指令丁*に対応した比較用電圧 値 V。。のマップデータが格納されており、 当該回転数〇)およびトルク指令丁*が 入力される毎に、 対応する比較用電圧値を適宜導出し出力できるように構成 (比較用電圧値出力過程を実行できるように構成) されているものである。
[0050] マップデータは、 例えばインバータ 5の直流電源電圧が制御可能電圧範囲 の状態で、 回転数 £〇およびトルク指令丁*を適宜変化させながら事前運転を行 って作成することが可能である。 具体的には、 事前運転において回転数〇)お よびトルク指令丁*毎のモータ 6の運転に必要な最小限電圧値を検出して、 こ
〇 2020/174781 10 卩(:170?2019/045528
れら各最小限電圧値をそれぞれ比較用電圧値 V。。とし、 回転数 £0およびトルク 指令丁*に対応するようにマップデータ化して作成することが挙げられる。
[0051 ] 電圧比較部 1 2は、 電圧マップ部 1 1から出力された比較用電圧値 V。。と、 検出電圧値 V#と、 の両者が入力され、 当該両者の比較結果を導出して出力で きるように構成 (電圧比較過程を実行できるように構成) されているもので ある。 電圧マップ部 1 1から入力される比較用電圧値 V。。においては、 例えば 過渡的な制御の安定性を加味した電圧余裕度 (1以上の係数) を乗じたうえ で適用しても良い。 図 2のトルク制御部 1の場合、 電圧余裕度が記録されて いる記録部 1 4を備えており、 乗算器 1 5を介して、 比較用電圧値 V。。に電圧 余裕度を乗じることが可能な構成となっている。
[0052] 電流指令導出部 1 3は、 導出機能部 1 3 3 , 1 3匕を備えており、 電圧比 較部 1 2の比較結果と、 検出電圧値 V#と、 の両者が入力され、 当該比較結果 に基づいて補間処理の要否を判断したうえで、 回転数 £〇およびトルク指令丁* に対応した ¢1軸, 軸電流指令し*, 丨 を適宜導出して出力できるように構 成 (指令導出過程を実行できるように構成) されているものである。
[0053] 電流指令導出部 1 3による補間処理の要否判断は、 例えば電圧比較部 1 2 の比較結果において、 検出電圧値 Vd。が制御可能電圧範囲の上限電圧 以下 で比較用電圧値 V。。以上の場合 (以下、 単に、
。の場合と適宜称する) に、 当該補間処理が不要であるものと判断する。 また、 検出電圧値 が制御 以上で比較用電圧値 V。。未満の場合 (以下、 単に
る) には、 当該補間処理が必要であるものと判断 する。
[0054] 補間処理が不要であるものと判断した場合には、 導出機能部 1 3 3が機能 し、 第 1電流指令テーブル丁匕 1から、 回転数 £〇およびトルク指令丁*に対応 した 軸, 9軸電流指令し*, 丨 を適宜導出し、 図 1 に示した電流制御部 2 に出力する。
[0055] また、 補間処理が必要であると判断した場合には、 導出機能部 1 3匕が機 能し、 まず、 第 1 , 第 2電流指令テーブル丁匕 1 , 丁匕 2から、 回転数〇)お
\¥02020/174781 11 卩(:17 2019/045528
よびトルク指令丁*に対応した〇1軸, 軸電流指令し*, 丨 をそれぞれ抽出す る。 その後、 当該抽出した各〇1軸, 軸電流指令し*, I において、 検出電 圧値 に対応した補間処理をすることにより、 補間処理 ¢1軸, 軸電流指令 *, 丨 を導出し、 図 1 に示した電流制御部 2に出力する。
[0056] 以上示した電流指令導出部 1 3による補間処理および要否判断等は、 種々 の方法 (例えば特許文献 1 に示す方法) により実行することが可能であり、 具体的には以下に示す実施例 1〜 3のように実行することが挙げられる。 な お、 図 1 , 図 2に示したものと同様のものには、 同一符号を適用する等によ り、 その詳細な説明を適宜省略する。
[0057] á実施例 1 >
実施例 1では、 電流指令導出部 1 3において、 第 1 , 第 2電圧をそれぞれ 平均電圧 , 下限電圧 V に設定して第 1 , 第 2電流指令テーブル丁匕 1 , 丁匕 2を作成し、 図 3に示すような電圧変化に対する電流指令値特性 (関数 特性) を有するものとする。 なお、 図 3 (および後述の図 4) においては、 図中の実線が電流指令値となる。
[0058] そして、 < 。。の場合には導出機能部 1 3匕が機能し、 第 1 , 第 2電流 指令テーブル丁匕 1 , 丁匕 2から、 下記式 (2) (3) に基づいて、 回転数 〇)およびトルク指令丁*に対応した補間処理 軸, 9軸電流指令し*, I :を導 出することが挙げられる。 なお、
I は第 1電流指令テーブル丁匕 1 のテーブル値とし、 丨 „, 丨 は第 2電流指令テーブル丁匕 2のテーブル値 とする。
[0060] 図 3において、
。。の場合には補間処理は不要であるため、 導出機能 部 1 33が機能し、 単に第 1電流指令テーブル丁匕 1から、 回転数〇)および
〇 2020/174781 12 卩(:170?2019/045528
トルク指令丁*に対応した〇1軸, 軸電流指令し*, *を適宜導出する。
[0061 ] 本実施例 1のように電流指令導出部 1 3による補間処理および要否判断等 を行うことにより、 例えば従来制御装置の場合と比較すると、 必要性の高い 補間処理は適宜実施し、 必要性の低い補間処理は実施しないように抑制でき 、 総合効率に貢献可能であることが判る。
[0062] á実施例 2 >
実施例 2では、 電流指令導出部 1 3において、 第 1 , 第 2電流指令テーブ ル丁匕 1 , 丁匕 2の両者を備える他に、 当該両者の中間的な電流指令テーブ ル (以下、 単に中間電流指令テーブルと適宜称する) を一つ以上備えたもの とする。 なお、 実施例 1 に示すものと同様のものには、 同一符号を適用する 等により、 その詳細な説明を適宜省略する。
[0063] 中間電流指令テーブルは、 例えばインバータ 5の直流電源電圧を第 1電圧 よりも小さく第 2電圧よりも大きい任意の中間電圧 (中間電流指令テーブル が複数ある場合には、 それぞれ異なる中間電圧) に設定して、 トルク制御部 1 に入力される回転数 £〇とトルク指令丁*を適宜変更しながらモータ 6の事前 運転を行い、 当該事前運転における 軸, 9軸電流指令し*, 丨 を当該回転 数 £0およびトルク指令丁*に対応するようにテーブルデータ化して作成するこ とが可能である。
[0064] ここで、 第 1 , 第 2電圧をそれぞれ平均電圧 , V に設定して第 1 , 第
2電流指令テーブル丁匕 1 , 丁匕 2を作成し、 2種類の中間電圧をそれぞれ 第 1 ,
に設定
を満たすように設定) し て第 1 , 第 2中間電流指令テーブル (図示省略) を作成したものとすると、 例えば図 4に示すような電圧変化に対する電流指令値特性 (関数特性) を有 することとなる。
[0065] 図 4に示す電流指令値特性 (関数特性) を有した電流指令導出部 1 3では 、 。の場合に補間処理が不要であるものと判断して、 導出機能部 1 3 3が機能する。 そして、 導出機能部 1 3 3により、 第 1電流指令テーブル丁 匕 1から、 回転数〇)およびトルク指令丁*に対応した 軸, 9軸電流指令し*,
〇 2020/174781 13 卩(:170?2019/045528 *を適宜導出し、 図 1 に示した電流制御部 2に出力する。
2中間電圧 \/ 2のうち何れかの近似する同士の各電圧間にある場合には、 当 該近似する同士の各電圧に係る各電流指令テーブルを適用した補間処理が必 要であると判断する。 例えば、
。の場合、 かつ検出電圧値 が第 1中 間電圧
との間にある場合には、 第 1 , 第 2中間電流 指令テーブルを適用した補間処理が必要であると判断する。
[0067] そして、 導出機能部 1 3匕が機能し、 まず、 第 1 , 第 2中間電流指令テー ブルから、 回転数〇)およびトルク指令丁*に対応した 軸, 9軸電流指令し*, 丨:をそれぞれ抽出する。 その後、 当該抽出した各〇1軸, 軸電流指令し*, *において、 検出電圧値 に対応した補間処理をすることにより、 補間処 理〇1軸, 軸電流指令丨 /, I を導出し、 図 1 に示した電流制御部 2に出力 する。
[0068] 補間処理 軸, 9軸電流指令し*, *の導出は、 下記式 (4) 〜 (9) に 基づく。 なお、
I は第 1中間電流指令テーブルのテーブル値とし、 I - I は第 2中間電流指令テーブルのテーブル値とする。
[0069] V„id1 £ Vd。く V。。の場合
7 )
V 1·。 $▽〇!。< の場合
\¥0 2020/174781 14 卩(:17 2019/045528
[0070] 本実施例 2のように電流指令導出部 1 3による補間処理および要否判断等 を行うことにより、 実施例 1 と同様の作用効果を奏する他に、 以下に示すこ とが言える。 すなわち、 実施例 1 よりも多い電流指令テーブルによって補間 処理を行うため、 当該実施例 1 と比較すると、 例えばインバータ 5の直流電 源電圧の変動に対して、 より綿密に対応した駆動制御をできる可能性がある
[0071 ] á実施例 3 >
実施例 3においては、 モータ 6の運転が力行運転と回生運転を含み、 イン バータ 5の直流電源が当該モータ 6の回生運転による回生電力を蓄電できる ものとする。 また、 第 1電圧においては、 式 (1) 中において〇1 > を満た すように (つまり、 第 1電圧 >平均電圧 となるように) 設定する。
[0072] 本実施例 3によれば、 実施例 1 , 2と同様の作用効果を奏する他に、 以下 に示すことが言える。 すなわち、 例えばモータ 6の回生運転が多くなるよう な状況では、 回生電力によって直流電源が蓄電されて直流電源電圧が高めに なる期間が長くなるため、 例えば第 1
に設定した場合と比 較すると、 よりモータ 6の運転状況に対応した駆動制御をできる可能性があ る。
[0073] 以上、 本発明において、 記載された具体例に対してのみ詳細に説明したが 、 本発明の技術思想の範囲で多彩な変更等が可能であることは、 当業者にと って明白なことであり、 このような変更等が特許請求の範囲に属することは 当然のことである。
Claims
[請求項 1 ] インバータによって駆動制御されるモータの回転数およびトルク指 令に対応して、 軸, 軸電流指令を導出する制御部を備え、 制御部は、
回転数およびトルク指令に対応した比較用電圧値を出力する電圧マッ プ部と、
電圧マップ部から入力され電圧余裕度が乗じられた比較用電圧値と、 インバータの直流電源電圧を検出して得た検出電圧値と、 を比較する 電圧比較部と、
第 1 , 第 2電流指令テーブルを有し、 電圧比較部の比較結果に基づい て ¢1軸, 軸電流指令を導出する電流指令導出部と、 を備え、
第 1電流指令テーブルは、 インバータによるモータの駆動制御が可 能な直流電源電圧の制御可能電圧範囲のうち、 任意の第 1電圧でモー 夕の運転を行った場合において、 回転数およびトルク指令毎に対応し て総合効率が最適化される 軸, 軸電流指令により作成されたもの であり、
第 2電流指令テーブルは、 制御可能電圧範囲のうち、 第 1電圧より も小さい任意の第 2電圧でモータの運転を行った場合において、 回転 数およびトルク指令毎に対応して総合効率が最適化される 軸, 軸 電流指令により作成されたものであり、
電圧マップ部の比較用電圧値は、 制御可能電圧範囲のうち、 回転数 およびトルク指令毎におけるモータの運転に必要な最小限電圧値であ り、 当該回転数およびトルク指令毎に対応して電圧マップ部に格納さ れ、
電流指令導出部は、 検出電圧値が制御可能電圧範囲の上限値以下で 比較用電圧値以上の場合には、 第 1電流指令テーブルにおいて回転数 およびトルク指令に対応した〇!軸, 軸電流指令を導出し、
〇 2020/174781 16 卩(:170?2019/045528
検出電圧値が制御可能電圧範囲の下限値以上で比較用電圧値未満の場 合には、 回転数およびトルク指令に対応した補間処理 軸, 軸電流 指令を導出し、
補間処理 軸, 9軸電流指令は、 第 1 , 第 2電流指令テーブルにお いて回転数およびトルク指令に対応した ¢1軸, 軸電流指令をそれぞ れ抽出して、 当該抽出した各 軸, 軸電流指令において検出電圧値 に対応した補間処理をして導出したものである、 インバータの制御装 置。
[請求項 2] 電流指令導出部は、
第 1 , 第 2電流指令テーブルの他に、 一つ以上の中間電流指令テー ブルを有し、
中間電流指令テーブルは、 第 1電圧よりも小さく第 2電圧よりも大 きい任意の中間電圧でモータの運転を行った場合において、 回転数お よびトルク指令毎に対応して総合効率が最適化される 軸, 軸電流 指令により作成されたものであり、
検出電圧値が制御可能電圧範囲の下限値以上で比較用電圧値未満の 場合、 かつ当該検出電圧値が第 1電圧, 第 2電圧, 中間電圧のうち何 れかの近似する同士の各電圧間にある場合には、 回転数およびトルク 指令に対応した補間処理 ¢1軸, 9軸電流指令を導出し、
補間処理 軸, 9軸電流指令は、 第 1 , 第 2電流指令テーブルおよ び中間電流指令テーブルのうち、 前記近似する同士の各電圧に係る各 電流指令テーブルから、 前記 2つの電圧に係る各電流指令テ _ブルか ら、 回転数およびトルク指令に対応した 軸, 9軸電流指令をそれぞ れ抽出して、 当該抽出した各 軸, 軸電流指令において検出電圧値 に対応した補間処理をして導出したものである、 請求項 1記載のイン バータの制御装置。
[請求項 3] 第 1電圧は、 式 (1) を満たすように設定され、 第 2電圧は、 制御 可能電圧範囲の下限電圧に設定されている、 請求項 1 または 2記載の
〇 2020/174781 17 卩(:170?2019/045528
インバータの制御装置。
第 1電圧 = 0! X (制御可能電圧範囲の上限電圧) + n X制御可能電 圧範囲の下限電圧) ( 1)
式 (1) 中において、 111 + 11 = 1、 0 <〇1 £ 1、 0 £ 1^ < 1 とする。
[請求項 4] モータの運転は、 力行運転と回生運転を含み、
[請求項 5] モータの回転数およびトルク指令に対応した 軸, 軸電流指令を 制御部により導出し、 当該導出した 軸, 軸電流指令に基づいてモ —夕を駆動制御する制御方法であって、
制御部において、
比較用電圧値が格納されている電圧マツプ部が、 モータの回転数およ びトルク指令に対応した比較用電圧値を出力する比較用電圧値出力過 程と、
電圧比較部が、 電圧マツプ部から入力され電圧余裕度が乗じられた 比較用電圧値と、 インバータの直流電源電圧を検出して得た検出電圧 値と、 を比較する電圧値比較過程と、
第 1 , 第 2電流指令テーブルを有した電流指令導出部が、 比較用電 圧値出力過程の比較結果に基づいて ¢1軸, 軸電流指令を導出する指 令導出過程と、
を有し、
第 1電流指令テーブルは、 インバータによるモータの駆動制御が可 能な直流電源電圧の制御可能電圧範囲のうち、 任意の第 1電圧でモー 夕の運転を行った場合において、 回転数およびトルク指令毎に対応し て総合効率が最適化される 軸, 軸電流指令により作成されたもの でぁり、
第 2電流指令テーブルは、 制御可能電圧範囲のうち、 第 1電圧より
〇 2020/174781 18 卩(:170?2019/045528
も小さい任意の第 2電圧でモータの運転を行つた場合において、 回転 数およびトルク指令毎に対応して総合効率が最適化される 軸, 軸 電流指令により作成されたものであり、
電圧マップ部の比較用電圧値は、 制御可能電圧範囲のうち、 回転数 およびトルク指令毎におけるモータの運転に必要な最小限電圧値であ り、 当該回転数およびトルク指令毎に対応して電圧マップ部に格納さ れ、
電流指令導出部は、 検出電圧値が制御可能電圧範囲の上限値以下で 比較用電圧値以上の場合には、 第 1電流指令テーブルにおいて回転数 およびトルク指令に対応した 軸, 軸電流指令を導出し、 検出電圧値が制御可能電圧範囲の下限値以上で比較用電圧値未満の場 合には、 回転数およびトルク指令に対応した補間処理 軸, 軸電流 指令を導出し、
補間処理 軸, 9軸電流指令は、 第 1 , 第 2電流指令テーブルにお いて回転数およびトルク指令に対応した ¢1軸, 軸電流指令をそれぞ れ抽出して、 当該抽出した各 軸, 軸電流指令において検出電圧値 に対応した補間処理をして導出したものであることを特徴とするイン バータの制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19917463.2A EP3920402B1 (en) | 2019-02-25 | 2019-11-21 | Inverter control device and control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-031173 | 2019-02-25 | ||
JP2019031173A JP6702466B1 (ja) | 2019-02-25 | 2019-02-25 | インバータの制御装置および制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020174781A1 true WO2020174781A1 (ja) | 2020-09-03 |
Family
ID=70858188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/045528 WO2020174781A1 (ja) | 2019-02-25 | 2019-11-21 | インバータの制御装置および制御方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3920402B1 (ja) |
JP (1) | JP6702466B1 (ja) |
WO (1) | WO2020174781A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004080896A (ja) | 2002-08-16 | 2004-03-11 | Meidensha Corp | 電気自動車用永久磁石式回転電機の制御装置 |
JP2018046678A (ja) * | 2016-09-15 | 2018-03-22 | トヨタ車体株式会社 | モータの制御装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6320603B1 (ja) * | 2017-06-20 | 2018-05-09 | 三菱電機株式会社 | 交流回転機の制御装置 |
-
2019
- 2019-02-25 JP JP2019031173A patent/JP6702466B1/ja active Active
- 2019-11-21 EP EP19917463.2A patent/EP3920402B1/en active Active
- 2019-11-21 WO PCT/JP2019/045528 patent/WO2020174781A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004080896A (ja) | 2002-08-16 | 2004-03-11 | Meidensha Corp | 電気自動車用永久磁石式回転電機の制御装置 |
JP2018046678A (ja) * | 2016-09-15 | 2018-03-22 | トヨタ車体株式会社 | モータの制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3920402A4 |
Also Published As
Publication number | Publication date |
---|---|
JP6702466B1 (ja) | 2020-06-03 |
EP3920402A4 (en) | 2022-03-09 |
EP3920402B1 (en) | 2024-07-17 |
EP3920402A1 (en) | 2021-12-08 |
JP2020137342A (ja) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9054623B2 (en) | Motor control device | |
JP2007089248A (ja) | 電動機の駆動装置 | |
WO1997010643A1 (fr) | Procede de regulation du courant d'un servomoteur | |
JP2007089334A (ja) | 電気自動車用電力変換装置 | |
KR102309413B1 (ko) | 모터의 고속 결선 모드 절환을 제어하기 위한 장치 및 방법 | |
JP4008930B2 (ja) | モータ制御装置 | |
US8134316B2 (en) | Method for braking an AC motor | |
JP6681653B2 (ja) | 同期電動機の制御装置 | |
JP2003088194A (ja) | 電動機駆動システム | |
WO2020174781A1 (ja) | インバータの制御装置および制御方法 | |
EP2757682A2 (en) | Motor control apparatus and motor control method | |
JP2861418B2 (ja) | 誘導電動機のトルク制限方法及び制御方法 | |
US9935573B2 (en) | Four quadrant voltage limiter for rotor flux oriented machine control | |
JP2002218799A (ja) | 電動機駆動制御装置 | |
US11750131B2 (en) | Motor drive method and motor drive apparatus | |
JP5298498B2 (ja) | 電動機の制御装置及びその制御方法 | |
JP5092328B2 (ja) | モータ制御装置及びモータ制御方法 | |
JP5862690B2 (ja) | 電動機駆動装置の制御装置および電動機駆動システム | |
JP2001016764A (ja) | モータ過負荷検知方法、モータ過負荷検知装置、および記録媒体 | |
JPWO2020137567A1 (ja) | モータ制御装置 | |
WO2022176390A1 (ja) | 制御装置、モータの駆動装置、制御方法及びプログラム | |
JP2959381B2 (ja) | 永久磁石型同期モータの駆動制御装置 | |
JP2003111498A (ja) | 誘導電動機の速度センサレス制御装置 | |
JP5533928B2 (ja) | 交流電動機の制御装置 | |
CN117526783A (zh) | 针对永磁同步电机实现弱磁控制的方法、系统、装置、处理器及其计算机可读存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19917463 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019917463 Country of ref document: EP Effective date: 20210830 |