WO2023050428A1 - 信息传输方法以及通信装置 - Google Patents

信息传输方法以及通信装置 Download PDF

Info

Publication number
WO2023050428A1
WO2023050428A1 PCT/CN2021/122458 CN2021122458W WO2023050428A1 WO 2023050428 A1 WO2023050428 A1 WO 2023050428A1 CN 2021122458 W CN2021122458 W CN 2021122458W WO 2023050428 A1 WO2023050428 A1 WO 2023050428A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
phase
data items
subcarrier data
reference frequency
Prior art date
Application number
PCT/CN2021/122458
Other languages
English (en)
French (fr)
Inventor
王庭武
潘如愿
蔡朝晖
邓瑞楠
岳华伟
唐云帅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/122458 priority Critical patent/WO2023050428A1/zh
Priority to CN202180100170.5A priority patent/CN117652127A/zh
Priority to EP21958994.2A priority patent/EP4401366A1/en
Publication of WO2023050428A1 publication Critical patent/WO2023050428A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • Embodiments of the present disclosure mainly relate to the communication field, and more specifically, relate to an information transmission method and a communication device.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology is developed from Multi-Carrier Modulation (MCM) technology.
  • OFDM technology is both a modulation technology and a multiplexing technology.
  • the mixing frequency needs to be matched between the transmitting end and the receiving end. System complexity.
  • Embodiments of the present disclosure provide a solution for information transmission, and the transmitting end and the receiving end do not need to know the mixing frequency of the opposite end, which can save signaling overhead.
  • an information transmission method includes: determining a plurality of first subcarrier data items on a plurality of first subcarriers of a first frequency subband; performing first phase rotation on each first subcarrier data item in a subcarrier data item; determining a signal to be transmitted based on the first phase rotated pieces of first subcarrier data item; and sending the signal to be transmitted.
  • the embodiments of the present disclosure can perform phase rotation at least based on the first reference frequency at the transmitting end, so that the modulation can be correctly implemented without knowing the mixing frequency at the receiving end.
  • the transmitting end does not need to inform the receiving end of the mixing frequency used, and the receiving end can correctly demodulate the received signal even if the receiving end does not know the mixing frequency. In this way, there is no need to align the mixing frequency between the transmitting end and the receiving end in advance, and additional signaling overhead is avoided, thereby reducing system complexity and improving transmission efficiency.
  • performing the first phase rotation includes: determining a first phase rotation value based on a difference between the mixing frequency and the first reference frequency; Each of the first subcarrier data items performs a first phase rotation.
  • phase rotation can be performed based on the difference between the mixing frequency and the first reference frequency, thereby realizing phase deviation compensation.
  • the first aspect further comprising: determining a plurality of second subcarrier data items on a plurality of second subcarriers of the second frequency subband, the first frequency subband and the second frequency subband are in There is no overlap in the frequency domain; and based on the mixing frequency and the second reference frequency corresponding to the second frequency subband, the second phase rotation is performed on each second subcarrier data item in the plurality of second subcarrier data items, the first A reference frequency is different from a second reference frequency.
  • phase rotation can be performed on multiple frequency subbands respectively, which can improve the accuracy of transmission signal processing.
  • performing the second phase rotation includes: determining a second phase rotation value based on a difference between the mixing frequency and a second reference frequency; Each of the second subcarrier data items performs a second phase rotation.
  • determining the signal to be transmitted includes: determining the signal to be transmitted based on the first phase-rotated first subcarrier data items and the second phase-rotated second subcarrier data items Signal.
  • an information transmission method includes: receiving a transmission signal; based on the transmission signal, determining a plurality of first subcarrier data items on a plurality of first subcarriers of the first frequency subband; based on the mixing frequency and the first frequency subband corresponding to the first A reference frequency, performing first phase inverse rotation on the plurality of first subcarrier data items; and performing post-processing on the first phase inversely rotated plurality of first subcarrier data items.
  • the embodiments of the present disclosure can perform phase inverse rotation based on at least the first reference frequency, so that the received signal can be correctly demodulated without knowing the mixing frequency of the transmitting end. In this way, there is no need to align the mixing frequency between the transmitting end and the receiving end in advance, and additional signaling overhead is avoided, thereby reducing system complexity and improving transmission efficiency.
  • performing the first phase inverse rotation comprises: determining a first phase inverse rotation value based on a difference between the first reference frequency and the mixing frequency; and inverse rotation based on the first phase value, performing first phase inverse rotation on each of the multiple first subcarrier data items.
  • the second aspect further comprising: determining a plurality of second subcarrier data items on a plurality of second subcarriers of the second frequency subband based on the transmission signal, the first frequency subband and the second frequency The subbands do not overlap in the frequency domain; and based on the mixing frequency and a second reference frequency corresponding to the second frequency subband, a second phase inverse rotation is performed on the plurality of second subcarrier data items, the first reference frequency being different from the first Two reference frequencies.
  • phase inverse rotation can be performed on multiple frequency subbands respectively, so that phase deviation compensation can be performed based on different reference frequencies, thereby improving the accuracy of transmission signal processing.
  • performing the second phase inverse rotation includes: determining a second phase inverse rotation value based on a difference between the second reference frequency and the mixing frequency; value, performing second phase inverse rotation on each of the plurality of second subcarrier data items.
  • a communication device in a third aspect of the present disclosure, includes: a first determination unit configured to determine a plurality of first subcarrier data items on a plurality of first subcarriers of a first frequency subband; a phase rotation unit configured to base on the mixing frequency and the first A first reference frequency corresponding to a frequency sub-band performs a first phase rotation on each of the first subcarrier data items in the plurality of first subcarrier data items; the second determination unit is configured to be based on the first phase rotation The plurality of first subcarrier data items determine the signal to be transmitted; and the sending unit is configured to send the signal to be transmitted.
  • the phase rotation unit is configured to determine a first phase rotation value based on the difference between the mixing frequency and the first reference frequency; Each first subcarrier data item in a subcarrier data item performs a first phase rotation.
  • the first determining unit is further configured to determine a plurality of second subcarrier data items on a plurality of second subcarriers of the second frequency subband, the first frequency subband and the second frequency subband The two frequency sub-bands do not overlap in the frequency domain; and the phase rotation unit is further configured to, based on the second reference frequency corresponding to the mixing frequency and the second frequency sub-band, for each of the plurality of second sub-carrier data items.
  • the two subcarrier data items perform a second phase rotation, the first reference frequency being different from the second reference frequency.
  • the phase rotation unit is configured to: determine the second phase rotation value based on the difference between the mixing frequency and the second reference frequency; Each of the second subcarrier data items performs a second phase rotation.
  • the second determination unit is configured to determine to be Transmission signal.
  • a communication device configured to include: a receiving unit configured to receive a transmission signal; a determining unit configured to determine a plurality of first subcarrier data items on a plurality of first subcarriers of a first frequency subband based on the transmission signal; phase The derotation unit is configured to perform first phase derotation on a plurality of first subcarrier data items based on the mixing frequency and the first reference frequency corresponding to the first frequency subband; and the post-processing unit is configured to Post-processing is performed on the plurality of first subcarrier data items whose first phase is derotated.
  • the phase derotation unit is configured to: determine the first phase derotation value based on the difference between the first reference frequency and the mixing frequency; and determine the first phase derotation value based on the first phase derotation value, performing first phase inverse rotation on each of the multiple first subcarrier data items.
  • the determining unit is further configured to determine a plurality of second subcarrier data items on a plurality of second subcarriers of the second frequency subband based on the transmission signal, the first frequency subband and The second frequency sub-bands do not overlap in the frequency domain; and the phase inverse rotation unit is further configured to perform a second operation on multiple pieces of second sub-carrier data items based on the mixing frequency and a second reference frequency corresponding to the second frequency sub-band. The phase is reversed and the first reference frequency is different from the second reference frequency.
  • the phase derotation unit is configured to: determine a second phase derotation value based on a difference between the second reference frequency and the mixing frequency; and determine a second phase derotation value based on the second phase derotation value, performing second phase inverse rotation on each of the plurality of second subcarrier data items.
  • a communication device in a fifth aspect of the present disclosure, includes a processor, a transceiver, and a memory, and the memory stores instructions executed by the processor.
  • the communication device realizes: determining a plurality of first subcarriers in a first frequency subband multiple first subcarrier data items on the above; based on the mixing frequency and the first reference frequency corresponding to the first frequency subband, perform the first phase rotation; determining a signal to be transmitted based on the plurality of first phase-rotated first subcarrier data items; and sending the signal to be transmitted via a transceiver.
  • the processor executes the instructions to cause the communication device to: determine the first phase rotation value based on the difference between the mixing frequency and the first reference frequency; and based on the first phase rotation value, The first phase rotation is performed on each of the plurality of first subcarrier data items.
  • the processor executes instructions so that the communication device implements: determining a plurality of second subcarrier data items on a plurality of second subcarriers of the second frequency subband, the first frequency subband and the second frequency sub-band do not overlap in the frequency domain; and based on the second reference frequency corresponding to the mixing frequency and the second frequency sub-band, for each second sub-carrier data item in the plurality of second sub-carrier data items A second phase rotation is performed, the first reference frequency being different from the second reference frequency.
  • the processor executing the instructions causes the communication device to: determine a second phase rotation value based on a difference between the mixing frequency and a second reference frequency; and based on the second phase rotation value, The second phase rotation is performed on each of the plurality of second subcarrier data items.
  • the processor executes instructions so that the communication device implements: based on the first phase-rotated multiple first subcarrier data items and the second phase-rotated multiple second subcarrier data items , to determine the signal to be transmitted.
  • a communication device in a sixth aspect of the present disclosure, includes a processor, a transceiver, and a memory.
  • the memory stores instructions executed by the processor.
  • the communication device realizes: receiving a transmission signal via the transceiver; Multiple first subcarrier data items on multiple first subcarriers of a frequency subband; based on the mixing frequency and the first reference frequency corresponding to the first frequency subband, perform the first subcarrier data item on the multiple first subcarrier data items a phase inverse rotation; and performing post-processing on the plurality of first subcarrier data items subjected to the first phase inverse rotation.
  • the processor executes the instructions to cause the communication device to: determine the first phase reverse rotation value based on the difference between the first reference frequency and the mixing frequency; and determine the first phase reverse rotation value based on the first phase reverse rotation value; performing a first phase inverse rotation on each of the plurality of first subcarrier data items.
  • the processor executes instructions so that the communication device implements: determining a plurality of second subcarrier data items on a plurality of second subcarriers of the second frequency subband based on the transmission signal, the first The frequency sub-band and the second frequency sub-band do not overlap in the frequency domain; and based on the mixing frequency and the second reference frequency corresponding to the second frequency sub-band, a second phase inverse rotation is performed on the plurality of second sub-carrier data items, The first reference frequency is different from the second reference frequency.
  • the processor executes the instructions to cause the communication device to: determine the second phase reverse rotation value based on the difference between the second reference frequency and the mixing frequency; and determine the second phase reverse rotation value based on the second phase reverse rotation value; performing a second phase inverse rotation on each of the plurality of second subcarrier data items.
  • a computer-readable storage medium on which computer-executable instructions are stored.
  • the computer-executable instructions are executed by a processor, the above-mentioned first aspect or its The operation of the method in any embodiment, or the operation of the method according to the above second aspect or any embodiment thereof.
  • a chip or chip system in an eighth aspect of the present disclosure, includes a processing circuit configured to perform operations according to the method in the above first aspect or any embodiment thereof, or perform operations according to the method in the above second aspect or any embodiment thereof.
  • a computer program or computer program product is provided.
  • the computer program or computer program product is tangibly stored on a computer-readable medium and comprises computer-executable instructions which, when executed, implement the operations according to the method in the above-mentioned first aspect or any of its embodiments, Or implement the operations according to the method in the above second aspect or any embodiment thereof.
  • Fig. 1 shows a schematic diagram of an OFDM system
  • Figure 2 shows a schematic diagram of an example environment in which embodiments of the present disclosure may be implemented
  • Fig. 3 shows a module block diagram of a first device as a transmitter device according to some embodiments of the present disclosure
  • Fig. 4 shows a module block diagram of a second device as a receiving end device according to some embodiments of the present disclosure
  • Fig. 5 shows a schematic signaling interaction diagram of an information transmission process according to some embodiments of the present disclosure
  • FIG. 6 shows a schematic diagram of OFDM symbols processed by a first device distributed on multiple subcarriers according to some embodiments of the present disclosure
  • FIG. 7 shows a schematic diagram of the distribution of OFDM symbols processed by the second device on multiple subcarriers according to some embodiments of the present disclosure
  • Fig. 8 shows a schematic block diagram of a communication device according to some embodiments of the present disclosure
  • FIG. 9 shows a schematic block diagram of another communication device according to some embodiments of the present disclosure.
  • Fig. 10 shows a schematic block diagram of an example device that may be used to implement embodiments of the present disclosure.
  • the term “comprising” and its similar expressions should be interpreted as an open inclusion, that is, “including but not limited to”.
  • the term “based on” should be understood as “based at least in part on”.
  • the term “one embodiment” or “the embodiment” should be read as “at least one embodiment”.
  • the terms “first”, “second”, etc. may refer to different or the same object.
  • the term “and/or” means at least one of the two items associated with it. For example "A and/or B" means A, B, or A and B. Other definitions, both express and implied, may also be included below.
  • Embodiments of the present disclosure may be implemented according to any suitable communication protocol, including but not limited to, third generation (3rd Generation, 3G), fourth generation (4G), fifth generation (5G) and other cellular communication protocols, such as electrical Wireless LAN communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocols currently known or developed in the future.
  • 3G third generation
  • 4G fourth generation
  • 5G fifth generation
  • other cellular communication protocols such as electrical Wireless LAN communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocols currently known or developed in the future.
  • IEEE Institute of Electrical and Electronics Engineers
  • the communication device may be a network device or a terminal device.
  • the communication device may be an access point (Access Point, AP) device or a station (STA) device.
  • Access Point Access Point
  • STA station
  • terminal device refers to any terminal device capable of wired or wireless communication with network devices or with each other.
  • the terminal equipment may sometimes be called user equipment (User Equipment, UE).
  • a terminal device may be any type of mobile terminal, stationary terminal or portable terminal.
  • terminal equipment may include a mobile handset, station, unit, device, mobile terminal (Mobile Terminal, MT), subscription station, portable subscription station, Internet node, communicator, desktop computer, laptop computer, notebook computer, tablet Computers, personal communication system devices, personal navigation devices, personal digital assistants (Personal Digital Assistant, PDA), positioning devices, radio broadcast receivers, e-book devices, game devices, Internet of Things (IoT) devices, vehicle-mounted devices , aircraft, virtual reality (Virtual Reality, VR) devices, augmented reality (Augmented Reality, AR) devices, wearable devices, terminal devices in 5G networks or evolved Public Land Mobile Networks (Public Land Mobile Network, PLMN) Any terminal device, other device that can be used for communication, or any combination of the above. Embodiments of the present disclosure do not limit this.
  • the term "network device” used in this disclosure is an entity or node that can be used to communicate with a terminal device, such as an access network device.
  • the access network device may be a device deployed in the radio access network to provide a wireless communication function for the mobile terminal, for example, it may be a radio access network (Radio Access Network, RAN) network device.
  • Access network equipment may include various types of base stations. As an example, the access network equipment may include various forms of macro base stations, micro base stations, pico base stations, femto base stations, relay stations, access points, remote radio units (Remote Radio Unit, RRU), radio heads (Radio Head, RH ), Remote Radio Head (RRH) and so on.
  • RRU Remote Radio Unit
  • RH Remote Radio Head
  • the names of access network equipment may be different, for example, in a Long Term Evolution (LTE) network, it is called an evolved NodeB (evolved NodeB, eNB or eNodeB), which is called Node B (NodeB, NB) in 3G network, can be called gNode B (gNB) or NR Node B (NR NB) in 5G network, and so on.
  • the access network device may include a central unit (Central Unit, CU) and/or a distributed unit (Distributed Unit, DU).
  • CU and DU can be placed in different places, for example: DU is remote and placed in a high-traffic area, and CU is placed in the central computer room.
  • the CU and DU can also be placed in the same equipment room.
  • the CU and DU can also be different components under one rack.
  • the above-mentioned apparatuses for providing wireless communication functions for mobile terminals are collectively referred to as network devices, which are not specifically limited in the embodiments of the present disclosure.
  • the term "access point” used in this disclosure may also be referred to as an access point-like station.
  • the AP may be a device with a wireless transceiver function, and may provide services for the station.
  • An AP can also be called a wireless access point or a hotspot, etc.
  • AP is the access point for mobile users to enter the wired network. It is mainly deployed in homes, buildings, and campuses. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect the STAs together, and then connect the wireless network to the wired network.
  • the AP may be a terminal device or a network device with a wireless fidelity (Wireless Fidelity, Wi-Fi) chip, for example, the AP may be a communication server, a router, a switch, or a network bridge.
  • the AP may be a device supporting the 802.11 standard under the current network system or the future network system.
  • the term "station” used in this disclosure may be a device with a wireless transceiver function, which can access a wireless local area network based on an access point.
  • the STA may be a wireless communication chip, a wireless sensor or a wireless communication terminal.
  • a STA may also be called a system, a subscriber unit, an access terminal, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or a user equipment (user equipment, UE).
  • the STA may be a wireless communication chip, a wireless sensor or a wireless communication terminal.
  • STA is a mobile phone supporting Wi-Fi communication function, a tablet computer supporting Wi-Fi communication function, a set-top box supporting Wi-Fi communication function, a smart TV supporting Wi-Fi communication function, or a smart TV supporting Wi-Fi communication function.
  • Wearable devices in-vehicle communication devices supporting Wi-Fi communication functions, computers supporting Wi-Fi communication functions, etc.
  • the STA may be a device supporting the 802.11 standard under the current network system or the future network system.
  • FIG. 1 shows a schematic diagram of an OFDM system 100 .
  • the system 100 includes a transmitting end 110 and a receiving end 120 , and signals sent by the transmitting end 110 can reach the receiving end 120 via a wireless channel 130 .
  • the transmitter 110 may include a serial/parallel (serial-parallel, S/P) conversion module 112, an inverse fast Fourier transform (Inverse Fast Fourier Transform, IFFT) module 114 and a guard interval (Add Guard Interval, ADD Gl) module 116.
  • the receiving end 120 includes a deguard interval module 122 , a Fast Fourier Transform (Fast Fourier Transform, FFT) module 124 and a parallel/serial conversion module 126 .
  • FFT Fast Fourier Transform
  • the high-speed data stream becomes multiple low-rate code streams after passing through the S/P conversion module 112, and each code stream can be sent with one subcarrier, and the parallel transmission technology greatly increases the transmission period of each symbol, thereby enabling The inter-symbol interference (Inter Dymbol Interference, ISI) caused by the polycrystalline time delay is reduced, and the system self-interference is reduced.
  • the IFFT module 114 can implement a multi-carrier mapping and superimposition process to transform a large number of narrowband sub-carrier frequency-domain signals into time-domain signals.
  • the IFFT module 114 may perform an inverse discrete Fourier transform.
  • the GI adding module 116 adds a guard interval between symbols, which can prevent the impact caused by multipath delay from extending to the next symbol period, thereby eliminating inter-symbol interference and multi-carrier interference.
  • the guard interval used by the GI module 116 is a cyclic prefix (Cyclic Prefix, CP), that is to say, a section of the tail of each OFDM symbol is copied to the front of the symbol, so that compared with purely adding idle guard intervals In other words, the addition of redundant symbol information is more conducive to overcoming interference.
  • the transmitting end 110 performs analog up-conversion by using the mixing frequency f mixer based on the analog mixer to obtain an up-converted signal.
  • the receiving end 120 After receiving the signal, a series of inverse operations are performed to restore the data stream. Specifically, the receiving end 120 uses the same mixing frequency f mixer as the transmitting end 110 to perform analog down-conversion to obtain the down-converted signal, remove the GI (such as CP) through the de-guard interval module 122, and use the FFT module 124 from The time domain is converted to the frequency domain, and then the data stream is restored through the parallel/serial conversion module 126 .
  • GI such as CP
  • the mixing frequency used by the transmitting end 110 and the receiving end 120 to perform the mixing operation is the same. That is to say, before signal transmission, the frequency mixing frequency alignment needs to be performed between the transmitting end 110 and the receiving end 120 through signaling, which will increase signaling overhead, reduce the efficiency of signal transmission, and increase the complexity of the system .
  • the embodiments of the present disclosure provide an information transmission scheme, and there is no need to pre-align mixing frequencies between the transmitting end and the receiving end, thereby reducing signaling overhead and ensuring transmission efficiency.
  • FIG. 2 shows a schematic diagram of an example environment 200 in which embodiments of the present disclosure may be implemented.
  • a first device 210 and a second device 220 are shown in FIG. 2 .
  • Communication can be performed between the first device 210 and the second device 220 .
  • the embodiment of the present disclosure does not limit the device types of the first device 210 and the second device 220 .
  • it may be a network device, a terminal device, an access point device, or a station device, etc., it may be a relay device, a core network device, or any other type of device, etc., which will not be listed here.
  • the first device 210 and the second device 220 may be the same device type or may be different device types.
  • the first device 210 is a transmitting end device
  • the second device 220 is a receiving end device, that is to say, it is assumed that the first device 210 sends information to the second device 220 .
  • Fig. 3 shows a module block diagram of the first device 210 as the transmitting end device according to some embodiments of the present disclosure.
  • the first device 210 includes a serial/parallel conversion module 310 , a phase rotation module 320 , an IFFT module 330 and a CP addition module 340 .
  • Fig. 4 shows a module block diagram of the second device 220 as a receiving end device according to some embodiments of the present disclosure.
  • the second device 220 includes a de-CP module 410 , an FFT module 420 , a phase inverse rotation module 430 and a parallel/serial conversion module 440 .
  • the first device 210 may also serve as a receiving end device, and the second device 220 may serve as a transmitting end device.
  • the first device 210 may include modules at the receiving end device as shown in FIG. 4
  • the second device 220 may include modules at the transmitting end as shown in FIG. 3 .
  • Fig. 5 shows a schematic signaling interaction diagram of an information transmission process 500 according to some embodiments of the present disclosure.
  • Process 500 involves first device 210 and second device 220 .
  • the first device 210 determines 510 a plurality of first subcarrier data items on a plurality of first subcarriers of a first frequency subband.
  • the first frequency sub-band may be equal to the transmission bandwidth. In some embodiments, the first frequency sub-band may be part of the transmission bandwidth. Specifically, the transmission bandwidth can be divided into several frequency subbands, so that the corresponding several subband signals can be transmitted in OFDM symbols. For example, it may include two subbands: a first frequency subband and a second frequency subband, where the frequency ranges of the first frequency subband and the second frequency subband may or may not be equal. In addition, it can be understood that the embodiment of the present disclosure does not limit the number of frequency subbands. Although two subbands are used as an example for the convenience of description, in actual scenarios, more subbands may be included.
  • the first device 210 may also determine multiple pieces of second subcarrier data items on multiple second subcarriers of the second frequency subband.
  • the serial/parallel conversion module 310 can convert the high-speed data stream into multiple low-rate code streams for transmission on multiple available subcarriers.
  • N the number of multiple subcarriers
  • N an even number
  • the N subcarriers may be numbered accordingly, for example -N/2 to N/2-1. It can be understood that the number and numbering method are only for illustration, and other numbers (such as odd numbers) can also be used, and other numbering methods can also be used, which will not be repeated here.
  • the multiple low-rate code streams may also be referred to as multiple sub-carrier data items, such as N sub-carrier data items.
  • the subcarrier data item can be expressed as X(k), -N/2 ⁇ k ⁇ N/2.
  • the multiple pieces of first subcarrier data items may be expressed as X(k), where -N/2 ⁇ k ⁇ .
  • subcarrier numbers corresponding to the first frequency subband are -N/2 to ⁇
  • subcarrier numbers corresponding to the second frequency subband are ⁇ to N/2.
  • the subcarrier number ⁇ separating the first frequency subband and the second frequency subband may be determined by the first device 210 based on the mixing frequency used by the first device 210 (ie, the mixing frequency at the transmitting end).
  • the mixing frequency used by the first device 210 (that is, the mixing frequency at the transmitting end) may be represented as f TX , which may be set by the first device 210, and the mixing frequency at the transmitting end is relative to the receiving end device (
  • the second device 220) may be unknown. In this way, there is no need to perform frequency mixing frequency alignment between the first device 210 and the second device 220 in advance, which reduces signaling overhead.
  • the mixing frequency f TX of the transmitting end is unknown to the receiving end device (ie, the second device 220), and ⁇ corresponds to the mixing frequency f TX of the transmitting end, so it can be understood that ⁇ is for the receiving end device
  • the end device ie, the second device 220
  • the second device 220 does not know how the first device 210 divides the carrier subbands.
  • the first device 210 performs 520 a first phase rotation on each of the plurality of first subcarrier data items based on the first mixing frequency and the first reference frequency corresponding to the first frequency subband.
  • the first device 210 performs second phase rotation on each of the plurality of second subcarrier data items based on the first mixing frequency and the second reference frequency corresponding to the second frequency subband .
  • the frequency subband and the reference frequency there is a corresponding relationship between the frequency subband and the reference frequency, and the corresponding relationship may be predetermined by the protocol or may be pre-configured, so that it is possible to avoid The additional signaling overhead between them can improve the transmission efficiency.
  • different frequency subbands do not overlap in the frequency domain, and reference frequencies corresponding to different frequency subbands are also different.
  • the first frequency subband and the second frequency subband do not overlap in the frequency domain, and the first reference frequency is different from the second reference frequency.
  • the first reference frequency is lower than the second reference frequency. It should be understood that the frequency interval between the first reference frequency and the second reference frequency is not fixed, and depends on the channel number, for example, the number of subcarriers between the first reference frequency and the second reference frequency can be 41 or 42 or other values, which are not limited by the present disclosure.
  • the first mixing frequency is determined by the first device 210, but the embodiment of the present disclosure does not limit the method of determining the mixing frequency of the transmitting end used by the first device 210, for example, the first device 210 Any frequency between the first reference frequency and the second reference frequency may be used as the mixing frequency of the transmitting end (ie, the first mixing frequency).
  • the first reference frequency may correspond to a low-frequency frequency sub-band
  • the second reference frequency may correspond to a high-frequency frequency sub-band.
  • the first reference frequency corresponds to the first frequency subband including the subcarrier number -N/2
  • the second reference frequency corresponds to the second frequency subband including the subcarrier number N/2-1 .
  • the first reference frequency may be denoted f REF1 and the second reference frequency f REF2 .
  • the first mixing frequency is the aforementioned mixing frequency used by the first device 210, which may also be referred to as a transmitting end mixing frequency, denoted as f TX .
  • FIG. 6 it is a schematic diagram of an example distribution 600 of OFDM symbols processed by the first device 210 on multiple subcarriers.
  • the numbering range of the multiple subcarriers is -N/2 to N/2-1.
  • the subcarrier number range -N/2 to ⁇ -1 corresponds to the first frequency subband
  • the subcarrier number range ⁇ to N/2-1 corresponds to the second frequency subband
  • the number is ⁇
  • the subcarrier number corresponding to the first reference frequency is c
  • the subcarrier number corresponding to the second reference frequency is d.
  • phase rotation may be performed on subcarrier data items by the phase rotation module 320 .
  • the first phase rotation value may be determined based on the difference between the first mixing frequency f TX and the first reference frequency f REF1 , and based on the first phase rotation value, perform The first phase rotates.
  • the second phase rotation value may be determined based on the difference between the first mixing frequency f TX and the second reference frequency f REF2 , and the second phase rotation value is performed on each second subcarrier data item based on the second phase rotation value. Two-phase rotation.
  • the multiple subcarrier data items after phase rotation can be expressed as X rotated (k), for example, the multiple first subcarrier data items after the first phase rotation and the multiple second subcarrier data items after the second phase rotation can be represented by Equation 1 and Equation 2 below, respectively.
  • the first device 210 determines 530 a signal to be transmitted based on the first phase-rotated pieces of first subcarrier data items.
  • the first device 210 may determine the transmission signal based on the first phase-rotated pieces of first subcarrier data items and the second phase-rotated pieces of second subcarrier data items.
  • the determination by the first device 210 of the signal to be transmitted may include: at least one of frequency-domain to time-domain conversion, adding CP, and analog frequency up-conversion.
  • the first device 210 may perform 532 frequency-domain to time-domain conversion on the phase-rotated pieces of subcarrier data items.
  • the phase-rotated multiple subcarrier data items can be transformed into time domain signals by the IFFT module 330 , wherein the number of samples for performing IFFT is N.
  • N the number of samples for performing IFFT.
  • Equation 3 x(n) represents the output result of the nth sample point of the inverse discrete Fourier transform.
  • the first device 210 may also add 534 a guard interval to eliminate inter-symbol interference and multi-carrier interference.
  • the CP adding module 340 can copy a segment at the end of each OFDM symbol to the front of the symbol, so as to realize the CP adding operation. Assuming that the number of sample points of the guard interval is G, then after adding the CP module 340, the length of the symbol becomes N+G. Exemplarily, the symbol after adding the guard interval can be expressed as x GI (n).
  • the first device 210 may also perform 536 analog up-conversion.
  • the up-converted signal can be obtained by the following formula.
  • x mixer (n) x GI (n)*exp(j*2* ⁇ *n*f TX *T), 0 ⁇ n ⁇ n total
  • x mixer (n) represents the signal after analog up-conversion
  • n total represents the total number of sample points
  • f TX represents the mixing frequency used by the first device 210 (ie, the mixing frequency at the transmitting end) and is the same as the above formula 1 and Equation 2 are the same value.
  • the up-converted signal may be used as the signal to be transmitted, and then the first device 210 sends 540 the signal to be transmitted.
  • the first device 210 sends the signal to be transmitted to the second device 220, so that the second device 220 can receive the transmitted signal.
  • the second device 220 determines 550 a plurality of third subcarrier data items on a plurality of third subcarriers of the third frequency subband based on the transmission signal.
  • the second device 220 may also determine multiple fourth subcarrier data items on multiple fourth subcarriers in the fourth frequency subband.
  • the second device 220 determining the plurality of subcarrier data items may include: at least one of analog down-conversion, de-CP, and time-domain to frequency-domain conversion.
  • the second device 220 may also perform 552 analog down-conversion.
  • the down-converted signal can be obtained by the following formula.
  • x′ GI (n) x mixer (n)*exp(-j*2*pi*n*f RX *T), 0 ⁇ n ⁇ n total
  • x mixer (n) represents the transmission signal, for example, it can be the signal after the first device 210 simulates the up-conversion, n total represents the total number of sample points, and f RX represents the mixing frequency used by the second device 220 (that is, the receiving terminal mixing frequency), x′ GI (n) represents the signal after analog down-conversion.
  • the mixing frequency used by the second device 220 (ie, the mixing frequency of the receiving end) may be set by the second device 220, and the present disclosure does not limit the setting method.
  • the receiving-end mixing frequency may be unknown to the transmitting-end device (the first device 210), so that there is no need to perform the mixing frequency alignment between the first device 210 and the second device 220 in advance, reducing signaling overhead.
  • the second device 220 may also remove 554 the guard interval.
  • the duplicated part of each OFDM symbol can be removed by the de-CP module 410, so as to realize the de-CP operation.
  • the number of sample points before removing CP is N+G
  • the length of the symbol will become N.
  • the symbol after removing the guard interval can be expressed as x'(n).
  • the second device 220 may also perform 556 conversion from the time domain to the frequency domain.
  • the FFT module 420 can transform the time-domain symbols after removing the guard intervals into frequency-domain signals, where the number of samples for performing FFT is N. Taking the discrete Fourier transform as an example, we can get:
  • Equation 6 x'(n) represents N sample points, which are the input of the discrete Fourier transform, and X'(k) is the output of the discrete Fourier transform.
  • N subcarrier data items X'(k) can be obtained, which may include multiple third subcarrier data items X'(k) on multiple third subcarriers in the third frequency subband, -N /2 ⁇ k ⁇ , and a plurality of fourth subcarrier data items X′(k) on the plurality of fourth subcarriers of the fourth frequency subband, ⁇ k ⁇ N/2.
  • the second device 220 may divide the bandwidth into two subbands: a third frequency subband and a fourth frequency subband.
  • a third frequency subband and a fourth frequency subband.
  • the embodiments of the present disclosure do not limit the number of frequency subbands. Although two subbands are used as an example for the convenience of description, in actual scenarios, more subbands may be included.
  • Subcarrier numbers corresponding to the third frequency subband are -N/2 to ⁇ , and subcarrier numbers corresponding to the fourth frequency subband are ⁇ to N/2.
  • the subcarrier number ⁇ separating the third frequency subband and the fourth frequency subband may be determined by the second device 220 based on the mixing frequency used by the second device 220 (ie, the mixing frequency at the receiving end).
  • the mixing frequency used by the second device 220 (that is, the mixing frequency at the receiving end) can be represented as f RX , which can be set by the second device 220, and the mixing frequency at the receiving end is relatively high for the transmitting end device ( The first device 210) may be unknown. In this way, there is no need to perform frequency mixing frequency alignment between the first device 210 and the second device 220 in advance, which reduces signaling overhead.
  • the mixing frequency f RX at the receiving end is unknown to the transmitting end device (namely the first device 210), and ⁇ corresponds to the mixing frequency f RX at the receiving end, so it can be understood that ⁇ is for the transmitting end device
  • the end device ie, the first device 210) is also unknown. That is to say, the second device 220 does not know how the first device 210 divides the carrier subbands.
  • the second device 210 performs 560 a first phase inverse rotation on multiple pieces of third subcarrier data items based on the second mixing frequency and the first reference frequency corresponding to the third frequency subband.
  • the second device 220 performs second phase inverse rotation on the plurality of fourth subcarrier data items based on the second mixing frequency and the second reference frequency corresponding to the fourth frequency subband.
  • the corresponding relationship may be predetermined by the protocol or may be pre-configured, so that it is possible to avoid The additional signaling overhead between them can improve the transmission efficiency.
  • different frequency subbands do not overlap in the frequency domain, and reference frequencies corresponding to different frequency subbands are also different.
  • the third frequency subband and the fourth frequency subband do not overlap in the frequency domain, and the first reference frequency is different from the second reference frequency. It can be understood that the embodiment of the present disclosure does not limit the specific manner of setting the corresponding relationship.
  • the first reference frequency may correspond to a low-frequency frequency sub-band
  • the second reference frequency may correspond to a high-frequency frequency sub-band.
  • the first reference frequency corresponds to the third frequency subband comprising subcarrier number -N/2
  • the second reference frequency corresponds to the fourth frequency subband comprising subcarrier number N/2-1 .
  • the first reference frequency is denoted f REF1 and the second reference frequency is denoted f REF2 .
  • the first reference frequency and the second reference frequency may be pre-specified or pre-configured through a protocol, where the first reference frequency corresponds to a low-frequency frequency sub-band, and the second reference frequency corresponds to a high-frequency frequency sub-band.
  • the first device 210 and the second device 220 can directly use the first reference frequency and the second reference frequency without additional signaling interaction, thus Signaling overhead can be reduced.
  • the second mixing frequency is the aforementioned mixing frequency used by the second device 220 , which may also be referred to as a receiving end mixing frequency, denoted as f RX .
  • the second mixing frequency is determined by the second device 220, but the embodiment of the present disclosure does not limit the method of determining the receiving end mixing frequency used by the second device 220, for example, the second device 220 Any frequency between the first reference frequency and the second reference frequency may be used as the mixing frequency of the receiving end (ie, the second mixing frequency).
  • the operation of the first device 210 to determine the first mixing frequency and the operation of the second device 220 to determine the second mixing frequency are independent of each other, therefore, the first mixing frequency f TX and the second mixing frequency Frequency and frequency f RX are independent of each other, and there is no mutual dependence.
  • FIG. 7 it is a schematic diagram 700 in which OFDM symbols processed by the second device 220 are distributed on multiple subcarriers.
  • the numbering range of the multiple subcarriers is -N/2 to N/2-1.
  • the subcarrier number range -N/2 to ⁇ -1 corresponds to the third frequency subband
  • the subcarrier number range ⁇ to N/2-1 corresponds to the fourth frequency subband
  • the subcarrier corresponding to the second mixing frequency The number is ⁇
  • the subcarrier number corresponding to the first reference frequency is c
  • the subcarrier number corresponding to the second reference frequency is d.
  • phase inverse rotation may be performed on subcarrier data items by the phase inverse rotation module 430 .
  • the first phase reverse rotation value may be determined based on the difference between the first reference frequency f REF1 and the second mixing frequency f RX , and each third sub Carrier data items perform a first phase inverse rotation.
  • the second phase reverse rotation value may be determined based on the difference between the second reference frequency f REF2 and the second mixing frequency f RX , and each fourth subcarrier The data items perform a second phase inverse rotation.
  • the multiple sub-carrier data items after phase derotation can be expressed as X derotated (k), for example, the multiple third sub-carrier data items derotated by the first phase and the multiple fourth sub-carrier data items derotated by the second phase
  • X derotated (k) for example, the multiple third sub-carrier data items derotated by the first phase and the multiple fourth sub-carrier data items derotated by the second phase
  • the carrier data items may be represented by Equation 7 and Equation 8 below, respectively.
  • X derotated (k) X′(k)*exp(j*2*pi*(f REF1 -f RX )*T*s),-N/2 ⁇ k ⁇
  • X derotated (k) X′(k)*exp(j*2*pi*(f REF2 -f RX )*T*s), ⁇ k ⁇ N/2
  • the second device 210 performs 570 post-processing on the multiple pieces of third subcarrier data items derotated by the first phase.
  • the second device 210 may perform post-processing on the multiple pieces of third subcarrier data items de-rotated by the first phase and the multiple pieces of fourth sub-carrier data items de-rotated by the second phase.
  • the parallel-to-serial conversion may be performed by the parallel/serial conversion module 440, so as to combine multiple streams into a single data stream.
  • the first reference frequency and the second reference frequency can be pre-specified or pre-configured, so that there is no need to align the frequency mixing frequency between the transmitting end device and the receiving end device, which can reduce signaling overhead, Improve processing efficiency.
  • the phase rotation is performed at the transmitting end, and the phase inverse rotation is performed at the receiving end to perform phase deviation compensation. In this way, the difference caused by the misalignment of mixing frequencies between the transmitting end and the receiving end can be eliminated. , so as to maintain the accuracy of information transmission.
  • Fig. 8 shows a schematic block diagram of a communication device 800 according to some embodiments of the present disclosure.
  • the apparatus 800 may be implemented as the first device 210 or as a part of the first device 210 (such as a chip), etc., which is not limited in the present disclosure.
  • the apparatus 800 may include a first determining unit 810 , a phase rotation unit 820 , a second determining unit 830 and a sending unit 840 .
  • the first determining unit 810 is configured to determine a plurality of first subcarrier data items on a plurality of first subcarriers of a first frequency subband.
  • the phase rotation unit 820 is configured to perform first phase rotation on each of the plurality of first subcarrier data items based on the mixing frequency and the first reference frequency corresponding to the first frequency subband.
  • the second determining unit 830 is configured to determine a signal to be transmitted based on the first phase-rotated pieces of first subcarrier data items.
  • the sending unit 840 is configured to send the signal to be transmitted.
  • phase rotation unit 820 may be specifically configured to: determine the first phase rotation value based on the difference between the mixing frequency and the first reference frequency; Each first subcarrier data item in the carrier data item performs a first phase rotation.
  • the first determining unit 810 may also be configured to determine a plurality of second subcarrier data items on a plurality of second subcarriers of the second frequency subband, the first frequency subband and the second frequency The subbands do not overlap in the frequency domain.
  • the phase rotation unit 820 may also be configured to perform a second phase rotation on each of the plurality of second subcarrier data items based on a second reference frequency whose mixing frequency corresponds to a second frequency subband , the first reference frequency is different from the second reference frequency.
  • phase rotation unit 820 may be specifically configured to: determine the second phase rotation value based on the difference between the mixing frequency and the second reference frequency; Each second subcarrier data item in the carrier data item performs a second phase rotation.
  • the second determining unit 830 may be configured to: determine the data items to be transmitted based on the first phase-rotated first subcarrier data items and the second phase-rotated second subcarrier data items Signal.
  • the division of modules or units in the embodiments of the present disclosure is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • each function in the disclosed embodiments Units can be integrated into one unit, or physically exist separately, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the first determination unit 810 can be realized as the S/P conversion module 310
  • the phase rotation unit 820 can be realized as the phase rotation module 320
  • the second determination unit 830 can be realized as the IFFT module 330 and the CP addition module 340 .
  • the apparatus 800 in FIG. 8 can be used to implement each process described by the first device 210 in the foregoing embodiment, and for the sake of brevity, details are not repeated here.
  • Fig. 9 shows a schematic block diagram of a communication device 900 according to some embodiments of the present disclosure.
  • the apparatus 900 may be implemented as the second device 220 or as a part of the second device 220 (such as a chip), etc., which is not limited in the present disclosure.
  • the apparatus 900 may include a receiving unit 910 , a determining unit 920 , a phase inversion unit 930 and a post-processing unit 940 .
  • the receiving unit 910 is configured to receive transmission signals.
  • the determining unit 920 is configured to determine a plurality of first subcarrier data items on a plurality of first subcarriers of the first frequency subband based on the transmission signal.
  • the phase derotation unit 930 is configured to perform first phase derotation on the plurality of first subcarrier data items based on the mixing frequency and the first reference frequency corresponding to the first frequency subband.
  • the post-processing unit 940 is configured to perform post-processing on the plurality of first subcarrier data items derotated by the first phase.
  • phase inverse rotation unit 930 may be specifically configured to: determine the first phase inverse rotation value based on the difference between the first reference frequency and the mixing frequency; and based on the first phase inverse rotation value, Each of the plurality of first subcarrier data items performs first phase inverse rotation.
  • the determining unit 910 may also be configured to determine a plurality of second subcarrier data items on a plurality of second subcarriers of the second frequency subband based on the transmission signal, the first frequency subband and the second frequency subband The frequency subbands do not overlap in the frequency domain.
  • the phase derotation unit 930 may also be configured to perform a second phase derotation on the plurality of second subcarrier data items based on the mixing frequency and a second reference frequency corresponding to the second frequency subband, the first reference frequency being different from the first reference frequency Two reference frequencies.
  • phase inverse rotation unit 930 may be specifically configured to: determine the second phase inverse rotation value based on the difference between the second reference frequency and the mixing frequency; and based on the second phase inverse rotation value, to Each of the plurality of second subcarrier data items performs second phase inverse rotation.
  • each function in the disclosed embodiments Units can be integrated into one unit, or physically exist separately, or two or more units can be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units. Referring to FIG. 4 , the determination unit 920 can be implemented as the de-CP module 410 and the FFT module 420 , the phase inverse rotation unit 930 can be implemented as the phase inverse rotation module 430 , and the post-processing unit 940 can be implemented as the P/S conversion module 440 .
  • the apparatus 900 in FIG. 9 can be used to implement various processes described by the second device 220 in the foregoing embodiments, and for the sake of brevity, details are not repeated here.
  • Fig. 10 shows a schematic block diagram of an example device 1000 that may be used to implement embodiments of the present disclosure.
  • the device 1000 may be implemented as or included in the first device 210 of FIG. 2 , or the device 1000 may be implemented as or included in the second device 220 of FIG. 2 .
  • device 1000 includes one or more processors 1010 , one or more memories 1020 coupled to processors 1010 , and communication module 1040 coupled to processors 1010 .
  • the communication module 1040 can be used for two-way communication.
  • the communication module 1040 may have at least one communication interface for communication.
  • Communication interfaces may include any interface necessary to communicate with other devices.
  • the processor 1010 can be any type suitable for the local technical network, and can include but not limited to at least one of the following: a general-purpose computer, a special-purpose computer, a microcontroller, a digital signal processor (Digital Signal Processor, DSP), or a control-based One or more of the multi-core controller architectures of the processor.
  • Device 1000 may have multiple processors, such as application specific integrated circuit chips, that are time slaved to a clock that is synchronized with a main processor.
  • Memory 1020 may include one or more non-volatile memories and one or more volatile memories.
  • non-volatile memory include but are not limited to at least one of the following: read-only memory (Read-Only Memory, ROM) 1024, erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), flash memory, hard disk , Compact Disc (CD), Digital Video Disk (Digital Versatile Disc, DVD) or other magnetic and/or optical storage.
  • Examples of volatile memory include, but are not limited to, at least one of: Random Access Memory (RAM) 1022, or other volatile memory that does not persist for the duration of a power outage.
  • RAM Random Access Memory
  • the computer program 1030 comprises computer-executable instructions executed by the associated processor 1010 .
  • Program 1030 may be stored in ROM 1024.
  • Processor 1010 may perform any suitable actions and processes by loading program 1030 into RAM 1022.
  • Embodiments of the present disclosure can be implemented by means of the program 1030, so that the device 1000 can perform any of the processes discussed above.
  • Embodiments of the present disclosure can also be realized by hardware or by a combination of software and hardware.
  • Program 1030 may be tangibly embodied on a computer readable medium, which may be included in device 1000 (such as in memory 1020 ) or other storage device accessible by device 1000 . Program 1030 may be loaded from a computer readable medium into RAM 1022 for execution.
  • the computer readable medium may include any type of tangible nonvolatile memory such as ROM, EPROM, flash memory, hard disk, CD, DVD, and the like.
  • the communication module 1040 in the device 1000 may be implemented as a transmitter and receiver (or transceiver), which may be configured to send/receive transmission signals and the like.
  • the device 1000 may further include one or more of a scheduler, a controller, and a radio frequency/antenna, which will not be described in detail in this disclosure.
  • the device 1000 in FIG. 10 may be implemented as a communication device, or may be implemented as a chip or chip system in the communication device, which is not limited by the embodiments of the present disclosure.
  • Embodiments of the present disclosure also provide a chip, which may include an input interface, an output interface, and a processing circuit.
  • a chip which may include an input interface, an output interface, and a processing circuit.
  • the interaction of signaling or data may be completed by the input interface and the output interface, and the generation and processing of signaling or data information may be completed by the processing circuit.
  • Embodiments of the present disclosure also provide a chip system, including a processor, configured to support a device to implement the functions involved in any of the foregoing embodiments.
  • the system-on-a-chip may further include a memory for storing necessary program instructions and data, and when the processor runs the program instructions, the device installed with the system-on-a-chip can implement the program described in any of the above-mentioned embodiments.
  • the chip system may consist of one or more chips, and may also include chips and other discrete devices.
  • Embodiments of the present disclosure further provide a processor, configured to be coupled with a memory, where instructions are stored in the memory, and when the processor executes the instructions, the processor executes the methods and functions involved in any of the foregoing embodiments.
  • Embodiments of the present disclosure also provide a computer program product containing instructions, which, when run on a computer, cause the computer to execute the methods and functions involved in any of the above embodiments.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which computer instructions are stored, and when a processor executes the instructions, the processor is made to execute the methods and functions involved in any of the above embodiments.
  • the various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other device. While various aspects of the embodiments of the present disclosure are shown and described as block diagrams, flowcharts, or using some other pictorial representation, it should be understood that the blocks, devices, systems, techniques or methods described herein can be implemented as, without limitation, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controllers or other devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer-readable storage medium.
  • the computer program product comprises computer-executable instructions, eg included in program modules, which are executed in a device on a real or virtual processor of a target to perform the process/method as above with reference to the accompanying drawings.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or divided as desired among the program modules.
  • Machine-executable instructions for program modules may be executed within local or distributed devices. In a distributed device, program modules may be located in both local and remote storage media.
  • Computer program codes for implementing the methods of the present disclosure may be written in one or more programming languages. These computer program codes can be provided to processors of general-purpose computers, special-purpose computers, or other programmable data processing devices, so that when the program codes are executed by the computer or other programmable data processing devices, The functions/operations specified in are implemented.
  • the program code may execute entirely on the computer, partly on the computer, as a stand-alone software package, partly on the computer and partly on a remote computer or entirely on the remote computer or server.
  • computer program code or related data may be carried by any suitable carrier to enable a device, apparatus or processor to perform the various processes and operations described above.
  • carriers include signals, computer readable media, and the like.
  • signals may include electrical, optical, radio, sound, or other forms of propagated signals, such as carrier waves, infrared signals, and the like.
  • a computer readable medium may be any tangible medium that contains or stores a program for or related to an instruction execution system, apparatus, or device.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination thereof. More detailed examples of computer-readable storage media include electrical connections with one or more wires, portable computer diskettes, hard disks, random storage access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM or flash), optical storage, magnetic storage, or any suitable combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的实施例提供了一种信息传输方法以及通信装置,涉及通信领域。该方法包括:确定在第一频率子带的多个第一子载波上的多条第一子载波数据项;基于混频频率和第一频率子带对应的第一参考频率,对每条第一子载波数据项执行第一相位旋转;基于经第一相位旋转的多条第一子载波数据项确定待传输信号;以及发送待传输信号。如此,能够至少基于第一参考频率执行相位旋转,从而无需知道接收端的混频频率也能够正确地实现调制。此外也无需将所使用的混频频率通知接收端,即使接收端不知道该混频频率也能够正确地解调接收到的信号。这样,无需预先在发射端和接收端之间将混频频率对齐,避免额外的信令开销,从而降低了系统复杂度,提升了传输效率。

Description

信息传输方法以及通信装置 技术领域
本公开的实施例主要涉及通信领域,更具体地,涉及一种信息传输方法以及通信装置。
背景技术
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术是由多载波调制(Multi-Carrier Modulation,MCM)技术发展而言。OFDM技术既属于调制技术,也属于复用技术。
目前的OFDM系统中,发射端和接收端之间需要先进行混频频率的匹配,也就是说,发射端和接收端分别需要知道对端的混频频率,这样需要额外的信令开销,增加了系统的复杂度。
发明内容
本公开的实施例提供了一种信息传输的方案,发射端和接收端不需要知道对端的混频频率,这样能够节省信令开销。
在本公开的第一方面,提供了一种信息传输方法。该方法包括:确定在第一频率子带的多个第一子载波上的多条第一子载波数据项;基于混频频率和第一频率子带对应的第一参考频率,对多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转;基于经第一相位旋转的多条第一子载波数据项确定待传输信号;以及发送待传输信号。
如此,本公开的实施例能够在发射端至少基于第一参考频率执行相位旋转,从而无需知道接收端的混频频率也能够正确地实现调制。此外,发射端也无需将所使用的混频频率通知接收端,即使接收端不知道该混频频率也能够正确地解调接收到的信号。这样,无需预先在发射端和接收端之间将混频频率对齐,避免额外的信令开销,从而降低了系统复杂度,提升了传输效率。
在第一方面的一些实施例中,执行第一相位旋转包括:基于混频频率与第一参考频率之间的差值,确定第一相位旋转值;以及基于第一相位旋转值,对多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转。
如此,能够基于混频频率与第一参考频率之间的差值来执行相位旋转,从而实现了相位偏差补偿。
在第一方面的一些实施例中,还包括:确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,第一频率子带和第二频率子带在频域上不重叠;以及基于混频频率与第二频率子带对应的第二参考频率,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转,第一参考频率不同于第二参考频率。
如此,本公开的实施例中可以在多个频率子带分别进行相位旋转,这样能够提高对传输信号处理的准确性。
在第一方面的一些实施例中,执行第二相位旋转包括:基于混频频率与第二参考频率之间的差值,确定第二相位旋转值;以及基于第二相位旋转值,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转。
在第一方面的一些实施例中,确定待传输信号包括:基于经第一相位旋转的多条第一子载波数据项以及经第二相位旋转的多条第二子载波数据项,确定待传输信号。
在本公开的第二方面,提供了一种信息传输方法。该方法包括:接收传输信号;基于传输信号,确定在第一频率子带的多个第一子载波上的多条第一子载波数据项;基于混频频率和第一频率子带对应的第一参考频率,对多条第一子载波数据项执行第一相位反旋转;以及对经第一相位反旋转的多条第一子载波数据项执行后处理。
如此,本公开的实施例能够至少基于第一参考频率执行相位反旋转,从而在不知道发送端的混频频率的情况下,能够正确地解调接收到的信号。这样,无需预先在发射端和接收端之间将混频频率对齐,避免额外的信令开销,从而降低了系统复杂度,提升了传输效率。
在第二方面的一些实施例中,执行第一相位反旋转包括:基于第一参考频率与混频频率之间的差值,确定第一相位反向旋转值;以及基于第一相位反向旋转值,对多条第一子载波数据项中的每条第一子载波数据项执行第一相位反旋转。
在第二方面的一些实施例中,还包括:基于传输信号确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,第一频率子带和第二频率子带在频域上不重叠;以及基于混频频率和第二频率子带对应的第二参考频率,对多条第二子载波数据项执行第二相位反旋转,第一参考频率不同于第二参考频率。
如此,本公开的实施例中可以在多个频率子带分别进行相位反旋转,这样能够基于不同的参考频率分别进行相位偏差补偿,进而提高对传输信号处理的准确性。
在第二方面的一些实施例中,执行第二相位反旋转包括:基于第二参考频率与混频频率之间的差值,确定第二相位反向旋转值;以及基于第二相位反向旋转值,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位反旋转。
在本公开的第三方面,提供了一种通信装置。该装置包括:第一确定单元,被配置为确定在第一频率子带的多个第一子载波上的多条第一子载波数据项;相位旋转单元,被配置为基于混频频率和第一频率子带对应的第一参考频率,对多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转;第二确定单元,被配置为基于经第一相位旋转的多条第一子载波数据项确定待传输信号;以及发送单元,被配置为发送待传输信号。
在第三方面的一些实施例中,相位旋转单元被配置为基于混频频率与第一参考频率之间的差值,确定第一相位旋转值;以及基于第一相位旋转值,对多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转。
在第三方面的一些实施例中,第一确定单元还被配置为确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,第一频率子带和第二频率子带在频域上不重叠;以及相位旋转单元还被配置为基于混频频率与第二频率子带对应的第二参考频率,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转,第一参考频率不同于第二参考频率。
在第三方面的一些实施例中,相位旋转单元被配置为:基于混频频率与第二参考频率之间的差值,确定第二相位旋转值;以及基于第二相位旋转值,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转。
在第三方面的一些实施例中,第二确定单元被配置为基于经第一相位旋转的多条第一子载波数据项以及经第二相位旋转的多条第二子载波数据项,确定待传输信号。
在本公开的第四方面,提供了一种通信装置。该装置包括:接收单元,被配置为接收传 输信号;确定单元,被配置为基于传输信号,确定在第一频率子带的多个第一子载波上的多条第一子载波数据项;相位反旋转单元,被配置为基于混频频率和第一频率子带对应的第一参考频率,对多条第一子载波数据项执行第一相位反旋转;以及后处理单元,被配置为对经第一相位反旋转的多条第一子载波数据项执行后处理。
在第四方面的一些实施例中,相位反旋转单元被配置为:基于第一参考频率与混频频率之间的差值,确定第一相位反向旋转值;以及基于第一相位反向旋转值,对多条第一子载波数据项中的每条第一子载波数据项执行第一相位反旋转。
在第四方面的一些实施例中,确定单元还被配置为基于传输信号确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,第一频率子带和第二频率子带在频域上不重叠;以及相位反旋转单元还被配置为基于混频频率和第二频率子带对应的第二参考频率,对多条第二子载波数据项执行第二相位反旋转,第一参考频率不同于第二参考频率。
在第四方面的一些实施例中,相位反旋转单元被配置为:基于第二参考频率与混频频率之间的差值,确定第二相位反向旋转值;以及基于第二相位反向旋转值,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位反旋转。
在本公开的第五方面,提供了一种通信装置。该通信装置包括处理器、收发器以及存储器,存储器上存储有由处理器执行的指令,当指令被处理器执行时使得该通信装置实现:确定在第一频率子带的多个第一子载波上的多条第一子载波数据项;基于混频频率和第一频率子带对应的第一参考频率,对多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转;基于经第一相位旋转的多条第一子载波数据项确定待传输信号;以及经由收发器发送待传输信号。
在第五方面的一些实施例中,处理器执行指令使得该通信装置实现:基于混频频率与第一参考频率之间的差值,确定第一相位旋转值;以及基于第一相位旋转值,对多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转。
在第五方面的一些实施例中,处理器执行指令使得该通信装置实现:确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,第一频率子带和第二频率子带在频域上不重叠;以及基于混频频率与第二频率子带对应的第二参考频率,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转,第一参考频率不同于第二参考频率。
在第五方面的一些实施例中,处理器执行指令使得该通信装置实现:基于混频频率与第二参考频率之间的差值,确定第二相位旋转值;以及基于第二相位旋转值,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转。
在第五方面的一些实施例中,处理器执行指令使得该通信装置实现:基于经第一相位旋转的多条第一子载波数据项以及经第二相位旋转的多条第二子载波数据项,确定待传输信号。
在本公开的第六方面,提供了一种通信装置。该通信装置包括处理器、收发器以及存储器,存储器上存储有由处理器执行的指令,当指令被处理器执行时使得该通信装置实现:经由收发器接收传输信号;基于传输信号,确定在第一频率子带的多个第一子载波上的多条第一子载波数据项;基于混频频率和第一频率子带对应的第一参考频率,对多条第一子载波数据项执行第一相位反旋转;以及对经第一相位反旋转的多条第一子载波数据项执行后处理。
在第六方面的一些实施例中,处理器执行指令使得该通信装置实现:基于第一参考频率与混频频率之间的差值,确定第一相位反向旋转值;以及基于第一相位反向旋转值,对多条 第一子载波数据项中的每条第一子载波数据项执行第一相位反旋转。
在第六方面的一些实施例中,处理器执行指令使得该通信装置实现:基于传输信号确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,第一频率子带和第二频率子带在频域上不重叠;以及基于混频频率和第二频率子带对应的第二参考频率,对多条第二子载波数据项执行第二相位反旋转,第一参考频率不同于第二参考频率。
在第六方面的一些实施例中,处理器执行指令使得该通信装置实现:基于第二参考频率与混频频率之间的差值,确定第二相位反向旋转值;以及基于第二相位反向旋转值,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位反旋转。
在本公开的第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现根据上述第一方面或其任一实施例中的方法的操作,或者实现根据上述第二方面或其任一实施例中的方法的操作。
在本公开的第八方面,提供了一种芯片或芯片系统。该芯片或芯片系统包括处理电路,被配置为执行根据上述第一方面或其任一实施例中的方法的操作,或者执行根据上述第二方面或其任一实施例中的方法的操作。
在本公开的第九方面,提供了一种计算机程序或计算机程序产品。该计算机程序或计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,计算机可执行指令在被执行时实现根据上述第一方面或其任一实施例中的方法的操作,或者实现根据上述第二方面或其任一实施例中的方法的操作。
应当理解,发明内容部分中所描述的内容并非旨在限定本公开的实施例的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
图1示出了OFDM系统的一个示意图;
图2示出了本公开的实施例可以实现于其中的示例环境的示意图;
图3示出了根据本公开的一些实施例的第一设备作为发射端设备的模块框图;
图4示出了根据本公开的一些实施例的第二设备作为接收端设备的模块框图;
图5示出了根据本公开的一些实施例的信息传输过程的示意信令交互图;
图6示出了根据本公开的一些实施例的第一设备所处理的OFDM符号分布在多个子载波上的示意图;
图7示出了根据本公开的一些实施例的第二设备所处理的OFDM符号分布在多个子载波上的示意图;
图8示出了根据本公开的一些实施例的一个通信装置的示意框图;
图9示出了根据本公开的一些实施例的另一通信装置的示意框图;以及
图10示出了可以用来实施本公开的实施例的示例设备的示意性框图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例, 然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。术语“和/或”表示由其关联的两项的至少一项。例如“A和/或B”表示A、B、或者A和B。下文还可能包括其他明确的和隐含的定义。
本公开的实施例可以根据任何适当的通信协议来实施,包括但不限于,第三代(3rd Generation,3G)、第四代(4G)、第五代(5G)等蜂窝通信协议、诸如电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11等的无线局域网通信协议、和/或目前已知或者将来开发的任何其他协议。
本公开的实施例的技术方案应用于遵循任何适当通信协议的通信系统,例如:通用分组无线业务(General Packet Radio Service,GPRS)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、通用移动通信系统(Universal Mobile Telecommunications Service,UMTS)、长期演进(Long Term Evolution,LTE)系统、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA)、频分双工(Frequency Division Duplex,FDD)系统、时分双工(Time Division Duplex,TDD)、第五代(5G)系统或新无线电(New Radio,NR),等等。
本公开的实施例中涉及通信设备。在一种示例通信系统中,该通信设备可以为网络设备或者终端设备。在一种示例通信系统中,该通信设备可以为接入点(Access Point,AP)设备或者站点(STA)设备。
在本公开中使用的术语“终端设备”指能够与网络设备之间或者彼此之间进行有线或无线通信的任何终端设备。终端设备有时可以称为用户设备(User Equipment,UE)。终端设备可以是任意类型的移动终端、固定终端或便携式终端。作为示例,终端设备可以包括移动手机、站点、单元、设备、移动终端(Mobile Terminal,MT)、订阅台、便携式订阅台、互联网节点、通信器、台式计算机、膝上型计算机、笔记本计算机、平板计算机、个人通信系统设备、个人导航设备、个人数字助理(Personal Digital Assistant,PDA)、定位设备、无线电广播接收器、电子书设备、游戏设备、物联网(Internet of Things,IoT)设备、车载设备、飞行器、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、可穿戴设备、5G网络中的终端设备或者演进的公用陆地移动网络(Public Land Mobile Network,PLMN)中的任何终端设备、可用于通信的其他设备、或者上述的任意组合。本公开的实施例对此并不做限定。
在本公开中使用的术语“网络设备”是可以用于与终端设备通信的实体或节点,例如可以是接入网设备。接入网设备可以是部署在无线接入网中为移动终端提供无线通信功能的装置,例如可以是无线接入网(Radio Access Network,RAN)网络设备。接入网设备可以包括各种类型的基站。作为示例,接入网设备可以包括各种形式的宏基站、微基站、微微基站、 毫微微基站、中继站、接入点、远程无线电单元(Remote Radio Unit,RRU)、射频头(Radio Head,RH)、远程无线电头端(Remote Radio Head,RRH)等等。在采用不同的无线接入技术的系统中,接入网设备的名称可能会有所不同,例如在长期演进系统(Long Term Evolution,LTE)网络中称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G网络中称为节点B(NodeB,NB),在5G网络中可以称为g节点B(gNB)或NR节点B(NR NB),等等。在某些场景下,接入网设备可以包含集中单元(Central Unit,CU)和/或分布单元(Distributed Unit,DU)。CU和DU可以放置在不同的地方,例如:DU拉远,放置于高话务量的区域,CU放置于中心机房。或者,CU和DU也可以放置在同一机房。CU和DU也可以为一个机架下的不同部件。为方便描述,本公开后续的实施例中,上述为移动终端提供无线通信功能的装置统称为网络设备,本公开的实施例不再具体限定。
在本公开中使用的术语“接入点”也可以称为接入点类的站点。AP可以为具有无线收发功能的装置,可以为站点提供服务。AP也可称为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网络和无线网络的桥梁,其主要作用是将各个STA连接到一起,然后将无线网络接入有线网络。可选地,AP可以是带有无线保真(Wireless Fidelity,Wi-Fi)芯片的终端设备或者网络设备,例如,AP可以是通信服务器、路由器、交换机或网桥等。可选地,AP可以是支持当前网络系统或者未来网络系统下802.11制式的设备。
在本公开中使用的术语“站点”可以是具有无线收发功能的装置,其可以基于接入点接入无线局域网。STA可以是无线通信芯片、无线传感器或无线通信终端。例如,STA也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。STA可以为无线通信芯片、无线传感器或无线通信终端。例如STA为支持Wi-Fi通信功能的移动电话、支持Wi-Fi通信功能的平板电脑、支持Wi-Fi通信功能的机顶盒、支持Wi-Fi通信功能的智能电视、支持Wi-Fi通信功能的智能可穿戴设备、支持Wi-Fi通信功能的车载通信设备和支持Wi-Fi通信功能的计算机等。可选地,STA可以是支持当前网络系统或者未来网络系统下802.11制式的设备。
在本公开中使用的术语“OFDM”是利用相互正交的子载波来实现多载波通信的技术。图1示出了OFDM系统100的一个示意图。系统100包括发射端110和接收端120,发射端110所发送的信号等可以经由无线信道130到达接收端120。
如图1所示,发射端110可以包括串/并(serial-parallel,S/P)转换模块112、逆快速傅里叶变换(Inverse Fast Fourier Transform,IFFT)模块114和加保护间隔(Add Guard Interval,ADD GI)模块116。接收端120包括去保护间隔模块122、快速傅里叶变换(Fast Fourier Transform,FFT)模块124和并/串转换模块126。
在发射端110,高速数据流经过S/P转换模块112后成为多个低速率码流,每个码流可用一个子载波发送,并行传输技术使得每个码元的传输周期大幅增加,从而能够降低由于多晶时延所引起的符号间干扰(Inter Dymbol Interference,ISI),降低了系统自干扰。随后通过IFFT模块114可以实现多载波映射叠加过程,将大量窄带子载波频域信号变换为时域信号。作为一例,IFFT模块114可以进行逆离散傅里叶变换。在OFDM符号发送之前,由加GI模块116 在码元之间加入保护间隔,能够避免多径时延造成的影响延伸到下一个符号周期,从而消除了符号间干扰和多载波间干扰。具体而言,加GI模块116所使用的保护间隔为循环前缀(Cyclic Prefix,CP),也就是说,将每个OFDM符号的尾部一段复制到符号之前,这样比起纯粹的加空闲的保护间隔而言,增加了冗余符号信息,更有利于克服干扰。进一步地,在加CP之后,发射端110还基于模拟混频器,使用混频频率f mixer执行模拟上变频,得到上变频后的信号。
在接收端120,接收到信号之后通过一系列逆操作恢复数据流。具体而言,接收端120使用与发射端110相同的混频频率f mixer执行模拟下变频,得到下变频后的信号,通过去保护间隔模块122将GI(例如CP)去除,通过FFT模块124从时域转换到频域,再通过并/串转换模块126恢复数据流。
如上述结合图1所描述的,发射端110和接收端120执行混频操作所使用的混频频率相同。也就是说,在信号传输之前,发射端110和接收端120之间需要通过信令等方式进行混频频率对齐,这样会增加信令开销,降低信号传输的效率,并且增加了系统的复杂度。
有鉴于此,本公开的实施例提供了一种信息传输方案,发射端和接收端之间无需预先将混频频率对齐,从而减少了信令开销,确保传输效率。
图2示出了本公开的实施例可以实现于其中的示例环境200的示意图。图2中示出了第一设备210和第二设备220。第一设备210和第二设备220之间能够进行通信。
本公开的实施例对第一设备210和第二设备220的设备类型不作限定。举例而言,可以是网络设备、终端设备、接入点设备或站点设备等,可以是中继设备、核心网设备或其他任意类型设备等,本文中不再罗列。并且可理解,第一设备210和第二设备220可以是相同的设备类型或者可以是不同的设备类型。
为了描述的方便,下文中假设第一设备210为发射端设备,第二设备220为接收端设备,也就是说假设第一设备210将信息发送到第二设备220。
图3示出了根据本公开的一些实施例的第一设备210作为发射端设备的模块框图。如图3所示,第一设备210包括串/并转换模块310、相位旋转模块320、IFFT模块330和加CP模块340。
图4示出了根据本公开的一些实施例的第二设备220作为接收端设备的模块框图。如图4所示,第二设备220包括去CP模块410、FFT模块420、相位反旋转模块430和并/串转换模块440。
应当理解,在其他实施例中,第一设备210也可以充当接收端设备,第二设备220可以充当发射端设备。在这样的情况下,第一设备210可以包括如图4所示出的接收端设备处的模块,并且第二设备220可以包括如图3所示出的发射端处的模块。
下面将在图2至图4的基础上,结合图5至图7描述本公开中信息传输的一些实施例。
图5示出了根据本公开的一些实施例的信息传输过程500的示意信令交互图。过程500涉及第一设备210和第二设备220。
在过程500中,第一设备210确定510在第一频率子带的多个第一子载波上的多条第一子载波数据项。
在一些实施例中,第一频率子带可以等于传输带宽。在一些实施例中,第一频率子带可以为传输带宽的部分。具体而言,传输带宽可以被分为若干个频率子带,如此在OFDM符号中可以发送对应的若干个子带信号。举例而言,可以包括两个子带:第一频率子带和第二频 率子带,其中第一频率子带和第二频率子带的频率范围可以相等也可以不相等。另外,可理解,本公开实施例对频率子带的数量不作限定,尽管为了描述的方便以两个子带为例进行阐述,但是在实际场景中,可以包括更多数量的子带。为了描述的方便,本公开下文的实施例以“包括第一频率子带和第二频率子带”为了进行阐述,只包括一个频率子带或包括更多数目的频率子带的实施例可以类似地得出,为了简洁,不再重复阐述。
附加地或可选地,第一设备210还可以确定在第二频率子带的多个第二子载波上的多条第二子载波数据项。
结合图3,可以由串/并转换模块310将高速数据流转换为多个低速率码流,以在多个可用的子载波上发送。为了简化描述,可以假设多个子载波的数目为N,N为偶数,并且相应地可以将N个子载波进行编号,例如-N/2至N/2-1。可理解,该数目和编号方式仅是示意,也可以是其他的数目(如奇数),也可以采用其他的编号方式,这里不再赘述。
示例性地,多个低速率码流也可以被称为多条子载波数据项,如N条子载波数据项。可以将子载波数据项表示为X(k),-N/2≤k<N/2。具体而言,可以将多条第一子载波数据项表示为X(k),-N/2≤k<α。将多条第二子载波数据项表示为X(k),α≤k<N/2。
也就是说,第一频率子带对应的子载波编号为-N/2至α,第二频率子带对应的子载波编号为α至N/2。将第一频率子带和第二频率子带分隔的子载波编号α可以是第一设备210基于第一设备210所使用的混频频率(即发射端混频频率)所确定的。可以将第一设备210所使用的混频频率(即发射端混频频率)表示为f TX,其可以是由第一设备210所设定的,并且该发射端混频频率对于接收端设备(第二设备220)而言可以是未知的,这样,无需预先进行第一设备210与第二设备220之间的混频频率对齐,减少了信令开销。
可理解的是,发射端混频频率f TX对于接收端设备(即第二设备220)而言是未知的,而α是对应于发射端混频频率f TX的,那么可以理解,α对于接收端设备(即第二设备220)而言也是未知的。也就是说,第二设备220不知道第一设备210对于载波子带的划分方式。
第一设备210基于第一混频频率和第一频率子带对应的第一参考频率,对多条第一子载波数据项中的每条第一子载波数据项执行520第一相位旋转。
类似地,第一设备210基于第一混频频率和第二频率子带对应的第二参考频率,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转。
本公开的实施例中,频率子带与参考频率之间具有对应关系,该对应关系可以是由协议预先规定的或者可以是预配置的,这样能够避免在第一设备210与第二设备220之间的额外信令开销,从而能够提升传输效率。本公开的实施例中,不同的频率子带在频域上不重叠,并且与不同的频率子带所对应的参考频率也是不同的。具体而言,第一频率子带和第二频率子带在频域上不重叠,且第一参考频率不同于第二参考频率。
作为一个示例,可以假设第一参考频率低于第二参考频率。应理解,第一参考频率与第二参考频率之间的频率间隔不是固定的,而且取决于信道号的,例如第一参考频率与第二参考频率之间的子载波数目可以为41个或42个或其他值,本公开对此不限定。
如上所述,第一混频频率是由第一设备210所确定的,但是本公开实施例对第一设备210所使用的发射端混频频率的确定方式等不作限定,例如,第一设备210可以将第一参考频率和第二参考频率之间的任一频率作为发射端混频频率(即第一混频频率)。
可理解,本公开的实施例对对应关系的具体设定方式不作限定,例如第一参考频率可以 对应于低频的频率子带,而第二参考频率可以对应于高频的频率子带。这样,不管α是何值,第一参考频率对应于包括子载波编号-N/2的第一频率子带,第二参考频率对应于包括子载波编号N/2-1的第二频率子带。可以将第一参考频率表示为f REF1,将第二参考频率表示为f REF2
第一混频频率即前述的第一设备210所使用的混频频率,也可以称为发射端混频频率,表示为f TX
如图6所示,为第一设备210所处理的OFDM符号在多个子载波上的示例分布600的示意图。在图6中,多个子载波的编号范围为-N/2至N/2-1。子载波编号范围-N/2至α-1对应于第一频率子带,子载波编号范围α至N/2-1对应于第二频率子带,并且其中第一混频频率对应的子载波编号为α,第一参考频率对应的子载波编号为c,第二参考频率对应的子载波编号为d。
结合图3,可以由相位旋转模块320对子载波数据项执行相位旋转。具体而言,可以基于第一混频频率f TX与第一参考频率f REF1之间的差值确定第一相位旋转值,并基于第一相位旋转值来对每条第一子载波数据项执行第一相位旋转。类似地,可以基于第一混频频率f TX与第二参考频率f REF2之间的差值确定第二相位旋转值,并基于第二相位旋转值来对每条第二子载波数据项执行第二相位旋转。
可以将经相位旋转后的多条子载波数据项表示为X rotated(k),例如经第一相位旋转的多条第一子载波数据项和经第二相位旋转的多条第二子载波数据项可以分别由下面的公式1和公式2表示。
X rotated(k)=X(k)*exp(j*2*pi*(f TX-f REF1)*T*s),-N/2≤k<a
                                       (公式1)
X rotated(k)=X(k)*exp(j*2*pi*(f TX-f REF2)*T*s),a≤k<N/2
                                      (公式2)
在公式1和公式2中,X(k)表示子载波数据项,f TX为第一混频频率(即发射端混频频率),f REF1为第一参考频率,f REF2为第二参考频率,T为OFDM符号的时域持续时间,s为OFDM符号的编号(s=0,1,2,…),其中,T=(N+G)/N/F,G为保护间隔的样本点数,F为子载波间隔。
在过程500中,第一设备210基于经第一相位旋转的多条第一子载波数据项确定530待传输信号。
具体而言,第一设备210可以基于经第一相位旋转的多条第一子载波数据项和经第二相位旋转的多条第二子载波数据项来确定传输信号。
在一些实施例中,第一设备210确定待传输信号可以包括:频域到时域转换、加CP、和模拟上变频中的至少一项。
附加地或可选地,第一设备210可以对经相位旋转的多条子载波数据项执行532频域到时域的转换。
结合图3,可以由IFFT模块330将经相位旋转的多条子载波数据项变换为时域信号,其中执行IFFT的样点数为N。以逆离散傅里叶变换为例,可以得到:
Figure PCTCN2021122458-appb-000001
Figure PCTCN2021122458-appb-000002
在公式3中,x(n)表示逆离散傅里叶变换的第n个样点的输出结果。
附加地或可选地,第一设备210还可以添加534保护间隔,以消除了符号间干扰和多载波间干扰。
结合图3,可以由加CP模块340将每个OFDM符号的尾部一段复制到符号之前,以实现加CP操作。假设保护间隔的样本点数为G,那么通过加CP模块340之后,符号的长度会变为N+G。示例性地,可以将添加了保护间隔之后的符号表示为x GI(n)。
附加地或可选地,第一设备210还可以执行536模拟上变频。具体而言,可以通过下式得到上变频之后的信号。
x mixer(n)=x GI(n)*exp(j*2*π*n*f TX*T),0≤n<n total
                                        (公式4)
在公式4中,x mixer(n)表示模拟上变频之后的信号,n total表示样本点总数,f TX表示第一设备210使用的混频频率(即发射端混频频率)且与上面的公式1和公式2中的为同一值。
在一些实施例中,可以将上变频之后的信号作为待传输信号,并且随后第一设备210发送540待传输信号。
具体地,第一设备210将待传输信号发送到第二设备220,从而第二设备220能够接收到所传输信号。
第二设备220基于传输信号,确定550在第三频率子带的多个第三子载波上的多条第三子载波数据项。
结合前面的描述,具体而言,第二设备220还可以确定在第四频率子带的多个第四子载波上的多条第四子载波数据项。
在一些实施例中,第二设备220确定多条子载波数据项可以包括:模拟下变频、去CP、和时域到频域转换中的至少一项。
附加地或可选地,第二设备220还可以执行552模拟下变频。具体而言,可以通过下式得到下变频之后的信号。
x′ GI(n)=x mixer(n)*exp(-j*2*pi*n*f RX*T),0≤n<n total
                                           (公式5)
在公式5中,x mixer(n)表示传输信号,例如可以为第一设备210模拟上变频之后的信号,n total表示样本点总数,f RX表示第二设备220使用的混频频率(即接收端混频频率),x′ GI(n)表示模拟下变频之后的信号。
本公开的实施例中,第二设备220所使用的混频频率(即接收端混频频率)可以是由第二设备220所设定的,并且本公开对其设定方式不作限定。并且该接收端混频频率对于发射端设备(第一设备210)而言可以是未知的,这样,无需预先进行第一设备210与第二设备220之间的混频频率对齐,减少了信令开销。
附加地或可选地,第二设备220还可以去除554保护间隔。
结合图4,可以由去CP模块410将每个OFDM符号之前所复制的部分去除,以实现去CP操作。假设去CP之前的样本点数为N+G,那么通过去CP模块410之后,符号的长度会 变为N。示例性地,可以将去除保护间隔之后的符号表示为x′(n)。
附加地或可选地,第二设备220还可以执行556时域到频域的转换。
结合图4,可以由FFT模块420将去除保护间隔之后的时域符号变换为频域信号,其中执行FFT的样点数为N。以离散傅里叶变换为例,可以得到:
Figure PCTCN2021122458-appb-000003
在公式6中,x′(n)表示N个样点,为离散傅里叶变换的输入,X′(k)为离散傅里叶变换的输出结果。
如此,便可以得到N条子载波数据项X′(k),其可以包括在第三频率子带的多个第三子载波上的多条第三子载波数据项X′(k),-N/2≤k<β,以及在第四频率子带的多个第四子载波上的多条第四子载波数据项X′(k),β≤k<N/2。
在结合图5的实施例中,第二设备220在接收并解调信号的过程中,可以将带宽划分为两个子带:第三频率子带和第四频率子带。但是可理解,本公开的实施例对频率子带的数量不作限定,尽管为了描述的方便以两个子带为例进行阐述,但是在实际场景中,可以包括更多数量的子带。
第三频率子带对应的子载波编号为-N/2至β,第四频率子带对应的子载波编号为β至N/2。将第三频率子带和第四频率子带分隔的子载波编号β可以是第二设备220基于第二设备220所使用的混频频率(即接收端混频频率)所确定的。可以将第二设备220所使用的混频频率(即接收端混频频率)表示为f RX,其可以是由第二设备220所设定的,并且该接收端混频频率对于发射端设备(第一设备210)而言可以是未知的,这样,无需预先进行第一设备210与第二设备220之间的混频频率对齐,减少了信令开销。
可理解的是,接收端混频频率f RX对于发射端设备(即第一设备210)而言是未知的,而β是对应于接收端混频频率f RX的,那么可以理解,β对于发射端设备(即第一设备210)而言也是未知的。也就是说,第二设备220不知道第一设备210对于载波子带的划分方式。
在过程500中,第二设备210基于第二混频频率和第三频率子带对应的第一参考频率,对多条第三子载波数据项执行560第一相位反旋转。
类似地,第二设备220基于第二混频频率和第四频率子带对应的第二参考频率,对多条第四子载波数据项执行第二相位反旋转。
本公开的实施例中,频率子带与参考频率之间具有对应关系,该对应关系可以是由协议预先规定的或者可以是预配置的,这样能够避免在第一设备210与第二设备220之间的额外信令开销,从而能够提升传输效率。本公开的实施例中,不同的频率子带在频域上不重叠,并且与不同的频率子带所对应的参考频率也是不同的。具体而言,第三频率子带和第四频率子带在频域上不重叠,且第一参考频率不同于第二参考频率。可理解,本公开的实施例对对应关系的具体设定方式不作限定,例如第一参考频率可以对应于低频的频率子带,而第二参考频率可以对应于高频的频率子带。这样,不管β是何值,第一参考频率对应于包括子载波编号-N/2的第三频率子带,第二参考频率对应于包括子载波编号N/2-1的第四频率子带。如上所述,第一参考频率表示为f REF1,第二参考频率表示为f REF2
可见,可以通过协议预先规定或者可以预先配置第一参考频率和第二参考频率,其中第一参考频率对应于低频的频率子带,第二参考频率对应于高频的频率子带。这样,将频域上划分为两个频率子带的情况下,第一设备210和第二设备220都可以直接使用该第一参考频率和第二参考频率,而无需额外的信令交互,这样能够减小信令开销。
第二混频频率即前述的第二设备220所使用的混频频率,也可以称为接收端混频频率,表示为f RX。如上所述,第二混频频率是由第二设备220所确定的,但是本公开实施例对第二设备220所使用的接收端混频频率的确定方式等不作限定,例如,第二设备220可以将第一参考频率和第二参考频率之间的任一频率作为接收端混频频率(即第二混频频率)。另外可理解,由于第一设备210确定第一混频频率的操作与第二设备220确定第二混频频率的操作两者是彼此独立的,因此,第一混频频率f TX和第二混频频率f RX两者是相互独立的,不存在彼此依赖关系。
如图7所示,为第二设备220所处理的OFDM符号分布在多个子载波上的示意图700。在图7中,多个子载波的编号范围为-N/2至N/2-1。子载波编号范围-N/2至β-1对应于第三频率子带,子载波编号范围β至N/2-1对应于第四频率子带,并且其中第二混频频率对应的子载波编号为β,第一参考频率对应的子载波编号为c,第二参考频率对应的子载波编号为d。
结合图4,可以由相位反旋转模块430对子载波数据项执行相位反旋转。具体而言,可以基于第一参考频率f REF1与第二混频频率f RX之间的差值确定第一相位反向旋转值,并基于第一相位反向旋转值来对每条第三子载波数据项执行第一相位反旋转。类似地,可以基于第二参考频率f REF2与第二混频频率f RX之间的差值确定第二相位反向旋转值,并基于第二相位反向旋转值来对每条第四子载波数据项执行第二相位反旋转。
可以将经相位反旋转后的多条子载波数据项表示为X derotated(k),例如经第一相位反旋转的多条第三子载波数据项和经第二相位反旋转的多条第四子载波数据项可以分别由下面的公式7和公式8表示。
X derotated(k)=X′(k)*exp(j*2*pi*(f REF1-f RX)*T*s),-N/2≤k<β
                                             (公式7)
X derotated(k)=X′(k)*exp(j*2*pi*(f REF2-f RX)*T*s),β≤k<N/2
                                             (公式8)
在公式7和公式8中,X′(k)表示子载波数据项(如第三子载波数据项或第四子载波数据项),f RX为第二混频频率(即接收端混频频率),f REF1为第一参考频率,f REF2为第二参考频率,T为OFDM符号的时域持续时间,s为OFDM符号的编号(s=0,1,2,…),其中,T=(N+G)/N/F,G为保护间隔的样本点数,F为子载波间隔。
在过程500中,第二设备210对经第一相位反旋转的多条第三子载波数据项执行570后处理。
具体而言,第二设备210可以对经第一相位反旋转的多条第三子载波数据项和经第二相位反旋转的多条第四子载波数据项执行后处理。
结合图4,可以由并/串转换模块440执行并到串的转换,从而将多个流合并为单个数据流。
这样,通过本公开的实施例,可以预先规定或者预先配置第一参考频率和第二参考频率,从而在发射端设备和接收端设备之间无需将混频频率对齐,这样能够减少信令开销,提升处 理效率。进一步地,本公开的实施例中通过发射端执行相位旋转,接收端执行相位反旋转来进行相位偏差补偿,以此方式能够消除由于发射端和接收端之间混频频率不对齐而导致的差异,从而能够保住信息传输的准确性。
应理解,在本公开的实施例中,“第一”,“第二”,“第三”等只是为了表示多个对象可能是不同的,但是同时不排除两个对象之间是相同的。“第一”,“第二”,“第三”等不应当解释为对本公开实施例的任何限制。
还应理解,本公开的实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在符合逻辑的情况下,可以相互结合。
还应理解,上述内容只是为了帮助本领域技术人员更好地理解本公开的实施例,而不是要限制本公开的实施例的范围。本领域技术人员根据上述内容,可以进行各种修改或变化或组合等。这样的修改、变化或组合后的方案也在本公开的实施例的范围内。
还应理解,上述内容的描述着重于强调各个实施例之前的不同之处,相同或相似之处可以互相参考或借鉴,为了简洁,这里不再赘述。
图8示出了根据本公开的一些实施例的通信装置800的一个示意框图。装置800可以被实现为第一设备210或者被实现为第一设备210的一部分(如芯片)等,本公开对此不限定。
如图8所示,装置800可以包括第一确定单元810、相位旋转单元820、第二确定单元830和发送单元840。
第一确定单元810被配置为确定在第一频率子带的多个第一子载波上的多条第一子载波数据项。相位旋转单元820被配置为基于混频频率和第一频率子带对应的第一参考频率,对多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转。第二确定单元830被配置为基于经第一相位旋转的多条第一子载波数据项确定待传输信号。发送单元840被配置为发送待传输信号。
可选地,相位旋转单元820可以具体被配置为:基于混频频率与第一参考频率之间的差值,确定第一相位旋转值;以及基于第一相位旋转值,对多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转。
在一些实施例中,第一确定单元810还可以被配置为确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,第一频率子带和第二频率子带在频域上不重叠。相位旋转单元820还可以被配置为基于混频频率与第二频率子带对应的第二参考频率,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转,第一参考频率不同于第二参考频率。
可选地,相位旋转单元820可以具体被配置为:基于混频频率与第二参考频率之间的差值,确定第二相位旋转值;以及基于第二相位旋转值,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转。
在一些实施例中,第二确定单元830可以被配置为:基于经第一相位旋转的多条第一子载波数据项以及经第二相位旋转的多条第二子载波数据项,确定待传输信号。
可理解,本公开的实施例中对模块或单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时也可以有另外的划分方式,另外,在公开的实施例中的各功能单元可以集成在一个单元中,也可以是单独物理存在,也可以两个或两个以上单元集成为一个单元中。上述集 成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。结合图3,第一确定单元810可以被实现为S/P转换模块310,相位旋转单元820可以被实现为相位旋转模块320,第二确定单元830可以被实现为IFFT模块330和加CP模块340。
图8中的装置800能够用于实现上述实施例中由第一设备210所述的各个过程,为了简洁,这里不再赘述。
图9示出了根据本公开的一些实施例的通信装置900的一个示意框图。装置900可以被实现为第二设备220或者被实现为第二设备220的一部分(如芯片)等,本公开对此不限定。
如图9所示,装置900可以包括接收单元910、确定单元920、相位反旋转单元930和后处理单元940。
接收单元910被配置为接收传输信号。确定单元920被配置为基于传输信号,确定在第一频率子带的多个第一子载波上的多条第一子载波数据项。相位反旋转单元930被配置为基于混频频率和第一频率子带对应的第一参考频率,对多条第一子载波数据项执行第一相位反旋转。后处理单元940被配置为对经第一相位反旋转的多条第一子载波数据项执行后处理。
可选地,相位反旋转单元930可以具体被配置为:基于第一参考频率与混频频率之间的差值,确定第一相位反向旋转值;以及基于第一相位反向旋转值,对多条第一子载波数据项中的每条第一子载波数据项执行第一相位反旋转。
在一些实施例中,确定单元910还可以被配置为基于传输信号确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,第一频率子带和第二频率子带在频域上不重叠。相位反旋转单元930还可以被配置为基于混频频率和第二频率子带对应的第二参考频率,对多条第二子载波数据项执行第二相位反旋转,第一参考频率不同于第二参考频率。
可选地,相位反旋转单元930可以具体被配置为:基于第二参考频率与混频频率之间的差值,确定第二相位反向旋转值;以及基于第二相位反向旋转值,对多条第二子载波数据项中的每条第二子载波数据项执行第二相位反旋转。
可理解,本公开的实施例中对模块或单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时也可以有另外的划分方式,另外,在公开的实施例中的各功能单元可以集成在一个单元中,也可以是单独物理存在,也可以两个或两个以上单元集成为一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。结合图4,确定单元920可以被实现为去CP模块410和FFT模块420,相位反旋转单元930可以被实现为相位反旋转模块430,后处理单元940可以被实现为P/S转换模块440。
图9中的装置900能够用于实现上述实施例中由第二设备220所述的各个过程,为了简洁,这里不再赘述。
图10示出了可以用来实施本公开的实施例的示例设备1000的示意性框图。设备1000可以被实现为或者被包括在图2的第一设备210中,或者设备1000可以被实现为或者被包括在图2的第二设备220中。如图所示,设备1000包括一个或多个处理器1010,耦合到处理器1010的一个或多个存储器1020,以及耦合到处理器1010的通信模块1040。
通信模块1040可以用于双向通信。通信模块1040可以具有用于通信的至少一个通信接口。通信接口可以包括与其他设备通信所必需的任何接口。
处理器1010可以是适合于本地技术网络的任何类型,并且可以包括但不限于以下至少一种:通用计算机、专用计算机、微控制器、数字信号处理器(Digital Signal Processor,DSP)、 或基于控制器的多核控制器架构中的一个或多个。设备1000可以具有多个处理器,例如专用集成电路芯片,其在时间上从属于与主处理器同步的时钟。
存储器1020可以包括一个或多个非易失性存储器和一个或多个易失性存储器。非易失性存储器的示例包括但不限于以下至少一种:只读存储器(Read-Only Memory,ROM)1024、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、硬盘、光盘(Compact Disc,CD)、数字视频盘(Digital Versatile Disc,DVD)或其他磁存储和/或光存储。易失性存储器的示例包括但不限于以下至少一种:随机存取存储器(Random Access Memory,RAM)1022、或不会在断电持续时间中持续的其他易失性存储器。
计算机程序1030包括由关联处理器1010执行的计算机可执行指令。程序1030可以存储在ROM 1024中。处理器1010可以通过将程序1030加载到RAM 1022中来执行任何合适的动作和处理。
可以借助于程序1030来实现本公开的实施例,使得设备1000可以执行如上所讨论的任何过程。本公开的实施例还可以通过硬件或通过软件和硬件的组合来实现。
程序1030可以有形地包含在计算机可读介质中,该计算机可读介质可以包括在设备1000中(诸如在存储器1020中)或者可以由设备1000访问的其他存储设备。可以将程序1030从计算机可读介质加载到RAM 1022以供执行。计算机可读介质可以包括任何类型的有形非易失性存储器,例如ROM、EPROM、闪存、硬盘、CD、DVD等。
在一些实施例中,设备1000中的通信模块1040可以被实现为发送器和接收器(或收发器),其可以被配置为发送/接收传输信号等。另外,设备1000还可以进一步包括调度器、控制器、射频/天线中的一个或多个,本公开不再详细阐述。
示例性地,图10中的设备1000可以被实现为通信装置,或者可以被实现为通信装置中的芯片或芯片系统,本公开的实施例对此不限定。
本公开的实施例还提供了一种芯片,该芯片可以包括输入接口、输出接口和处理电路。在本公开的实施例中,可以由输入接口和输出接口完成信令或数据的交互,由处理电路完成信令或数据信息的生成以及处理。
本公开的实施例还提供了一种芯片系统,包括处理器,用于支持设备以实现上述任一实施例中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,用于存储必要的程序指令和数据,当处理器运行该程序指令时,使得安装该芯片系统的设备实现上述任一实施例中所涉及的方法。示例性地,该芯片系统可以由一个或多个芯片构成,也可以包含芯片和其他分立器件。
本公开的实施例还提供了一种处理器,用于与存储器耦合,存储器存储有指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
本公开的实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及的方法和功能。
本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
通常,本公开的各种实施例可以以硬件或专用电路、软件、逻辑或其任何组合来实现。一些方面可以用硬件实现,而其他方面可以用固件或软件实现,其可以由控制器,微处理器或其他设备执行。虽然本公开的实施例的各个方面被示出并描述为框图,流程图或使用一些 其他图示表示,但是应当理解,本文描述的框,装置、系统、技术或方法可以实现为,如非限制性示例,硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他设备,或其某种组合。
本公开还提供有形地存储在非暂时性计算机可读存储介质上的至少一个计算机程序产品。该计算机程序产品包括计算机可执行指令,例如包括在程序模块中的指令,其在目标的真实或虚拟处理器上的设备中执行,以执行如上参考附图的过程/方法。通常,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、库、对象、类、组件、数据结构等。在各种实施例中,可以根据需要在程序模块之间组合或分割程序模块的功能。用于程序模块的机器可执行指令可以在本地或分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质中。
用于实现本公开的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本公开的上下文中,计算机程序代码或者相关数据可以由任意适当载体承载,以使得设备、装置或者处理器能够执行上文描述的各种处理和操作。载体的示例包括信号、计算机可读介质、等等。信号的示例可以包括电、光、无线电、声音或其它形式的传播信号,诸如载波、红外信号等。
计算机可读介质可以是包含或存储用于或有关于指令执行系统、装置或设备的程序的任何有形介质。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体系统、装置或设备,或其任意合适的组合。计算机可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
此外,尽管在附图中以特定顺序描述了本公开的方法的操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤组合为一个步骤执行,和/或将一个步骤分解为多个步骤执行。还应当注意,根据本公开的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
以上已经描述了本公开的各实现,上述说明是示例性的,并非穷尽的,并且也不限于所公开的各实现。在不偏离所说明的各实现的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在很好地解释各实现的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文公开的各个实现方式。

Claims (22)

  1. 一种信息传输方法,其特征在于,包括:
    确定在第一频率子带的多个第一子载波上的多条第一子载波数据项;
    基于混频频率和所述第一频率子带对应的第一参考频率,对所述多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转;
    基于经第一相位旋转的多条第一子载波数据项确定待传输信号;以及
    发送所述待传输信号。
  2. 根据权利要求1所述的方法,其特征在于,执行第一相位旋转包括:
    基于所述混频频率与所述第一参考频率之间的差值,确定第一相位旋转值;以及
    基于所述第一相位旋转值,对所述多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,所述第一频率子带和所述第二频率子带在频域上不重叠;以及
    基于所述混频频率与所述第二频率子带对应的第二参考频率,对所述多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转,所述第一参考频率不同于所述第二参考频率。
  4. 根据权利要求3所述的方法,其特征在于,执行第二相位旋转包括:
    基于所述混频频率与所述第二参考频率之间的差值,确定第二相位旋转值;以及
    基于所述第二相位旋转值,对所述多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转。
  5. 根据权利要求3或4所述的方法,其特征在于,确定所述待传输信号包括:
    基于经第一相位旋转的多条第一子载波数据项以及经第二相位旋转的多条第二子载波数据项,确定所述待传输信号。
  6. 一种信息传输方法,其特征在于,包括:
    接收传输信号;
    基于所述传输信号,确定在第一频率子带的多个第一子载波上的多条第一子载波数据项;
    基于混频频率和所述第一频率子带对应的第一参考频率,对所述多条第一子载波数据项执行第一相位反旋转;以及
    对经第一相位反旋转的多条第一子载波数据项执行后处理。
  7. 根据权利要求6所述的方法,其特征在于,执行第一相位反旋转包括:
    基于所述第一参考频率与所述混频频率之间的差值,确定第一相位反向旋转值;以及
    基于所述第一相位反向旋转值,对所述多条第一子载波数据项中的每条第一子载波数据项执行第一相位反旋转。
  8. 根据权利要求6或7所述的方法,其特征在于,还包括:
    基于所述传输信号确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,所述第一频率子带和所述第二频率子带在频域上不重叠;以及
    基于所述混频频率和所述第二频率子带对应的第二参考频率,对所述多条第二子载波数据项执行第二相位反旋转,所述第一参考频率不同于所述第二参考频率。
  9. 根据权利要求8所述的方法,其特征在于,执行第二相位反旋转包括:
    基于所述第二参考频率与所述混频频率之间的差值,确定第二相位反向旋转值;以及
    基于所述第二相位反向旋转值,对所述多条第二子载波数据项中的每条第二子载波数据项执行第二相位反旋转。
  10. 一种通信装置,其特征在于,包括:
    处理器,被配置为:
    确定在第一频率子带的多个第一子载波上的多条第一子载波数据项;
    基于混频频率和所述第一频率子带对应的第一参考频率,对所述多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转;以及
    基于经第一相位旋转的多条第一子载波数据项确定待传输信号;以及
    收发器,被配置为发送所述待传输信号。
  11. 根据权利要求10所述的装置,其特征在于,所述处理器被配置为:
    基于所述混频频率与所述第一参考频率之间的差值,确定第一相位旋转值;以及
    基于所述第一相位旋转值,对所述多条第一子载波数据项中的每条第一子载波数据项执行第一相位旋转。
  12. 根据权利要求10或11所述的装置,其特征在于,所述处理器被配置为:
    确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,所述第一频率子带和所述第二频率子带在频域上不重叠;以及
    基于所述混频频率与所述第二频率子带对应的第二参考频率,对所述多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转,所述第一参考频率不同于所述第二参考频率。
  13. 根据权利要求12所述的装置,其特征在于,所述处理器被配置为:
    基于所述混频频率与所述第二参考频率之间的差值,确定第二相位旋转值;以及
    基于所述第二相位旋转值,对所述多条第二子载波数据项中的每条第二子载波数据项执行第二相位旋转。
  14. 根据权利要求12或13所述的装置,其特征在于,所述处理器被配置为:
    基于经第一相位旋转的多条第一子载波数据项以及经第二相位旋转的多条第二子载波数据项,确定所述待传输信号。
  15. 一种通信装置,其特征在于,包括:
    收发器,被配置为接收传输信号;以及
    处理器,被配置为:
    基于所述传输信号,确定在第一频率子带的多个第一子载波上的多条第一子载波数据项;
    基于混频频率和所述第一频率子带对应的第一参考频率,对所述多条第一子载波数据项执行第一相位反旋转;以及
    对经第一相位反旋转的多条第一子载波数据项执行后处理。
  16. 根据权利要求15所述的装置,其特征在于,所述处理器被配置为:
    基于所述第一参考频率与所述混频频率之间的差值,确定第一相位反向旋转值;以及
    基于所述第一相位反向旋转值,对所述多条第一子载波数据项中的每条第一子载波数据 项执行第一相位反旋转。
  17. 根据权利要求15或16所述的装置,其特征在于,所述处理器被配置为:
    基于所述传输信号确定在第二频率子带的多个第二子载波上的多条第二子载波数据项,所述第一频率子带和所述第二频率子带在频域上不重叠;以及
    基于所述混频频率和所述第二频率子带对应的第二参考频率,对所述多条第二子载波数据项执行第二相位反旋转,所述第一参考频率不同于所述第二参考频率。
  18. 根据权利要求17所述的装置,其特征在于,所述处理器被配置为:
    基于所述第二参考频率与所述混频频率之间的差值,确定第二相位反向旋转值;以及
    基于所述第二相位反向旋转值,对所述多条第二子载波数据项中的每条第二子载波数据项执行第二相位反旋转。
  19. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器上存储有计算机指令,当所述计算机指令被所述处理器执行时,使得所述通信装置执行权利要求1至9中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现根据权利要求1至9中任一项所述的方法。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品上包含计算机可执行指令,所述计算机可执行指令在被执行时实现根据权利要求1至9中任一项所述的方法。
  22. 一种芯片,其特征在于,包括处理电路,被配置为执行根据权利要求1至9中任一项所述的方法。
PCT/CN2021/122458 2021-09-30 2021-09-30 信息传输方法以及通信装置 WO2023050428A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/122458 WO2023050428A1 (zh) 2021-09-30 2021-09-30 信息传输方法以及通信装置
CN202180100170.5A CN117652127A (zh) 2021-09-30 2021-09-30 信息传输方法以及通信装置
EP21958994.2A EP4401366A1 (en) 2021-09-30 2021-09-30 Information transmission method and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122458 WO2023050428A1 (zh) 2021-09-30 2021-09-30 信息传输方法以及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/619,852 Continuation US20240243961A1 (en) 2024-03-28 Information transmission method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2023050428A1 true WO2023050428A1 (zh) 2023-04-06

Family

ID=85781217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122458 WO2023050428A1 (zh) 2021-09-30 2021-09-30 信息传输方法以及通信装置

Country Status (3)

Country Link
EP (1) EP4401366A1 (zh)
CN (1) CN117652127A (zh)
WO (1) WO2023050428A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170048030A1 (en) * 2015-08-13 2017-02-16 Acer Incorporated Methods of data allocation and signal receiving, wireless transmitting apparatus and wireless receiving apparatus
CN109391578A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 信号发送方法、信号接收方法、终端设备及网络设备
CN110474860A (zh) * 2018-05-11 2019-11-19 维沃移动通信有限公司 一种ofdm基带信号生成方法及装置
CN112653647A (zh) * 2020-12-29 2021-04-13 中国人民解放军海军航空大学 一种多载波信号调制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170048030A1 (en) * 2015-08-13 2017-02-16 Acer Incorporated Methods of data allocation and signal receiving, wireless transmitting apparatus and wireless receiving apparatus
CN109391578A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 信号发送方法、信号接收方法、终端设备及网络设备
CN110474860A (zh) * 2018-05-11 2019-11-19 维沃移动通信有限公司 一种ofdm基带信号生成方法及装置
CN112653647A (zh) * 2020-12-29 2021-04-13 中国人民解放军海军航空大学 一种多载波信号调制方法

Also Published As

Publication number Publication date
CN117652127A (zh) 2024-03-05
EP4401366A1 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
US11032784B2 (en) Information transmission method and information transmission apparatus
US12021664B2 (en) Radio coverage limit enhanced channel estimation
US11528728B2 (en) Information transmission method and device
CN108811074B (zh) 信息传输方法及装置
WO2020216130A1 (zh) 一种通信方法及装置
TW202008828A (zh) 資源配置的方法和終端設備
WO2018171689A1 (zh) 一种信息传输方法及通信设备
WO2021218497A9 (zh) 确定方法、装置、通信节点及存储介质
WO2019052494A1 (zh) 传输方法和传输装置
WO2020187132A1 (zh) 数据信道的传输方法及装置
WO2018228243A1 (zh) 一种发送解调参考信号的方法和装置、解调方法和装置
US12015506B2 (en) Base station signaling for enhanced channel estimation for new radio coverage
WO2018127180A1 (zh) 一种参考信号传输方法及装置
WO2020239062A1 (zh) 通信方法和装置
WO2020030253A1 (en) Reducing dci payload
WO2023050428A1 (zh) 信息传输方法以及通信装置
WO2021168814A1 (zh) 控制信道的确定方法、装置、存储介质和处理器
US20240243961A1 (en) Information transmission method and communication apparatus
WO2021087877A1 (zh) 一种通信方法及装置
WO2022052073A1 (zh) 信道估计的方法、装置、通信设备及存储介质
WO2019084940A1 (en) Network device and method for data transmission over common public radio interface
WO2018014690A1 (zh) 传输信号的方法和装置
WO2022253166A1 (zh) 一种通信的方法和装置
WO2021168824A1 (zh) 控制信道资源的确定方法、设备及存储介质
US20200163087A1 (en) Signal transmission method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958994

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100170.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021958994

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021958994

Country of ref document: EP

Effective date: 20240411

NENP Non-entry into the national phase

Ref country code: DE