JP6681653B2 - 同期電動機の制御装置 - Google Patents

同期電動機の制御装置 Download PDF

Info

Publication number
JP6681653B2
JP6681653B2 JP2018565091A JP2018565091A JP6681653B2 JP 6681653 B2 JP6681653 B2 JP 6681653B2 JP 2018565091 A JP2018565091 A JP 2018565091A JP 2018565091 A JP2018565091 A JP 2018565091A JP 6681653 B2 JP6681653 B2 JP 6681653B2
Authority
JP
Japan
Prior art keywords
angle
speed
phase
synchronous motor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018565091A
Other languages
English (en)
Other versions
JPWO2018142445A1 (ja
Inventor
文雄 渡邉
文雄 渡邉
雅史 中村
雅史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Publication of JPWO2018142445A1 publication Critical patent/JPWO2018142445A1/ja
Application granted granted Critical
Publication of JP6681653B2 publication Critical patent/JP6681653B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/18Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual dc motor
    • H02P1/22Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual dc motor in either direction of rotation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、同期電動機の制御装置に関し、特にベクトル制御を使用した同期電動機の制御装置に関する。
同期電動機を駆動制御する同期電動機の制御装置は広く用いられているが、例えば負荷が大きく変化するような用途においては、所謂ベクトル制御が使用されている。この場合、駆動用のインバータの定められた容量の範囲内で効率良く同期電動機を駆動・制御するためには、より少ない出力電流とする必要があるため、同期電動機の力率を1に制御することが行われる。このため、負荷によって変化する同期電動機の定数及び同期電動機の諸電流から磁束を演算して同期電動機の負荷角を求め、更に力率が1になるような電流基準を求める提案が為されている(例えば特許文献1参照。)。
特開2013−31256号公報(第4―7頁、図1)
特許文献1の手法に依れば、同期電動機の力率を1として運転することが可能となるが、演算に同期電動機の定数を用いる必要があるため、定数の測定を正確に行う必要があるばかりでなく、その定数を負荷に応じて変化させる演算が複雑となる。
本発明は上記問題点を鑑みて為されたもので、その目的は、比較的簡単な手法で同期電動機の力率を1とすることが可能な同期電動機の制御装置を提供することにある。
上記目的を達成するため、本発明の同期電動機の制御装置は、交流電源から供給される電力を所望の出力電圧及び周波数に変換して同期電動機を駆動するインバータ装置と、前記インバータ装置の出力電流を検出する電流検出手段と、前記インバータ装置の出力電圧を検出する電圧検出手段と、前記同期電動機の回転角度を検出する位置検出手段と、前記インバータ装置の出力を制御する駆動制御部とを具備し、前記駆動制御部は、前記位置検出手段の出力を微分して得られる速度帰還が所定の速度基準となるように制御してQ軸電流基準を出力する速度制御手段と、前記電流検出手段の検出電流を3相−DQ変換してQ軸帰還電流及びD軸帰還電流を得る第1の3相−DQ変換手段と、前記Q軸電流基準と、前記Q軸帰還電流との偏差を0とするように制御してQ軸電圧基準を出力するQ軸電流制御手段と、前記D軸帰還電流が0になるように制御してD軸電圧基準を出力するD軸電流制御手段と、前記Q軸電圧基準と前記D軸電圧基準をDQ−3相変換して前記インバータ装置の3相出力の各相の電圧基準を得るDQ−3相変換手段と、前記各相の電圧基準をPWM制御して前記インバータ装置を構成するスイッチング素子へのゲート信号を出力するPWM制御手段と、前記電圧検出手段の検出電圧を3相−DQ変換してQ軸帰還電圧及びD軸帰還電圧を得る第2の3相−DQ変換手段と、前記D軸帰還電圧が0になるようにPI制御して補正角を出力する電圧制御手段とを有し、前記同期電動機の速度が所定の閾値以上のときは、前記位置検出手段の検出角に前記補正角を加算した値を前記第1の3相−DQ変換手段、前記第2の3相−DQ変換手段及び前記DQ−3相変換手段の基準位相角とし、前記同期電動機の速度が所定の閾値未満のときは、前記位置検出手段の検出角に予め設定した低速時負荷角を加算した値を前期基準位相角とすることを特徴としている。
本発明によれば、比較的簡単な手法で同期電動機の力率を1とすることが可能な同期電動機の制御装置を提供することが可能となる。
本発明の実施例1に係る同期電動機の制御装置の回路構成図。 本発明の実施例1に係る同期電動機の制御装置の説明図。 本発明の実施例1に係る同期電動機の制御装置の変形例を示す図。 本発明の実施例2係る同期電動機の制御装置の回路構成図。 本発明の実施例3係る同期電動機の制御装置の回路構成図。
以下、図面を参照して本発明の実施例を説明する。
以下、本発明の実施例1に係る電力変換装置を、図1乃至図3を参照して説明する。図1は本発明の実施例1に係る同期電動機の制御装置の回路構成図である。
交流電源1からインバータ装置2に交流が給電される。インバータ装置2はその入力部に図示しないコンバータ部を有しており、コンバータ部は入力された交流を所望の電圧の直流に変換し、図示しないインバータ部に与える。インバータ部は直流を交流電圧に変換して同期電動機3を駆動する。インバータ装置2のインバータ部を構成するパワーデバイスは駆動制御部7から与えられるゲート信号によってオンオフ制御されている。同期電動機3には位置検出手段としてのレゾルバ4が取り付けられており、この出力は位相角QO_RESとして駆動制御部7に与えられる。また、インバータ装置2の出力側には電流検出器5及び電圧検出器6が設けられ、夫々電流帰還IU_F、IV_F、IW_F並びに電圧帰還VU_F、VV_F、VW_Fとして駆動制御部7に与えられる。同期電動機3には通常、界磁巻線が設けられ、例えば駆動制御部7から励磁電流が与えられる構成となっているが、その図示は省略している。
次に駆動制御部7の内部構成について説明する。
レゾルバ4によって得られる位相角QO_RESは、微分器71によって速度帰還SP_Fに変換される。外部から与えられる速度基準SP_Rとこの速度帰還SP_Fは減算器72によってその差分が演算され、速度制御器73に与えられる。速度制御器73は通常はPI制御器である。そして速度制御器73は与えられた差分が最小となるように調節制御してQ軸電流基準IQ_Rを出力する。またD軸電流基準ID_Rは0に設定しておく。
電流検出器5の出力は3相−DQ変換器80に与えられ、基準位相角QOに基づいて2軸の電流帰還ID_F及びIQ_Fに変換する。ここでID_F及びIQ_Fは直流量であり、また基準位相角QOはレゾルバ4が検出する位相角QO_RESに後述する角度補正選択器87の出力である補正角QO_Lを加算器88で加算して補正された位相角である。
0に設定されたD軸電流基準ID_Rと、D軸電流帰還ID_Fは減算器74によってその差分が演算され、電流制御器76に与えられる。また、Q軸電流基準IQ_RとQ軸電流帰還IQ_Fは減算器75によってその差分が演算され、電流制御器77に与えられる。電流制御器76、77は通常はPI制御器である。電流制御器76及び電流制御器77は、与えられた差分が最小となるように調節制御して夫々D軸電圧基準ED_R及びQ軸電圧基準EQ_Rを出力する。D軸電圧基準ED_R及びQ軸電圧基準EQ_RはDQ−3相変換器78に与えられ、DQ−3相変換器78は基準位相角QOに基づいて3相の電圧基準EU_R、EV_R、EW_Rを出力する。この3相電圧基準EU_R、EV_R、EW_RはPWM制御器79に与えられる。PWM制御器79はインバータ装置2のインバータ部の各相の出力電圧が3相電圧基準EU_R、EV_R、EW_Rとなるようにインバータ部の各パワーデバイスに対して、PWM変調されたゲート信号を供給する。
電圧検出器6で検出された3相電圧VU−F、VV−F、VW−Fは3相−DQ変換器81に与えられ、基準位相角QOに基づいて2軸の電圧帰還ED_F及びEQ_Fに変換される。ここでED_F及びEQ_Fは直流量であり、また基準位相角QOは上述の通り補正された位相角である。D軸電圧帰還ED_F及びQ軸電圧帰還EQ_Fは絶対値演算器82に与えられ、D軸電圧帰還ED_Fは除算器83によってこの絶対値演算器82の出力で除算される。すなわち除算器83の出力はD軸電圧帰還ED_Fが同期電動機3の速度に依らず一定の値となるように正規化された値となる。そして除算器83の出力はフィルタ84を介して減算器85の負側入力に与えられる。減算器85の正側入力には0が与えられ、PI制御器である電圧制御器86はD軸電圧帰還ED_Fが0になるように調節制御して補正角QO_Lを出力する。この補正角QO_Lは、角度補正選択器87のB端子を介して加算器88に与えられる。従って角度補正選択器87が電圧制御器86の出力を選択しているときは、3相−DQ変換器81の出力であるD軸電圧帰還ED_Fを0とするように補正角QO_Lを決めるようなフェイズロックドループ(PLL)が動作し、QO=QO_RES+QO_Lが成立する。尚、この補正角QO_Lは、後述するように同期電動機3の負荷に応じて変化する負荷角に相当する。角度補正選択器87は切替速度検出器90によって出力する信号入力が選択される回路とする。角度補正選択器87は切替速度検出器90の出力が0の場合はA端子から入力される信号を出力し、切替速度検出器90の出力が1の場合はB端子から入力される信号を出力する。低速時負荷角設定器89の出力は角度補正選択器87のA端子に入力される。
ところで、同期電動機3の運転速度が低速になると、電圧検出器6の検出電圧に誤差が生じるため、結果として補正角QO_Lに誤差が生じると共に、変動が大きくなって不安定となる。このため、切替速度検出器90によって速度帰還SP_Fを監視し、同期電動機3の速度が所定のN0より大きい場合は切替速度検出器90は1を出力して上述の通り角度補正選択器87は電圧制御器86の出力を選択(B端子を出力選択)して上述のPLLを動作させるようする。そして、速度がN0未満となったときには切替速度検出器90は0を出力して、角度補正選択器87は低速時負荷角設定器89によって設定された低速時負荷角δを選択(A端子を出力選択)するようにする。
以上の構成における動作を図2に示すベクトル図で以下説明する。図2において横軸はセンサD軸であり、縦軸はセンサQ軸である。センサD軸は同期電動機3の界磁の磁極方向とする。このとき界磁磁極による同期電動機3の誘起電圧E0は、図示するようにセンサQ軸の方向となる。また、例えばレゾルバ4の検出位相がセンサQ軸と一致したとき検出位相角QO_RES=0°と定義する。この状態で上述したようなPLLが動作すると、DQ変換のための基準位相角QOは補正角QO_Lだけシフトして、図示のD軸(PLL時)、Q軸(PLL時)の直交座標に基づいて変換が行われる。そして、D軸電圧帰還ED_Fを0とするPLLの動作によって、PLL時のインバータ装置2の出力電圧はQ軸電圧基準EQ_Rのみとなる。同様に、電流制御器76によってD軸電流基準ID_Rを0とする制御を行っているので、PLL時のインバータ装置2の出力電流はQ軸電流基準IQ_Rのみとなる。従って、インバータ装置2の出力電圧と出力電流は同相となり、力率1が達成される。そして、図に示すように、補正角QO_Lは同期電動機3の端子電圧と誘起電圧の位相差を示しているのでこの補正角QO_Lは同期電動機3の負荷角に相当することになる。
次に実施例1における切替速度検出器90の変形例である切替速度検出器90Aの入出力特性を図3示す。図3に示したように、切替速度検出器90Aには所謂ヒステリシス特性を持たせている。すなわち、速度がN0未満のときは切替速度検出器90は0を出力して低速時負荷角設定器89の出力を選択(A端子を出力選択)するが、速度が上昇してN0を超えてもその出力は0のままとし、速度がN1となったとき始めて出力を1とする。同様に速度がN1以上のときは切替速度検出器90は1を出力して電圧制御器86の出力を選択(B端子を出力選択)するが、速度が下降してN1以下となってもその出力は1のままとし、速度がN0となったとき始めて出力を0とする。このように切替速度検出器90にヒステリシス特性を持たせれば、切替速度付近における無用のチャタリングによって制御が不安定となることを防止することができる。
以下、本発明の実施例2に係る同期電動機の制御装置を、図4を参照して説明する。図4は本発明の実施例2に係る同期電動機の制御装置の回路構成図である。
この実施例2の各部について、図1の本発明の実施例1に係る同期電動機の制御装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、切替速度検出器90と情報をやりとりして切替速度検出器90の出力が1から0になる直前のタイミングを検出する速度下降切替検出器91を設けた点、この速度下降切替検出器91の出力信号によって、電圧制御器86の出力である補正角QO_Lの値をホールドする負荷角ホールド回路92を設けた点、更に角度補正選択器87Aによって負荷角ホールド回路92の出力も選択可能な構成とした点である。
負荷角ホールド回路92は速度下降切替検出器91の出力信号により入力信号をホールドして出力する。角度補正選択器87Aには入力端子Cが追加されている。負荷角ホールド回路92の出力は角度補正選択器87Aの入力端子Cに接続される。同期電動機3の起動時に切替速度検出器90の出力が0の間は、角度補正選択器87Aは端子Aを出力選択し、同期電動機3の速度が上昇し切替速度検出器90の出力が1になった場合は、角度補正選択器87Aは端子Bを出力選択する。そして、同期電動機の速度が低下し、切替速度検出器90の出力が1から0´に変化した場合は角度補正選択器87Aは端子Cを出力選択する。
このような構成とすることによって、同期電動機3の運転速度が減速してきて切替速度であるN0になったとき、まずその時点の負荷角である補正角QO_Lをホールドし、そのあと、速度下降切替検出器91が切替速度検出器90の出力を1から0´に変更させる。そしてこの切替出力信号0´によって角度補正選択器87Aは低速時負荷角設定器89の出力である低速時負荷角δではなく負荷角ホールド回路92でホールドされた補正角QO_LHを選択する。このように制御することによって、低速時負荷角設定器89の出力である低速時負荷角δが適切な値でなかったときの過渡擾乱を抑制し、また、負荷の変化が少ない場合には力率0を維持したまま低速運転に入ることができる。
以下、本発明の実施例3に係る同期電動機の制御装置を、図5を参照して説明する。図5は本発明の実施例3に係る同期電動機の制御装置の回路構成図である。
この実施例3の各部について、図1の本発明の実施例1に係る同期電動機の制御装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例3が実施例1と異なる点は、以下である。
すなわち、PI制御器である電圧制御器86Aに、PI制御の積分回路の初期値を設定可能とする初期値設定入力端子と積分回路のイネーブル端子を設け、イネーブル端子からの信号が成立したとき、初期値設定入力端子からの信号を積分回路の初期値としてPI制御を開始するように電圧制御器86Aを構成し、初期値設定入力端子に低速時負荷角設定器89の出力である低速時負荷角δを接続し、切替速度検出器90の出力を電圧制御器86Aのイネーブル端子に与えるようにした点である。
このような構成とすることによって、電圧制御器86Aの出力の初期値は低速時負荷角δと等しくなる。同期電動機3の運転速度が起動時から加速してきて切替速度であるN0またはN1になったとき、切替速度検出器90の出力は0から1に変化する。このとき、電圧制御器86Aの出力の初期値は低速時負荷角δと等しい。よって、角度補正選択器87が入力信号の選択を低速時負荷角設定器89の出力であるA端子から電圧制御器86Aの出力であるB端子に変更しても角度補正選択器87の出力は不連続な変化を起こさないことになる。
角度補正選択器87が電圧制御器86Aの出力を選択すると、D軸電圧帰還ED_Fを0とするようなPLL動作が開始する。このような実施例3の構成を採用することによって、速度上昇時の切替速度検出器90と角度補正選択器87による負荷角の切替をスムースに行うことが可能となる。
以上本発明の実施例を説明したが、これは例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施例やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
例えば、図1のレゾルバ4に代えて速度検出器を用いても良い。その場合は速度帰還を積分して検出角情報を得るようにする。
また、図1のフィルタ84はPWM制御のキャリア等の高調波を除去するものであるので、3相−DQ変換器の入力側または出力側に入れるようにしても良い。
また、通常低速時負荷角δは、同期電動機3が駆動する負荷の負荷特性から所定の値を設定するが、実施例2で述べた負荷角ホールド回路92でホールドされた補正角QO_LHを用いても良い。負荷特性が運転状況によって変化するような場合は、同期電動機3の運転を繰り返す度に低速時負荷角δを新たな補正角QO_LHに自動的に更新するようにしても良い。
更に、実施例2と実施例3とを組み合わせて実施することが可能であることは明らかである。
1 交流電源
2 インバータ装置
3 同期電動機
4 レゾルバ
5 電流検出器
6 電圧検出器
7 駆動制御部
71 微分器
72 減算器
73 速度制御器
74、75 減算器
76、77 電流制御器
78 DQ/3相変換器
79 PWM制御器
80、81 3相/DQ変換器
82 絶対値演算器
83 除算器
84 フィルタ
85 減算器
86、86A 電圧制御器
87、87A 角度補正選択器
88 加算器
89 低速時負荷角設定器
90、90A 切替速度検出器
91 速度下降切替検出器
92 負荷角ホールド回路

Claims (4)

  1. 交流電源から供給される電力を所望の出力電圧及び周波数に変換して同期電動機を駆動するインバータ装置と、
    前記インバータ装置の出力電流を検出する電流検出手段と、
    前記インバータ装置の出力電圧を検出する電圧検出手段と、
    前記同期電動機の回転角度を検出する位置検出手段と、
    前記インバータ装置の出力を制御する駆動制御部と
    を具備し、
    前記駆動制御部は、
    前記位置検出手段の出力を微分して得られる速度帰還が所定の速度基準となるように制御してQ軸電流基準を出力する速度制御手段と、
    前記電流検出手段の検出電流を3相−DQ変換してQ軸帰還電流及びD軸帰還電流を得る第1の3相−DQ変換手段と、
    前記Q軸電流基準と、前記Q軸帰還電流との偏差を0とするように制御してQ軸電圧基準を出力するQ軸電流制御手段と、
    前記D軸帰還電流が0になるように制御してD軸電圧基準を出力するD軸電流制御手段と、
    前記Q軸電圧基準と前記D軸電圧基準をDQ−3相変換して前記インバータ装置の3相出力の各相の電圧基準を得るDQ−3相変換手段と、
    前記各相の電圧基準をPWM制御して前記インバータ装置を構成するスイッチング素子へのゲート信号を出力するPWM制御手段と、
    前記電圧検出手段の検出電圧を3相−DQ変換してQ軸帰還電圧及びD軸帰還電圧を得る第2の3相−DQ変換手段と、
    前記D軸帰還電圧が0になるようにPI制御して補正角を出力する電圧制御手段と
    を有し、
    前記同期電動機の速度が所定の閾値以上のときは、前記位置検出手段の検出角に前記補正角を加算した値を前記第1の3相−DQ変換手段、前記第2の3相−DQ変換手段及び前記DQ−3相変換手段の基準位相角とし、
    前記同期電動機の速度が所定の閾値未満のときは、前記位置検出手段の検出角に予め設定した低速時負荷角を加算した値を前記基準位相角とすることを特徴とする同期電動機の制御装置。
  2. 前記所定の閾値にヒステリシス特性を持たせ、
    前記同期電動機の速度が第1の設定速度未満のときは前記位置検出手段の検出角に前記低速時負荷角を加算した値を前記基準位相角とし、前記同期電動機の速度が上昇し前記第1の設定速度より大きい第2の設定速度になったとき始めて前記補正角に前記低速時負荷角を加算した値を前記基準位相角とし、前記同期電動機の速度が第2の設定速度以上のときは前記位置検出手段の検出角に前記補正角を加算した値を前記基準位相角とし、前記同期電動機の速度が下降し前記第1の設定速度未満になったとき始めて前記位置検出手段の検出角に前記低速時負荷角を加算した値を前記基準位相角とすることを特徴とする請求項1に記載の同期電動機の制御装置。
  3. 前記駆動制御部は、
    前記同期電動機が減速してその速度が前記所定の閾値未満となるとき、
    前記電圧制御手段の出力をホールドし、
    このホールドされた補正角を前記低速時負荷角に代えて使用するようにしたことを特徴とする請求項1または請求項2に記載の同期電動機の制御装置。
  4. 前記駆動制御部は、
    前記同期電動機が加速してその速度が前記所定の閾値以上となるとき、
    前記電圧制御器の積分出力の初期値を前記低速時負荷角となるようにした後、
    前記位置検出手段の検出角に前記補正角を加算した値を前記基準位相角とすることを特徴とする請求項1乃至請求項3の何れか1項に記載の同期電動機の制御装置。
JP2018565091A 2017-01-31 2017-01-31 同期電動機の制御装置 Active JP6681653B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003307 WO2018142445A1 (ja) 2017-01-31 2017-01-31 同期電動機の制御装置

Publications (2)

Publication Number Publication Date
JPWO2018142445A1 JPWO2018142445A1 (ja) 2019-06-27
JP6681653B2 true JP6681653B2 (ja) 2020-04-15

Family

ID=63040431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018565091A Active JP6681653B2 (ja) 2017-01-31 2017-01-31 同期電動機の制御装置

Country Status (3)

Country Link
US (1) US10931213B2 (ja)
JP (1) JP6681653B2 (ja)
WO (1) WO2018142445A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3540929A1 (en) * 2018-03-16 2019-09-18 Siemens Gamesa Renewable Energy A/S Improved converter network bridge controller
CN111934589B (zh) * 2020-08-18 2023-07-04 西南交通大学 基于改进型q型锁相环的牵引电机无速度传感器控制方法
TWI822105B (zh) * 2022-06-13 2023-11-11 茂達電子股份有限公司 馬達相位角自動控制系統

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144564A (en) * 1991-01-08 1992-09-01 University Of Tennessee Research Corp. Rotor position estimation of a permanent magnet synchronous-machine for high performance drive
US5585709A (en) * 1993-12-22 1996-12-17 Wisconsin Alumni Research Foundation Method and apparatus for transducerless position and velocity estimation in drives for AC machines
JP3121561B2 (ja) * 1997-04-21 2001-01-09 ファナック株式会社 射出成形機
US6636012B2 (en) * 2001-09-28 2003-10-21 Rockwell Automation Technologies, Inc. Stator and rotor resistance identifier using high frequency injection
JP3789895B2 (ja) * 2003-02-28 2006-06-28 三菱電機株式会社 巻線界磁型同期モータの制御装置および巻線界磁型同期モータの回転位置ずれ補正方法
JP2013031256A (ja) 2011-07-27 2013-02-07 Toshiba Mitsubishi-Electric Industrial System Corp 同期電動機の駆動装置
US9444382B2 (en) * 2013-01-30 2016-09-13 Infineon Technologies Ag Optimized field oriented control strategies for permanent magnet synchronous motors

Also Published As

Publication number Publication date
WO2018142445A1 (ja) 2018-08-09
US10931213B2 (en) 2021-02-23
JPWO2018142445A1 (ja) 2019-06-27
US20190356248A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP5664080B2 (ja) モータ制御装置及びモータ制御方法
JP4609078B2 (ja) 電動機駆動装置およびこれを用いた空気調和機
JP5549751B1 (ja) インバータ装置、インバータ装置の制御方法、及び電動機ドライブシステム
JPWO2013084461A1 (ja) 電動機制御装置
JP2013017301A (ja) インバータ制御装置及びインバータ制御方法
US10931213B2 (en) Control apparatus for a synchronous motor
JP2013078200A (ja) 同期電動機の制御装置及び制御方法
CN107395078B (zh) 永磁同步电机弱磁控制方法
JP2010268579A (ja) 永久磁石同期電動機システム及びその界磁制御方法
JP2010200430A (ja) 電動機の駆動制御装置
JP2013132200A (ja) モータ制御装置
JP2015165757A (ja) インバータ制御装置及びその方法
JP6199776B2 (ja) 電動機の駆動装置
JP5920067B2 (ja) モータ制御装置
JP2009142112A (ja) モータ制御装置とその制御方法
WO2015083449A1 (ja) 電動機の制御装置および制御方法
JP2012223022A (ja) モータドライブ装置
JP2010130844A (ja) 圧縮機モータの駆動装置及びインバータの制御方法
US20140197771A1 (en) Motor control apparatus and motor control method
JP6265043B2 (ja) 同期電動機のセンサレス駆動装置
JP6963172B2 (ja) 同期電動機の制御装置及び制御方法
US20160352274A1 (en) System of controlling induction electric motor
US11296625B2 (en) Control device and control method for synchronous electric motor
JP5018236B2 (ja) Pwmインバータ装置
JP7376765B2 (ja) 同期電動機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6681653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250