WO2020173286A1 - 全双工参考信号的配置方法、终端及基站 - Google Patents

全双工参考信号的配置方法、终端及基站 Download PDF

Info

Publication number
WO2020173286A1
WO2020173286A1 PCT/CN2020/074296 CN2020074296W WO2020173286A1 WO 2020173286 A1 WO2020173286 A1 WO 2020173286A1 CN 2020074296 W CN2020074296 W CN 2020074296W WO 2020173286 A1 WO2020173286 A1 WO 2020173286A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
base station
terminal
uplink reference
downlink
Prior art date
Application number
PCT/CN2020/074296
Other languages
English (en)
French (fr)
Inventor
张公正
孔垂丽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20763359.5A priority Critical patent/EP3913957A4/en
Publication of WO2020173286A1 publication Critical patent/WO2020173286A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a configuration method, terminal, and base station of a full-duplex reference signal. Background technique
  • the terminal needs to estimate the interference channel and perform interference cancellation based on the estimation result to improve signal quality.
  • the interference signal (referring to the uplink signal) on the terminal side is asynchronous with the useful signal (referring to the downlink signal)
  • the uplink reference signal and the downlink data overlap that is, the downlink data will cause interference to the uplink reference signal, thereby affecting
  • the estimation result of the interference channel further reduces the interference suppression effect.
  • the present application provides a configuration method, terminal, and base station for a full-duplex reference signal, which can avoid the interference effect of downlink data on the uplink reference signal to a certain extent.
  • an embodiment of the present application provides a method for configuring a full-duplex reference signal.
  • the method is applied to a terminal.
  • the method includes: the terminal receives configuration information and configures an uplink reference signal based on the received configuration information;
  • the information is sent to the terminal after the base station determines the structure of the uplink reference signal and the structure of the downlink reference signal of the terminal based on preset rules; and, the structure of the uplink reference signal includes at least one uplink reference that does not overlap with the downlink data sent by the base station signal.
  • the preset rule may include: the structure of the uplink reference signal includes k uplink reference signals, where k is an integer greater than 1; and/or, the structure of the downlink reference signal includes q Downlink reference signal, where q is an integer greater than 1.
  • the structure of the uplink reference signal may include 2 uplink reference signals, and the structure of the downlink reference signal may include 3 downlink reference signals, so that the length of the structure of the reference signal can be adjusted by increasing the number of reference signals.
  • the preset rule may include: determining the value of k according to the configuration parameter of the base station; the configuration parameter is used to indicate the cell radius of the base station.
  • the preset rule is pre-configured in the base station, and the base station
  • the k value corresponding to the terminal may be determined according to the provisions of the preset rule, that is, according to the correspondence between the cell radius of the base station and the k value.
  • the preset rule may include: determining the value of k according to a distance parameter between the terminal and the base station.
  • the preset rule is pre-configured in the base station. After obtaining the distance parameter between the base station and the terminal, the base station can determine the k value corresponding to the terminal based on the correspondence between the distance parameter and the k value.
  • the preset rule may include: determining the value of q according to the configuration parameter of the base station; the configuration parameter is used to indicate the cell radius of the base station.
  • terminals in the access cell can be configured with the same uplink reference signal structure and downlink reference signal structure, so that the uplink reference signal of the terminal at the cell edge is no longer affected by the interference of the downlink data, thereby improving the cell edge The accuracy of the interference channel estimation of the terminal.
  • the preset rule may include: determining the q value according to a distance parameter between the terminal and the base station.
  • terminals that access the cell and are in different locations can be configured with different uplink reference signal structures and downlink reference signal structures to ensure that the uplink reference signals corresponding to the terminals in the cell are not affected by the interference of downlink data.
  • k uplink reference signals are continuous in the structure of the uplink signal; and q downlink reference signals are continuous in the structure of the downlink signal.
  • the structure of the uplink reference signal includes at least one uplink reference signal that does not overlap with the downlink data.
  • the structure of the uplink reference signal may include three uplink reference signals that do not overlap with the downlink data, thereby further improving Accuracy of interference channel estimation.
  • at least one uplink reference signal is orthogonal to the downlink reference signal in the structure of the downlink reference signal.
  • the orthogonal uplink reference signal and downlink reference signal can be ZC sequence or PN sequence (also called m sequence).
  • the simultaneous estimation of the interference channel (uplink signal) and the useful channel (downlink signal) is realized.
  • the k value and q value satisfy the following conditions:
  • T cp represents the structure of the uplink reference signal and/or the symbol length occupied by the cyclic prefix in the structure of the downlink reference signal
  • T data represents the uplink reference signal.
  • the symbol length occupied by the number or downlink reference signal, c represents the speed of light.
  • the preset rule may further include: the structure of the uplink signal includes an uplink reference signal and m blank symbols, and the structure of the downlink signal includes a downlink reference signal and n blank symbols; wherein, m is an integer greater than or equal to 1, and n is an integer greater than m.
  • m blank symbols may be located before the uplink reference signal, and n blank symbols may be located after the downlink reference signal.
  • n blank symbols may be located before the downlink reference signal.
  • the preset rule may further include: determining the value of m and the value of n according to the configuration parameter of the base station; the configuration parameter is used to indicate the cell radius of the base station.
  • the preset rule may further include: determining the value of m and the value of n according to the distance parameter between the terminal and the base station.
  • the preset rule may further include: m blank symbols are continuous in the structure of the uplink reference signal; and n blank symbols are continuous in the structure of the downlink reference signal.
  • the m blank symbols may also have partial discontinuities.
  • the structure of the uplink reference signal includes three blank symbols, where two blank symbols may be located before the uplink reference signal, and one The blank symbol is located after the uplink reference signal.
  • the value of n satisfies the following conditions:
  • r represents the distance between the terminal and the base station or the cell radius of the base station
  • T cp represents the structure of the uplink reference signal and/or the symbol length occupied by the cyclic prefix in the structure of the downlink reference signal
  • Tdata represents the uplink reference signal or downlink
  • C represents the speed of light.
  • embodiments of the present application provide a method for configuring a full-duplex reference signal, which is applied to a base station, and the method may include: the base station determines the structure of the terminal's uplink reference signal based on a preset rule; and, the base station Based on the preset rules, configure the structure of the downlink reference signal; subsequently, the base station sends configuration information to the terminal, and the configuration information is used to instruct the terminal to configure the uplink reference signal based on the structure of the uplink reference signal; wherein the structure of the uplink reference signal includes at least one An uplink reference signal that overlaps with the downlink data sent by the base station.
  • the preset rule may include: the structure of the uplink reference signal includes k uplink reference signals, where k is an integer greater than 1; and/or, the structure of the downlink reference signal includes q Downlink reference signal, where q is an integer greater than 1.
  • the preset rule includes: determining the value of k according to configuration parameters of the base station; and the configuration parameters are used to indicate the cell radius of the base station.
  • the preset rule includes: determining the value of k according to a distance parameter between the terminal and the base station.
  • the preset rule includes: determining the value of q according to the configuration parameter of the base station; the configuration parameter is used to indicate the cell radius of the base station. In a possible implementation manner, the preset rule includes: determining the value of q according to a distance parameter between the terminal and the base station.
  • k uplink reference signals are continuous in the structure of the uplink signal; and q downlink reference signals are continuous in the structure of the downlink signal.
  • at least one uplink reference signal is orthogonal to the downlink reference signal in the structure of the downlink reference signal.
  • the k value and q value satisfy the following conditions:
  • the preset rule includes: the structure of the uplink signal includes an uplink reference signal and m blank symbols, and the structure of the downlink signal includes a downlink reference signal and n blank symbols; where m is An integer greater than or equal to 1, and n is an integer greater than m.
  • the preset rule includes: determining the value of m and the value of n according to the configuration parameter of the base station; the configuration parameter is used to indicate the cell radius of the base station. In a possible implementation manner, the preset rule includes: determining the value of m and the value of n according to a distance parameter between the terminal and the base station. In a possible implementation manner, m blank symbols are continuous in the structure of the uplink reference signal; and, n blank symbols are continuous in the structure of the downlink reference signal. In a possible implementation, the value of n satisfies the following conditions:
  • an embodiment of the present application provides a terminal, including: a receiving module and a configuration module.
  • the receiving module can be used to receive configuration information
  • the configuration module can be used to configure the uplink reference signal based on the received configuration information; wherein, the configuration information is that the base station determines the structure of the uplink reference signal and the downlink reference signal of the terminal based on preset rules.
  • the structure is sent to the terminal after the structure; and, the structure of the uplink reference signal includes at least one uplink reference signal that does not overlap with the downlink data sent by the base station.
  • the preset rule includes: the structure of the uplink reference signal includes k uplink reference signals, where k is an integer greater than 1; and/or, the structure of the downlink reference signal includes q downlink reference signals Reference signal, where q is an integer greater than 1.
  • the preset rule includes: determining the value of k according to configuration parameters of the base station; and the configuration parameters are used to indicate the cell radius of the base station.
  • the preset rule includes: determining the value of k according to a distance parameter between the terminal and the base station. In a possible implementation manner, the preset rule includes: determining the value of q according to the configuration parameter of the base station; the configuration parameter is used to indicate the cell radius of the base station. In a possible implementation manner, the preset rule includes: determining the value of q according to a distance parameter between the terminal and the base station.
  • k uplink reference signals are continuous in the structure of the uplink signal; and q downlink reference signals are continuous in the structure of the downlink signal. In a possible implementation manner, at least one uplink reference signal is orthogonal to the downlink reference signal in the structure of the downlink reference signal. In a possible implementation, the k value and q value satisfy the following conditions:
  • the preset rule includes: the structure of the uplink signal includes an uplink reference signal and m blank symbols, and the structure of the downlink signal includes a downlink reference signal and n blank symbols; where m is An integer greater than or equal to 1, and n is an integer greater than m.
  • the preset rule includes: determining the value of m and the value of n according to the configuration parameter of the base station; the configuration parameter is used to indicate the cell radius of the base station. In a possible implementation manner, the preset rule includes: determining the value of m and the value of n according to a distance parameter between the terminal and the base station. In a possible implementation manner, m blank symbols are continuous in the structure of the uplink reference signal; and, n blank symbols are continuous in the structure of the downlink reference signal. In a possible implementation, the value of n satisfies the following conditions:
  • an embodiment of the present application provides a base station, including: a determining module, a configuration module, and a sending module.
  • the determining module is used to determine the structure of the uplink reference signal of the terminal based on preset rules; and the configuration module is used to configure the structure of the downlink reference signal based on the preset rules; the sending module is used to send configuration information to the terminal.
  • the preset rule includes: the structure of the uplink reference signal includes k uplink reference signals, where k is an integer greater than 1; and/or, the structure of the downlink reference signal includes q downlink reference signals Reference signal, where q is an integer greater than 1.
  • the preset rule includes: determining the value of k according to configuration parameters of the base station; and the configuration parameters are used to indicate the cell radius of the base station.
  • the preset rule includes: determining the value of k according to a distance parameter between the terminal and the base station. In a possible implementation manner, the preset rule includes: determining the value of q according to the configuration parameter of the base station; the configuration parameter is used to indicate the cell radius of the base station. In a possible implementation manner, the preset rule includes: determining the value of q according to a distance parameter between the terminal and the base station.
  • k uplink reference signals are continuous in the structure of the uplink signal; and q downlink reference signals are continuous in the structure of the downlink signal. In a possible implementation manner, at least one uplink reference signal is orthogonal to the downlink reference signal in the structure of the downlink reference signal. In a possible implementation, the k value and q value satisfy the following conditions:
  • the preset rule includes: the structure of the uplink signal includes an uplink reference signal and m blank symbols, and the structure of the downlink signal includes a downlink reference signal and n blank symbols; where m is An integer greater than or equal to 1, and n is an integer greater than m.
  • the preset rule includes: determining the value of m and the value of n according to the configuration parameter of the base station; the configuration parameter is used to indicate the cell radius of the base station. In a possible implementation manner, the preset rule includes: determining the value of m and the value of n according to a distance parameter between the terminal and the base station. In a possible implementation manner, m blank symbols are continuous in the structure of the uplink reference signal; and, n blank symbols are continuous in the structure of the downlink reference signal. In a possible implementation, the value of n satisfies the following conditions:
  • an embodiment of the present application provides a terminal, including: a transceiver/transceiving pin, a processor, and optionally, a memory.
  • the transceiver/transceiving pin, the processor and the memory communicate with each other through an internal connection path; the processor is configured to execute instructions to control the transceiver/transceiving pin to send or receive signals;
  • the memory is used to store instructions. When the processor executes the instruction, the processor executes the method described in the second aspect or any one of the possible implementation manners of the second aspect.
  • an embodiment of the present application provides a base station, including: a transceiver/transceiving pin, a processor, and optionally, a memory.
  • the transceiver/transceiving pin, the processor and the memory communicate with each other through an internal connection path; the processor is configured to execute instructions to control the transceiver/transceiving pin to send or receive signals;
  • the memory is used to store instructions.
  • the processor executes the instruction, the processor executes the method described in the first aspect or any one of the possible implementation manners of the first aspect.
  • an embodiment of the present application provides a computer-readable medium for storing a computer program, and the computer program includes instructions for executing the first aspect or any possible implementation of the first aspect.
  • an embodiment of the present application provides a computer-readable medium for storing a computer program.
  • the computer program includes instructions for executing the second aspect or any possible implementation of the second aspect.
  • an embodiment of the present application provides a computer program, and the computer program includes instructions for executing the first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a computer program, and the computer program includes instructions for executing the second aspect or a method in any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a chip, which includes a processing circuit and transceiver pins. Wherein, the transceiver pin and the processing circuit communicate with each other through an internal connection path, and the processing circuit executes the method in the first aspect or any one of the possible implementations of the first aspect to control the receiving pin to receive signals, and Control the sending pin to send signals.
  • an embodiment of the present application provides a chip, which includes a processing circuit and transceiver pins. Wherein, the transceiver pin and the processing circuit communicate with each other through an internal connection path, and the processing circuit executes the method in the second aspect or any one of the possible implementations of the second aspect to control the receiving pin to receive signals, Control the sending pin to send signals.
  • an embodiment of the present application provides a system, and the system includes the base station and terminal involved in the first aspect and the second aspect described above. Description of the drawings
  • Fig. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 2a is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • Figure 2b is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a full-duplex mode provided by an embodiment of the present application.
  • Figure 4 is one of the communication methods provided by way of example.
  • Figure 5 is one of the communication methods provided by way of example.
  • Fig. 6 is a schematic diagram of signal delay provided by way of example.
  • Fig. 7 is one of the schematic diagrams of a disturbance situation provided by way of example.
  • Fig. 8 is one of the schematic diagrams of a disturbance situation provided by way of example.
  • Fig. 9 is one of schematic diagrams of a reference signal provided by way of example.
  • FIG. 10 is one of schematic diagrams of a reference signal provided by way of example.
  • FIG. 11 is one of the schematic flowcharts of a method for configuring a full-duplex reference signal according to an embodiment of the present application
  • FIG. 12 is one of the schematic flowcharts of a method for configuring a full-duplex reference signal according to an embodiment of the present application
  • FIG. 13 is one of the schematic structural diagrams of a reference signal provided by an embodiment of the present application;
  • FIG. 14 is one of the schematic structural diagrams of a reference signal provided by an embodiment of the present application.
  • FIG. 15 is one of schematic structural diagrams of a reference signal provided by an embodiment of the present application.
  • FIG. 16 is one of the schematic structural diagrams of a reference signal provided by an embodiment of the present application.
  • FIG. 17 is one of the schematic flowcharts of a method for configuring a full-duplex reference signal provided by an embodiment of the present application
  • FIG. 18a is one of the schematic structural diagrams of a reference signal provided by an embodiment of the present application
  • FIG. 18b is one of the schematic structural diagrams of a reference signal provided by an embodiment of the present application.
  • FIG. 19 is one of the schematic structural diagrams of a reference signal provided by an embodiment of the present application.
  • FIG. 20 is one of the schematic structural diagrams of a reference signal provided by an embodiment of the present application.
  • FIG. 21 is one of the schematic structural diagrams of a reference signal provided by an embodiment of the present application.
  • FIG. 22a is one of schematic structural diagrams of a reference signal provided by an embodiment of the present application.
  • Figure 22b is one of the schematic structural diagrams of a reference signal provided by an embodiment of the present application.
  • FIG. 23 is one of the schematic flowcharts of a method for configuring a full-duplex reference signal according to an embodiment of the present application
  • FIG. 24 is one of the schematic flowcharts of a method for configuring a full-duplex reference signal according to an embodiment of the present application
  • FIG. 25 is a schematic structural diagram of a terminal provided by an embodiment of the present application
  • FIG. 26 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • Figure 27 is a schematic structural diagram of a device provided by an embodiment of the present application. detailed description
  • first and second in the description and claims of the embodiments of this application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object and the second target object are used to distinguish different target objects, rather than to describe the specific order of the target objects.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner.
  • multiple means two or more.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • FIG. 1 is a schematic diagram of a communication system provided in an embodiment of this application.
  • the communication system includes base station, terminal 1, and terminal 2.
  • the terminal may be a computer, a smart phone, a telephone, a cable TV set-top box, a digital subscriber line router, and other equipment.
  • the number of base stations and terminals may be one or more.
  • the number of base stations and terminals in the communication system shown in FIG. 1 is only an example of adaptability, which is not limited in this application.
  • the above-mentioned communication system may be used to support fourth generation (4G) access technology, such as long term evolution (LTE) access technology; or, the communication system may also support fifth generation (5G) access technology.
  • 4G fourth generation
  • 5G fifth generation
  • ) Access technology such as new radio (NR) access technology
  • the communication system can also be used to support third generation (3G) access technology, such as universal mobile telecommunications system (universal mobile telecommunications) system, UMTS) access technology
  • 3G universal mobile telecommunications system (universal mobile telecommunications) system, UMTS) access technology
  • the communication system can also be used to support the second generation (2G) access technology, such as the global system for mobile communications (GSM) access technology
  • the communication system can also be used in a communication system supporting multiple wireless technologies, for example, supporting LTE technology and NR technology.
  • the communication system can also be applied to Narrow Band-Internet of Things (NB-IoT), Enhanced Data Rate for GSM Evolution (EDGE), and Wideband Code Division Multiple Access systems.
  • NB-IoT Narrow Band-Internet of Things
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution System
  • future-oriented communication technology future-oriented communication technology.
  • the base station in FIG. 1 can be used to support terminal access.
  • it can be a base transceiver station (BTS) and a base station controller (BSC) in a 2G access technology communication system.
  • Node B node B
  • RNC radio network controller
  • evolved nodeB evolved base station
  • eNB evolved base station
  • 5G access technology communication system 5G access technology communication system
  • the next generation base station nodeB, gNB
  • TRP transmission reception point
  • relay node relay node
  • access point access point
  • AP access point
  • devices that provide wireless communication functions for terminals are collectively referred to as network equipment or base stations.
  • the terminal in Figure 1 may be a device that provides voice or data connectivity to users, for example, it may also be called a mobile station, subscriber unit, station, or terminal equipment (terminal equipment, TE) etc.
  • the terminal can be a cellular phone, a personal digital assistant (PDA), a wireless modem (modem), a handheld device (handheld), a laptop computer, a cordless phone, and a wireless Local loop (wireless local loop, WLL) station, tablet computer (pad), etc.
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can all be terminals in the embodiments of the present application, such as intelligent transportation Terminals and cars in smart homes, household equipment in smart homes, power meter reading equipment in smart grids, voltage monitoring equipment, environmental monitoring equipment, video monitoring equipment in smart security networks, cash registers, etc.
  • the terminal may communicate with a base station, for example, the base station in FIG. 1. Communication between multiple terminals is also possible.
  • the terminal can be statically fixed or mobile.
  • Figure 2a is a schematic diagram of the structure of a base station.
  • Figure 2a is a schematic diagram of the structure of a base station.
  • the base station includes at least one processor 101, at least one memory 102, at least one transceiver 103, at least one network interface 104, and one or more antennas 105.
  • the processor 101, the memory 102, the transceiver 103 and the network interface 104 are connected, for example, by a bus.
  • the antenna 105 is connected to the transceiver 103.
  • the network interface 104 is used to connect the base station with other communication equipment through a communication link. In the embodiment of the present application, the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment.
  • the processor in the embodiment of the present application may include at least one of the following types: a general central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), a microprocessor, Application-Specific Integrated Circuit (ASIC), Microcontroller Unit (MCU), Field Programmable Gate Array (FPGA), or integrated circuit used to implement logic operations .
  • the processor 101 may be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the at least one processor 101 may be integrated in one chip or located on multiple different chips.
  • the memory in the embodiments of the present application may include at least one of the following types: read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (Electrically erasable programmabler-only memory, EEPROM).
  • read-only memory read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • Disk storage media or other magnetic storage devices or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the memory 102 may exist independently and is connected to the processor 101.
  • the memory 102 may also be integrated with the processor 101, for example, integrated in one chip.
  • the memory 102 can store and execute the application
  • the program codes of the technical solutions of the embodiments are controlled to be executed by the processor 101, and various types of computer program codes that are executed can also be regarded as drivers of the processor 101.
  • the processor 101 is configured to execute computer program codes stored in the memory 102, so as to implement the technical solutions in the embodiments of the present application.
  • the memory 102 may also be outside the chip and connected to the processor 101 through an interface.
  • the transceiver 103 may be used to support the reception or transmission of radio frequency signals between the access network device and the terminal, and the transceiver 103 may be connected to the antenna 105.
  • the transceiver 103 includes a transmitter Tx and a receiver Rx. Specifically, one or more antennas 105 can receive radio frequency signals, and the receiver Rx of the transceiver 103 is used to receive the radio frequency signals from the antennas, and convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and transfer the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 101, so that the processor 101 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 103 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 101, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through a Or multiple antennas 105 transmit the radio frequency signal.
  • the receiver Rx may selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and the digital-to-analog conversion processing
  • the order of precedence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • Figure 2b is a schematic diagram of a terminal structure.
  • Figure 2b is a schematic diagram of a terminal structure.
  • the terminal includes at least one processor 201, at least one transceiver 202, and at least one memory 203.
  • the processor 201, the memory 203 and the transceiver 202 are connected.
  • the terminal may further include an output device 204, an input device 205, and one or more antennas 206.
  • the antenna 206 is connected to the transceiver 202, and the output device 204 and the input device 205 are connected to the processor 201.
  • the transceiver 202, the memory 203, and the antenna 206 can refer to the related description in FIG. 2a to implement similar functions.
  • the processor 201 may be a baseband processor or a CPU, and the baseband processor and the CPU may be integrated or separated.
  • the processor 201 may be used to implement various functions for the terminal, for example, to process communication protocols and communication data, or to control the entire terminal device, execute software programs, and process data in software programs; or to assist in completion Computing processing tasks, such as graphics and image processing or audio processing, etc.; or the processor 201 is used to implement one or more of the above functions
  • the output device 204 communicates with the processor 201, and can display information in a variety of ways.
  • the output device 204 may be a liquid crystal display (LCD), a light emitting diode (Light Emitting Diode, LED) display device, a cathode ray tube (Cathode Ray Tube, CRT) display device, or a projector (projector) Wait.
  • the input device 205 communicates with the processor 201 and can accept user input in a variety of ways.
  • the input device 205 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the memory 202 may exist independently and is connected to the processor 201.
  • the memory 202 may also be integrated with the processor 201, for example, integrated in one chip.
  • the memory 202 can store program codes for executing the technical solutions of the embodiments of the present application, and is controlled to be executed by the processor 201.
  • Various types of computer program codes that are executed can also be regarded as drivers of the processor 201.
  • the processor 201 is used to execute the memory 202
  • the stored computer program code realizes the technical solutions in the embodiments of the present application.
  • the memory 202 may also be outside the chip and connected to the processor 201 through an interface.
  • the half-duplex mode can be divided into time division duplex (Time Division Duplexing, TDD) and frequency division duplex (Frequency Division Duplexing, FDD).
  • TDD time division duplexing
  • FDD Frequency Division Duplexing
  • TDD refers to the use of different time slots for the uplink and downlink.
  • a frame is divided into uplink subframes and downlink subframes for uplink and downlink transmissions.
  • Frequency division duplexing refers to the use of different spectrums for the uplink and downlink.
  • a guard band is left between the uplink spectrum and the downlink spectrum of the frequency division duplex system.
  • the full-duplex technology realizes simultaneous uplink and downlink transmission on the same time-frequency resources, and its spectrum efficiency is twice that of half-duplex.
  • the devices transmit and receive at the same frequency at the same time, and the receiving antenna will receive the transmitted signal from the device, that is, self-interference. Since the transmitting and receiving antennas of the same device are very close or even the same antenna, the strength of the self-interference signal is much higher than that of the useful signal, which will cause the device in the receiver to saturate and cause useful signal loss. Therefore, the receiver must eliminate self-interference before demodulating the useful signal.
  • the key to self-interference cancellation is to estimate the channel from the transmitted signal to the receiving antenna, accurately reconstruct the self-interference signal, and subtract it from the received signal (ie, eliminate the interference signal in the received signal).
  • Figure 3 it is a schematic diagram of the full-duplex mode.
  • the transmitting end sends the transmitting signal to the receiving end through the transmitting antenna.
  • the transmitting end can receive the useful signal through the receiving antenna (the useful signal can come from other unshown Or the receiving end in the figure), then, for the transmitting end in full duplex mode, the transmitted signal will cause self-interference to the useful signal.
  • the application of full-duplex technology to wireless communication systems mainly includes the following two methods:
  • Fig. 4 shows a communication method applied to the communication system shown in Fig. 1, in which the base station works in full duplex mode, and the terminal works in half duplex mode.
  • Figure 5 shows another communication method applied to the communication system shown in Figure 1, in which both the base station and the terminal work in full duplex mode.
  • the base station receives the self-interference signal from the base station transmitter; and the downlink user (terminal 1 in Figure 4) except for the useful signal from the base station (ie, downlink signal) ), the signal from the uplink user (terminal 2 in Figure 4) (that is, the uplink signal sent by terminal 2), that is, the mutual interference signal, is also received.
  • both the base station and the terminal are in full-duplex mode. Therefore, both the base station and the terminal are affected by self-interference.
  • Terminal 1 and Terminal 2 in FIG. 4 may also be terminals in full-duplex mode, or, Terminal 1 is a terminal in full duplex mode and terminal 2 is a terminal in half duplex mode.
  • Terminal 1 and terminal 2 are in full duplex mode or at least one of them is in full duplex mode, due to functional limitations, the base station can only receive uplink signals sent by one terminal on the same time slot resource, and Send a downlink signal to a terminal (it can be a different terminal, as shown in Figure 4, or a terminal corresponding to the uplink signal, as shown in Figure 5). Therefore, no matter what the terminal is Which state (referring to full-duplex or half-duplex), when there are multiple terminals, there is only self-interference or mutual interference on the terminal side, and there is no scenario where self-interference and mutual interference coexist.
  • the system needs to deal with these two kinds of interference (including self-interference and mutual interference) through interference cancellation or interference suppression technologies, and these technologies need to accurately estimate the channel through which the interference signal passes.
  • synchronization is a basic requirement of cellular mobile communication systems, especially in LTE and 5GNR systems based on Orthogonal Frequency Division Multiplexing (OFDM): Asynchrony can cause serious problems. Inter-symbol and inter-carrier interference.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the base station receives uplink signals sent from different terminals. Since the distance between the terminal and the base station may be different, and based on the difference in signal propagation time, the time for the uplink signal to reach the base station may be different.
  • the cellular communication system adopts a timing advance mechanism, that is, different terminals send a certain amount of time in advance according to the distance between them and the base station to ensure that each The terminals arrive at the base station at the same time.
  • a timing advance mechanism that is, different terminals send a certain amount of time in advance according to the distance between them and the base station to ensure that each The terminals arrive at the base station at the same time.
  • the uplink signal 1 of the terminal 1 is sent TAi ahead of time.
  • the distance between the terminal 2 and the base station is farther than the distance between the terminal 1 and the base station.
  • the uplink signal of the terminal 2 Signal 2 is sent ahead of TA 2 , and TA 2 is greater than TAi, then the uplink signal 1 and uplink signal 2 arrive at the base station at the same time, and uplink transmission synchronization is realized.
  • Fig. 6 also shows the transmission delay of the downlink signal.
  • the base station sends the downlink signal.
  • the downlink signal 1 sent to the terminal 1 is delayed by TPi to reach the terminal 1 (that is, between the time of sending and the receiving by the terminal).
  • Phase difference TPi the downlink signal 2 sent to terminal 2 is delayed by TP 2 to reach terminal 2.
  • CP Cyclic Prefix
  • the uplink signal 1 sent by the terminal 1 reaches the base station after passing through the TPi to ensure synchronization of the uplink transmission, that is, the terminal 1
  • the timing is aligned with the base station.
  • the self-interference signal received by the base station that is, the transmitted signal of the base station and the useful signal are synchronized.
  • there may also be mutual interference that is, the uplink signal 1 passes through D? 3 arrive at terminal 2.
  • the uplink propagation delay (ie TP 3 ) and the downlink propagation delay (ie TP 2 ) may be different, the mutual interference signal received by terminal 2 from terminal 1 (ie uplink signal 1) and the useful signal from the base station (ie Downlink signal 1) Phase difference At.
  • the delay difference is related to the geographic location of the base station and the terminal:
  • At20 can be determined, where, if At>0, the mutual interference and the useful signal are asynchronous.
  • the terminal sends an uplink signal to the base station in advance by TA to ensure synchronization of uplink transmission.
  • the uplink signal arrives at the base station, it is timed with the base station. Aligned.
  • the self-interference signal received by the base station that is, the downlink signal sent by the base station, and the useful signal are still synchronized; but Yes, due to the downlink propagation delay from the base station to the terminal (that is, TP) and the terminal's early transmission (that is, TA), the self-interference signal received by the terminal is different from the useful signal by TA, that is, the self-interference and useful signal are asynchronous.
  • the existing technical solution allocates orthogonal reference signals (time-frequency domain, code domain) for uplink and downlink transmission.
  • this solution is an extension of the reference signal in the Multiple-Input Multiple-Output (MIMO) technology in the existing LTE or 5G NR.
  • the reference signal can be placed in the frequency domain according to the uplink and downlink.
  • Orthogonal reference sequences can also be used according to the uplink and downlink, such as ZC (Zadoff-Chu) or pseudo-random (Pseudo-Noise Code, PN) sequence.
  • the existing technical solution is designed on the premise that the uplink and downlink are orthogonal, that is, the interference signal is synchronized with the useful signal. Only under the condition of synchronization, the orthogonality of the above design can be satisfied.
  • the interference signal including self-interference signal or mutual interference signal
  • the useful signal may be asynchronous, as shown in Figure 10.
  • the downlink data will cause interference to the uplink reference signal of the terminal (in the dashed frame in the figure), thereby affecting the channel estimation of the terminal self-interference signal.
  • the uplink signal in FIG. 10 may be the uplink signal sent by the terminal 1 to the base station, and the downlink signal is the signal sent by the base station to the terminal 1, that is, the uplink signal in FIG.
  • the signal is a self-interference signal to the downlink signal (useful signal).
  • the uplink signal in FIG. 10 may be the uplink signal sent by the terminal 1 to the base station, and the downlink signal is the signal sent by the base station to the terminal 1, that is, the uplink signal in FIG.
  • the signal is a self-interference signal to the downlink signal (useful signal).
  • the 10 may also be an uplink signal sent by the terminal 2 to the base station and affect terminal 1 at the same time, and the downlink signal is a signal sent by the base station to the terminal 1, that is, the uplink signal affects the downlink signal (useful signal). In terms of mutual interference signals. And, the time delay difference At between the uplink reference signal on time slot n and the downlink reference signal on time slot n shown in FIG. 10 is only a schematic example. As described above, since the terminal and the base station, Or the distance between the terminal and the terminal causes the uplink reference signal on the side of the terminal to be asynchronous with the downlink reference signal.
  • the magnitude of At depends on the distance between the terminal and the base station, that is, the distance from the base station or between the terminals The greater the distance, the greater At, that is, between the uplink reference signal (including the uplink reference signal sent by the terminal or the uplink reference signal received from other terminals) of the terminal located at the edge of the cell and the downlink reference signal The At maximum.
  • the embodiments of the present application aim to adjust the relative positions of uplink reference signals, downlink reference signals, and data (including uplink data and downlink data) by optimizing the structure of the reference signal, avoid overlap, eliminate interference, and improve the accuracy of interference channel estimation .
  • the data (including uplink data and downlink data) in the embodiments of the present application refers to the data part on the corresponding carrier in the signal as shown in FIG. 10 except for the reference signal part, which may also be called data symbol. That is, the technical solution in the embodiment of the present application can solve the problem of overlap between the uplink reference signal and the downlink data in FIG. 10 by configuring the structure of the uplink reference signal and/or the structure of the downlink reference signal.
  • the base station in FIG. 1 is in full duplex mode, and all terminals may be in full duplex mode, or all terminals may be in half duplex mode.
  • Duplex mode, or mixed duplex mode for example: terminal 1 is in full duplex mode, terminal 2 is in half duplex mode
  • terminal communicates with the base station according to the communication mode shown in FIG. 4 or FIG. 5 Perform data transfer.
  • FIG. 11 is a schematic flowchart of a method for configuring a full-duplex reference signal in an embodiment of this application, and in FIG. 11:
  • Step 101 The terminal accesses the base station.
  • the terminal accesses the base station.
  • the base station may determine the structure of the corresponding uplink reference signal and the structure of the downlink reference signal for the terminal based on the distance or time delay between the terminal and the base station.
  • the terminal accesses the base station.
  • the base station can obtain the distance (time delay) information between the terminal and the base station.
  • the manner in which the base station obtains the distance information from the terminal may be that the terminal sends a reference signal, and the base station may obtain the distance value according to information such as the time delay of the received reference signal.
  • the manner in which the base station obtains the distance value from the terminal may also be that the terminal reports the location information where the terminal is located, and the base station may obtain the distance value according to the received location information.
  • the base station can obtain the distance value between the base station and the terminal through any possible implementation manner, which is not limited in this application.
  • Step 102 The base station determines the structure of the uplink reference signal and the structure of the downlink reference signal of the terminal based on a preset rule.
  • the base station can adjust the length of the uplink reference signal structure and/or the length of the downlink reference signal structure to avoid the overlap between the uplink reference signal and the downlink data on the terminal side (where the data and the reference When the signals overlap, the data will cause interference to the reference signal, while ensuring that there is no overlap between the downlink reference signal and the uplink data on the base station side.
  • the preset rule may be set on the base station side, and the base station may record the uplink reference signal structure and the downlink reference signal structure and parameters recorded in the preset rule (the parameters may be distance parameters or Cell radius parameter) to determine the structure of the uplink reference signal and the structure of the downlink reference signal.
  • the base station may configure the structure of the downlink reference signal, and instruct the terminal through the configuration information to configure the uplink reference signal according to the determined structure of the uplink reference signal (that is, step 103).
  • the manner of adjusting the length of the uplink reference signal and/or the downlink reference signal specified in the preset rule may be: configuring multiple consecutive reference signals in the structure of the reference signal (uplink reference signal and/or downlink reference signal) The specific details of the reference signal will be elaborated in the following scenario.
  • the manner of adjusting the length of the uplink reference signal and/or the downlink reference signal specified in the preset rule may be: configuring multiple reference signal structures (uplink reference signals and/or downlink reference signals) Continuous blank symbols, the specific details will be elaborated in the following scenes.
  • the manner of adjusting the length of the uplink reference signal and/or the downlink reference signal specified in the preset rule may also be: configuring at least in the structure of the reference signal (uplink reference signal and/or downlink reference signal) One reference signal and at least one blank symbol, the specific details will be elaborated in the following scenario.
  • the base station when determining the length of the structure of the reference signal (uplink reference signal and/or downlink reference signal), the base station may determine the continuous reference signal in the structure of the reference signal according to the length of the cell radius of the base station The number of or the number of blank symbols. That is, all terminals under the base station can be configured with the same reference signal structure to overcome the automatic interference or mutual interference caused by the asynchronous problem of the uplink reference signal and the downlink reference signal on the terminal side caused by the delay difference.
  • the base station when it determines the length of the reference signal structure, it may also be based on the distance between the base station and the terminal (that is, the distance between the base station and the terminal obtained by the base station in step 101) , Determine the number of consecutive reference signals or the number of blank symbols in the structure of the reference signal. That is, multiple terminals that access the base station may be configured with different reference signal structures, and the specific configuration method will be described in detail in the following embodiments.
  • all base stations in the designated area and the cell to which the base station belongs can be configured with the same preset rule, that is, the structure of the uplink reference signal and the downlink reference signal can be directly specified in the preset rule. That is, all terminals that access the cells in the designated area can be configured with the same uplink reference signal structure, and the downlink signal sent by the base station for each terminal has the same downlink reference signal structure.
  • the structure of the reference signal in the preset rule may be determined based on the radius of the largest cell in the designated area.
  • the uplink reference signal configured by the base station for the terminal in the embodiment of the application refers to the uplink reference signal sent by the terminal to the base station, or it may also be sent to the base station by other terminals and cause mutual interference between the terminals.
  • Uplink reference signal For terminal 1 and terminal 2 in FIG. 1, if the communication mode between terminal 1 and terminal 2 is as shown in FIG. 4, then the uplink reference signal configured by the terminal based on the indication of the base station in the embodiment of the present application is the terminal 2 is sent to the base station, and terminal 1 will also receive the uplink signal from terminal 2.
  • the base station instructs terminal 2 to configure the uplink reference signal, so that the uplink reference signal from terminal 2 received by terminal 1 is not It overlaps with the downlink data received by the terminal 1 from the base station.
  • the uplink reference signal configured by the terminal based on the indication of the base station in the embodiment of the present application is that the terminal 1 sends to the base station That is, the base station instructs terminal 1 to configure the uplink reference signal, so that the uplink reference signal sent by terminal 1 does not overlap with the downlink data received by terminal 1.
  • Step 103 The base station sends configuration information to the terminal.
  • the base station may send configuration information to the terminal to instruct the terminal to configure the structure of the uplink reference signal according to the content indicated by the configuration information.
  • the configuration information may be radio resource control (Radio Resource Control, RRC) information, that is, when the base station and the terminal are in an RRC connection, the base station can complete the configuration process of the structure of the downlink reference signal and the structure of the uplink reference signal , And release the structure of the uplink signal corresponding to the terminal to the terminal through the RRC information.
  • RRC Radio Resource Control
  • the configuration information may also be protocol information, for example: Medium Access Control (MAC) it information, etc., which is not limited in this application.
  • MAC Medium Access Control
  • Step 104 The terminal configures an uplink reference signal based on the configuration information.
  • the terminal receives the configuration information sent by the base station, and configures the uplink reference signal based on the indication of the configuration information.
  • the base station and the terminal can communicate with the downlink reference signal structure based on the configured uplink reference signal structure, that is, the base station sends the downlink signal containing the configured downlink reference signal structure to the terminal, and the terminal sends the configured downlink reference signal structure to the base station.
  • the uplink reference signal structure on the terminal side includes at least one uplink reference signal that does not overlap with the downlink data sent by the base station.
  • the terminal can be based on the non-disturbance.
  • At least one reference signal for the auto-interference channel or the mutual interference channel is estimated, and after the auto-interference channel or the mutual interference channel is determined, the auto-interference signal or the mutual interference signal is eliminated, where The related technical content of the elimination can refer to the prior art embodiment The method is not repeated in this application.
  • the terminal can perform useful channel estimation.
  • the useful signal ie, the downlink signal
  • FIG. 12 is a schematic flowchart of a method for configuring a full-duplex reference signal in an embodiment of this application, and in FIG. 12:
  • Step 201 The terminal accesses the base station.
  • Step 202 The base station determines the structure of the uplink reference signal and the structure of the downlink reference signal according to the configuration parameters of the base station.
  • the preset rules may include: the base station determines the number of uplink reference signals in the structure of the uplink reference signal and the number of downlink reference signals in the structure of the downlink reference signal based on the configuration parameters of the base station. Wherein, if there are two or more uplink reference signals in the structure of the uplink reference signal, the multiple uplink reference signals are continuous in the structure of the uplink reference signal. Similarly, there are two or more uplink reference signals in the structure of the downlink reference signal. If there are more than one downlink reference signal, the multiple downlink reference signals are continuous in the structure of the downlink reference signal.
  • the configuration parameter of the base station may be the cell radius of the base station, where the cell radius refers to the corresponding cell radius of the cell that the terminal accesses.
  • the base station can determine the structure of the corresponding uplink reference signal for terminal 1 and terminal 2 based on the size of the cell radius.
  • the structure of the uplink reference signal of the terminal 1 and the terminal 2 is the same.
  • the base station may calculate the number k of uplink reference signals in the structure of the uplink reference signal and the number q of downlink reference signals in the structure of the downlink reference signal according to the following formula:
  • T cp represents the symbol length occupied by the cyclic prefix in the structure of the uplink reference signal and/or the structure of the downlink reference signal
  • T data represents the symbol length occupied by the uplink reference signal or the downlink reference signal
  • C represents the speed of light (3 * 10 8 m/s)
  • k and q are both integers greater than or equal to 1.
  • the sum of k and q is A. Assuming that A is 3, then k can be 1, q is 2, or q can be 1, and k is 2.
  • the symbol length occupied by CP is approximately 2.34us (144 pieces). Sampling point), the symbol length T occupied by the uplink reference signal or the downlink reference signal (the uplink reference signal or the downlink reference signal in the embodiment of this application can be understood as the data symbol in the uplink reference signal in the embodiment in the prior art)
  • the data is about 33.33us (2048 sampling points), and the total symbol length (that is, the length of the CP and the reference signal) is about 35.68us (the result of rounding). Assuming the cell radius is 5km, A is greater than or equal to 3 according to formula (1).
  • the base station can increase the length of the structure of the uplink reference signal by configuring multiple consecutive uplink reference signals in the structure of the uplink reference signal, so as to realize that there is at least one that is orthogonal to the downlink reference signal and does not overlap with the downlink data.
  • the structure of the reference signal is shown in FIG. 13. It should be noted that, as described above, the uplink reference signal and the downlink reference signal generated due to the distance between the terminal and the base station or other terminals are asynchronous, and the asynchronous situation is shown in FIG.
  • the time delay difference between the reference signal and the downlink reference signal is At, then, in order to realize that there is at least one uplink reference signal that is not interfered by the downlink data in the structure of the configured uplink reference signal, Bei
  • a guard interval Guard Period, GP
  • the uplink reference signal in the estimation interval (that is, the dashed box in the figure) is the uplink reference signal that is not disturbed by the downlink data.
  • the estimation interval is the method used by the terminal when estimating the auto-interference channel or the mutual interference channel, that is, the terminal can perform auto-interference or mutual interference on the uplink reference signal in the estimation interval.
  • the interference channel is estimated, and based on the determined channel result, interference suppression is performed.
  • the length of the estimation interval may be greater than or equal to the symbol length (33.33 us) occupied by the reference signal, and the starting position of the estimation interval varies according to the structure of the uplink/downlink reference signal.
  • the structure of the uplink reference signal includes two consecutive uplink reference signals, and the structure of the downlink reference signal includes one downlink reference signal. Then, as shown in FIG. 13, the start position of the estimation interval is compared with the structure of the downlink reference signal. The starting position is the same, and the length of the estimation interval is equal to the sum of the symbol length (33.33us) occupied by an uplink reference signal and the symbol length (2.34us) occupied by the CP.
  • k consecutive uplink reference signals can be configured to increase the length of the structure of the uplink reference signal, so as to avoid interference of downlink data to the uplink reference signal.
  • the base station can determine that k is 1 and q is 2, that is, the structure of the uplink reference signal includes one uplink reference signal, and the structure of the downlink reference signal includes 2 consecutive downlink reference signals. That is, the base station may increase the length of the structure of the downlink reference signal by configuring multiple consecutive downlink reference signals in the structure of the downlink reference signal, so as to realize that there is at least one that is orthogonal to the downlink reference signal and does not overlap with the downlink data.
  • the structure of the reference signal is shown in FIG. 14.
  • the uplink reference signal and the downlink reference signal generated due to the distance between the terminal and the base station or other terminals are asynchronous, and the asynchronous situation is shown in FIG. 10, that is, the uplink
  • the time delay difference between the reference signal and the downlink reference signal is At.
  • the signal structure includes one uplink reference signal, the structure of the downlink reference signal includes multiple consecutive downlink reference signals), and the position of the repeated downlink reference signal is configured before the original downlink reference signal (ie, the downlink reference signal on time slot n) , which is In the downlink signal on time slot n-1.
  • the uplink reference signal in the estimation interval (that is, the dashed frame in the figure) is the uplink reference signal that is not disturbed by the downlink data.
  • the structure of the uplink reference signal includes one uplink reference signal
  • the structure of the downlink reference signal includes two consecutive downlink reference signals
  • the starting position of the estimation interval The start position of the structure of the uplink reference signal is the same, and the length of the estimation interval is equal to the sum of the symbol length (33.33us) occupied by an uplink reference signal (2.34us).
  • q continuous downlink reference signals can be configured to increase the length of the structure of the downlink reference signal, thereby avoiding the interference of downlink data on the uplink reference signal.
  • the base station can determine that k is 2 and q is 3, that is, the structure of the uplink reference signal includes 2 consecutive uplink reference signals, and the structure of the downlink reference signal Including 3 consecutive downlink reference signals. That is, the base station can increase the length of the structure of the uplink reference signal by configuring multiple consecutive uplink reference signals in the structure of the uplink reference signal, and by configuring multiple consecutive downlink reference signals in the structure of the downlink reference signal, In order to increase the length of the structure of the downlink reference signal, there are at least one (as shown in FIG. 15, there are two in the estimation interval) that is orthogonal to the downlink reference signal and does not overlap with the downlink data.
  • the structure is shown in Figure 15.
  • the uplink reference signal and the downlink reference signal generated due to the distance between the terminal and the base station or other terminals are asynchronous, and the asynchronous situation is shown in FIG. 10, that is, the uplink
  • the time delay difference between the reference signal and the downlink reference signal is At.
  • the uplink reference signal in order to realize that there is at least one uplink reference signal that is not interfered by the downlink data in the structure of the configured uplink reference signal, then, in this embodiment (ie, the uplink reference signal)
  • the signal structure includes multiple consecutive uplink reference signals, and the downlink reference signal structure includes multiple consecutive downlink reference signals).
  • the repeated uplink reference signal can be set to the original uplink reference signal (that is, the uplink reference signal on time slot n) After that, the position of the repeated downlink reference signal is configured before the original downlink reference signal (that is, the downlink reference signal on time slot n), that is, in the downlink signal on time slot n-1.
  • the uplink reference signal in the estimation interval (that is, the dashed box in the figure) is the uplink reference signal that is not disturbed by the downlink data.
  • the structure of the uplink reference signal includes two consecutive uplink reference signals, and the structure of the downlink reference signal includes three consecutive downlink reference signals, then, as shown in FIG.
  • the start of the estimation interval The starting position is the same as the starting position of the structure of the uplink reference signal, and the length of the estimation interval is equal to the symbol length occupied by an uplink reference signal (33.33us) and the symbol length occupied by CP (2.34us) Sum.
  • the repeated uplink reference signal is configured after the original uplink reference signal, and the repeated downlink reference signal is located in the original downlink reference signal.
  • the terminal side estimates the interference channel, it can effectively improve the accuracy of the interference channel estimation. Sex.
  • the position of the continuous reference signal can be set based on the time delay difference At between the uplink reference signal and the downlink reference signal. That is, under the premise of ensuring that there is at least one uplink reference signal that does not overlap with downlink data, the position of the continuously repeated uplink reference signal or downlink reference signal can be adjusted to increase the number of uplink reference signals that do not overlap with downlink data. , Thereby improving the accuracy of channel estimation.
  • k consecutive uplink reference signals can be configured to increase the uplink reference signal.
  • the calculation results of k and q can be determined during the cell initialization process, that is, after determining the value range of A, the base station can determine the value of A within the satisfaction interval, and based on After determining the value of A, randomly select the values of k and q.
  • the base station may also be based on the current resource load situation, for example: if the downlink resource scheduling load is too large, the value of k may be adjusted adaptively and the value of q may be adjusted lower to achieve dynamic adjustment of the structure of the uplink/downlink reference signal .
  • the preset rule may be set on the base station side, that is, the base station determines the structure of the uplink reference signal and the structure of the downlink reference signal based on the cell radius corresponding to the cell accessed by the terminal, and then proceeds to step 203 That is, the base station notifies the terminal of the structure of the uplink reference signal configured for it.
  • the preset rule can also be set on the base station side and the terminal side, that is, the base station side can determine the structure of the corresponding uplink reference signal and the structure of the downlink reference signal based on the cell radius, and the terminal side can also be used during the access process.
  • the cell radius of the base station is obtained, and the structure of the corresponding uplink reference signal and the structure of the downlink reference signal are determined. Then, in this embodiment, the base station does not need to send configuration information to the terminal, and the base station and the terminal can configure the uplink reference signal according to the agreement The structure and the structure of the downlink reference signal.
  • the structure of the uplink reference signal only includes one CP and one GP (wherein, the GP may not exist), and the structure of the downlink reference signal includes only one CP and one GP.
  • Step 203 The base station sends configuration information to the terminal.
  • step 103 For specific details, refer to step 103, which will not be repeated here.
  • Step 204 The terminal configures an uplink reference signal based on the configuration information.
  • FIG. 17 is a schematic flowchart of a method for configuring a full-duplex reference signal in an embodiment of this application, and in FIG. 17:
  • Step 301 The terminal accesses the base station.
  • Step 302 The base station determines the structure of the uplink reference signal and the structure of the downlink reference signal according to the configuration parameters of the base station.
  • the preset rule may include: the base station determines the number of blank symbols contained in the structure of the uplink reference signal and/or the blank symbols contained in the structure of the downlink reference signal based on the configuration parameters of the base station The number of.
  • the base station determines the number of blank symbols contained in the structure of the uplink reference signal and/or the blank symbols contained in the structure of the downlink reference signal based on the configuration parameters of the base station The number of.
  • the multiple blank symbols are continuous in the structure of the uplink reference signal.
  • Blank symbols then multiple blank symbols are continuous in the structure of the downlink reference signal.
  • the configuration parameter of the base station may be the cell radius of the base station, where the cell radius refers to the corresponding cell radius of the cell accessed by the terminal.
  • the base station can determine the structure of the corresponding uplink reference signal for terminal 1 and terminal 2 based on the size of the cell radius.
  • the structure of the uplink reference signal of the terminal 1 and the terminal 2 is the same.
  • the preset rule when blank symbols are used in the structure of the uplink reference signal and the structure of the downlink reference signal, it is different from the orthogonality of the uplink reference signal and the downlink reference signal in scenario 2, and the preset rule also It is specified that there is at least one uplink reference signal that does not overlap with downlink data and does not overlap with the downlink reference signal, that is, only overlaps with blank symbols in the structure. It should be noted that, in some embodiments, the addition of blank symbols will cause the position of the reference signal (uplink reference signal and/or downlink reference signal) on the time domain resource to change.
  • the formulation principle of the preset rule It should also be considered that the downlink reference signal on the base station side does not overlap with the uplink data, and does not overlap with the uplink reference signal, that is, the downlink reference signal only overlaps with blank symbols.
  • the structure of the uplink reference signal and the structure of the downlink reference signal on the terminal side are shown in FIG. 18a
  • the structure of the uplink reference signal and the structure of the downlink reference signal on the base station side are shown in FIG. 18b.
  • the structure of the uplink reference signal includes an uplink reference signal that is not interfered with.
  • the downlink reference signal will overlap with the uplink data, which will affect the base station’s interference with the auto-interference channel (that is, the downlink sent by the base station). Signal caused by the interference). Therefore, as mentioned above, in the embodiment of the present application, the base station determines the number of blank symbols to be added according to the configuration information, and at the same time, it also needs to determine the position of the blank symbol to ensure that there is at least one non-passive symbol on the terminal side. At the same time as the uplink reference signal affected by the interference, there is at least one downlink reference signal that is not affected by the interference at the base station side.
  • the base station may calculate the number n of downlink reference signals in the structure of the downlink reference signal according to the following formula:
  • T cp represents the symbol length occupied by the cyclic prefix in the structure of the uplink reference signal and/or the structure of the downlink reference signal
  • T data represents the symbol length occupied by the uplink reference signal or the downlink reference signal
  • C represents the speed of light (3*10 8 m/s)
  • n is an integer greater than 1
  • the number of blank symbols m in the structure of the uplink reference signal is an integer greater than or equal to 1.
  • n consecutive blank symbols may be configured in the structure of the uplink reference signal, and m consecutive blank symbols are located after the uplink reference signal, where m is an integer greater than or equal to 1, and , The setting of m continuous blank symbols is used to ensure that the downlink reference signal on the base station side is not disturbed.
  • n continuous blank symbols may be configured in the structure of the downlink reference signal, and the value of n may be determined according to formula (2).
  • the value of n may be the minimum value in the range of the ear value, or the value of n may be Any value within the range of the ear value, the value of n can be determined according to actual requirements, for example: resource utilization and other factors, which are not limited in this application.
  • FIG. 19 there is one blank symbol in the structure of the uplink reference signal, and there are three consecutive blank symbols in the structure of the downlink reference signal, and the three consecutive blank symbols are located in the downlink reference signal.
  • one of the blank symbols is located in time slot n, and the other 2 blank symbols are located in time slot n-1.
  • FIG. 20 the role of the blank symbol located in time slot n in the structure of the downlink reference signal is shown in FIG. 20.
  • FIG. 20 for the base station side, as described above, one of the uplink reference signal and the downlink reference signal corresponding to time slot n Inter-synchronization, namely timing alignment.
  • the blank symbols on time slot n are used to adjust the position of the downlink reference signal to align with the blank symbols in the structure of the uplink reference signal (or can be understood as overlapping), so as to avoid uplink data or part of the uplink reference (required It is noted that if part of the uplink reference signal and part of the blank symbols overlap with the downlink reference signal, it will also affect the estimation result of the interference channel). The interference effect on the downlink reference signal.
  • the way to add force to the blank symbol can also adopt the way shown in FIG. 21, that is, in In FIG. 21, the blank symbols in the structure of the uplink reference signal are located before the uplink reference signal, and the blank symbols in the structure of the downlink reference signal are located after the downlink reference signal.
  • Blank symbols are set to adjust the position of the uplink reference signal in the structure of the uplink reference signal and the length of the structure of the uplink reference signal, and based on the adjustment of the structure of the uplink reference signal, corresponding blank symbols can be added to the structure of the downlink reference signal , To adjust the length of the structure of the downlink reference signal and the position of the downlink reference signal in the structure of the downlink reference signal.
  • the uplink reference signal on the terminal side is not the same as the downlink data or part of the downlink reference signal (that is, the entire uplink reference signal (including 33.33us) can be completely orthogonal to the downlink reference signal by adding blank symbols), Set according to actual needs (such as the size of the delay difference, or resource utilization and other factors).
  • the manner of configuring the reference signal in the second scenario that is, by configuring the repeated reference signal to adjust the length of the structure of the reference signal
  • the method that is, by arranging blank symbols, can be used in combination to adjust the length of the structure of the reference signal.
  • FIG. 22a A possible implementation is shown in FIG. 22a.
  • the structure of the uplink reference signal includes multiple consecutive uplink reference signals, and correspondingly, the structure of the downlink reference signal includes a downlink reference signal and at least one blank Symbols (where blank symbols can be continuous or discontinuous).
  • Fig. 22b shows another possible implementation manner. In Fig.
  • the structure of the uplink reference signal includes at least one blank symbol (where the blank symbols may be continuous or discontinuous), and the structure of the downlink reference signal Including multiple continuous downlink reference signals.
  • the structure of the reference signal shown in FIG. 22a and FIG. 22b is also a schematic example. That is, in the embodiment of the present application, the method of combining blank symbols and repeated reference signals may be an uplink reference.
  • the structure of the signal adopts repeated uplink reference signals and/or blank symbols, and the corresponding downlink reference signal adopts blank symbols and/or repeated downlink reference signals.
  • the configuration principle is to ensure that the uplink reference signal on the terminal side is not disturbed. Interference influence (not overlapping with downlink data) and the downlink reference signal on the base station side is not affected by interference (not overlapping with uplink data).
  • Step 303 The base station sends configuration information to the terminal.
  • step 103 For specific details, refer to step 103, which will not be repeated here.
  • Step 304 The terminal configures an uplink reference signal based on the configuration information.
  • FIG. 23 is a schematic flowchart of a method for configuring a full-duplex reference signal in an embodiment of this application, and in FIG. 23:
  • Step 401 The terminal accesses the base station.
  • Step 402 The base station determines the structure of the uplink reference signal and the structure of the downlink reference signal according to the distance parameter between the terminal and the base station.
  • the preset rule may include: the base station determines the number of uplink reference signals in the uplink reference signal structure and the downlink reference signal in the downlink reference signal structure based on the distance parameter between the terminal and the base station. The number of reference signals, where, if there are two or more uplink reference signals in the structure of the uplink reference signal, Then the multiple uplink reference signals are continuous in the structure of the uplink reference signal. Similarly, if there are two or more downlink reference signals in the structure of the downlink reference signal, the multiple downlink reference signals are continuous in the structure of the downlink reference signal.
  • both the base station and the terminal work in a full-duplex mode, and both the terminal and the base station are affected by auto-interference.
  • the base station can calculate the number k of uplink reference signals in the structure of the uplink reference signal and the number q of downlink reference signals in the structure of the downlink reference signal based on the following formula:
  • d represents the distance between the base station and the terminal in FIG. 5
  • T cp represents the structure of the uplink reference signal and/or the symbol length occupied by the cyclic buffer in the structure of the downlink reference signal
  • T data represents the uplink reference signal or The symbol length occupied by the downlink reference signal
  • c represents the speed of light (3*10 8 m/s)
  • both k and q are integers greater than or equal to 1.
  • the base station works in full-duplex mode and the terminal works in half-duplex mode, or the terminal may also be a full-duplex terminal, but when communicating with the base station, the following The communication method shown in Figure 4.
  • the base station can calculate the number k of uplink reference signals in the structure of the uplink reference signal and the number q of downlink reference signals in the structure of the downlink reference signal based on the following formula:
  • T cp represents the structure of the uplink reference signal and/or the symbol length occupied by the cyclic prefix in the structure of the downlink reference signal
  • T data represents The symbol length occupied by the uplink reference signal or the downlink reference signal
  • c represents the speed of light (3*10 8 m/s)
  • k and q are both integers greater than or equal to 1.
  • Step 403 The base station sends configuration information to the terminal.
  • Step 404 The terminal configures an uplink reference signal based on the configuration information.
  • the base station can adjust the structure of the reference signal according to the delay difference corresponding to the terminal (for example, the farther the terminal is from the base station, the greater the delay difference between the corresponding uplink signal and the downlink signal).
  • the number of repetitions of the reference signal is adjusted to adjust the length of the structure of the reference signal, thereby effectively improving the resource utilization rate on the premise of improving the interference channel estimation.
  • FIG. 24 is a schematic flowchart of a method for configuring a full-duplex reference signal in an embodiment of this application.
  • FIG. 24 :
  • Step 501 The terminal accesses the base station.
  • Step 502 The base station determines the structure of the uplink reference signal and the structure of the downlink reference signal according to the distance parameter between the terminal and the base station.
  • the preset rule may include: based on the distance parameter between the terminal and the base station, the base station determines the number of blank symbols included in the structure of the uplink reference signal and the structure of the downlink reference signal includes The number of blank symbols.
  • the base station determines the number of blank symbols included in the structure of the uplink reference signal and the structure of the downlink reference signal includes The number of blank symbols.
  • the base station determines the number of blank symbols included in the structure of the uplink reference signal and the structure of the downlink reference signal includes The number of blank symbols.
  • the base station determines the number of blank symbols included in the structure of the uplink reference signal and the structure of the downlink reference signal includes The number of blank symbols.
  • both the base station and the terminal work in a full-duplex mode, and both the terminal and the base station are affected by auto-interference.
  • the base station can calculate the number k of uplink reference signals in the structure of the uplink reference signal and the number q of downlink reference signals in the structure of the downlink reference signal based on the following formula:
  • d represents the distance between the base station and the terminal in FIG. 5
  • T cp represents the structure of the uplink reference signal and/or the symbol length occupied by the cyclic buffer in the structure of the downlink reference signal
  • T data represents the uplink reference signal or The symbol length occupied by the downlink reference signal
  • c represents the speed of light (3 * 10 8 m/s)
  • k and q are both integers greater than or equal to 1.
  • the base station works in full-duplex mode and the terminal works in half-duplex mode, or the terminal may also be a full-duplex terminal, but when communicating with the base station, the following The communication method shown in Figure 4.
  • the base station can calculate the number k of uplink reference signals in the structure of the uplink reference signal and the number q of downlink reference signals in the structure of the downlink reference signal based on the following formula:
  • D di+d 2 -d 3
  • ch is the distance between the base station and terminal 1
  • d 2 is the base station and terminal 2.
  • D 3 is the distance between terminal 1 and terminal 2
  • T cp represents the structure of the uplink reference signal and/or the symbol length occupied by the cyclic prefix in the structure of the downlink reference signal
  • T data represents the uplink reference signal or downlink
  • c represents the speed of light (3*108m/s)
  • both k and q are integers greater than or equal to 1.
  • Step 503 The base station sends configuration information to the terminal.
  • Step 504 The terminal configures an uplink reference signal based on the configuration information.
  • the base station can adjust the structure of the reference signal according to the delay difference corresponding to the terminal (for example, the farther the terminal is from the base station, the greater the delay difference between the corresponding uplink signal and the downlink signal).
  • the number and positions of the blank symbols are used to adjust the length of the structure of the reference signal and the position of the reference signal in the structure of the reference signal, thereby effectively improving the resource utilization rate on the premise of improving the interference channel estimation.
  • a base station or terminal includes a hardware structure and/or software module corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the base station or the terminal into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one.
  • Processing module The above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 25 shows a schematic diagram of a possible structure of the terminal 300 involved in the foregoing embodiment, as shown in FIG.
  • the terminal 300 may include: a receiving module 301 and a configuration module 302.
  • the receiving module 301 may be used for the step of “receiving configuration information”.
  • the module may be used for supporting the terminal to execute steps 104, 204, 304, 404, and 504 in the foregoing method embodiment.
  • the configuration module 302 can be used for the step of "configuring the uplink reference signal based on the received configuration information.” For example, this module can be used to support the terminal to perform step 104, step 204, step 304, step 404, and step in the above method embodiment. 504 related steps.
  • FIG. 26 shows a schematic diagram of a possible structure of the base station 400 involved in the foregoing embodiment.
  • the base station may include: a determining module 401, a configuration module 402, and a sending module 403.
  • the determining module 401 may be used for the step of "determining the structure of the uplink reference signal of the terminal based on a preset rule".
  • the module may be used for supporting the base station to perform the relevant steps of step 102 in the foregoing method embodiment.
  • the configuration module 402 can be used for the step of "configuring the structure of the downlink reference signal based on a preset rule.” For example, this module can be used to support the base station to perform step 102, step 202, step 302, step 402, and step in the above method embodiment. 502 related steps.
  • the sending module 403 may be used for the step of "sending configuration information to the terminal". For example, the module may be used for supporting the base station to execute the relevant steps of step 103, step 203, step 303, step 403, and step 503 in the foregoing method embodiment.
  • the device includes a processing module 501 and a communication module 502.
  • the device further includes a storage module 503.
  • the processing module 501, the communication module 502 and the storage module 503 are connected by a communication bus.
  • the communication module 502 may be a device with a transceiver function, and is used to communicate with other network equipment or a communication network.
  • the storage module 503 may include one or more memories, and the memories may be devices for storing programs or data in one or more devices or circuits.
  • the storage module 503 can exist independently and is connected to the processing module 501 through a communication bus.
  • the storage module can also be integrated with the processing module 501.
  • the apparatus 500 may be used in network equipment, circuits, hardware components, or chips.
  • the apparatus 500 may be a terminal in an embodiment of the present application, such as terminal 1 or terminal 2.
  • the schematic diagram of the terminal can be as shown in Figure 2b.
  • the communication module 502 of the apparatus 500 may include an antenna and a transceiver of the terminal, for example, the antenna 104 and the transceiver 102 in FIG. 2b.
  • the communication module 502 may further include an output device and an input device, for example, the output device 1214 and the input device 1215 in Figure 2b.
  • the device 500 may be a chip in the terminal in the embodiment of the present application.
  • the communication module 502 may be an input or output interface, a pin or a processing circuit, etc.
  • the storage module may store a computer-executed instruction of the method on the terminal side, so that the processing module 501 executes the method on the terminal side in the foregoing embodiment.
  • the storage module 503 may be a register,
  • the storage module 503 may be integrated with the processing module 501 such as cache or RAM; the storage module 503 may be a ROM or other types of static storage devices that can store static information and instructions, and the storage module 503 may be independent of the processing module 501.
  • the transceiver may be integrated on the apparatus 500, for example, the communication module 502 integrates the transceiver 202.
  • the apparatus 500 may be a base station in the embodiment of the present application.
  • the schematic diagram of the base station can be shown in Figure 2a.
  • the communication module 502 of the apparatus 500 may include an antenna and a transceiver of a base station, for example, the antenna 105 and the transceiver 103 in FIG. 2a.
  • the communication module 502 may also include a network interface of the base station, such as the network interface 104 in FIG. 2a.
  • the device 500 may be a chip in a base station in an embodiment of the present application.
  • the communication module 502 may be an input or output interface, a pin, or a processing circuit.
  • the storage module may store a computer execution instruction of the method on the base station side, so that the processing module 501 executes the method on the base station side in the foregoing embodiment.
  • the storage module 503 can be a register, a cache or RAM, etc.
  • the storage module 503 can be integrated with the processing module 501; the storage module 503 can be a ROM or other types of static storage devices that can store static information and instructions, and the storage module 503 can be integrated with
  • the processing module 501 is independent.
  • the transceiver may be integrated on the device 500, for example, the communication module 502 integrates the transceiver 103 and the network interface 104.
  • the method executed by the base station in the foregoing embodiment can be implemented.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the methods described in the foregoing embodiments can be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, the function can be stored as one or more instructions or codes on a computer-readable medium or transmitted on a computer-readable medium.
  • Computer-readable media may include computer storage media and communication media, and may also include any media that can transfer a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • the computer-readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used for carrying or with instructions or data structures
  • the required program code is stored in the form of and can be accessed by the computer.
  • any connection is properly termed a computer-readable medium. For example, if you use coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL) or wireless technology (such as infrared, radio and microwave) to transmit software from a website, server or other remote source, then coaxial cable, optical fiber cable , Twisted pair, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of media.
  • DSL digital subscriber line
  • wireless technology such as infrared, radio and microwave
  • Magnetic disks and optical disks as used herein include compact disks (CDs), laser disks, optical disks, digital versatile disks (DVDs), floppy disks and blu-ray disks. Disks usually reproduce data magnetically, and optical disks reproduce data optically using lasers. Combinations of the above should also be included in the scope of computer-readable media.
  • the embodiment of the present application also provides a computer program product.
  • the methods described in the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If it is implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the above computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the above method embodiments are generated.
  • the aforementioned computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种全双工参考信号的配置方法、终端及基站,涉及通信领域,该方法包括:终端接收配置信息,并基于配置信息,配置上行参考信号;其中,配置信息为基站基于预设规则,确定终端的上行参考信号的结构与下行参考信号的结构后向终端发送的;以及,上行参考信号的结构中包括至少一个不与基站发送的下行数据重叠的上行参考信号。本申请实现了对上行参考信号的结构的动态调整,以避免下行数据对上行参考信号的干扰影响,从而提升终端对干扰信道估计的准确性。

Description

全双工参考信号的配置方法、 终端及基站
本申请要求于 2019年 02月 28 日提交中国专利局、 申请号为 201910152630.3、 申请 名称为 “全双工参考信号的配置方法、 终端及基站” 的中国专利申请的优先权, 其全部 内容通过引用结合在本申请中。 技术领域
本申请实施例涉及通信领域, 尤其涉及一种全双工参考信号的配置方法、 终端及基 站。 背景技术
目前, 在全双工或混合双工系统中, 终端侧存在自千扰与互千扰, 因此, 终端 需要对千扰信道进行估计, 并基于估计结果进行千扰消除, 以提升信号质量。 但是, 由于终端侧的千扰信号 (指上行信号) 与有用信号 (指下行信号) 异步, 导致上参 考信号与下行数据存在重叠, 即, 下行数据将会对上行参考信号产生千扰, 从而影 响千扰信道的估计结果, 进而降低千扰抑制效果。
发明内容
本申请提供一种全双工参考信号的配置方法、 终端及基站, 能够在一定程度上避免 下行数据对上行参考信号的千扰影响。
为达到上述目的, 本申请采用如下技术方案:
第一方面,本申请实施例提供一种全双工参考信号的配置方法,该方法应用于终端, 方法包括: 终端接收配置信息, 并基于接收到的配置信息, 配置上行参考信号; 其中, 配置信息为基站基于预设规则, 确定终端的上行参考信号的结构与下行参考信号的 结构后向终端发送的; 以及, 上行参考信号的结构中包括至少一个不与基站发送的 下行数据重叠的上行参考信号。
通过上述方式, 实现了对上行参考信号的结构的动态调整, 以避免下行数据对 上行参考信号的千扰影响, 从而提升终端对千扰信道估计的准确性。 在一种可能的实现方式中, 预设规则可以包括: 上行参考信号的结构中包括 k个 上行参考信号, 其中, k为大于 1 的整数; 和 /或, 下行参考信号的结构中包括 q个 下行参考信号, 其中, q为大于 1的整数。 举例说明: 上行参考信号的结构中可以包 括 2个上行参考信号, 并且, 下行参考信号的结构中可包括 3个下行参考信号, 从 而通过次增加参考信号的个数以调整参考信号的结构的长度, 从而避免下行数据与 上行参考信号的重叠。 在一种可能的实现方式中,预设规则可以包括:根据基站的配置参数,确定 k值; 配置参数用于指示基站的小区半径。 举例说明: 预设规则预先配置在基站中, 基站 可根据预设规则的规定, 即, 根据基站的小区半径与 k值之间的对应关系, 确定与 终端对应的 k值。 从而实现接入小区内的终端可配置有相同的上行参考信号的结构 与下行参考信号的结构, 以使位于小区边缘的终端的上行参考信号不再受下行数据 的千扰影响, 从而提升小区边缘的终端的千扰信道估计的准确度。 在一种可能的实现方式中,预设规则可以包括:根据终端与基站之间的距离参数, 确定 k值。 举例说明: 预设规则预先配置在基站中, 基站可在获取到基站与终端之 间的距离参数之后,基于距离参数与 k值之间的对应关系,确定与终端对应的 k值。 从而实现接入小区并处于不同位置的终端, 可配置有不同的上行参考信号的结构与 下行参考信号的结构, 以保证小区内的终端对应的上行参考信号不受下行数据的千 扰影响的情况下, 提升资源利用率。 在一种可能的实现方式中,预设规则可以包括:根据基站的配置参数,确定 q值; 配置参数用于指示基站的小区半径。 从而实现接入小区内的终端可配置有相同的上 行参考信号的结构与下行参考信号的结构, 以使位于小区边缘的终端的上行参考信 号不再受下行数据的千扰影响, 从而提升小区边缘的终端的千扰信道估计的准确度。 在一种可能的实现方式中,预设规则可以包括:根据终端与基站之间的距离参数, 确定 q值。 从而实现接入小区并处于不同位置的终端, 可配置有不同的上行参考信 号的结构与下行参考信号的结构, 以保证小区内的终端对应的上行参考信号不受下 行数据的千扰影响的情况下, 提升资源利用率。 在一种可能的实现方式中, 其中, k个上行参考信号在上行信号的结构中连续; 以及, q个下行参考信号在下行信号的结构中连续。
通过上述方式, 实现了上行参考信号的结构中包括至少一个不与下行数据重叠的 上行参考信号, 例如: 上行参考信号的结构中可包括三个不与下行数据重叠的上行 参考信号, 从而进一步提升千扰信道估计的准确性。 在一种可能的实现方式中, 至少一个上行参考信号与下行参考信号的结构中的下 行参考信号正交。 举例说明: 正交的上行参考信号与下行参考信号可以为 ZC序列或 PN序列 (也可以称为 m序列)。
通过上述方式, 实现了对千扰信道(上行信号) 与有用信道(下行信号) 的同时 估计。 在一种可能的实现方式中, k值与 q值满足下述条件:
r < TCp+(A-2)*Tdata*c/2, 其中, k+q=A;
其中, r表示终端与基站之间的距离或基站的小区半径, Tcp表示上行参考信号的 结构和 /或下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示上行参考信 号或下行参考信号所占的符号长度, c表示光速。
通过上述方式, 实现了根据终端与基站之间的距离或者基站的小区半径与 k值及 q值之间的对应关系, 确定 k值与 q值的具体数值。 在一种可能的实现方式中, 预设规则还可以包括: 上行信号的结构中包括上行参 考信号以及 m个空白符号, 以及, 下行信号的结构中包括下行参考信号以及 n个空 白符号; 其中, m为大于或等于 1 的整数, n为大于 m的整数。 在一种可能的实现 方式中, m个空白符号可位于上行参考信号之前, n个空白符号可位于下行参考信号 之后。 或者, 在另一种可能的实现方式中, m个空白符号可位于上行参考信号之后, n个空白符号可位于下行参考信号之前。
通过上述方式, 实现了通过添加空白符号调整上行参考信号的结构与下行参考信 号的结构的长度, 以及上行参考信号在上行参考信号的结构中的位置和下行参考信 号在下行参考信号之后的位置, 从而避免下行数据对上行参考信号的千扰影响, 有 效提升千扰信道估计的准确度。 在一种可能的实现方式中, 预设规则还可以包括: 根据基站的配置参数, 确定 m 值与 n值; 配置参数用于指示基站的小区半径。 在一种可能的实现方式中, 预设规则还可以包括: 根据终端与基站之间的距离参 数, 确定 m值与 n值。 在一种可能的实现方式中, 预设规则还可以包括: m个空白符号在上行参考信号 的结构中连续; 以及, n个空白符号在下行参考信号的结构中连续。 在另一种可能的 实现方式中, m 个空白符号也可以存在部分不连续, 例如, 上行参考信号的结构中 包括 3个空白符号, 其中, 2个空白符号可位于上行参考信号之前, 1个空白符号位 于上行参考信号之后。 在一种可能的实现方式中, n值满足下述条件:
n > 2*r/(c *( Tcp +Tdata))
其中, r表示终端与基站之间的距离或基站的小区半径, Tcp表示上行参考信号的 结构和 /或下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示上行参考信 号或下行参考信号所占的符号长度, C表示光速。 第二方面,本申请实施例提供一种全双工参考信号的配置方法,该方法应用于基站, 所述方法可以包括: 基站基于预设规则, 确定终端的上行参考信号的结构; 以及, 基站基于预设规则, 配置下行参考信号的结构; 随后, 基站向终端发送配置信息, 配置信息用于指示终端基于上行参考信号的结构配置上行参考信号; 其中, 上行参 考信号的结构中包括至少一个不与基站发送的下行数据重叠的上行参考信号。 在一种可能的实现方式中, 预设规则可以包括: 上行参考信号的结构中包括 k个 上行参考信号, 其中, k为大于 1 的整数; 和 /或, 下行参考信号的结构中包括 q个 下行参考信号, 其中, q为大于 1的整数。 在一种可能的实现方式中, 预设规则包括: 根据基站的配置参数, 确定 k值; 配 置参数用于指示基站的小区半径。 在一种可能的实现方式中, 预设规则包括: 根据终端与基站之间的距离参数, 确 定 k值。 在一种可能的实现方式中, 预设规则包括: 根据基站的配置参数, 确定 q值; 配 置参数用于指示基站的小区半径。 在一种可能的实现方式中, 预设规则包括: 根据终端与基站之间的距离参数, 确 定 q值。 在一种可能的实现方式中, 其中, k个上行参考信号在上行信号的结构中连续; 以及, q个下行参考信号在下行信号的结构中连续。 在一种可能的实现方式中, 其中, 至少一个上行参考信号与下行参考信号的结构 中的下行参考信号正交。 在一种可能的实现方式中, k值与 q值满足下述条件:
r < TCp+(A-2)*Tdata*c/2, 其中, k+q=A;
其中, r表示终端与基站之间的距离或基站的小区半径, Tcp表示上行参考信号的 结构和 /或下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示上行参考信 号或下行参考信号所占的符号长度, C表示光速。 在一种可能的实现方式中, 预设规则包括: 上行信号的结构中包括上行参考信号 以及 m个空白符号,以及,下行信号的结构中包括下行参考信号以及 n个空白符号; 其中, m为大于或等于 1的整数, n为大于 m的整数。 在一种可能的实现方式中, 预设规则包括: 根据基站的配置参数, 确定 m值与 n 值; 配置参数用于指示基站的小区半径。 在一种可能的实现方式中, 预设规则包括: 根据终端与基站之间的距离参数, 确 定 m值与 n值。 在一种可能的实现方式中, m 个空白符号在上行参考信号的结构中连续; 以及, n个空白符号在下行参考信号的结构中连续。 在一种可能的实现方式中, n值满足下述条件:
n > 2*r/(c *( Tcp +Tdata))
其中, r表示终端与基站之间的距离或基站的小区半径, Tcp表示上行参考信号的 结构和 /或下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示上行参考信 号或下行参考信号所占的符号长度, c表示光速。 第三方面, 本申请实施例提供一种终端, 包括: 接收模块、 配置模块。 其中, 接收 模块可用于接收配置信息, 配置模块可用于基于接收到的配置信息, 配置上行参考信号; 其中, 配置信息为基站基于预设规则, 确定终端的上行参考信号的结构与下行参考信号 的结构后向终端发送的; 以及, 上行参考信号的结构中包括至少一个不与基站发送的下 行数据重叠的上行参考信号。 在一种可能的实现方式中, 预设规则包括: 上行参考信号的结构中包括 k个上行 参考信号, 其中, k为大于 1 的整数; 和 /或, 下行参考信号的结构中包括 q个下行 参考信号, 其中, q为大于 1的整数。 在一种可能的实现方式中, 预设规则包括: 根据基站的配置参数, 确定 k值; 配 置参数用于指示基站的小区半径。 在一种可能的实现方式中, 预设规则包括: 根据终端与基站之间的距离参数, 确 定 k值。 在一种可能的实现方式中, 预设规则包括: 根据基站的配置参数, 确定 q值; 配 置参数用于指示基站的小区半径。 在一种可能的实现方式中, 预设规则包括: 根据终端与基站之间的距离参数, 确 定 q值。 在一种可能的实现方式中, 其中, k个上行参考信号在上行信号的结构中连续; 以及, q个下行参考信号在下行信号的结构中连续。 在一种可能的实现方式中, 其中, 至少一个上行参考信号与下行参考信号的结构 中的下行参考信号正交。 在一种可能的实现方式中, k值与 q值满足下述条件:
r < TCp+(A-2)*Tdata*c/2, 其中, k+q=A;
其中, r表示终端与基站之间的距离或基站的小区半径, Tcp表示上行参考信号的 结构和 /或下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示上行参考信 号或下行参考信号所占的符号长度, C表示光速。 在一种可能的实现方式中, 预设规则包括: 上行信号的结构中包括上行参考信号 以及 m个空白符号,以及,下行信号的结构中包括下行参考信号以及 n个空白符号; 其中, m为大于或等于 1的整数, n为大于 m的整数。 在一种可能的实现方式中, 预设规则包括: 根据基站的配置参数, 确定 m值与 n 值; 配置参数用于指示基站的小区半径。 在一种可能的实现方式中, 预设规则包括: 根据终端与基站之间的距离参数, 确 定 m值与 n值。 在一种可能的实现方式中, m 个空白符号在上行参考信号的结构中连续; 以及, n个空白符号在下行参考信号的结构中连续。 在一种可能的实现方式中, n值满足下述条件:
n > 2*r/(c *( TCp +Tdata))
其中, r表示终端与基站之间的距离或基站的小区半径, Tcp表示上行参考信号的 结构和 /或下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示上行参考信 号或下行参考信号所占的符号长度, C表示光速。 第四方面, 本申请实施例提供一种基站, 包括: 确定模块、 配置模块、 以及发送 模块。 其中, 确定模块用于基于预设规则, 确定终端的上行参考信号的结构; 以及, 配置模块用于基于预设规则, 配置下行参考信号的结构; 发送模块用于向终端发送 配置信息, 配置信息用于指示终端基于上行参考信号的结构配置上行参考信号; 其 中, 上行参考信号的结构中包括至少一个不与基站发送的下行数据重叠的上行参考 信号。 在一种可能的实现方式中, 预设规则包括: 上行参考信号的结构中包括 k个上行 参考信号, 其中, k为大于 1 的整数; 和 /或, 下行参考信号的结构中包括 q个下行 参考信号, 其中, q为大于 1的整数。 在一种可能的实现方式中, 预设规则包括: 根据基站的配置参数, 确定 k值; 配 置参数用于指示基站的小区半径。 在一种可能的实现方式中, 预设规则包括: 根据终端与基站之间的距离参数, 确 定 k值。 在一种可能的实现方式中, 预设规则包括: 根据基站的配置参数, 确定 q值; 配 置参数用于指示基站的小区半径。 在一种可能的实现方式中, 预设规则包括: 根据终端与基站之间的距离参数, 确 定 q值。 在一种可能的实现方式中, 其中, k个上行参考信号在上行信号的结构中连续; 以及, q个下行参考信号在下行信号的结构中连续。 在一种可能的实现方式中, 其中, 至少一个上行参考信号与下行参考信号的结构 中的下行参考信号正交。 在一种可能的实现方式中, k值与 q值满足下述条件:
r < TCp+(A-2)*Tdata*c/2, 其中, k+q=A;
其中, r表示终端与基站之间的距离或基站的小区半径, Tcp表示上行参考信号的 结构和 /或下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示上行参考信 号或下行参考信号所占的符号长度, C表示光速。 在一种可能的实现方式中, 预设规则包括: 上行信号的结构中包括上行参考信号 以及 m个空白符号,以及,下行信号的结构中包括下行参考信号以及 n个空白符号; 其中, m为大于或等于 1的整数, n为大于 m的整数。 在一种可能的实现方式中, 预设规则包括: 根据基站的配置参数, 确定 m值与 n 值; 配置参数用于指示基站的小区半径。 在一种可能的实现方式中, 预设规则包括: 根据终端与基站之间的距离参数, 确 定 m值与 n值。 在一种可能的实现方式中, m 个空白符号在上行参考信号的结构中连续; 以及, n个空白符号在下行参考信号的结构中连续。 在一种可能的实现方式中, n值满足下述条件:
n > 2*r/(c *( TCp +Tdata))
其中, r表示终端与基站之间的距离或基站的小区半径, Tcp表示上行参考信号的 结构和 /或下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示上行参考信 号或下行参考信号所占的符号长度, C表示光速。 第五方面, 本申请实施例提供了一种终端, 包括: 收发器 /收发管脚和处理器, 可选 地, 还包括存储器。 其中, 所述收发器 /收发管脚、 所述处理器和所述存储器通过内部连 接通路互相通信; 所述处理器用于执行指令以控制所述收发器 /收发管脚发送或者接收信 号; 所述存储器用于存储指令。 所述处理器执行指令时, 所述处理器执行第二方面或第 二方面中任一种可能实现方式所述的方法。
第六方面, 本申请实施例提供了一种基站, 包括: 收发器 /收发管脚和处理器, 可选 地, 还包括存储器。 其中, 所述收发器 /收发管脚、 所述处理器和所述存储器通过内部连 接通路互相通信; 所述处理器用于执行指令以控制所述收发器 /收发管脚发送或者接收信 号; 所述存储器用于存储指令。 所述处理器执行指令时, 所述处理器执行第一方面或第 一方面中任一种可能实现方式所述的方法。 第七方面, 本申请实施例提供了一种计算机可读介质, 用于存储计算机程序, 该计 算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面, 本申请实施例提供了一种计算机可读介质, 用于存储计算机程序, 该计 算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。 第九方面, 本申请实施例提供了一种计算机程序, 该计算机程序包括用于执行第一 方面或第一方面的任意可能的实现方式中的方法的指令。
第十方面, 本申请实施例提供了一种计算机程序, 该计算机程序包括用于执行第二 方面或第二方面的任意可能的实现方式中的方法的指令。 第十一方面, 本申请实施例提供了一种芯片, 该芯片包括处理电路、 收发管脚。 其 中, 该收发管脚、 和该处理电路通过内部连接通路互相通信, 该处理电路执行第一方面 或第一方面的任一种可能的实现方式中的方法, 以控制接收管脚接收信号, 以控制发送 管脚发送信号。
第十二方面, 本申请实施例提供了一种芯片, 该芯片包括处理电路、 收发管脚。 其 中, 该收发管脚、 和该处理电路通过内部连接通路互相通信, 该处理电路执行第二方面 或第二方面的任一种可能的实现方式中的方法, 以控制接收管脚接收信号, 以控制发送 管脚发送信号。 第十三方面, 本申请实施例提供一种系统, 该系统包括上述第一方面和第二方面涉 及的基站和终端。 附图说明
为了更清楚地说明本申请实施例的技术方案, 下面将对本申请实施例的描述中所需 要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本申请的一些实施 例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些 附图获得其他的附图。
图 1 是本申请实施例提供的一种通信系统示意图;
图 2a是本申请实施例提供的一种基站的结构示意图;
图 2b是本申请实施例提供的一种终端的结构示意图;
图 3是本申请实施例提供的一种全双工模式示意图;
图 4是示例性提供的一种通信方式之一;
图 5是示例性提供的一种通信方式之一;
图 6是示例性提供的一种信号延时示意图;
图 7是示例性提供的一种千扰情况的示意图之一;
图 8是示例性提供的一种千扰情况的示意图之一;
图 9是示例性提供的一种参考信号的示意图之一;
图 10是示例性提供的一种参考信号的示意图之一;
图 11是本申请实施例提供的一种全双工参考信号的配置方法的流程示意图之一; 图 12是本申请实施例提供的一种全双工参考信号的配置方法的流程示意图之一; 图 13是本申请实施例提供的一种参考信号的结构示意图之一;
图 14是本申请实施例提供的一种参考信号的结构示意图之一;
图 15是本申请实施例提供的一种参考信号的结构示意图之一;
图 16是本申请实施例提供的一种参考信号的结构示意图之一;
图 17是本申请实施例提供的一种全双工参考信号的配置方法的流程示意图之一; 图 18a是本申请实施例提供的一种参考信号的结构示意图之一;
图 18b是本申请实施例提供的一种参考信号的结构示意图之一;
图 19是本申请实施例提供的一种参考信号的结构示意图之一;
图 20是本申请实施例提供的一种参考信号的结构示意图之一;
图 21是本申请实施例提供的一种参考信号的结构示意图之一;
图 22a是本申请实施例提供的一种参考信号的结构示意图之一;
图 22b是本申请实施例提供的一种参考信号的结构示意图之一;
图 23是本申请实施例提供的一种全双工参考信号的配置方法的流程示意图之一; 图 24是本申请实施例提供的一种全双工参考信号的配置方法的流程示意图之一; 图 25是本申请实施例提供的一种终端的结构示意图;
图 26是本申请实施例提供的一种基站的结构示意图;
图 27是本申请实施例提供的一种装置的结构示意图。 具体实施方式
下面将结合本申请实施例中的附图, 对本申请实施例中的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例是本申请一部分实施例, 而不是全部的实施例。 基于本 申请中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本申请保护的范围。
本文中术语“和 /或”, 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关 系, 例如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B, 单独存在 B这三种情 况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二” 等是用于区别不 同的对象, 而不是用于描述对象的特定顺序。 例如, 第一目标对象和第二目标对象等是 用于区别不同的目标对象, 而不是用于描述目标对象的特定顺序。
在本申请实施例中, “示例性的” 或者“例如” 等词用于表示作例子、 例证或说明。 本申请实施例中被描述为 “示例性的”或者“例如” 的任何实施例或设计方案不应被解 释为比其它实施例或设计方案更优选或更具优势。确切而言, 使用“示例性的”或者“例 如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中, 除非另有说明, “多个”的含义是指两个或两个以上。 例 如, 多个处理单元是指两个或两个以上的处理单元; 多个系统是指两个或两个以上的系 统。
在对本申请实施例的技术方案说明之前, 首先结合附图对本申请实施例的通信系统 进行说明。参见图 1, 为本申请实施例提供的一种通信系统示意图。该通信系统中包括基 站、 终端 1、 终端 2。 在本申请实施例具体实施的过程中, 终端可以为电脑、 智能手机、 电话机、有线电视机顶盒、数字用户线路路由器等设备。 需要说明的是,在实际应用中, 基站与终端的数量均可以为一个或多个, 图 1 所示通信系统的基站与终端的数量仅为适 应性举例, 本申请对此不做限定。
上述通信系统可以用于支持第四代 (fourth generation, 4G) 接入技术, 例如长期演 进 (long term evolution, LTE) 接入技术; 或者, 该通信系统也可以支持第五代 (fifth generation, 5G) 接入技术, 例如新无线 (new radio, NR) 接入技术; 或者, 该通信系 统也可以用于支持第三代 (third generation, 3G) 接入技术, 例如通用移动通信系统 (universal mobile telecommunications system, UMTS) 接入技术; 或者通信系统也可以 用于支持第二代 (second generation, 2G)接入技术,例如全球移动通讯系统 (global system for mobile communications, GSM) 接入技术; 或者, 该通信系统还可以用于支持多种无 线技术的通信系统, 例如支持 LTE技术和 NR技术。 另外, 该通信系统也可以适用于窄 带物联网系统 (Narrow Band- Internet of Things, NB-IoT)、 增强型数据速率 GSM演进 系统 (Enhanced Data rate for GSM Evolution, EDGE)、宽带码分多址系统 (Wideband Code Division Multiple Access, WCDMA)、码分多址 2000系统 (Code Division Multiple Access, CDMA2000 )、 时分同步码分多址系统 ( Time Division-Synchronization Code Division Multiple Access, TD-SCDMA) , 长期演进系统 (Long Term Evolution, LTE) 以及面向 未来的通信技术。
以及, 图 1中的基站可用于支持终端接入, 例如, 可以是 2G接入技术通信系统中的 基站收发信台 (base transceiver station, BTS)和基站控制器 (base station controller, BSC)、 3G接入技术通信系统中的节点 B (node B)和无线网络控制器 (radio network controller, RNC)、 4G接入技术通信系统中的演进型基站 (evolved nodeB, eNB)、 5G接入技术通 信系统中的下一代基站 (next generation nodeB, gNB)、发送接收点 (transmission reception point, TRP)、 中继节点 (relay node)、 接入点 (access point, AP) 等等。 为方便描述, 本申请所有实施例中, 为终端提供无线通信功能的装置统称为网络设备或基站。
图 1 中的终端可以是一种向用户提供语音或者数据连通性的设备, 例如也可以称为 移动台 (mobile station), 用户单元 (subscriber unit) , 站台 (station), 终端设备 (terminal equipment, TE)等。终端可以为蜂窝电话 (cellular phone), 个人数字助理 (personal digital assistant, PDA), 无线调制解调器 (modem), 手持设备 (handheld) , 膝上型电脑 (laptop computer) , 无绳电话 (cordless phone), 无线本地环路 (wireless local loop, WLL) 台, 平板电脑 (pad) 等。 随着无线通信技术的发展, 可以接入通信系统、 可以与通信系统的 网络侧进行通信, 或者通过通信系统与其它物体进行通信的设备都可以是本申请实施例 中的终端, 譬如, 智能交通中的终端和汽车、 智能家居中的家用设备、 智能电网中的电 力抄表仪器、 电压监测仪器、 环境监测仪器、 智能安全网络中的视频监控仪器、 收款机 等等。 在本申请实施例中, 终端可以与基站, 例如图 1 中的基站进行通信。 多个终端之 间也可以进行通信。 终端可以是静态固定的, 也可以是移动的。
图 2a是一种基站的结构示意图。 在图 2a中:
基站中包括至少一个处理器 101、 至少一个存储器 102、 至少一个收发器 103、 至少 一个网络接口 104和一个或多个天线 105。 处理器 101、 存储器 102、 收发器 103和网络 接口 104相连, 例如通过总线相连。 天线 105与收发器 103相连。 网络接口 104用于使 得基站通过通信链路, 与其它通信设备相连。 在本申请实施例中, 所述连接可包括各类 接口、 传输线或总线等, 本实施例对此不做限定。
本申请实施例中的处理器, 例如处理器 101, 可以包括如下至少一种类型: 通用中央 处理器 (Central Processing Unit, CPU)、数字信号处理器 (Digital Signal Processor, DSP)、 微处理器、特定应用集成电路专用集成电路 (Application-Specific Integrated Circuit, ASIC)、 微控制器 (Microcontroller Unit, MCU)、现场可编程门阵列 (Field Programmable Gate Array, FPGA )、 或者用于实现逻辑运算的集成电路。 例如, 处理器 101 可以是一个单核 (single-CPU) 处理器或多核 (multi-CPU) 处理器。 至少一个处理器 101 可以是集成在 一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器, 例如存储器 102, 可以包括如下至少一种类型: 只读存储 器 (read-only memory, ROM) 或可存储静态信息和指令的其他类型的静态存储设备, 随 机存取存储器 (random access memory, RAM) 或者可存储信息和指令的其他类型的动态 存储设备, 也可以是电可擦可编程只读存储器 (Electrically erasable programmabler-only memory, EEPROM)。 在某些场景下, 存储器还可以是只读光盘 (compact disc read-only memory, CD-ROM) 或其他光盘存储、 光碟存储 (包括压缩光碟、 激光碟、 光碟、 数字 通用光碟、 蓝光光碟等)、 磁盘存储介质或者其他磁存储设备、 或者能够用于携带或存储 具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质, 但不 限于此。
存储器 102可以是独立存在, 与处理器 101相连。 可选的, 存储器 102也可以和处 理器 101 集成在一起, 例如集成在一个芯片之内。 其中, 存储器 102能够存储执行本申 请实施例的技术方案的程序代码, 并由处理器 101 来控制执行, 被执行的各类计算机程 序代码也可被视为是处理器 101 的驱动程序。 例如, 处理器 101 用于执行存储器 102中 存储的计算机程序代码, 从而实现本申请实施例中的技术方案。 可选的, 存储器 102还 可以在芯片之外, 通过接口与处理器 101相连。
收发器 103 可以用于支持接入网设备与终端之间射频信号的接收或者发送, 收发器 103可以与天线 105相连。 收发器 103 包括发射机 Tx和接收机 Rx。 具体地, 一个或多 个天线 105可以接收射频信号,该收发器 103的接收机 Rx用于从天线接收所述射频信号, 并将射频信号转换为数字基带信号或数字中频信号, 并将该数字基带信号或数字中频信 号提供给所述处理器 101,以便处理器 101对该数字基带信号或数字中频信号做进一步的 处理, 例如解调处理和译码处理。 此外, 收发器 103 中的发射机 Tx还用于从处理器 101 接收经过调制的数字基带信号或数字中频信号, 并将该经过调制的数字基带信号或数字 中频信号转换为射频信号, 并通过一个或多个天线 105 发送所述射频信号。 具体地, 接 收机 Rx 可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数 字基带信号或数字中频信号, 所述下混频处理和模数转换处理的先后顺序是可调整的。 发射机 Tx 可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级 上混频处理和数模转换处理以得到射频信号, 所述上混频处理和数模转换处理的先后顺 序是可调整的。 数字基带信号和数字中频信号可以统称为数字信号。
图 2b是一种终端的结构示意图。 在图 2b中:
终端包括至少一个处理器 201、 至少一个收发器 202和至少一个存储器 203。 处理器 201、 存储器 203和收发器 202相连。 可选的, 终端还可以包括输出设备 204、 输入设备 205和一个或多个天线 206。 天线 206与收发器 202相连, 输出设备 204、 输入设备 205 与处理器 201相连。
收发器 202、存储器 203 以及天线 206可以参考图 2a中的相关描述,实现类似功能。 处理器 201可以是基带处理器,也可以是 CPU,基带处理器和 CPU可以集成在一起, 或者分开。
处理器 201 可以用于为终端实现各种功能, 例如用于对通信协议以及通信数据进行 处理, 或者用于对整个终端设备进行控制, 执行软件程序, 处理软件程序的数据; 或者 用于协助完成计算处理任务, 例如对图形图像处理或者音频处理等等; 或者处理器 201 用于实现上述功能中的一种或者多种
输出设备 204和处理器 201通信, 可以以多种方式来显示信息。 例如, 输出设备 204 可以是液晶显示器 (Liquid Crystal Display, LCD)、 发光二级管 (Light Emitting Diode, LED)显示设备、 阴极射线管 (Cathode Ray Tube, CRT)显示设备、 或投影仪 (projector) 等。 输入设备 205和处理器 201 通信, 可以以多种方式接受用户的输入。 例如, 输入设 备 205可以是鼠标、 键盘、 触摸屏设备或传感设备等。
存储器 202可以是独立存在, 与处理器 201相连。 可选的, 存储器 202也可以和处 理器 201 集成在一起, 例如集成在一个芯片之内。 其中, 存储器 202能够存储执行本申 请实施例的技术方案的程序代码, 并由处理器 201 来控制执行, 被执行的各类计算机程 序代码也可被视为是处理器 201 的驱动程序。 例如, 处理器 201 用于执行存储器 202中 存储的计算机程序代码, 从而实现本申请实施例中的技术方案。 可选的, 存储器 202还 可以在芯片之外, 通过接口与处理器 201相连。
为使本领域技术人员更好的理解本申请的技术方案, 下面就本申请中所涉及到的已 有技术进行简单介绍。
目前, 根据上行链路和下行链路在时频资源上不同的划分方式, 半双工方式可划分 为时分双工(Time Division Duplexing, TDD)和频分双工(Frequency Division Duplexing, FDD)。 其中, TDD是指上下行链路使用不同的时隙加以区分, 比如 LTE系统中, 将一 个帧分为上行子帧和下行子帧分别用于上下行传输。 一般为了避免上下行之间的干扰, TDD在下行子帧转上行子帧时需要加入保护子帧 (上行子帧转下行子帧可以不加入保护 子帧, 因为基站可以控制转换的时间), 以及保持全网的相对同步。 频分双工指上下行链 路使用不同的频谱进行区分, 一般为了避免上下行之间的干扰, 频分双工系统的上行频 谱和下行频谱之间会留有保护频带。
全双工技术在相同时频资源上实现上下行的同时传输, 它的频谱效率是半双工的两 倍。 在全双工系统中, 设备同时同频进行收发, 接收天线会接收到来自本设备的发送信 号, 即自干扰。 由于同一设备收发天线相距很近甚至是同天线, 自干扰信号强度远高于 有用信号, 这会导致接收机中器件饱和, 造成有用信号丟失。 因此, 接收机在解调有用 信号之前, 必须消除自干扰。 自干扰消除的关键是估计发送信号到接收天线的信道, 精 确重建自干扰信号, 并将其从接收信号中减去 (即消除接收信号中的干扰信号)。 如图 3 所示, 即为全双工模式示意图,在图 3中, 发送端通过发送天线向接收端发送发射信号, 同时, 发送端可通过接收天线接收有用信号 (有用信号可来自其他未示出的设备或图中 的接收端), 则, 对于全双工模式的发送端, 发射信号将对有用信号造成自干扰。
将全双工技术应用到无线通信系统中, 主要包括下述两种方式:
1)如图 4所示为应用于图 1所示的通信系统的一种通信方式, 其中, 基站工作于全 双工模式, 终端工作于半双工模式。
2)如图 5所示为应用于图 1所示的通信系统的另一种通信方式, 其中, 基站和终端 均工作在全双工模式。
具体的, 在如图 4所示的通信方式中, 基站接收到来自基站发射机的自干扰信号; 而下行用户 (图 4中的终端 1) 除了接收到来自基站的有用信号外 (即下行信号), 还会 接收到来自上行用户 (图 4中的终端 2) 的信号 (即终端 2发送的上行信号), 即互干扰 信号。
而在如图 5所示的通信方式中, 基站与终端均为全双工模式, 因此, 基站与终端均 会受到自干扰的影响。
需要说明的是,结合图 4和图 5所示的通信方式,还可以存在混合双工的通信系统, 例如: 图 4中的终端 1与终端 2也可以为全双工模式的终端, 或者, 终端 1为全双工模 式的终端且终端 2为半双工模式的终端。 需要说明的是, 在终端 1与终端 2为全双工模 式或其中至少一个终端为全双工模式时, 由于功能限制, 基站在同一时隙资源上仅能接 收一个终端发送的上行信号, 并且向一个终端发送下行信号 (可以为不相同的终端, 即 如图 4所示, 也可以为与上行信号对应的终端, 即如图 5所示), 因此, 无论终端工作在 何种状态 (指全双工或半双工), 在存在多个终端时, 对于终端侧, 仅存在自干扰或互干 扰, 而不会存在自干扰与互干扰共存的场景。
为了获得全双工的增益, 系统需要通过干扰消除或者干扰抑制技术来处理这两种干 扰 (包括自干扰与互干扰), 而这些技术均需要准确估计干扰信号经历的信道。
在已有技术中, 同步是蜂窝移动通信系统的一个基本需求, 特别是在以正交频分复 用(Orthogonal Frequency Division Multiplexing, OFDM)为基础的 LTE和 5GNR系统中: 不同步会引起严重的符号间和载波间干扰。在传统的蜂窝移动通信系统中,下行传输时, 小区内终端的下行信号均由基站发出, 因此, 下行信号可实现同步。在上行传输过程中, 基站接收到来自不同终端发送的上行信号, 由于终端与基站之间的距离可能不同, 并且 基于信号的传播时间的差异,上行信号到达基站的时间可能不同。为了实现上行同步(即 同一时隙的上行信号到达基站的时间相同), 蜂窝通信系统采用了定时提前机制, 即不同 终端根据其与基站之间的距离, 以一定量的时间提前发送, 保证各终端到达基站的时间 一致, 如图 6所示, 在图 6中, 终端 1的上行信号 1提前 TAi发送, 终端 2与基站距离 较之终端 1与基站的距离更远,因此,终端 2的上行信号 2提前 TA2发送, TA2大于 TAi, 则, 上行信号 1与上行信号 2到达基站的时间相同, 实现上行传输同步。 图 6中还显示 出下行信号的传输时延, 在图 6中, 基站发送下行信号, 其中, 发送给终端 1的下行信 号 1延时 TPi到达终端 1 (即从发送时刻到终端接收到之间相差 TPi), 发送给终端 2的 下行信号 2延时 TP2到达终端 2。
此外, 为了对抗复杂的无线传播环境带来的多径效应, OFDM符号前添加的循环前 缀 (Cyclic Prefix, CP) 保证了 OFDM的正交性, CP的长度 (指 CP所占的符号长度) 通常与多径的最大传输时延相关。
将全双工应用于现在的蜂窝移动通信系统, 特别是宏蜂窝时, 由于小区内上下行同 时传输, 自干扰 /互干扰与有用信号不再同步。
具体到如图 4所示的通信方式中的干扰情况, 如图 7所示, 在图 7中, 终端 1发送 的上行信号 1经过 TPi后到达基站, 以保证上行传输的同步, 即, 终端 1发送的上行信 号 1到达基站时与基站定时对齐。以及,基站发送的下行信号 1并经过 TP2后到达终端 2。 此时, 基站接收到的自干扰信号, 即基站的发送信号与有用信号是同步的。 以及, 如上 文所述, 在该场景中, 还可能存在互干扰, 即, 上行信号 1经过丁?3到达终端 2。 但是由 于上行传播时延 (即 TP3) 和下行传播时延 (即 TP2) 可能不同, 终端 2接收到的来自终 端 1的互干扰信号 (即上行信号 1) 与来自基站的有用信号 (即下行信号 1) 相差 At。 该 时延差与基站和终端的地理位置相关:
At = TPi + TP2 - TP3 =(di + d2 - d3)/c
其中, ch为基站与终端 1之间的距离, d2为基站与终端 2之间的距离, d3为终端 1 与终端 2的距离, 以及, c为光速, c=3*108m/s。根据三角形的关系可以确定 At20,其中, 如果 At>0, 则互干扰与有用信号是异步的。
具体到如图 5所示的通信方式中的干扰情况, 如图 8所示, 在图 8中, 终端提前 TA 向基站发送上行信号, 以保证上行传输的同步, 上行信号到达基站时与基站定时对齐。 此时, 基站接收到的自干扰信号, 即基站发送的下行信号与有用信号仍然是同步的; 但 是, 由于基站到终端的下行传播时延 (即 TP) 和终端的提前发送 (即 TA), 终端接收到 的自干扰信号与有用信号相差 TA, 即自干扰与有用信号是异步的。
全双工系统中接收信号的这些异步特征会影响信道估计和后续的干扰消除 /抑制, 对 传统的参考信号设计提出挑战。
为了同时估计自干扰信号和有用信号的信道, 现有技术方案给上下行传输分配了正 交的参考信号 (时频域、 码域)。 如图 9所示, 该方案是现有 LTE或者 5G NR中多输入 多输出 (Multiple-Input Multiple-Output, MIMO) 技术中的参考信号的扩展, 参考信号可 以根据上下行在频域交叉放置, 也可以根据上下行采用正交的参考序列, 如 ZC (Zadoff-Chu) 或者伪随机 (Pseudo-Noise Code, PN) 序列。
现有的技术方案是根据上下行正交, 即干扰信号与有用信号同步的前提设计的, 只 有在同步的条件下, 上述设计的正交性才能得到满足。 如上文中对全双工系统的分析可 知, 对于终端侧, 干扰信号(包括自干扰信号或互干扰信号)与有用信号可能是异步的, 如图 10所示。 此时, 下行数据会对终端的上行参考信号产生干扰 (图中虚线框内), 从 而影响终端自干扰信号的信道估计。 这种上下行参考信号的正交性遭到破坏, 无法进行 准确的信号估计, 进而无法进行有效的干扰消除或者抑制和数据解调。 需要说明的是, 对于图 1中的终端 1而言, 图 10中上行信号可以是终端 1发送给基站的上行信号, 下行 信号则是基站发送给终端 1的信号, 即, 图 10中的上行信号对下行信号 (有用信号) 而 言为自干扰信号。 或者, 图 10中的上行信号还可以是终端 2发送给基站, 并同时对终端 1造成影响的上行信号, 下行信号则是基站发送给终端 1的信号, 即上行信号对下行信号 (有用信号) 而言为互干扰信号。 以及, 在图 10中所示出的时隙 n上的上行参考信号与 时隙 n上的下行参考信号之间的时延差 At仅为示意性举例, 如上文所述, 由于终端与基 站, 或者终端与终端之间的距离导致终端侧接的上行参考信号与下行参考信号异步, 因 此, 实际上, At的大小取决于终端与基站之间的距离, 即, 与基站的距离或者终端之间 距离越大, 则 At越大, 也就是说, 位于小区边缘的终端, 其上行参考信号 (包括终端发 送的上行参考信号或者是接收到的来自其他终端的上行参考信号) 与下行参考信号之间 的 At最大。
因此, 如何提高终端侧的干扰信道进行估计的准确度称为亟需解决的问题。
本申请实施例旨在通过优化参考信号的结构, 调整上行参考信号、 下行参考信 号和数据 (包括上行数据与下行数据) 的相对位置, 避免重叠, 消除千扰, 提升千 扰信道估计的精确度。 需要说明的是, 本申请实施例中所述的数据 (包括上行数据 和下行数据)是指如图 10所示的信号中对应的载波上除参考信号部分以外的数据部 分, 也可以称为数据符号。 即, 本申请实施例中的技术方案可通过配置上行参考信 号的结构和 /或下行参考信号的结构以解决图 10 中存在的上行参考信号与下行数据 之间存在重叠的问题。
结合上述如图 1 所示的通信系统示意图, 下面介绍本申请的具体实施方案, 需要说 明的是, 图 1 中的基站为全双工模式, 终端可以全部为全双工模式, 或者全部为半双工 模式, 或者混合双工模式 (例如: 终端 1为全双工模式, 终端 2为半双工模式), 其中, 终端与基站进行通信时, 按照如图 4或图 5所示的通信方式进行数据传输。 场景一
结合图 1, 如图 11所示为本申请实施例中的全双工参考信号的配置方法的流程示意 图, 在图 11中:
步骤 101, 终端接入基站。
具体的, 在本申请的实施例中, 终端接入基站。 可选地, 本申请中, 基站可基于终 端与基站之间的距离或者时延, 为终端确定对应的上行参考信号的结构以及下行参考信 号的结构, 在该实施例中, 终端接入基站的过程中, 基站可获取终端与基站之间的距离 (时延)信息。 在一个实施例中, 基站获取与终端之间的距离信息的方式可以为终端发 送参考信号, 基站可根据接收到的参考信号的时延等信息, 获取到距离值。 在另一个实 施例中, 基站获取与终端之间的距离值的方式还可以为终端上报终端所在的位置信息, 基站可根据接收到的位置信息, 获取到距离值。 基站可通过任意一种可能的实现方式获 取到基站与终端之间的距离值, 本申请不做限定。
以及, 终端接入基站的其它具体细节, 例如终端与基站在接入时的交互过程或配置 过程, 可参照已有技术中实施例中的技术方案, 本申请不再赘述。
步骤 102,基站基于预设规则,确定终端的上行参考信号的结构和下行参考信号的结 构。
具体的, 在本申请的实施例中, 基站可通过调整上行参考信号结构和 /或下行参考信 号结构的长度, 以避免终端侧的上行参考信号与下行数据之间的重叠 (其中, 数据与参 考信号重叠时, 则数据会对参考信号造成千扰) , 同时保证基站侧的下行参考信号与上 行数据之间不出现重叠。 可选地, 在本申请中, 预设规则可设置于基站侧, 基站则可根 据预设规则中记录的上行参考信号的结构和下行参考信号的结构与参数(参数可以为距 离参数也可以为小区半径参数)之间的对应关系, 确定上行参考信号的结构与下行参考 信号的结构。 随后, 基站可配置下行参考信号的结构, 并通过配置信息指示终端对按照 确定后的上行参考信号的结构对上行参考信号进行配置 (即步骤 103) 。
在一个实施例中, 预设规则中规定的调整上行参考信号和 /或下行参考信号的长度的 方式可以为: 在参考信号的结构 (上行参考信号和 /或下行参考信号) 中配置多个连续的 参考信号, 具体细节将在下面的场景中进行详细阐述。
在另一个实施例中, 预设规则中规定的调整上行参考信号和 /或下行参考信号的长度 的方式可以为: 在参考信号的结构 (上行参考信号和 /或下行参考信号) 中配置多个连续 的空白符号, 具体细节将在下面的场景中进行详细阐述。
在又一个实施例中, 预设规则中规定的调整上行参考信号和 /或下行参考信号的长度 的方式还可以为: 在参考信号的结构 (上行参考信号和 /或下行参考信号) 中配置至少一 个参考信号与至少一个空白符号, 具体细节将在下面的场景中进行详细阐述。
其中, 在本申请的实施例中, 基站在确定参考信号 (上行参考信号和 /或下行参考信 号) 的结构的长度时, 可根据基站的小区半径的长度, 确定参考信号的结构中连续参考 信号的个数或空白符号的个数。即,基站下属所有终端均可配置相同的参考信号的结构, 以克服时延差导致的终端侧的上行参考信号与下行参考信号的异步问题所造成的自千扰 或互千扰。 可选地, 在本申请的实施例中, 基站在确定参考信号结构的长度时, 还可以根据基 站与终端之间的距离 (即步骤 101 中基站获取到的基站与终端之间的距离值) , 确定参 考信号的结构中连续参考信号的个数或空白符号的个数。 即, 接入基站的多个终端可配 置有不同的参考信号的结构, 具体配置方式将在下面的实施例中进行详细阐述。
可选地, 在本申请的实施例中, 指定区域内的所有基站及基站所属小区均可配置有 相同的预设规则, 即, 预设规则中可直接规定上行参考信号的结构与下行参考信号的结 构, 即, 接入指定区域内的小区的所有终端可配置有相同的上行参考信号的结构, 以及 基站为每个终端发送的下行信号具有相同的下行参考信号的结构。其中,在该实施例中, 预设规则中的参考信号的结构的可以是基于指定区域内的最大的小区的半径所确定。
需要说明的是, 本申请实施例中所述的基站为终端配置的上行参考信号是指终端发 送给基站的上行参考信号, 或者, 还可以是其它终端发送给基站并对终端造成互千扰的 上行参考信号。 也就是说, 对于图 1 中的终端 1与终端 2 , 若终端 1与终端 2的通信方式 如图 4 所示, 则, 本申请实施例中终端基于基站的指示配置的上行参考信号即为终端 2 发送给基站, 并且终端 1 也会接收到的来自于终端 2的上行信号, 即, 基站指示终端 2 对上行参考信号进行配置, 从而使终端 1侧接收到的来自终端 2的上行参考信号不与终 端 1接收到的来自基站的下行数据重叠。在另一个实施例中, 若图 1中的终端 1或终端 2 的通信方式如图 5 所示, 则, 本申请实施例中终端基于基站的指示配置的上行参考信号 即为终端 1向基站发送的上行参考信号,即,基站指示终端 1对上行参考信号进行配置, 从而使终端 1发送的上行参考信号不与终端 1接收到的下行数据重叠。
步骤 103 , 基站向终端发送配置信息。
具体的, 在本申请的实施例中, 基站可通过向终端发送配置信息, 以指示终端根据 配置信息指示的内容对上行参考信号的结构进行配置。
可选地, 配置信息可以为无线资源控制 ( Radio Resource Control, RRC ) 信息, 即, 在基站与终端进行 RRC连接时,基站即可完成对下行参考信号的结构与上行参考信号的 结构的配置过程, 并通过 RRC信息向终端发布对应于该终端的上行信号的结构。 或者, 配置信息还可以为协议信息, 例如: 媒体接入控制 ( Medium Access Control, MAC ) it 息等, 本申请不做限定。
步骤 104, 终端基于配置信息, 配置上行参考信号。
具体的, 在本申请的实施例中, 终端接收基站发送的配置信息, 并基于配置信息的 指示, 对上行参考信号进行配置。
随后, 基站与终端可基于已配置好的上行参考信号结构与下行参考信号结构进行通 信, 即, 基站向终端发送包含已配置的下行参考信号结构的下行信号, 以及, 终端向基 站发送包含已配置的上行参考信号结构的上行信号, 从而实现终端侧的上行参考信号结 构中包括至少一个不与基站发送的下行数据重叠的上行参考信号。 在通信过程中, 由于 终端侧存在至少一个不与基站发送的下行数据重叠的上行参考信号, 即, 存在至少一个 不被下行数据千扰的上行参考信号, 则, 终端可基于该不被千扰的至少一个参考信号, 对自千扰信道或互千扰信道进行估计, 并在确定自千扰信道或互千扰信道后, 对自千扰 信号或互千扰信号进行消除, 其中, 千扰消除的相关技术内容可参照已有技术实施例中 的方法, 本申请不再赘述。 接着, 终端可进行有用信道进行估计, 此时, 有用信号 (即 下行信号)将不会受到自千扰或互千扰的影响, 进而提升有用信道估计的准确性。 场景二
结合图 1, 如图 12所示为本申请实施例中的全双工参考信号的配置方法的流程示意 图, 在图 12中:
步骤 201, 终端接入基站。
步骤 202,基站根据基站的配置参数,确定上行参考信号的结构以及下行参考信号的 结构。
具体的, 在本申请的实施例中, 预设规则可以包括: 基站基于基站的配置参数, 确 定上行参考信号的结构中的上行参考信号的个数和下行参考信号结构中的下行参考信号 的个数, 其中, 若上行参考信号的结构中存在两个或两个以上上行参考信号, 则多个上 行参考信号在上行参考信号的结构中连续, 同样, 下行参考信号的结构中存在两个或两 个以上下行参考信号, 则多个下行参考信号在下行参考信号的结构中连续。
可选地, 基站的配置参数可以为基站的小区半径, 其中, 小区半径是指终端接入的 小区的对应的小区半径。 例如: 图 1中的终端 1与终端 2接入基站中的小区后, 基站可 基于小区半径的大小, 为终端 1与终端 2确定对应的上行参考信号的结构。 其中, 在该 实施例中, 由于终端 1与终端 2接入同一小区, 则, 终端 1与终端 2的上行参考信号的 结构相同。
具体的, 基站可根据下述公式计算上行参考信号的结构中的上行参考信号的个数 k, 以及下行参考信号的结构中的下行参考信号的个数 q:
r < Tcp+(A-2)*Tdata*c/2 , 其中, k+q=A ( 1)
其中, r表示基站的小区半径, Tcp表示上行参考信号的结构和 /或下行参考信号 的结构中的循环前缀所占的符号长度, Tdata表示上行参考信号或下行参考信号所占的 符号长度, c表示光速( 3 * 108m/s), 以及, k与 q均为大于或等于 1的整数。 需要说 明的是, 在本申请中, 如公式( 1) 中所述, k+q=A, 其中, k与 q均为大于或等于 1 的整数, 并且, 在本申请中, 当 k等于 1 时, q必然为大于 1 的整数, 例如: 当 A 等于 3时, 若 k等于 1, 则 q等于 2。 反之, 当 q等于 1时, k必然为大于 1的整数。
参照上述公式( 1)可知, k与 q之和为 A, 假设 A为 3, 则 k可以为 1, q为 2, 或者, q可以为 1, k为 2。
具体的, 以子载波间隔为 30kHz、快速傅里叶变换( Fast Fourier Transformation, FFT)尺寸为 2048的帧结构为例进行详细说明: CP所占的符号长度为 Tcp约为 2.34us ( 144 个采样点), 上行参考信号或下行参考信号 (本申请实施例中的上行参考信号 或下行参考信号可以理解为已有技术中实施例中的上行参考信号中的数据符号) 所 占的符号长度 Tdata约为 33.33us( 2048个采样点), 总符号长度 (即 CP与参考信号 的长度)丁 约为 35.68us(四舍五入的结果)。 假设小区半径为 5km , 则根据公式 ( 1) 可计算出 A大于等于 3。
基于上述结果, 在一个实施例中, 基站可在 A的取值区间内任意选取一值作为 A的值, 可选地, 基站也可以在取值区间内选取最小值作为 A的值。 以 A的取值区 间为[3, +00)为例, 则, 基站可确定 A的值为 10, 或者, 也可以确定 A的值为 3, 本 申请不做限定。 在本实施例中, 以基站确定 A值为 3为例, 则, k+q=3。 在本实施例 中, 若 k为 2, q为 1, 则基于该配置确定的上行参考信号的结构中包括 2个连续的 上行参考信号, 下行参考信号的结构中包括 1 个下行参考信号。 即, 基站可通过在 上行参考信号的结构中配置多个连续的上行参考信号, 以增加上行参考信号的结构 的长度, 从而实现存在至少一个与下行参考信号正交, 并且不与下行数据重叠的上 行参考信号, 参考信号的结构如图 13所示。 需要说明的是, 如上文所述, 由于终端 与基站或与其它终端之间的距离所产生的上行参考信号与下行参考信号之间的异步, 并且异步的情况如图 10所示,即,上行参考信号与下行参考信号的时延差为 At,则, 为实现配置后的上行参考信号的结构中至少存在一个不被下行数据干扰的上行参考信号, 贝 |J, 在本实施例中 (即上行参考信号的结构中包括多个连续的上行参考信号, 下行参考 信号的结构只包括 1个下行参考信号),重复的上行参考信号的位置配置于原上行参考信 号 (即时隙 n上的上行参考信号) 之后。 以及, 在本申请中, 上行参考信号的结构与下 行参考信号的结构的末尾可添加保护间隔 (Guard Period, GP)。
具体的, 在图 13中, 估计区间 (即图中虚线框) 内的上行参考信号即为不被下 行数据千扰的上行参考信号。 需要说明的是, 所述估计区间为终端在对自千扰信道 或互千扰信道进行估计时所使用的方式, 即, 终端可通过对估计区间内的上行参考 信号进行自千扰或互千扰信道的估计, 并基于确定后的信道结果, 进行千扰抑制。 其中, 估计区间的长度可大于或等于参考信号所占的符号长度( 33.33us), 以及, 估 计区间的起始位置根据上 /下行参考信号的结构的不同而改变,例如,在本实施例中, 上行参考信号的结构中包括 2个连续的上行参考信号,下行参考信号的结构中包括 1 个下行参考信号, 则, 如图 13所示, 估计区间的起始位置与下行参考信号的结构的 起始位置相同,并且估计区间的长度等于一个上行参考信号所占的符号长度( 33.33us) 与 CP所占的符号长度 (2.34us)之和。
综上, 在本实施例中, 可通过配置 k 个连续的上行参考信号以增加上行参考信 号的结构的长度, 从而避免下行数据对上行参考信号的千扰。
在另一个实施例中, 仍以 A取值为 3为例, 基站可确定 k为 1, q为 2, 即, 上 行参考信号的结构中包括 1 个上行参考信号, 下行参考信号的结构中包括 2个连续 的下行参考信号。 即, 基站可通过在下行参考信号的结构中配置多个连续的下行参 考信号, 以增加下行参考信号的结构的长度, 从而实现存在至少一个与下行参考信 号正交, 并且不与下行数据重叠的上行参考信号, 参考信号的结构如图 14所示。 需 要说明的是, 如上文所述, 由于终端与基站或与其它终端之间的距离所产生的上行 参考信号与下行参考信号之间的异步, 并且异步的情况如图 10所示, 即, 上行参考 信号与下行参考信号的时延差为 At, 则, 为实现配置后的上行参考信号的结构中至少 存在一个不被下行数据干扰的上行参考信号, 则, 在本实施例中 (即上行参考信号的结 构中包括 1个上行参考信号, 下行参考信号的结构包括多个连续的下行参考信号), 重复 的下行参考信号的位置配置于原下行参考信号 (即时隙 n上的下行参考信号) 之前, 即 时隙 n-1上的下行信号中。 具体的, 在图 14中, 估计区间 (即图中虚线框) 内的上行 参考信号即为不被下行数据千扰的上行参考信号。 其中, 在本实施例中, 上行参考 信号的结构中包括 1 个上行参考信号, 下行参考信号的结构中包括 2个连续的下行 参考信号, 则, 如图 14所示, 估计区间的起始位置与上行参考信号的结构的起始位 置相同, 并且估计区间的长度等于一个上行参考信号所占的符号长度 ( 33.33us) CP 所占的符号长度(2.34us) 之和。
综上, 在本实施例中, 可通过配置 q 个连续的下行参考信号以增加下行参考信 号的结构的长度, 从而避免下行数据对上行参考信号的千扰。
在又一个实施例中, 以 A取值为 5为例, 基站可确定 k为 2, q为 3, 即, 上行 参考信号的结构中包括 2个连续的上行参考信号, 下行参考信号的结构中包括 3个 连续的下行参考信号。 即, 基站可通过在上行参考信号的结构中配置多个连续的上 行参考信号, 以增加上行参考信号的结构的长度, 以及, 通过在下行参考信号的结 构中配置多个连续的下行参考信号, 以增加下行参考信号的结构的长度, 从而实现 存在至少一个 (如图 15所示, 估计区间内存在 2个) 与下行参考信号正交, 并且不 与下行数据重叠的上行参考信号, 参考信号的结构如图 15所示。 需要说明的是, 如 上文所述, 由于终端与基站或与其它终端之间的距离所产生的上行参考信号与下行 参考信号之间的异步, 并且异步的情况如图 10所示, 即, 上行参考信号与下行参考 信号的时延差为 At, 则, 为实现配置后的上行参考信号的结构中至少存在一个不被下行 数据干扰的上行参考信号, 则, 在本实施例中 (即上行参考信号的结构中包括多个连续 的上行参考信号, 下行参考信号的结构包括多个连续的下行参考信号), 重复的上行参考 信号可设置与原上行参考信号 (即时隙 n上的上行参考信号) 之后, 重复的下行参考信 号的位置配置于原下行参考信号 (即时隙 n上的下行参考信号) 之前, 即时隙 n-1上的 下行信号中。 具体的, 在图 15 中, 估计区间 (即图中虚线框) 内的上行参考信号即 为不被下行数据千扰的上行参考信号。 其中, 在本实施例中, 上行参考信号的结构 中包括 2个连续的上行参考信号, 下行参考信号的结构中包括 3个连续的下行参考 信号, 则, 如图 15所示, 估计区间的起始位置与上行参考信号的结构的起始位置相 同, 并且估计区间的长度等于一个上行参考信号所占的符号长度 ( 33.33us) 与 CP 所占的符号长度 CP所占的符号长度(2.34us) 之和。 可选地, 如图 16为 k为 2, q 为 3时的另一种配置方式, 在图 16中, 重复的上行参考信号配置于原上行参考信号 之后, 重复的下行参考信号分别位于原下行参考信号之前与之后, 显然, 如图 16所 示, 估计区间内存在 2 个不与下行数据重叠的上行参考信号, 终端侧在对千扰信道 进行估计时, 可有效提升千扰信道估计的精确性。 因此, 当上行参考信号的结构和 / 或下行参考信号的结构中包含多个连续的参考信号时, 连续的参考信号的位置可基 于上行参考信号与下行参考信号之间的时延差 At进行设置, 即, 在保证至少存在一个 不与下行数据重叠的上行参考信号的前提下, 可通过调整连续重复的上行参考信号或下 行参考信号的位置以增加不与下行数据重叠的上行参考信号的个数, 从而提升信道估计 的准确度。
综上, 在本实施例中, 可通过配置 k 个连续的上行参考信号以增加上行参考信 号的长度, 以及配置 q 个连续的下行参考信号以增加下行参考信号的结构的长度, 从而避免下行数据对上行参考信号的千扰。
需要说明的是, 在本实施例中, k与 q的计算结果可以在小区初始化过程中进行 确定, 即, 基站在确定 A的取值范围后, 可在满足区间内确定 A的值, 并基于确定 后的 A值, 随机选定 k与 q的值。 或者, 还可以由基站基于当前资源的负载情况, 例如: 若下行资源调度负载过大, 则可将 k值适应性调高, q值调低, 以实现上 /下 行参考信号的结构的动态调整。
可选地, 在本实施例中, 预设规则可设置于基站侧, 即, 基站基于终端接入的 小区对应的小区半径, 确定上行参考信号的结构与下行参考信号的结构后, 进入步 骤 203, 即, 由基站通知终端为其配置的上行参考信号的结构。 可选地, 预设规则还 可以设置于基站侧与终端侧, 即, 基站侧可基于小区半径确定对应的上行参考信号 的结构与下行参考信号的结构, 而终端侧同样可在接入过程中获取到基站的小区半 径, 并确定对应的上行参考信号的结构与下行参考信号的结构, 则, 在该实施例中, 无需基站向终端发送配置信息, 基站与终端可按照约定, 配置上行参考信号的结构 及下行参考信号的结构。
需要说明的是, 在本申请中, 上行参考信号的结构中仅包括 1个 CP及 1个 GP (其中, GP可不存在), 下行参考信号的结构中仅包括 1个 CP及 1个 GP。
步骤 203 , 基站向终端发送配置信息。
具体细节可参照步骤 103, 此处不赘述。
步骤 204, 终端基于配置信息, 配置上行参考信号。
具体细节可参照步骤 104, 此处不赘述。 场景三
结合图 1, 如图 17所示为本申请实施例中的全双工参考信号的配置方法的流程示意 图, 在图 17中:
步骤 301, 终端接入基站。
步骤 302,基站根据基站的配置参数,确定上行参考信号的结构以及下行参考信号的 结构。
具体的, 在本申请的实施例中, 预设规则可以包括: 基站基于基站的配置参数, 确 定上行参考信号的结构中包含的空白符号的个数和 /或下行参考信号结构中包含的空白 符号的个数。 可选地, 若上行参考信号的结构中存在两个或两个以上空白符号, 则多个 空白符号在上行参考信号的结构中连续, 同样, 下行参考信号的结构中存在两个或两个 以上空白符号, 则多个空白符号在下行参考信号的结构中连续。
可选地, 基站的配置参数可以为基站的小区半径, 其中, 小区半径是指终端接入的 小区的对应的小区半径。 例如: 图 1中的终端 1与终端 2接入基站中的小区后, 基站可 基于小区半径的大小, 为终端 1与终端 2确定对应的上行参考信号的结构。 其中, 在该 实施例中, 由于终端 1与终端 2接入同一小区, 则, 终端 1与终端 2的上行参考信号的 结构相同。 具体的, 在本申请的实施例中, 在上行参考信号的结构与下行参考信号的结构 中采用空白符号时, 与场景二中的上行参考信号与下行参考信号正交不同, 预设规 则中还规定有上行参考信号的结构中存在至少一个不与下行数据重叠, 并且不与下 行参考信号重叠, 即, 仅与空白符号重叠的上行参考信号。 需要说明的是, 在某些 实施例中,由于加入空白符号将会导致参考信号(上行参考信号和 /或下行参考信号) 的在时域资源上的位置改变, 因此, 预设规则的制定原则还需考虑到基站侧的下行 参考信号不与上行数据重叠, 并且不与上行参考信号重叠, 即, 下行参考信号仅与 空白符号重叠。 举例说明: 若终端侧的上行参考信号的结构与下行参考信号的结构 如图 18a所示, 则基站侧的上行参考信号的结构与下行参考信号的结构如图 18b所 示, 显然, 虽然对于终端侧, 上行参考信号的结构中包含 1 个不受千扰的上行参考 信号, 但是, 对于基站侧, 下行参考信号将会与上行数据重叠, 进而影响基站对自 千扰信道 (即基站发送的下行信号造成的千扰) 的估计。 因此, 如前所述, 在本申 请的实施例中, 基站根据配置信息, 确定加入空白符号的个数的同时, 还需要确定 力口入空白符号的位置, 以保证终端侧存在至少一个不被千扰影响的上行参考信号的 同时, 基站侧存在至少一个不被千扰影响的下行参考信号。
下面对空白符号的不同配置方式进行举例说明:
可选地, 基站可根据下述公式计算下行参考信号的结构中的下行参考信号的个数 n:
n > 2*r/(c *( Tcp +Tdata)) (2)
其中, r表示基站的小区半径, Tcp表示上行参考信号的结构和 /或下行参考信号 的结构中的循环前缀所占的符号长度, Tdata表示上行参考信号或下行参考信号所占的 符号长度, c表示光速( 3* 108m/s), 以及, n为大于 1的整数, 上行参考信号的结构 中的空白符号的个数 m为大于或等于 1的整数。
可选地, 在本申请中, 上行参考信号的结构中可配置有 m个连续的空白符号, 并且 m个连续的空白符号位于上行参考信号之后, 其中, m为大于或等于 1的整数, 以及, m 个连续的空白符号的设置用于保证基站侧的下行参考信号不被千扰。 相应的, 下行参 考信号的结构中可配置有 n个连续的空白符号, n值可根据公式( 2)确定, 例如, n值 可以为耳又值范围内的最小值, 或者, n值可以为耳又值范围内的任意值, n值可根据实际需 求, 例如: 资源的利用率等因素进行确定, 本申请不做限定。 如图 19所示, 其中, 在图 19中, 上行参考信号的结构中存在 1个空白符号, 下行参考信号的结构中存在 3个连续 的空白符号, 其中, 3个连续的空白符号位于下行参考信号之前, 并且其中 1个空白符号 位于时隙 n, 另外 2个空白符号位于时隙 n-1。 其中, 下行参考信号的结构中位于时隙 n 的空白符号的作用如图 20所示, 在图 20中, 对于基站侧, 如上文所述, 时隙 n对应的 上行参考信号与下行参考信号之间同步, 即定时对齐。 因此, 时隙 n上的空白符号用于 将下行参考信号的位置进行调整, 以与上行参考信号的结构中的空白符号对齐(或可理 解为重叠) , 从而避免上行数据或部分上行参考 (需要说明的是, 若部分上行参考信号 与部分空白符号均与下行参考信号重叠, 同样会影响千扰信道的估计结果)对下行参考 信号的千扰影响。
可选地, 在本申请中, 空白符号的添力口方式还可以采用如图 21所示的方式, 即, 在 图 21中, 上行参考信号的结构中的空白符号位于上行参考信号之前, 下行参考信号的结 构中的空白符号位于下行参考信号之后。
需要说明的是, 本申请实施例中所述的空白符号的设置方式(包括空白符号在参考 信号的结构中的位置以及数量) 均为示意性举例, 例如, 在上行参考信号之前与之后均 可设置空白符号, 以调整上行参考信号在上行参考信号的结构中的位置及上行参考信号 的结构的长度, 并且基于上行参考信号的结构的调整, 下行参考信号的结构中可对应添 加相应的空白符号, 以调整下行参考信号的结构的长度以及下行参考信号在下行参考信 号的结构中的位置。 即, 在保证终端侧的上行参考信号不与下行数据或部分下行参考信 号(即, 也可以通过添加空白符号使整个上行参考信号 (包括 33.33us)完全与下行参考 信号正交) 的前提下, 根据实际需求(例如时延差的大小, 或资源利用率等因素)进行 设置。
此外, 在一种可能的实现方式中, 场景二中的配置参考信号的方式, 即, 通过配置 重复的参考信号, 以调整参考信号的结构的长度的方式, 与场景三中的配置参考信号的 方式, 即通过配置空白符号, 以调整参考信号的结构的长度的方式可结合使用。 如图 22a 所示为一种可能的实现方式, 在图 22a中, 上行参考信号的结构中包括多个连续的上行 参考信号, 相应的, 下行参考信号的结构中包括下行参考信号及至少一个空白符号 (其 中, 空白符号可以连续, 也可以不连续) 。 如图 22b所示为另一种可能的实现方式, 在 图 22b 中, 上行参考信号的结构中包括至少一个空白符号 (其中, 空白符号可以连续, 也可以不连续),下行参考信号的结构中包括多个连续的下行参考信号。需要说明的是, 图 22a与图 22b所示出的参考信号的结构同样为示意性举例,即,在本申请的实施例中, 空白符号与重复参考信号的方式结合的方法, 可以为上行参考信号的结构中采用重复的 上行参考信号和 /或空白符号,对应的下行参考信号采用空白符号和 /或重复的下行参考信 号的方式, 其配置原则为在保证终端侧的上行参考信号不被千扰影响 (不与下行数据重 叠) 以及基站侧的下行参考信号不被千扰影响 (不与上行数据重叠) 。
步骤 303, 基站向终端发送配置信息。
具体细节可参照步骤 103, 此处不赘述。
步骤 304, 终端基于配置信息, 配置上行参考信号。
具体细节可参照步骤 104, 此处不赘述。 场景四
结合图 1, 如图 23所示为本申请实施例中的全双工参考信号的配置方法的流程示意 图, 在图 23中:
步骤 401, 终端接入基站。
步骤 402, 基站根据终端与基站之间的距离参数, 确定上行参考信号的结构以及 下行参考信号的结构。
具体的, 在本申请的实施例中, 预设规则可以包括: 基站基于终端与基站之间的距 离参数, 确定上行参考信号的结构中的上行参考信号的个数和下行参考信号结构中的下 行参考信号的个数,其中,若上行参考信号的结构中存在两个或两个以上上行参考信号, 则多个上行参考信号在上行参考信号的结构中连续, 同样, 下行参考信号的结构中存在 两个或两个以上下行参考信号, 则多个下行参考信号在下行参考信号的结构中连续。
可选地, 在如图 5所示的通信方式中, 基站与终端均工作于全双工模式, 终端与基 站均受到自千扰的影响。 在该种通信方式中, 基站可基于下述公式计算上行参考信号的 结构中的上行参考信号的个数 k, 以及下行参考信号的结构中的下行参考信号的个数 q:
d < Tcp+(A-2)*Tdata*c/2, 其中, k+q=A ( 3 )
其中, d表示图 5 中的基站与终端之间的距离, Tcp表示上行参考信号的结构和 / 或下行参考信号的结构中的循环前缓所占的符号长度, Tdata表示上行参考信号或下行 参考信号所占的符号长度, c表示光速 ( 3* 108m/s ), 以及, k与 q均为大于或等于 1 的整数。
基站根据公式确定 k与 q的方式可参照场景二, 此处不赘述。
可选地, 在如图 4 所示的通信方式中, 基站工作于全双工方式, 终端工作于半 双工方式, 或者, 还可以终端为全双工终端, 但是与基站通信时, 采用如图 4 所示 的通信方式。 在该种通信方式中, 基站可基于下述公式计算上行参考信号的结构中的 上行参考信号的个数 k, 以及下行参考信号的结构中的下行参考信号的个数 q :
D < Tcp+(A-2)*Tdata*c/2, 其中, k+q=A ( 4 ) 其中, D ch+cb-ds, ch为基站与终端 1之间的距离, d2为基站与终端 2之间的距离, d3为终端 1 与终端 2的距离, Tcp表示上行参考信号的结构和 /或下行参考信号的结构 中的循环前缀所占的符号长度, Tdata表示上行参考信号或下行参考信号所占的符号长 度, c表示光速 ( 3* 108m/s ), 以及, k与 q均为大于或等于 1的整数。
基站根据公式确定 k与 q的方式可参照场景二, 此处不赘述。
步骤 403 , 基站向终端发送配置信息。
步骤 404, 终端基于配置信息, 配置上行参考信号。
综上,在本申请中,基站可根据终端对应的延时差情况 (例如距离基站越远的终端, 对应的上行信号与下行信号之间的延时差越大) , 通过调整参考信号的结构中参考信号 的重复个数, 以调整参考信号的结构的长度, 从而在提升千扰信道估计的前提下, 有效 地提升了资源利用率。 场景五
结合图 1, 如图 24所示为本申请实施例中的全双工参考信号的配置方法的流程示意 图, 在图 24中:
步骤 501, 终端接入基站。
步骤 502, 基站根据终端与基站之间的距离参数, 确定上行参考信号的结构以及 下行参考信号的结构。
具体的, 在本申请的实施例中, 预设规则可以包括: 基站基于终端与基站之间的距 离参数, 确定上行参考信号的结构中包含的空白符号的个数和成下行参考信号结构中包 含的空白符号的个数。可选地,若上行参考信号的结构中存在两个或两个以上空白符号, 则多个空白符号在上行参考信号的结构中连续, 同样, 下行参考信号的结构中存在两个 或两个以上空白符号, 则多个空白符号在下行参考信号的结构中连续。
可选地, 在如图 5所示的通信方式中, 基站与终端均工作于全双工模式, 终端与基 站均受到自千扰的影响。 在该种通信方式中, 基站可基于下述公式计算上行参考信号的 结构中的上行参考信号的个数 k, 以及下行参考信号的结构中的下行参考信号的个数 q:
n > 2*d/(c *( Tcp +Tdata)) ( 5 )
其中, d表示图 5 中的基站与终端之间的距离, Tcp表示上行参考信号的结构和 / 或下行参考信号的结构中的循环前缓所占的符号长度, Tdata表示上行参考信号或下行 参考信号所占的符号长度, c表示光速 ( 3 * 108m/s ), 以及, k与 q均为大于或等于 1 的整数。
基站根据公式确定 k与 q的方式可参照场景二, 此处不赘述。
可选地, 在如图 4 所示的通信方式中, 基站工作于全双工方式, 终端工作于半 双工方式, 或者, 还可以终端为全双工终端, 但是与基站通信时, 采用如图 4 所示 的通信方式。 在该种通信方式中, 基站可基于下述公式计算上行参考信号的结构中的 上行参考信号的个数 k, 以及下行参考信号的结构中的下行参考信号的个数 q :
n > 2*D/(c *( Tcp +Tdata)) ( 5 ) 其中, D=di+d2-d3, ch为基站与终端 1之间的距离, d2为基站与终端 2之间的距离, d3为终端 1与终端 2的距离, Tcp表示上行参考信号的结构和 /或下行参考信号的结构 中的循环前缀所占的符号长度, Tdata表示上行参考信号或下行参考信号所占的符号 长度, c表示光速 ( 3 * 108m/s ) , 以及 k与 q均为大于或等于 1的整数。
基站根据公式确定 k与 q的方式可参照场景二, 此处不赘述。
步骤 503 , 基站向终端发送配置信息。
步骤 504, 终端基于配置信息, 配置上行参考信号。
综上,在本申请中,基站可根据终端对应的延时差情况 (例如距离基站越远的终端, 对应的上行信号与下行信号之间的延时差越大) , 通过调整参考信号的结构中空白符号 的个数与位置, 以调整参考信号的结构的长度以及参考信号在参考信号结构中的位置, 从而在提升千扰信道估计的前提下, 有效地提升了资源利用率。
可选地, 在本申请中, 场景四与场景五中的配置方式同样可做结合, 具体细节可参 照场景三中图 22a与图 22b的相应描述, 此处不赘述。 上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。 可以理解的是, 基站或终端为了实现上述功能, 其包含了执行各个功能相应的硬件结 构和 /或软件模块。 本领域技术人员应该很容易意识到, 结合本文中所公开的实施例 描述的各示例的单元及算法步骤, 本申请实施例能够以硬件或硬件和计算机软件的 结合形式来实现。 某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行, 取 决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个特定的应用来 使用不同方法来实现所描述的功能, 但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对基站或终端进行功能模块的划分, 例如, 可以对应各个功能划分各个功能模块, 也可以将两个或两个以上的功能集成在一个 处理模块中。 上述集成的模块既可以采用硬件的形式实现, 也可以采用软件功能模 块的形式实现。 需要说明的是, 本申请实施例中对模块的划分是示意性的, 仅仅为 一种逻辑功能划分, 实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下, 在采用对应各个功能划分各 个功能模块的情况下, 图 25示出了上述实施例中所涉及的终端 300的一种可能的结 构示意图, 如图 25所示, 终端 300可以包括: 接收模块 301、 配置模块 302。 其中, 接收模块 301 可用于 “接收配置信息” 的步骤, 例如, 该模块可以用于支持终端执 行上述方法实施例中的步骤 104、 步骤 204、 步骤 304、 步骤 404、 步骤 504的相关 步骤。 配置模块 302可用于 “基于接收到的配置信息, 配置上行参考信号” 的步骤, 例如, 该模块可以用于支持终端执行上述方法实施例中的步骤 104、 步骤 204、 步骤 304、 步骤 404、 步骤 504的相关步骤。
图 26示出了上述实施例中所涉及的基站 400的一种可能的结构示意图,如图 26 所示, 基站可以包括: 确定模块 401、 配置模块 402、 发送模块 403。 其中, 确定模 块 401 可用于 “基于预设规则, 确定终端的上行参考信号的结构” 的步骤, 例如, 该模块可以用于支持基站执行上述方法实施例中的步骤 102 的相关步骤。 配置模块 402可用于 “基于预设规则, 配置下行参考信号的结构” 的步骤, 例如, 该模块可以 用于支持基站执行上述方法实施例中的步骤 102、 步骤 202、 步骤 302、 步骤 402、 步骤 502的相关步骤。发送模块 403可用于“向终端发送配置信息” 的步骤,例如, 该模块可以用于支持基站执行上述方法实施例中的步骤 103、 步骤 203、 步骤 303、 步骤 403、 步骤 503的相关步骤。 下面介绍本申请实施例提供的一种装置。 如图 27所示:
该装置包括处理模块 501和通信模块 502。 可选的, 该装置还包括存储模块 503。 处 理模块 501、 通信模块 502和存储模块 503通过通信总线相连。
通信模块 502可以是具有收发功能的装置, 用于与其他网络设备或者通信网络进行 通信。
存储模块 503可以包括一个或者多个存储器, 存储器可以是一个或者多个设备、 电 路中用于存储程序或者数据的器件。
存储模块 503可以独立存在, 通过通信总线与处理模块 501相连。 存储模块也可以 与处理模块 501集成在一起。
装置 500可以用于网络设备、 电路、 硬件组件或者芯片中。
装置 500可以是本申请实施例中的终端,例如终端 1或终端 2。终端的示意图可以如 图 2b所示。 可选的, 装置 500的通信模块 502可以包括终端的天线和收发机, 例如图 2b 中的天线 104和收发机 102。 可选的, 通信模块 502还可以包括输出设备和输入设备, 例 如图 2b中的输出设备 1214和输入设备 1215。
装置 500可以是本申请实施例中的终端中的芯片。 通信模块 502可以是输入或者输 出接口、 管脚或者处理电路等。 可选的, 存储模块可以存储终端侧的方法的计算机执行 指令,以使处理模块 501执行上述实施例中终端侧的方法。存储模块 503可以是寄存器、 缓存或者 RAM等, 存储模块 503可以和处理模块 501集成在一起; 存储模块 503可以 是 ROM或者可存储静态信息和指令的其他类型的静态存储设备, 存储模块 503可以与 处理模块 501相独立。 可选的, 随着无线通信技术的发展, 收发机可以被集成在装置 500 上, 例如通信模块 502集成了收发机 202。
当装置 500是本申请实施例中的终端或者终端中的芯片时, 装置 500可以实现上述 实施例中终端执行的方法。 装置 500可以是本申请实施例中的基站。 基站的示意图可以 如图 2a所示。 可选的, 装置 500的通信模块 502可以包括基站的天线和收发机, 例如图 2a中的天线 105和收发机 103。 通信模块 502还可以包括基站的网络接口, 例如图 2a中 的网络接口 104。
装置 500可以是本申请实施例中的基站中的芯片。 通信模块 502可以是输入或者输 出接口、 管脚或者处理电路等。 可选的, 存储模块可以存储基站侧的方法的计算机执行 指令,以使处理模块 501执行上述实施例中基站侧的方法。存储模块 503可以是寄存器、 缓存或者 RAM等, 存储模块 503可以和处理模块 501集成在一起; 存储模块 503可以 是 ROM或者可存储静态信息和指令的其他类型的静态存储设备, 存储模块 503可以与 处理模块 501相独立。 可选的, 随着无线通信技术的发展, 收发机可以被集成在装置 500 上, 例如通信模块 502集成了收发机 103, 网络接口 104。
当装置 500是本申请实施例中的基站或者基站中的芯片时, 可以实现上述实施例中 基站执行的方法。 本申请实施例还提供了一种计算机可读存储介质。 上述实施例中描述 的方法可以全部或部分地通过软件、 硬件、 固件或者其任意组合来实现。 如果在软件中 实现, 则功能可以作为一个或多个指令或代码存储在计算机可读介质上或者在计算机可 读介质上传输。 计算机可读介质可以包括计算机存储介质和通信介质, 还可以包括任何 可以将计算机程序从一个地方传送到另一个地方的介质。 存储介质可以是可由计算机访 问的任何可用介质。
作为一种可选的设计, 计算机可读介质可以包括 RAM, ROM, EEPROM, CD-ROM 或其它光盘存储器, 磁盘存储器或其它磁存储设备, 或可用于承载的任何其它介质或以 指令或数据结构的形式存储所需的程序代码, 并且可由计算机访问。 而且, 任何连接被 适当地称为计算机可读介质。 例如, 如果使用同轴电缆, 光纤电缆, 双绞线, 数字用户 线 ( DSL )或无线技术 (如红外, 无线电和微波)从网站, 服务器或其它远程源传输软 件, 则同轴电缆, 光纤电缆, 双绞线, DSL或诸如红外, 无线电和微波之类的无线技术 包括在介质的定义中。 如本文所使用的磁盘和光盘包括光盘 ( CD ) , 激光盘, 光盘, 数 字通用光盘 ( DVD ) , 软盘和蓝光盘, 其中磁盘通常以磁性方式再现数据, 而光盘利用 激光光学地再现数据。 上述的组合也应包括在计算机可读介质的范围内。
本申请实施例还提供了一种计算机程序产品。 上述实施例中描述的方法可以全部或 部分地通过软件、 硬件、 固件或者其任意组合来实现。 如果在软件中实现, 可以全部或 者部分得通过计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。 在计算机上加载和执行上述计算机程序指令时, 全部或部分地产生按照上述方法实施例 中描述的流程或功能。 上述计算机可以是通用计算机、 专用计算机、 计算机网络、 网络 设备、 用户设备或者其它可编程装置。 上面结合附图对本申请的实施例进行了描述, 但是本申请并不局限于上述的具体实 施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本领域的普通技术人 员在本申请的启示下, 在不脱离本申请宗旨和权利要求所保护的范围情况下, 还可做出 4艮多形式, 均属于本申请的保护之内。

Claims

权 利 要 求 书
1、 一种全双工参考信号的配置方法, 其特征在于, 应用于终端, 所述方法包括: 接收配置信息;
基于所述配置信息, 配置上行参考信号;
其中, 所述配置信息为基站基于预设规则, 确定所述终端的上行参考信号的结构 与下行参考信号的结构后向所述终端发送的;
以及, 所述上行参考信号的结构中包括至少一个不与所述基站发送的下行数据重 叠的上行参考信号。
2、 根据权利要求 1所述的方法, 其特征在于, 所述预设规则包括:
所述上行参考信号的结构中包括 k个上行参考信号, 其中, k为大于 1的整数; 和 /或,
所述下行参考信号的结构中包括 q个下行参考信号, 其中, q为大于 1的整数。
3、 根据权利要求 2所述的方法, 其特征在于, 所述预设规则包括:
根据所述基站的配置参数, 确定所述 k值;
所述配置参数用于指示所述基站的小区半径。
4、 根据权利要求 2所述的方法, 其特征在于, 所述预设规则包括:
根据所述终端与所述基站之间的距离参数, 确定所述 k值。
5、 根据权利要求 2所述的方法, 其特征在于, 所述预设规则包括:
根据所述基站的配置参数, 确定所述 q值;
所述配置参数用于指示所述基站的小区半径。
6、 根据权利要求 2所述的方法, 其特征在于, 所述预设规则包括:
根据所述终端与所述基站之间的距离参数, 确定所述 q值。
7、 根据权利要求 2至 6任一项所述的方法, 其特征在于, 其中,
所述 k个上行参考信号在所述上行信号的结构中连续; 以及,
所述 q个下行参考信号在所述下行信号的结构中连续。
8、 根据权利要求 2至 7任一项所述的方法, 其特征在于, 其中,
所述至少一个上行参考信号与所述下行参考信号的结构中的下行参考信号正交。
9、 根据权利要求 2所述的方法, 其特征在于, 所述 k值与所述 q值满足下述公 式:
r < TCp+(A-2)*Tdata*c/2 , 其中, k+q=A;
其中, r表示所述终端与所述基站之间的距离或所述基站的小区半径, Tcp表示所 述上行参考信号的结构和 /或所述下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示所述上行参考信号或所述下行参考信号所占的符号长度, C表示光速。
10、 根据权利要求 1至 9任一项所述的方法, 其特征在于, 所述预设规则包括: 所述上行信号的结构中包括所述上行参考信号以及 m个空白符号, 以及,所述下 行信号的结构中包括下行参考信号以及 n个空白符号;
其中, m为大于或等于 1的整数, n为大于 m的整数。
11、 根据权利要求 10所述的方法, 其特征在于, 所述预设规则包括:
根据所述基站的配置参数, 确定所述 m值与所述 n值;
所述配置参数用于指示所述基站的小区半径。
12、 根据权利要求 10所述的方法, 其特征在于, 所述预设规则包括:
根据所述终端与所述基站之间的距离参数, 确定所述 m值与所述 n值。
13、 根据权利要求 10至 12任一项所述的方法, 其特征在于,
所述 m个空白符号在所述上行参考信号的结构中连续; 以及,
所述 n个空白符号在所述下行参考信号的结构中连续。
14、 根据权利要求 10至 13任一项所述的方法, 其特征在于, 所述 n值满足下述 条件:
n > 2*r/(c *( TCp +Tdata))
其中, r表示所述终端与所述基站之间的距离或所述基站的小区半径, Tcp表示所 述上行参考信号的结构和 /或所述下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示所述上行参考信号或所述下行参考信号所占的符号长度, C表示光速。
15、一种全双工参考信号的配置方法,其特征在于,应用于基站,所述方法包括: 基于预设规则, 确定终端的上行参考信号的结构; 以及,
基于所述预设规则, 配置下行参考信号的结构;
向所述终端发送配置信息, 所述配置信息用于指示所述终端基于所述上行参考信 号的结构配置上行参考信号;
其中, 所述上行参考信号的结构中包括至少一个不与所述基站发送的下行数据重 叠的上行参考信号。
16、 根据权利要求 15所述的方法, 其特征在于, 所述预设规则包括: 所述上行参考信号的结构中包括 k个上行参考信号, 其中, k为大于 1的整数; 和 /或,
所述下行参考信号的结构中包括 q个下行参考信号, 其中, q为大于 1的整数。
17、 根据权利要求 16所述的方法, 其特征在于, 所述预设规则包括:
根据所述基站的配置参数, 确定所述 k值;
所述配置参数用于指示所述基站的小区半径。
18、 根据权利要求 16所述的方法, 其特征在于, 所述预设规则包括:
根据所述终端与所述基站之间的距离参数, 确定所述 k值。
19、 根据权利要求 16所述的方法, 其特征在于, 所述预设规则包括:
根据所述基站的配置参数, 确定所述 q值;
所述配置参数用于指示所述基站的小区半径。
20、 根据权利要求 16所述的方法, 其特征在于, 所述预设规则包括:
根据所述终端与所述基站之间的距离参数, 确定所述 q值。
21、 根据权利要求 16至 20任一项所述的方法, 其特征在于, 其中,
所述 k个上行参考信号在所述上行信号的结构中连续; 以及,
所述 q个下行参考信号在所述下行信号的结构中连续。
22、 根据权利要求 16至 21任一项所述的方法, 其特征在于, 其中,
所述至少一个上行参考信号与所述下行参考信号的结构中的下行参考信号正交。
23、 根据权利要求 16所述的方法, 其特征在于, 所述 k值与所述 q值满足下述 条件:
r < TCp+(A-2)*Tdata*c/2 , 其中, k+q=A;
其中, r表示所述终端与所述基站之间的距离或所述基站的小区半径, Tcp表示所 述上行参考信号的结构和 /或所述下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示所述上行参考信号或所述下行参考信号所占的符号长度, C表示光速。
24、根据权利要求 15至 23任一项所述的方法,其特征在于,所述预设规则包括: 所述上行信号的结构中包括所述上行参考信号以及 m个空白符号, 以及,所述下 行信号的结构中包括下行参考信号以及 n个空白符号;
其中, m为大于或等于 1的整数, n为大于 m的整数。
25、 根据权利要求 24所述的方法, 其特征在于, 所述预设规则包括: 根据所述基站的配置参数, 确定所述 m值与所述 n值;
所述配置参数用于指示所述基站的小区半径。
26、 根据权利要求 24所述的方法, 其特征在于, 所述预设规则包括:
根据所述终端与所述基站之间的距离参数, 确定所述 m值与所述 n值。
27、 根据权利要求 24至 26任一项所述的方法, 其特征在于,
所述 m个空白符号在所述上行参考信号的结构中连续; 以及,
所述 n个空白符号在所述下行参考信号的结构中连续。
28、 根据权利要求 24至 27任一项所述的方法, 其特征在于, 所述 n值满足下述 条件:
n > 2*r/(c *( Tcp +Tdata))
其中, r表示所述终端与所述基站之间的距离或所述基站的小区半径, Tcp表示所 述上行参考信号的结构和 /或所述下行参考信号的结构中的循环前缀所占的符号长度, Tdata表示所述上行参考信号或所述下行参考信号所占的符号长度, C表示光速。
29、 一种终端, 其特征在于, 包括:
存储器, 用于存储指令;
与所述存储器耦合的一个或多个处理器, 所述处理器用于执行所述指令; 其中, 所述指令用于控制所述终端执行权利要求 1至 14任一项所述的方法。
30、 一种基站, 其特征在于, 包括:
存储器, 用于存储指令;
与所述存储器耦合的一个或多个处理器, 所述处理器用于执行所述指令; 其中, 所述指令用于控制所述终端执行权利要求 15至 28任一项所述的方法。
31、 一种计算机可读存储介质, 所述计算机可读存储介质存储有计算机程序, 所述 计算机程序包含至少一段代码, 所述至少一段代码可由终端执行, 以控制所述终端执行 权利要求 1-14任一项所述的方法。
32、 一种计算机可读存储介质, 所述计算机可读存储介质存储有计算机程序, 所述 计算机程序包含至少一段代码, 所述至少一段代码可由基站执行, 以控制所述基站执行 权利要求 15-28任一项所述的方法。
33、 一种计算机程序, 当所述计算机程序被终端执行时, 用于执行权利要求 1-14任 一项所述的方法。
34、 一种计算机程序, 当所述计算机程序被基站执行时, 用于执行权利要求 15-28 任一项所述的方法。
35、 一种芯片, 所述芯片包括处理电路、 收发管脚; 其中, 所述收发管脚、 和所述 处理电路通过内部连接通路互相通信, 所述处理电路用于执行权利要求 1-14任一项所述 的方法。
36、 一种芯片, 所述芯片包括处理电路、 收发管脚; 其中, 所述收发管脚、 和所述 处理电路通过内部连接通路互相通信, 所述处理电路用于执行权利要求 15-28任一项所 述的方法。
37、 一种系统, 其特征在于, 包括:
终端, 所述终端用于执行权利要求 1-14任一项所述的方法;
基站, 所述基站用于执行权利要求 15-28任一项所述的方法。
PCT/CN2020/074296 2019-02-28 2020-02-04 全双工参考信号的配置方法、终端及基站 WO2020173286A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20763359.5A EP3913957A4 (en) 2019-02-28 2020-02-04 PROCEDURE FOR CONFIGURING A FULL DUPLEX REFERENCE SIGNAL, TERMINAL AND BASE STATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910152630.3A CN111629385B (zh) 2019-02-28 2019-02-28 全双工参考信号的配置方法、终端及基站
CN201910152630.3 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020173286A1 true WO2020173286A1 (zh) 2020-09-03

Family

ID=72238354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074296 WO2020173286A1 (zh) 2019-02-28 2020-02-04 全双工参考信号的配置方法、终端及基站

Country Status (3)

Country Link
EP (1) EP3913957A4 (zh)
CN (1) CN111629385B (zh)
WO (1) WO2020173286A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053353A1 (en) * 2020-08-14 2022-02-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement and reporting for multi-beam operations
US20220141852A1 (en) * 2020-11-04 2022-05-05 Huawei Technologies Co., Ltd. Methods and systems for channel state acquisition with self-interference in full duplex systems
WO2023092577A1 (zh) * 2021-11-29 2023-06-01 Oppo广东移动通信有限公司 通信方法、终端设备及网络设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104735789A (zh) * 2013-12-19 2015-06-24 中国移动通信集团公司 一种小区间干扰消除方法、装置及系统
CN105991256A (zh) * 2015-01-29 2016-10-05 电信科学技术研究院 一种上行数据传输控制、传输方法及装置
CN106063178A (zh) * 2013-12-18 2016-10-26 Idac控股公司 用于全双工无线电系统中的干扰管理的方法、装置和系统
US20180098321A1 (en) * 2015-04-03 2018-04-05 Lg Electronics Inc. Method and device for transmitting and receiving signal in wireless communication system
WO2018128428A1 (ko) * 2017-01-08 2018-07-12 엘지전자 주식회사 크로스-링크 간섭을 제어하는 방법 및 이를 위한 장치
WO2018128297A1 (ko) * 2017-01-09 2018-07-12 엘지전자 주식회사 측정 정보를 보고하는 방법 및 이를 위한 단말

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584665B (zh) * 2013-05-22 2019-08-20 华为技术有限公司 无线传输的方法、网络设备和用户设备
CN105340201B (zh) * 2013-06-25 2018-01-23 Lg 电子株式会社 在支持全双工无线电通信的无线接入系统中估计自干扰的方法和设备
CN104955066A (zh) * 2014-03-28 2015-09-30 诺基亚公司 在灵活时分双工系统中支持基站间测量的方法和装置
CN109565382B (zh) * 2016-03-30 2021-10-29 苹果公司 用于全双工蜂窝系统中联合调度器的参考信号和干扰测量
US20220159580A1 (en) * 2019-03-21 2022-05-19 Samsung Electronics Co., Ltd. Power headroom report, configuring, power control, and data transmission method, apparatus, terminal, and base station

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106063178A (zh) * 2013-12-18 2016-10-26 Idac控股公司 用于全双工无线电系统中的干扰管理的方法、装置和系统
CN104735789A (zh) * 2013-12-19 2015-06-24 中国移动通信集团公司 一种小区间干扰消除方法、装置及系统
CN105991256A (zh) * 2015-01-29 2016-10-05 电信科学技术研究院 一种上行数据传输控制、传输方法及装置
US20180098321A1 (en) * 2015-04-03 2018-04-05 Lg Electronics Inc. Method and device for transmitting and receiving signal in wireless communication system
WO2018128428A1 (ko) * 2017-01-08 2018-07-12 엘지전자 주식회사 크로스-링크 간섭을 제어하는 방법 및 이를 위한 장치
WO2018128297A1 (ko) * 2017-01-09 2018-07-12 엘지전자 주식회사 측정 정보를 보고하는 방법 및 이를 위한 단말

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC.: "Summary on moderated e-mail discussion regarding flexible/full duplex SIDs", 3GPP RAN#79 RP-180323, 22 March 2018 (2018-03-22), XP051411075, DOI: 20200410174821A *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053353A1 (en) * 2020-08-14 2022-02-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement and reporting for multi-beam operations
US20220141852A1 (en) * 2020-11-04 2022-05-05 Huawei Technologies Co., Ltd. Methods and systems for channel state acquisition with self-interference in full duplex systems
WO2023092577A1 (zh) * 2021-11-29 2023-06-01 Oppo广东移动通信有限公司 通信方法、终端设备及网络设备

Also Published As

Publication number Publication date
CN111629385A (zh) 2020-09-04
EP3913957A4 (en) 2022-04-20
CN111629385B (zh) 2022-04-22
EP3913957A1 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2018059307A1 (zh) 通信方法、基站和终端设备
US10693583B2 (en) Apparatus, system and method of communicating a channel estimation field with Golay sequences
WO2020173286A1 (zh) 全双工参考信号的配置方法、终端及基站
US11109392B2 (en) Communication method, network device, and relay device
WO2022028311A1 (zh) 一种物理下行控制信道增强方法、通信装置及系统
WO2022135587A1 (zh) 导频传输方法、装置、设备及存储介质
WO2020029996A1 (zh) 检测dci的方法、配置pdcch的方法和通信装置
WO2020216130A1 (zh) 一种通信方法及装置
CN109152029A (zh) 一种通信方法、网络设备及用户设备
WO2018233695A1 (zh) 信息传输方法及相关设备
WO2022171084A1 (zh) 接入方法、装置、通信设备及可读存储介质
WO2018137570A1 (zh) 一种信息传输方法及装置
WO2020063728A1 (zh) 一种资源配置的方法、装置及系统
WO2022183979A1 (zh) 同步信号传输方法、装置、设备及存储介质
WO2021056587A1 (zh) 一种通信方法及装置
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2015043285A1 (zh) 一种校正信号发射方法和基站
WO2022037451A1 (zh) 一种通信方法及装置
WO2021227985A1 (zh) 同步信号块的处理方法及装置、通信设备和可读存储介质
WO2022027518A1 (zh) 上行数据的发送方法、装置和系统
CN114342446B (zh) 用于非同步上行链路传输的序列重复
WO2020199853A1 (zh) 数据接收和发送方法及装置
WO2013044411A1 (en) Resource aggregation in wireless communications
WO2018059467A1 (zh) 一种信号传输的方法及设备
WO2023050428A1 (zh) 信息传输方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020763359

Country of ref document: EP

Effective date: 20210817

NENP Non-entry into the national phase

Ref country code: DE