WO2021168824A1 - 控制信道资源的确定方法、设备及存储介质 - Google Patents

控制信道资源的确定方法、设备及存储介质 Download PDF

Info

Publication number
WO2021168824A1
WO2021168824A1 PCT/CN2020/077255 CN2020077255W WO2021168824A1 WO 2021168824 A1 WO2021168824 A1 WO 2021168824A1 CN 2020077255 W CN2020077255 W CN 2020077255W WO 2021168824 A1 WO2021168824 A1 WO 2021168824A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
coreset information
coreset
information corresponding
ssbs
Prior art date
Application number
PCT/CN2020/077255
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080084237.6A priority Critical patent/CN114762380A/zh
Priority to PCT/CN2020/077255 priority patent/WO2021168824A1/zh
Publication of WO2021168824A1 publication Critical patent/WO2021168824A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, device, and storage medium for determining control channel resources.
  • the New Radio (NR) system mainly supports Enhanced Mobile Broadband (eMBB) services to meet the requirements of high speed, high spectrum efficiency, and large bandwidth.
  • eMBB Enhanced Mobile Broadband
  • there are many other types of services such as industrial IoT sensors, surveillance cameras, and data transmission services for wearable devices.
  • the terminals that support these services have a large number of connections, low power consumption, and low cost.
  • the hardware capabilities are reduced, such as reduced bandwidth, reduced processing speed, and reduced number of antennas. Therefore, the NR system needs to be optimized for low-capacity terminals supporting the other types of services mentioned above, and the corresponding system is called an NR-light system.
  • the terminal device receives a series of SSBs sent by the network device, according to the CORESET information of the type0PDCCH indicated in the SSB, blindly detects the PDCCH according to the CORESET information, and then obtains the DCI information, thereby determining the PDSCH carrying SIB1 and receiving SIB1.
  • the embodiments of the present application provide a method, device, and storage medium for determining control channel resources to improve PDCCH reception performance and avoid SIB1 transmission delay.
  • an embodiment of the present application provides a method for determining control channel resources, including:
  • each SSB of the plurality of SSBs includes control resource set CORESET information and SSB index information;
  • the physical downlink control channel PDCCH is detected according to the CORESET information corresponding to the multiple SSBs.
  • an embodiment of the present application provides a method for determining control channel resources, including:
  • the PDCCH is detected according to the second CORESET information corresponding to the first SSB.
  • an embodiment of the present application provides a method for determining control channel resources, including:
  • the CORESET information corresponding to multiple SSBs is determined, and the CORESET information corresponding to each SSB of the multiple SSBs is determined according to the CORESET information contained in the SSB and the SSB index information; multiple SSBs containing different SSB index information The corresponding CORESET information is not exactly the same;
  • the physical downlink control channel PDCCH is sent according to the CORESET information corresponding to the multiple SSBs.
  • an embodiment of the present application provides a method for determining control channel resources, including:
  • the PDCCH is sent according to the second CORESET information.
  • an embodiment of the present application provides a terminal device, including:
  • a receiving module configured to receive a plurality of synchronization signal blocks SSB, each SSB of the plurality of SSBs includes control resource set CORESET information and SSB index information;
  • a processing module configured to determine the CORESET information corresponding to the index of the SSB according to the CORESET information contained in the SSB and the SSB index information; the CORESET information corresponding to multiple SSBs containing different SSB index information is not completely the same;
  • the physical downlink control channel PDCCH is detected according to the CORESET information corresponding to the multiple SSBs.
  • an embodiment of the present application provides a terminal device, including:
  • a receiving module configured to receive a first SSB, where the first SSB includes first CORESET information and index information of the first SSB;
  • a processing module configured to determine the second CORESET information corresponding to the first SSB according to the first CORESET information and the index information of the first SSB;
  • the PDCCH is detected according to the second CORESET information corresponding to the first SSB.
  • an embodiment of the present application provides a network device, including:
  • a processing module for determining CORESET information corresponding to multiple SSBs the CORESET information corresponding to each SSB of the multiple SSBs is determined according to the CORESET information contained in the SSB and the SSB index information; including different SSB indexes
  • the CORESET information corresponding to multiple SSBs of the information is not completely the same;
  • the sending module is configured to send the physical downlink control channel PDCCH according to the CORESET information corresponding to the multiple SSBs.
  • an embodiment of the present application provides a network device, including:
  • a processing module configured to determine the second CORESET information corresponding to the first SSB according to the first CORESET information contained in the first SSB and the first SSB index information;
  • the sending module is configured to send the PDCCH according to the second CORESET information.
  • an embodiment of the present application provides a terminal device, including:
  • Transceiver processor, memory
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the method described in the first aspect or the second aspect.
  • the foregoing processor may be a chip.
  • an embodiment of the present application provides a network device, including:
  • Transceiver processor, memory
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the method according to the third aspect or the fourth aspect.
  • the foregoing processor may be a chip.
  • an embodiment of the present application provides a computer-readable storage medium in which computer-executable instructions are stored.
  • the computer-executable instructions are executed by a processor, the Or the method described in the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium that stores a computer-executable instruction, and when the computer-executable instruction is executed by a processor, it is used to implement the third aspect Or the method described in the fourth aspect.
  • an embodiment of the present application provides a communication system, including:
  • a terminal device and a network device where the terminal device is in communication connection with the network device;
  • the terminal device is the terminal device described in the fifth aspect, and the network device is the network device described in the seventh aspect; or, the terminal device is the terminal device described in the sixth aspect, and the network device is the first Eight aspects of the network equipment.
  • the embodiments of the present application provide a method, device, and storage medium for determining control channel resources, which are used to improve the reception performance of PDCCH and reduce the transmission delay of SIB1.
  • the method includes: the UE receives multiple SSBs, where each SSB of the multiple SSBs contains CORESET information and SSB index information, and for each SSB, the UE determines the CORESET information corresponding to the SSB according to the CORESET information and SSB index information contained in the SSB.
  • the CORESET information corresponding to multiple SSBs determined by the UE that contains different index information is not completely the same, and the UE detects the PDCCH according to the CORESET information corresponding to the multiple SSBs.
  • the UE can receive PDCCHs corresponding to SSBs of different indexes on different CORESETs of the same time unit, which improves the reception performance of PDCCH, reduces the delay of UE receiving SIB1, and makes the system The design is more flexible.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a flowchart of a method for determining control information resources provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of CORESET information corresponding to SSBs of different indexes provided in an embodiment of the application;
  • FIG. 4 is a schematic diagram of CORESET information corresponding to SSBs of different indexes provided in an embodiment of the application;
  • FIG. 5 is a flowchart of a method for determining control information resources provided by an embodiment of this application.
  • FIG. 6 is a flowchart of a method for determining control information resources provided by an embodiment of the application
  • FIG. 7 is a schematic diagram of CORESET information corresponding to the SSB provided in an embodiment of the application in different wireless frames;
  • FIG. 8 is a flowchart of a method for determining control information resources provided by an embodiment of the application.
  • FIG. 9 is a flowchart of a method for determining control channel resources provided by an embodiment of the application.
  • FIG. 10 is a flowchart of a method for determining control channel resources provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • 15 is a schematic diagram of the hardware structure of a terminal device provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of the hardware structure of a terminal device according to an embodiment of the application.
  • a network device can send a series of SSBs (or called SSB sets) in different beam directions, such as SSB1, SSB2, SSB3, and so on.
  • the SSBs in different beam directions usually indicate the same CORESET information of the type 0 PDCCH, and the CORESET information is used to indicate the resource block RB of the type 0 PDCCH in the frequency domain and the symbol in the time domain.
  • the SSBs in different beam directions are usually sent in time division. Accordingly, the monitoring timing of the type 0 PDCCH corresponding to the SSBs in different beam directions may not overlap, not completely overlap, or completely overlap.
  • the 5G NR system is mainly designed to support eMBB services, and its main technology is to meet the needs of high speed, high spectrum efficiency, and large bandwidth.
  • eMBB there are many different types of services, such as sensor networks, video surveillance, wearables, etc., which have different requirements from eMBB services in terms of rate, bandwidth, power consumption, and cost.
  • the capabilities of terminals that support these services are reduced compared to those that support eMBB, such as reduced bandwidth, reduced processing time, and reduced number of antennas.
  • NR systems need to be optimized for these services and corresponding low-capacity terminals. Such systems are called NR-light systems.
  • the CORESET bandwidth of type0 PDCCH is relatively limited.
  • type0 PDCCH repeated transmission in the time domain is usually adopted, that is, type0 PDCCH is sent in multiple time units. Then, the monitoring timing of the type 0 PDCCH corresponding to each indexed SSB may need to include more time units.
  • the type 0 PDCCH monitoring opportunities corresponding to the SSBs of different indexes do not overlap as much as possible. In order to meet the above requirements, a large number of downlink subframes will be occupied, resulting in a delay in receiving SIB1.
  • the embodiments of the present application provide a method for determining control channel resources.
  • the CORESET information of the common control channel PDCCH is determined, and the MIB information carried by the PBCH of the SSB is combined with predefined rules or combined with other information (for example, index information, time unit information, etc.), determine the CORESET information corresponding to SSBs of different indexes, and determine the CORESET information corresponding to at least two SSBs in different indexed SSBs that are not completely the same, so that the UE is different in the same time unit Detect type0 PDCCH on CORESET to reduce the delay of receiving SIB1 and make system design more flexible.
  • the CORESET of type 0 PDCCH changes with time, which increases the frequency diversity of CORESET and improves the reception performance of type 0 PDCCH.
  • the technical solutions of the embodiments of the present application are mainly applied to communication systems based on NR technology, such as fifth generation mobile networks (5G for short) communication systems, NR-light systems, and so on. It can also be applied to other communication systems, as long as there is an entity in the communication system that needs to instruct to communicate with another entity, and another entity needs to interpret the advance data transmission in some way, for example, it can be applied to network equipment and terminal equipment. Multi-data block scheduling is performed in between, or two terminal devices, one of which is responsible for the function of accessing the network, etc.
  • 5G fifth generation mobile networks
  • NR-light systems and so on.
  • Multi-data block scheduling is performed in between, or two terminal devices, one of which is responsible for the function of accessing the network, etc.
  • the communication system may be, for example, a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, and a wideband code division multiple access (Wideband Code Division Multiple Access) system.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • LTE Frequency Division Duplex Frequency Division Duplex
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the terminal device referred to in the technical solutions of the embodiments of the present application may be a wireless terminal or a wired terminal.
  • a wireless terminal may be a device that provides voice and/or other service data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a radio access network (Radio Access Network, referred to as RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or called a "cellular" phone) and a mobile phone with a mobile terminal.
  • Computers for example, may be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • a wireless terminal can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and a remote terminal.
  • the access terminal Access Terminal
  • user terminal User Terminal
  • user agent User Agent
  • user equipment User Equipment
  • the network equipment referred to in the technical solutions of the embodiments of the present application is a type of equipment deployed on a wireless access network to provide wireless communication functions, which may be Global System of Mobile Communications (GSM) or multiple code divisions.
  • the base station (Base Transceiver Station, referred to as BTS) in the address (Code Division Multiple Access, referred to as CDMA) can also be the base station (NodeB, referred to as NB) in Wideband Code Division Multiple Access (WCDMA), It can also be an Evolutional Node B (eNB or eNodeB for short) in LTE, or a relay station or an access point, or a transmission reception point (TRP) in a new air interface NR network, or a next-generation node B (generation nodeB, gNB), or base stations in other future network systems, etc., are not limited here.
  • the synchronization signal (Synchronization Signal, SS) and the Physical Broadcast Channel (Physical Broadcast Channel, PBCH) block appear in the form of SS/PBCH resource blocks according to a certain time-frequency domain resource relationship , Referred to as Synchronization Signal Block (SSB).
  • the SSB may include at least one of a PBCH, a primary synchronization signal (PSS), and a secondary synchronization signal (Secondary synchronization signal, SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • RMSI Remaining Minimum System Information
  • NR Remaining Minimum System Information
  • RMSI can be considered as the SIB1 message in LTE, which is mainly sent through the physical downlink shared channel (Physical Down Link Shared Channel, PDSCH), and the PDSCH channel requires the Downlink Control Information (Downlink Control Channel, PDCCH) of the Physical Down Link Control Channel (PDCCH). Control Information, DCI) for scheduling.
  • the information-carrying channel of the SSB is the PBCH, and the PBCH is used to carry the main information block (MIB).
  • the terminal device needs to obtain the PDCCH channel information for scheduling the RMSI from the pdcch-ConfigSIB1 field of the MIB, and the terminal device performs blind detection on the PDCCH to obtain the RMSI, that is, the SIB1 message.
  • the SSB and PDCCH in the embodiments of this application have a quasi-co-location (QCL) relationship, which can mean that the two have the same beam, or have the same part or all of the following parameters: angle of arrival (AOA) ), main (Dominant) incident angle AOA, average incident angle, power angle spectrum of incident angle (power angular spectrum (PAS) of AoA), exit angle (angle of departure, AoD), main exit angle, average exit angle, exit Angle power angle spectrum, terminal transmit beamforming, terminal receive beamforming, spatial channel correlation, base station transmit beamforming, base station receive beamforming, average channel gain, average channel delay, delay spread, doppler Doppler spread, Doppler frequency shift, etc.
  • AOA angle of arrival
  • PAS power angular spectrum
  • AoD exit angle
  • main exit angle average exit angle
  • exit Angle power angle spectrum terminal transmit beamforming, terminal receive beamforming, spatial channel correlation, base station transmit beamforming, base station receive beamforming, average channel gain, average channel delay, delay spread, doppler Do
  • association relationship When the SSB and the PDCCH have a QCL relationship, it can also be said that the two have an association relationship, and the association can also be called mapping, correspondence, correlation, and allocation.
  • the above-mentioned association relationship may be configured by the network device, or may be stipulated by the standard, or the network device and the terminal device may be agreed in advance.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • the system includes a network device, which may be a base station (BS), and multiple terminal devices communicatively connected with the network device, such as UE1 to UE6 shown in FIG.
  • the base station may be a multi-beam base station or a single-beam base station.
  • the terminal device can be a fixed terminal device or a mobile terminal device.
  • the base station and UE1 to UE6 form a communication system.
  • the base station can use beam scanning to send a series of SSBs, so that one or more UEs of UE1 to UE6 can determine at least one SSB according to the received at least one SSB.
  • Corresponding CORESET information perform PDCCH detection, and receive SIB1.
  • Fig. 2 is a flowchart of a method for determining control information resources provided by an embodiment of the application. As shown in FIG. 2, the method provided in this embodiment can be applied to any UE shown in FIG. 1, and the method includes the following steps:
  • Step 101 A plurality of SSBs are received, and each SSB of the plurality of SSBs includes CORESET information and SSB index information.
  • each SSB of the multiple SSBs contains CORESET information, and the CORESET information contained in different SSBs may be the same or different.
  • the multiple SSBs include SSB0, SSB1, SSB2, the CORESET information contained in SSB0 is CORESET#0-0, the CORESET information contained in SSB1 is CORESET#0-1, and the CORESET information contained in SSB2 is CORESET#0-2.
  • CORESET#0-0, CORESET#0-1, CORESET#0-2 can be completely the same CORESET, or they can be different CORESETs.
  • the CORESETs of the above three SSBs are not completely the same. It can be understood that at least two of the three SSBs contain different CORESETs, and it can also be understood that any two of the three SSBs contain different CORESETs.
  • the CORESET information contained in the SSB can be carried in the MIB information of the PBCH of the SSB.
  • the CORESET information contained in the MIB information can be the CORESET information corresponding to the SSB (that is, the MIB information indicates the true CORESET information of the SSB), or it can be a reference CORESET information of the SSB (that is, not the true CORESET information of the SSB) ).
  • the subsequent processing corresponding to the CORESET information in different situations is different. For details, please refer to step 102 below.
  • the CORESET information of the type0PDCCH is indicated.
  • the CORESET information includes the resource block RB of the type 0 PDCCH in the frequency domain and the symbol in the time domain.
  • the number of RBs Number of RBs
  • the number of symbols Number of Symbols
  • the corresponding CORESET corresponding to the index can be determined.
  • the CORESET information is obtained.
  • the above table 1 shows that the subcarrier spacing is 15kHz, the bandwidth of CORESET can be configured to 24, 48, 96 RB, the number of symbols of CORESET can be 1, 2, 3, and the frequency domain of CORESET The number of RBs whose positions are offset from the frequency domain position of the SSB can be 0, 2, 4, 12, 16, or 38.
  • the multiplexing mode of SSB and CORESET in Table 1 is mode 1, that is, PDCCH and SSB adopt time division multiplexing mode.
  • the multiplexing mode of SSB and CORESET can also be mode 2 (PDCCH and SSB use frequency division and time division multiplexing) or mode 3 (PDCCH and SSB use frequency division multiplexing).
  • Table 1 is only used as an example. For different subcarrier intervals or different multiplexing modes, the corresponding table contents are different.
  • the pdcch-ConfigSIB1 field of the MIB information carried by the PBCH of the SSB also indicates the search space Searchspace information of the type0 PDCCH, and this information is used to determine the monitoring timing of the type0 PDCCH (that is, the starting OFDM symbol number).
  • the monitoring timing of type0 PDCCH is determined by the following methods:
  • the multiplexing mode of SSB and CORESET is mode 1, and the UE monitors the type0 PDCCH common search space in two consecutive time slots.
  • the number of the start time slot in two consecutive time slots is n 0 , and each indexed SSB corresponds to a listening window.
  • the number n 0 of the start time slot of the listening window can be determined by Formula 1:
  • i is the index number of SSB
  • is the system parameter related to the sub-carrier spacing ⁇ f
  • It is the number of time slots in a radio frame.
  • M and O are indicated by the Searchspace information in the PBCH.
  • the value of O includes ⁇ 0,2,5,7 ⁇ in the frequency range below 6GHz (frequency range 1), and ⁇ 0,2.5,5,7.5 ⁇ in the frequency range above 6GHz (frequency range 2).
  • M includes ⁇ 1/2,1,2 ⁇ .
  • SFN C is an even number of radio frames, if The calculated number of time slots is greater than or equal to the number of time slots included in a radio frame, and SFN C is an odd number of radio frames.
  • the pdcch-ConfigSIB1 field of the MIB information carried by the PBCH of the SSB contains 8 bits, and the CORESET information and Searchspace information of the type 0 PDCCH each occupy 4 bits.
  • the CORESET information carried by the PBCHs of the SSBs with different indexes may be the same or different.
  • the CORESET information carried by the PBCHs of the SSBs with different indexes is different, that is, the MIB information corresponding to the SSBs with different indexes is different.
  • Step 102 Determine the CORESET information corresponding to the index of the SSB according to the CORESET information and the SSB index information contained in the SSB.
  • the CORESET information corresponding to multiple SSBs containing different SSB index information is not completely the same.
  • the UE receives multiple SSBs, and determines the CORESET information corresponding to the multiple SSBs according to the multiple SSBs.
  • the first SSB takes the first SSB as an example for description, where the first SSB is any one of the multiple SSBs.
  • the first SSB includes the following two situations:
  • the CORESET information contained in the first SSB is the CORESET information corresponding to the first SSB. It should be pointed out that the CORESET information contained in the first SSB refers to the CORESET information indicated in the PBCH of the first SSB. In this case, the CORESET information contained in the first SSB is the CORESET information corresponding to the first SSB.
  • the CORESET information contained in the SSBs of different indexes is not completely the same, that is, the CORESET information corresponding to the SSBs of different indexes is not completely the same.
  • the UE receives multiple SSBs, such as SSB0, SSB1, SSB2, SSB3.
  • the CORESET information contained in SSB0 is the CORESET information corresponding to SSB0
  • the CORESET information contained in SSB1 is the CORESET information corresponding to SSB1
  • the CORESET information contained in SSB2 is the CORESET information corresponding to SSB2
  • the CORESET information contained in SSB3 is the CORESET information corresponding to SSB3.
  • the CORESET information contained in the aforementioned 4 indexed SSBs is not completely the same, that is, the CORESET information corresponding to the indicated 4 indexed SSBs are not completely the same.
  • the CORESET information is not completely the same, including that the RBs are not completely the same (that is, the RBs may partially overlap or not overlap).
  • the CORESET information contained in at least two SSBs in the foregoing four indexed SSBs is not completely the same.
  • the CORESET information contained in the aforementioned 4 indexed SSBs is different, that is, the indicated CORESET information corresponding to the indicated 4 indexed SSBs are different.
  • the difference in CORESET information includes different RBs (RBs do not overlap), or different RBs and different numbers of symbols.
  • the RB is determined by the number of RBs and the RB offset value. Different RBs include different numbers of RBs and/or different RB offset values.
  • the CORESET information corresponding to the 4 indexed SSBs shown in Figure 3 are CORESET#0-0, CORESET#0-1, CORESET#0-2, CORESET#0-3, which have the same number and symbol of RB The only difference is the RB offset value.
  • the CORESET information contained in at least two SSBs of the aforementioned 4 indexed SSBs is different, that is, the CORESET information corresponding to at least two SSBs of the indicated 4 indexed SSBs are different.
  • the first situation above is used to determine the CORESET information corresponding to multiple SSBs. Since the CORESET information contained in at least two SSBs in different indexed SSBs is not completely the same, that is, the CORESET information corresponding to at least two SSBs in different indexed SSBs is not the same. It is exactly the same, even if the monitoring timings of the type 0 PDCCH corresponding to the SSBs of different indexes overlap, because the CORESET information is not exactly the same, the UE can receive the corresponding type 0 PDCCH on the different CORESETs in the same time unit, thereby avoiding a large amount of It can reduce the delay of receiving SIB1 and make the system design more flexible.
  • the CORESET information contained in the first SSB is not the CORESET information corresponding to the first SSB, and the CORESET information contained in the first SSB can be regarded as a reference CORESET information.
  • the CORESET information corresponding to the first SSB can be determined by one of the following possible implementation manners:
  • the CORESET information corresponding to the first SSB is determined.
  • the index information is used to indicate the RB offset value between CORESET and the first SSB, and the RB offset value can be determined by the following formula 4.
  • RB offset i is the RB offset value in the CORESET information corresponding to the first SSB
  • RB offset 0 is the RB offset value in the CORESET information contained in the first SSB
  • i is the index number of the first SSB
  • NB represents Narrowband Narrowband bandwidth.
  • the value range of i is [0, L-1], and L is the maximum number of SSBs corresponding to the frequency band where the SSB is located.
  • the maximum number of SSBs L is related to the frequency band of the system as follows: frequency range is less than or equal to 3GHz, L is 4; frequency range is greater than 3GHz and less than 6GHz, L is 8; frequency range is greater than or equal to 6GHz and less than 52.6GHz, L Take 64.
  • the index number of the first SSB may be indicated by the demodulation reference signal (Demodulation Reference Signal, DMRS) of the PBCH or the information carried by the PBCH.
  • DMRS Demodulation Reference Signal
  • the CORESET information corresponding to the first SBB can be determined by formula 4, and it can be known from formula 4 that the CORESET information contained in the first SSB and the CORESET information corresponding to the first SSB are usually different.
  • the CORESET information contained in the SSBs of different indexes is the CORESET information referred to above, that is, the CORESET information contained in the SSBs of different indexes is the same.
  • the CORESET information corresponding to the SSBs of different indexes can be determined by the above-mentioned implementation manner.
  • the UE receives multiple SSBs, such as SSB0, SSB1, SSB2, SSB3.
  • SSB0, SSB1, SSB2, and SSB3 contain the same CORESET information.
  • the UE determines the CORESET information corresponding to the SSB0 according to the CORESET information contained in the SSB0 and the index number of the SSB0, and the CORESET information corresponding to the SSB0 is the real CORESET information of the SSB0.
  • the UE determines the CORESET information corresponding to SSB1 according to the CORESET information contained in SSB1 and the index number of SSB1; the UE determines the CORESET information corresponding to SSB2 according to the CORESET information contained in SSB2 and the index number of SSB2; the UE determines the CORESET information corresponding to SSB2 according to the CORESET information contained in SSB3 And the index number of SSB3, determine the CORESET information corresponding to SSB3. In this way, the CORESET corresponding to the above-mentioned 4 indexed SSBs are shifted to different narrow bands.
  • the CORESET information corresponding to the above-mentioned 4 indexed SSBs has the same number of RBs and symbols, but the RB offset The shift value is different.
  • the CORESET corresponding to the above 4 indexed SSBs are CORESET#0-0, CORESET#0-1, CORESET#0-2, CORESET#0-3, which are based on the same CORESET information (ie, reference CORESET information) respectively It is obtained by shifting different RB offset values (RB Offset 0, RB Offset 1, RB Offset 2, RB Offset 3).
  • the CORESET information corresponding to the SSB of the above 4 indexes is different.
  • the CORESET information corresponding to the four indexed SSBs determined in this example is different, which is consistent with the result of the example in Figure 3 in the first case.
  • the difference between the two is that the CORESET information contained in the SSBs with different indexes in the first case is different.
  • the indicated CORESET information corresponding to the SSBs of different indexes is different; in the second case, the CORESET information contained in the SSBs of different indexes is the same, and other information (such as index information) needs to be used to determine that the CORESET information corresponding to the SSBs of different indexes is different.
  • the UE can receive the corresponding type0 PDCCH on different CORESETs in the same time unit, thereby avoiding occupying a large number of downlink subframes, reducing the delay of receiving SIB1, and making the system design more flexible.
  • the PBCHs in the SSBs of different indexes indicate the same CORESET information, the related technical changes are small, which facilitates the merging of the PBCHs of the SSBs of different indexes.
  • the CORESET information corresponding to the first SSB is not completely the same in at least two time units in different time units.
  • Step 103 Detect the PDCCH according to the CORESET information corresponding to the multiple SSBs.
  • the UE receives multiple SSBs, where each SSB of the multiple SSBs contains CORESET information and SSB index information. For each SSB, the UE is based on the CORESET information and SSB contained in the SSB. The index information determines the CORESET information corresponding to the SSB. The CORESET information corresponding to multiple SSBs determined by the UE that contains different index information is not completely the same, and the UE detects the PDCCH according to the CORESET information corresponding to the multiple SSBs.
  • the UE can receive PDCCHs corresponding to SSBs of different indexes on different CORESETs of the same time unit, which improves the reception performance of PDCCH, reduces the delay of UE receiving SIB1, and makes the system The design is more flexible.
  • Fig. 5 is a flowchart of a method for determining control information resources provided by an embodiment of the application. As shown in FIG. 5, the method provided in this embodiment can be applied to any UE shown in FIG. 1, and the method includes the following steps:
  • Step 201 Receive a first SSB, where the first SSB includes first CORESET information and index information of the first SSB.
  • the first CORESET information contained in the first SSB is usually the CORESET information corresponding to the first SSB, that is, indicating the real CORESET information corresponding to the SSB.
  • the first CORESET information contained in the first SSB is a reference CORESET information, and the UE needs to combine other information to determine the true CORESET information corresponding to the SSB.
  • Step 202 Determine the second CORESET information corresponding to the first SSB according to the first CORESET information and the index information of the first SSB;
  • Step 203 Detect the PDCCH according to the second CORESET information corresponding to the first SSB.
  • Step 202 in the embodiment of the present application is the same as the second case of step 102 in the foregoing embodiment, and its implementation principles and technical effects can be referred to the foregoing embodiment, and will not be repeated here.
  • the CORESET information corresponding to the first SSB is usually fixed, unless the network device reconfigures the CORESET information corresponding to the new first SSB.
  • the following embodiments determine how low-capacity UE implements the narrowband frequency hopping of CORESET of type 0 PDCCH from the perspective of any SSB of multiple SSBs. Through narrowband frequency hopping, not only can the corresponding SSB be realized
  • the CORESET information is not exactly the same in different time units, and it can also be realized that the CORESET information corresponding to the SSBs of different indexes in a certain time unit is not exactly the same.
  • Fig. 6 is a flowchart of a method for determining control information resources provided by an embodiment of the application. As shown in FIG. 6, the method provided in this embodiment can be applied to any UE shown in FIG. 1, and the method includes the following steps:
  • Step 301 Determine the second CORESET information corresponding to the first SSB.
  • the first CORESET information contained in the first SSB may be the second CORESET information corresponding to the first SSB.
  • the UE may determine the second CORESET information corresponding to the first SSB according to the first CORESET information contained in the first SSB.
  • the first CORESET information contained in the first SSB is a reference CORESET information.
  • the UE may determine the second CORESET information corresponding to the first SSB according to the first CORESET information contained in the first SSB and the index information of the first SSB.
  • Step 302 Determine a plurality of third CORESET information corresponding to the first SSB according to the second CORESET information and the time unit information.
  • the multiple third CORESET information respectively correspond to different time units, and the multiple third CORESET information are not completely the same.
  • the plurality of third CORESET information are not completely the same, it can be understood that at least two third CORESET information in the plurality of third CORESET information are not completely the same, and it can also be understood that any two of the plurality of third CORESET information are not completely the same.
  • the time unit information includes the serial number of the time unit, such as a radio frame number, a subframe number, a time slot number, etc., and the serial number of the time unit may be one or more.
  • the time unit information may be one or more monitoring occasions for the UE to monitor the search space of the type 0 PDCCH.
  • the CORESET corresponding to the first SSB belongs to the CORESET of the search space where the UE monitors type 0 PDCCH.
  • the search space includes different monitoring opportunities.
  • the monitoring opportunities belong to a type of time unit information.
  • the UE can determine the first SSB according to the CORESET corresponding to the first SSB. Multiple CORESETs of different monitoring timings corresponding to one SSB.
  • the time unit in the embodiment of the present application may be a radio frame, a subframe, a time slot, etc., which does not impose any limitation in the embodiment of the present application.
  • step 302 includes:
  • the multiple third CORESET information corresponding to the first SSB is determined by the following formula 5.
  • RB offset j is the RB offset value in the third CORESET information corresponding to the first SSB
  • RB offset 0 is the RB offset value in the second CORESET information corresponding to the first SSB
  • j is the RB offset value in the first time unit Number
  • NB represents the narrowband bandwidth
  • the multiple third CORESET information corresponding to the first SSB can be determined by formula 5, and it can be known from formula 5 that the multiple third CORESET information corresponding to the first SSB are not completely the same.
  • the UE can determine multiple third CORESET information corresponding to the first SSB according to the first CORESET information and time unit information contained in the first SSB, where the first CORESET information contained in the first SSB is the CORESET corresponding to the first SSB.
  • Information ie, the above-mentioned second CORESET information.
  • the UE may also determine a plurality of third CORESEST information corresponding to the first SSB according to the first CORESET information contained in the first SSB, the index information of the first SSB, and the time unit information.
  • the multiple third CORESET information mentioned above respectively correspond to different time units, and the multiple third CORESET information are not completely the same.
  • the UE receives SSB0, and the first CORESET information contained in SSB0 is the CORESET information corresponding to SSB0.
  • the UE determines multiple second CORESET information according to the first CORESET information and radio frame SFN information contained in SSB0, as shown in FIG. 7
  • the second CORESET information of the nth wireless frame (CORESET#0-0 in FIG. 7) and the second CORESET information of the n+ith wireless frame (CORESET#0-0' in FIG. 7) are shown.
  • n and i are both positive integers greater than or equal to 1. It can be seen from Fig. 7 that the second CORESET information of the nth radio frame and the n+ith radio frame are different.
  • the difference of the second CORESET information here means that the number of RBs and the number of symbols are the same, but the RB offset values are different.
  • Step 303 Detect the PDCCH according to the multiple second CORESET information.
  • the UE receives the first SSB, where the first SSB contains first CORESET information, and the UE determines the second CORESET information corresponding to the first SSB according to the first CORESET information, or the UE according to The first CORESET information and the index information of the first SSB determine the second CORESET information corresponding to the first SSB. Subsequently, the UE determines multiple third CORESET information corresponding to the first SBB according to the determined second CORESET information and time unit information, where the multiple third CORESET information corresponds to different time units, and the determined multiple third CORESET information Not exactly the same.
  • the UE detects the PDCCH according to multiple third CORESET information. Since the CORESET information corresponding to the SSB is no longer fixed, the CORESET information corresponding to the SSB changes with time, which increases the frequency diversity for detecting type 0 PDCCH and improves the reception performance of type 0 PDCCH. In addition, from the perspective of multiple SSBs with different indexes, the CORESET corresponding to SSBs with different indexes in the same time unit can be made different. The UE detects type0PDCCH on different CORESETs in the same time unit, which reduces the delay of UE receiving SIB1 and makes the system design More flexible.
  • Fig. 8 is a flowchart of a method for determining control information resources provided by an embodiment of the application. As shown in FIG. 8, the method provided in this embodiment can be applied to the base station shown in FIG. 1, and the method includes the following steps:
  • Step 401 Determine CORESET information corresponding to multiple SSBs.
  • the CORESET information corresponding to each SSB in the multiple SSBs is determined according to the CORESET information contained in the SSB, or according to the CORESET information contained in the SSB and the SSB index information.
  • the CORESET information corresponding to multiple SSBs containing different index information is not completely the same.
  • the base station sends a series of SSBs, such as SSB0, SSB1, SSB2, and SSB3, to the UE in a beam scanning manner.
  • the UE may receive at least one SSB in a series of SSBs sent by the base station, that is, the UE may receive one SSB, or the UE may receive multiple SSBs (two or more).
  • the CORESET information contained in the first SSB includes the following two situations:
  • the CORESET information contained in the first SSB is the CORESET information corresponding to the first SSB, that is, the CORESET information contained in the first SSB directly indicates the CORESET information corresponding to the first SSB.
  • the base station directly determines the CORESET information corresponding to the first SSB according to the CORESET information contained in the first SSB.
  • the CORESET information contained in the first SSB is not the CORESET information corresponding to the first SSB, and the CORESET information contained in the first SSB can be regarded as a reference CORESET information.
  • the CORESET information contained in the SSBs of different indexes is the same, and the base station can determine the CORESET information corresponding to the SSB according to the CORESET information contained in each SSB and the index information of the SSB.
  • the base station may determine the CORESET information corresponding to the first SSB according to the CORESET information contained in the first SSB and the index information of the first SSB.
  • Step 402 Send the physical downlink control channel PDCCH according to the CORESET information corresponding to the multiple SSBs.
  • the base station transmits the PDCCH according to the CORESET information corresponding to the multiple SSBs determined in step 401.
  • the determined CORESET information corresponding to multiple SSBs with different indexes is not completely the same.
  • the CORESET information corresponding to multiple SSBs is not exactly the same. It can be understood that the CORESET information corresponding to at least two SSBs of the multiple SSBs are not exactly the same, and it can also be understood that the CORESET information corresponding to any two SSBs of the multiple SSBs are not exactly the same. .
  • the CORESET information corresponding to the at least two SSBs is not completely the same, including that the RBs corresponding to the at least two SSBs are not completely the same.
  • the base station determines the CORESET information corresponding to the SSB through the CORESET information included in the SSB, or determines the CORESET information corresponding to the SSB through the CORESET information and the SSB index information included in the SSB. Among them, the CORESET information corresponding to multiple SSBs containing different index information determined by the base station is not completely the same.
  • the base station sends the PDCCH according to the determined CORESET information corresponding to the multiple SSBs. The above method reduces the transmission delay of SIB1 and makes the system design more flexible.
  • the CORESET information corresponding to any one of the multiple SSBs is not completely the same in at least two time units in different time units.
  • FIG. 9 is a flowchart of a method for determining control channel resources provided by an embodiment of the application. As shown in FIG. 9, the method provided in this embodiment can be applied to the base station shown in FIG. 1, and the method includes the following steps:
  • Step 501 Determine the second CORESET information corresponding to the first SSB according to the first CORESET information contained in the first SSB and the index information of the first SSB.
  • the first CORESET information contained in the first SSB is a reference CORESET information
  • the base station needs to determine the second CORESET information corresponding to the first SSB according to the reference CORESET information and the index information of the first SSB.
  • the second CORESET information is the real CORESET information corresponding to the first SSB.
  • Step 502 Send the PDCCH according to the second CORESET information.
  • the base station determines the second CORESET information corresponding to the first SSB according to the determination method of the above-mentioned embodiment.
  • the second CORESET information corresponding to the first SSB can change with time, that is, the CORESET information corresponding to the first SSB varies.
  • the time unit may not be exactly the same.
  • the following describes in detail how the base station determines the CORESET information corresponding to a certain SSB in different time units with reference to FIG. 10.
  • FIG. 10 is a flowchart of a method for determining control channel resources provided by an embodiment of the application. As shown in FIG. 10, the method provided in this embodiment can be applied to the base station shown in FIG. 1, and the method includes the following steps:
  • Step 601 Determine second CORESET information corresponding to the first SSB.
  • the base station determines the second COERSET information corresponding to the first SSB according to the first CORESET information contained in the first SSB.
  • the base station determines the second CORESET information corresponding to the first SSB according to the first CORESET information contained in the first SSB.
  • Step 602 Determine a plurality of third CORESET information corresponding to the first SSB according to the second CORESET information and the time unit information.
  • the multiple third CORESET information respectively correspond to different time units, and the multiple third CORESET information are not completely the same.
  • step 302 The specific implementation of this step is the same as that of step 302 in the embodiment shown in FIG.
  • Step 603 Send the PDCCH according to the multiple third CORESET information.
  • the base station first determines the first SSB according to the first CORESET information contained in the first SSB, or according to the first CORESET information contained in the first SSB and the index information of the first SSB Corresponding second CORESET information. Subsequently, the base station determines multiple third CORESET information corresponding to the first SBB according to the determined second CORESET information and time unit information, where the multiple determined third CORESET information are not completely the same. The base station sends the PDCCH according to the multiple third CORESET information.
  • the CORESET information corresponding to the SSB changes with time, which increases the frequency diversity of sending type 0 PDCCH.
  • the CORESET corresponding to SSBs with different indexes in the same time unit can be made different.
  • the base station sends type0 PDCCH on different CORESETs in the same time unit, which reduces the delay of the base station sending SIB1 and makes the system The design is more flexible.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of this application. As shown in FIG. 11, the terminal device 700 provided in the embodiment of the present application includes:
  • the receiving module 701 is configured to receive a plurality of synchronization signal blocks SSB, each SSB of the plurality of SSBs includes control resource set CORESET information and SSB index information;
  • the processing module 702 is configured to determine the CORESET information corresponding to the index of the SSB according to the CORESET information contained in the SSB and the SSB index information; the CORESET information corresponding to multiple SSBs containing different SSB index information is not completely the same;
  • the physical downlink control channel PDCCH is detected according to the CORESET information corresponding to the multiple SSBs.
  • the CORESET information contained in the first SSB of the multiple SSBs is CORESET information corresponding to the first SSB; the CORESET information contained in the multiple SSBs are not completely the same.
  • processing module 702 is specifically configured to:
  • the CORESET information corresponding to the first SSB is determined according to the CORESET information contained in the first SSB of the multiple SSBs and the index information of the first SSB; the CORESET information contained in the multiple SSBs is the same.
  • the CORESET information corresponding to the first SSB is not completely the same in at least two time units in different time units.
  • the CORESET information corresponding to the multiple SSBs is not completely the same, including:
  • the resource blocks RB corresponding to the multiple SSBs are not completely the same.
  • the terminal device provided by the embodiment of the present application is used to implement the technical solution of the terminal device of the method embodiment shown in FIG.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of this application. As shown in FIG. 12, the terminal device 800 provided by the embodiment of the present application includes:
  • the receiving module 801 is configured to receive a first SSB, where the first SSB includes first CORESET information and index information of the first SSB;
  • the processing module 802 is configured to determine the second CORESET information corresponding to the first SSB according to the first CORESET information and the index information of the first SSB;
  • the PDCCH is detected according to the second CORESET information corresponding to the first SSB.
  • processing module 802 is further configured to:
  • multiple third CORESET information corresponding to the first SSB are determined; the multiple third CORESET information respectively correspond to different time units, and the multiple The third CORESET information is not completely the same;
  • the PDCCH is detected according to the plurality of third CORESET information.
  • the terminal device provided in the embodiment of the present application is used to implement the technical solutions of the terminal device of the method embodiments shown in FIG. 5 and FIG.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • the network device 900 provided by the embodiment of the present application includes:
  • the processing module 901 is configured to determine CORESET information corresponding to multiple SSBs.
  • the CORESET information corresponding to each SSB of the multiple SSBs is determined according to the CORESET information contained in the SSB and the SSB index information; it includes different SSBs
  • the CORESET information corresponding to multiple SSBs of the index information is not completely the same;
  • the sending module 902 is configured to send the physical downlink control channel PDCCH according to the CORESET information corresponding to the multiple SSBs.
  • the CORESET information contained in the first SSB of the multiple SSBs is CORESET information corresponding to the first SSB; the CORESET information contained in the multiple SSBs are not completely the same.
  • processing module 901 is specifically configured to:
  • the CORESET information corresponding to the first SSB is determined according to the CORESET information contained in the first SSB of the multiple SSBs and the index information of the first SSB; the CORESET information contained in the multiple SSBs is the same.
  • the CORESET information corresponding to the first SSB is not completely the same in at least two time units in different time units.
  • the CORESET information corresponding to the multiple SSBs is not completely the same, including:
  • the resource blocks RB corresponding to the multiple SSBs are not completely the same.
  • the network device provided in the embodiment of the present application is used to implement the technical solution of the network device of the method embodiment shown in FIG.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of this application. As shown in FIG. 14, the network device 1000 provided by the embodiment of the present application includes:
  • the processing module 1001 is configured to determine the second CORESET information corresponding to the first SSB according to the first CORESET information contained in the first SSB and the first SSB index information;
  • the sending module 1002 is configured to send the PDCCH according to the second CORESET information.
  • processing module 1001 is further used for:
  • multiple third CORESET information corresponding to the first SSB are determined; the multiple third CORESET information respectively correspond to different time units, and the multiple The third CORESET information is not completely the same;
  • the sending module 1002 is further configured to send the PDCCH according to the multiple third CORESET information.
  • the network device provided by the embodiment of the present application is used to implement the technical solutions of the network device of the method embodiments shown in FIG. 9 and FIG. 10, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the division of the various modules of the above terminal device or network device is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the processing module may be a separate processing element, or it may be integrated in a chip of the above-mentioned device for implementation.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate arrays
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • FIG. 15 is a schematic diagram of the hardware structure of a terminal device provided by an embodiment of the application. As shown in FIG. 15, the terminal device 1100 may include:
  • the memory 1103 stores computer execution instructions
  • the processor 1102 executes the computer-executable instructions stored in the memory 1103, so that the processor 1102 executes the technical solution of the method for determining the control channel resource on the terminal device side in any of the foregoing method embodiments.
  • the processor 1102 may be a chip.
  • FIG. 16 is a schematic diagram of the hardware structure of a network device provided by an embodiment of this application. As shown in FIG. 16, the terminal device 1200 may include:
  • the memory 1203 stores computer execution instructions
  • the processor 1202 executes the computer-executable instructions stored in the memory 1203, so that the processor 1202 executes the technical solution of the method for determining the control channel resource on the network device side in any of the foregoing method embodiments.
  • the processor 1202 may be a chip.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer-executable instruction, and when the computer-executable instruction is executed by a processor, it is used to implement the terminal in any of the foregoing method embodiments Technical solutions on the equipment side.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, it is used to implement the network in any of the foregoing method embodiments.
  • Technical solutions on the equipment side are provided.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution on the terminal device side in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution on the network device side in any of the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product, including program instructions, which are used to implement the technical solutions on the terminal device side in any of the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product, including program instructions, which are used to implement the technical solutions on the network device side in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution on the terminal device side in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the terminal device side Technical solutions.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the terminal device side Technical solutions.
  • An embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution on the network device side in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the network device side Technical solutions.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the network device side Technical solutions.
  • At least two refers to two or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship; in the formula, the character “/” indicates that the associated objects before and after are in a “division” relationship.
  • “The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple indivual.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used for the implementation of this application.
  • the implementation process of the example constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种控制信道资源的确定方法、设备及存储介质,用于提高PDCCH的接收性能,降低SIB1的传输延迟。该方法包括:UE接收多个SSB,其中多个SSB中的每个SSB包含CORESET信息和SSB索引信息,针对每一个SSB,UE根据SSB包含的CORESET信息和SSB索引信息确定SSB对应的CORESET信息。UE确定的包含不同索引信息的多个SSB对应的CORESET信息不完全相同,UE根据多个SSB对应的CORESET信息检测PDCCH。由于不同索引的SSB对应CORESET信息不完全相同,UE可以在同一时间单元的不完全相同的CORESET上接收不同索引SSB对应的PDCCH,提高了PDCCH的接收性能,降低了UE接收SIB1的延迟,使系统设计更加灵活。

Description

控制信道资源的确定方法、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种控制信道资源的确定方法、设备及存储介质。
背景技术
新空口(New Radio,NR)系统主要支持增强移动带宽(Enhanced Mobile Broadband,eMBB)业务,满足高速率、高频谱效率、大带宽的需求。在实际应用中,除了eMBB业务,还存在多种其他业务类型,例如工业物联网传感器、监控摄像头、可穿戴设备的数据传输业务,支持这些业务的终端具有连接数大、功耗低、成本低的特点,与支持eMBB业务的终端相比,硬件能力降低,例如支持的带宽减小、处理速度降低、天线数量减小等。因此,需要针对支持上述其他业务类型的低能力终端对NR系统进行优化,对应的系统被称为NR-light系统。
目前的NR系统中,终端设备接收网络设备发送的一系列SSB,根据SSB中指示的type0PDCCH的CORESET信息,根据该CORESET信息盲检PDCCH,进而得到DCI信息,从而确定承载SIB1的PDSCH,接收SIB1。
对于NR-light系统的终端,需要在带宽有限的CORESET接收不同索引的SSB对应的type0 PDCCH,这将会占用大量的下行子帧,造成SIB1发送延迟,影响系统信息传输效率。
发明内容
本申请实施例提供一种控制信道资源的确定方法、设备及存储介质,提高PDCCH的接收性能,避免SIB1传输延迟。
第一方面,本申请实施例提供一种控制信道资源的确定方法,包括:
接收多个同步信号块SSB,所述多个SSB中的每个SSB包含控制资源集合CORESET信息和SSB索引信息;
根据所述SSB包含的CORESET信息和所述SSB索引信息,确定所述SSB的索引对应的CORESET信息;包含不同SSB索引信息的多个SSB对应的CORESET信息不完全相同;
根据所述多个SSB对应的CORESET信息检测物理下行控制信道PDCCH。
第二方面,本申请实施例提供一种控制信道资源的确定方法,包括:
接收第一SSB,所述第一SSB包含第一CORESET信息和所述第一SSB的索引信息;
根据所述第一CORESET信息和所述第一SSB的索引信息,确定所述第一SSB对应的第二CORESET信息;
根据所述第一SSB对应的第二CORESET信息检测PDCCH。
第三方面,本申请实施例提供一种控制信道资源的确定方法,包括:
确定多个SSB对应的CORESET信息,所述多个SSB中的每个SSB对应的CORESET信息是根据所述SSB包含的CORESET信息和所述SSB索引信息确定的;包含不同SSB索引信息的多个SSB对应的CORESET信息不完全相同;
根据所述多个SSB对应的CORESET信息发送物理下行控制信道PDCCH。
第四方面,本申请实施例提供一种控制信道资源的确定方法,包括:
根据第一SSB包含的第一CORESET信息和所述第一SSB索引信息,确定第一SSB对应的第二CORESET信息;
根据所述第二CORESET信息发送PDCCH。
第五方面,本申请实施例提供一种终端设备,包括:
接收模块,用于接收多个同步信号块SSB,所述多个SSB中的每个SSB包含控制资源集合CORESET信息和SSB索引信息;
处理模块,用于根据所述SSB包含的CORESET信息和所述SSB索引信息,确定所述SSB的索引对应的CORESET信息;包含不同SSB索引信息的多个SSB对应的CORESET信息不完全相同;
根据所述多个SSB对应的CORESET信息检测物理下行控制信道PDCCH。
第六方面,本申请实施例提供一种终端设备,包括:
接收模块,用于接收第一SSB,所述第一SSB包含第一CORESET信息和所述第一SSB的索引信息;
处理模块,用于根据所述第一CORESET信息和所述第一SSB的索引信息,确定所述第一SSB对应的第二CORESET信息;
根据所述第一SSB对应的第二CORESET信息检测PDCCH。
第七方面,本申请实施例提供一种网络设备,包括:
处理模块,用于确定多个SSB对应的CORESET信息,所述多个SSB中的每个SSB对应的CORESET信息是根据所述SSB包含的CORESET信息和所述SSB索引信息确定的;包含不同SSB索引信息的多个SSB对应的CORESET信息不完全相同;
发送模块,用于根据所述多个SSB对应的CORESET信息发送物理下行控制信道PDCCH。
第八方面,本申请实施例提供一种网络设备,包括:
处理模块,用于根据第一SSB包含的第一CORESET信息和所述第一SSB索引信息,确定第一SSB对应的第二CORESET信息;
发送模块,用于根据所述第二CORESET信息发送PDCCH。
第九方面,本申请实施例提供一种终端设备,包括:
收发器、处理器、存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面或者第二方面所述的方法。
可选地,上述处理器可以为芯片。
第十方面,本申请实施例提供一种网络设备,包括:
收发器、处理器、存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第三方面或者第四方面所述的方法。
可选地,上述处理器可以为芯片。
第十一方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第一方面或第二方面所述的方法。
第十二方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第三方面或者第四方面所述的方法。
第十三方面,本申请实施例提供一种通信系统,包括:
终端设备和网络设备,所述终端设备与所述网络设备通信连接;
所述终端设备为第五方面所述的终端设备,所述网络设备为第七方面所述的网络设备;或者,所述终端设备为第六方面所述的终端设备,所述网络设备为第八方面所 述的网络设备。
本申请实施例提供一种控制信道资源的确定方法、设备及存储介质,用于提高PDCCH的接收性能,降低SIB1的传输延迟。该方法包括:UE接收多个SSB,其中多个SSB中的每个SSB包含CORESET信息和SSB索引信息,针对每一个SSB,UE根据SSB包含的CORESET信息和SSB索引信息确定SSB对应的CORESET信息。UE确定的包含不同索引信息的多个SSB对应的CORESET信息不完全相同,UE根据多个SSB对应的CORESET信息检测PDCCH。由于不同索引的SSB对应CORESET信息不完全相同,UE可以在同一时间单元的不完全相同的CORESET上接收不同索引SSB对应的PDCCH,提高了PDCCH的接收性能,降低了UE接收SIB1的延迟,使系统设计更加灵活。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的一种控制信息资源的确定方法的流程图;
图3为本申请实施例提供的不同索引的SSB对应的CORESET信息的示意图;
图4为本申请实施例提供的不同索引的SSB对应的CORESET信息的示意图;
图5为本申请实施例提供的一种控制信息资源的确定方法的流程图;
图6为本申请实施例提供的一种控制信息资源的确定方法的流程图;
图7为本申请实施例提供的SSB对应的CORESET信息在不同无线帧的示意图;
图8为本申请实施例提供的一种控制信息资源的确定方法的流程图;
图9为本申请实施例提供的一种控制信道资源的确定方法的流程图;
图10为本申请实施例提供的一种控制信道资源的确定方法的流程图;
图11为本申请实施例提供的一种终端设备的结构示意图;
图12为本申请实施例提供的一种终端设备的结构示意图;
图13为本申请实施例提供的一种网络设备的结构示意图;
图14为本申请实施例提供的一种网络设备的结构示意图;
图15为本申请实施例提供的一种终端设备的硬件结构示意图;
图16为本申请实施例提供的一种终端设备的硬件结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述之外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在NR系统中,网络设备可以在不同波束方向上发送一系列SSB(或称为SSB集合),例如SSB1、SSB2、SSB3等。不同波束方向上的SSB(或称为不同索引的SSB)通常指示的type0 PDCCH的CORESET信息是相同的,CORESET信息用于指示type0 PDCCH在频域上的资源块RB和时域上的符号。不同波束方向上的SSB通常是时分发送的,相应的, 不同波束方向上的SSB对应的type0 PDCCH的监听时机可能不重叠、不完全重叠、或者完全重叠。
5G NR系统主要是为了支持eMBB业务而设计的,其主要技术是为了满足高速率、高频谱效率、大带宽的需要。实际上,除了eMBB,还存在多种不同的业务类型,例如传感器网络、视频监控、可穿戴等,它们在速率、带宽、功耗、成本等方面与eMBB业务有着不同的需求。支持这些业务的终端相比支持eMBB的终端的能力是降低的,如支持的带宽减小、处理时间放松、天线数减少等。为了更好的支持除eMBB业务之外的其他业务类型,需要针对这些业务和相应的低能力终端对NR系统进行优化,这样的系统称为NR-light系统。
在NR-light系统中,type0 PDCCH的CORESET的带宽比较有限,为了保证type0PDCCH的接收性能,通常采用时域上的重复发送,即在多个时间单元上发送type0 PDCCH。那么,对于每个索引的SSB对应的type0 PDCCH的监听时机可能都需要包含更多的时间单元。为了在带宽有限的CORESET承载每个索引的SSB对应的type0 PDCCH,就需要不同索引的SSB对应的type0 PDCCH监听时机尽量不重叠。为了满足上述要求,将会占用大量的下行子帧,造成接收SIB1的延迟。
基于上述存在的问题,本申请实施例提供一种控制信道资源的确定方法,对公共控制信道PDCCH的CORESET信息进行确定,通过SSB的PBCH承载的MIB信息,结合预定义的规则或者结合其他信息(比如索引信息、时间单元信息等),确定不同索引的SSB对应的CORESET信息,确定的不同索引的SSB中存在至少两个SSB对应的CORESET信息不完全相同,从而使得UE在同一时间单元上的不同CORESET上检测type0 PDCCH,减小接收SIB1的延迟,使系统设计更加灵活。同时,针对任一SSB,type0 PDCCH的CORESET随着时间变化而变化,增加了CORESET的频率分集,提高了type0 PDCCH的接收性能。
本申请实施例的技术方案主要应用于基于NR技术的通信系统,例如第五代移动通信技术(5th generation mobile networks,简称5G)通信系统、NR-light系统等。也可以应用于其它的通信系统,只要该通信系统中存在实体需要指示与另一个实体通信时,另一个实体需要通过某种方式解读提前数据传输即可,例如可以应用在网络设备和终端设备之间进行多数据块的调度,或者两个终端设备,其中一个承担接入网络的功能等。具体的,该通信系统可以是例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、高级的长期演进LTE-A(LTE Advanced)系统、LTE频分双工(Freq终端设备ncy Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
本申请实施例的技术方案中所称的终端设备可以是无线终端,也可以是有线终端。无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile  Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本申请实施例的技术方案中所称的网络设备是一种部署在无线接入网用以提供无线通信功能的设备,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者新空口NR网络中的收发点(transmission reception point,TRP)或者下一代节点B(generation nodeB,gNB),或者未来其他的网络系统中的基站等等,在此并不限定。
本申请实施例的技术方案中的NR系统中,同步信号(Synchronization Signal,SS)与物理广播信道(Physical Broadcast Channel,PBCH)块是按照一定时频域资源关系以SS/PBCH资源块的形式出现,简称为同步信号块(Synchronization Signal Block,SSB)。SSB可以包括PBCH,主同步信号(primary synchronization signal,PSS),辅同步信号(Secondary synchronization signal,SSS)中的至少一个。终端设备在接收到SSB后,可以取得与网络设备的时间同步,并且获取网络的基本配置信息,除此之外,终端设备还需要得到一些必要的系统信息才可以完成驻留小区及初始接入,这些必要的系统信息在NR中被称为RMSI(Remaining Minimum System Information)。RMSI可认为是LTE中的SIB1消息,主要通过物理下行共享信道(Physical Down Link Shared Channel,PDSCH)发送,而PDSCH信道需要物理下行控制信道(Physical Down Link Control Channel,PDCCH)的下行控制信息(Downlink Control Information,DCI)来调度。SSB承载信息的信道为PBCH,PBCH用于承载主信息块(main information block,MIB)。终端设备需要从MIB的pdcch-ConfigSIB1字段中得到调度RMSI的PDCCH信道信息,终端设备在该PDCCH上进行盲检,获得RMSI,即SIB1消息。
本申请实施例中的SSB与PDCCH具有准共址(Quasi Co-location,QCL)关系,可以表示两者具有相同的波束,或者具有相同的以下部分或者全部参数:入射角(angle of arrival,AOA)、主(Dominant)入射角AOA、平均入射角、入射角的功率角度谱(power angular spectrum(PAS)of AoA)、出射角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端发送波束成型、终端接收波束成型、空间信道相关性、基站发送波束成型、基站接收波束成型、平均信道增益、平均信道时延、时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移等。当SSB与PDCCH具有QCL关系时,也可称为两者具有关联关系,关联也可以称为映射,对应,相关,分配。上述关联关系可以由网络设备配置,也可以由标准规定,或者网络设备和终端设备预先约定。
图1为本申请实施例提供的一种通信系统的结构示意图。如图1所示,该系统包括网络设备,网络设备可以为基站(Base station,BS),以及与网络设备通信连接的多个终端设备,例如图1所示的UE1至UE6。其中,基站可以是多波束的基站,也可以是单波束的基站。终端设备可以是固定的终端设备,也可以是移动的终端设备。基站和UE1至UE6组成一个通信系统,在该通信系统中,基站可以采用波束扫描方式发送一系列SSB,以使UE1至UE6中的一个或多个UE根据接收到的至少一个SSB确定至少一个SSB对应的CORESET信息,进行PDCCH的检测,接收SIB1。
下面结合附图以具体的几个实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程在某些实施例中不再赘述。
图2为本申请实施例提供的一种控制信息资源的确定方法的流程图。如图2所示,本实施例提供的方法可应用于图1所示的任意一个UE,该方法包括如下步骤:
步骤101、接收多个SSB,多个SSB中的每个SSB包含CORESET信息和SSB索引信息。
在本申请实施例中,多个SSB中的每个SSB包含CORESET信息,不同SSB包含的CORESET信息可以相同也可以不同。
示例性的,多个SSB包括SSB0、SSB1、SSB2,SSB0包含的CORESET信息为CORESET#0-0,SSB1包含的CORESET信息为CORESET#0-1,SSB2包含的CORESET信息为CORESET#0-2。其中,CORESET#0-0、CORESET#0-1、CORESET#0-2可以是完全相同的CORESET,也可以是不完全相同的CORESET。上述3个SSB的CORESET不完全相同可以理解为3个SSB中的至少2个SSB包含的CORESET不完全相同,还可以理解为3个SSB中的任意2个SSB包含的CORESET不完全相同。
对于每一个SSB,该SSB包含的CORESET信息可以承载在SSB的PBCH的MIB信息中。MIB信息中包含的CORESET信息可以是该SSB对应的CORESET信息(即MIB信息中指示的是该SSB真实的CORESET信息),也可以是该SSB的一个参考CORESET信息(即并非该SSB真实的CORESET信息)。不同情况的CORESET信息对应的后续处理存在差异,具体可参见下文步骤102。
具体的,在SSB的PBCH承载的MIB信息的pdcch-ConfigSIB1字段中,指示了type0PDCCH的CORESET信息。其中,CORESET信息包括type0 PDCCH在频域上的资源块RB和在时域上的符号。在实际应用中,可通过在pdcch-ConfigSIB1字段中指示表1中的任一索引(index),确定该索引对应的CORESET的RB个数(Number of RBs)、符号数(Number of Symbols)以及相比SSB的RB偏移值(RB offset),从而得到上述CORESET信息。
表1
Figure PCTCN2020077255-appb-000001
需要说明的是,上述表1示出了子载波间隔为15kHz的情况,CORESET的带宽可以配置为24、48、96个RB,CORESET的符号个数可以为1、2、3,CORESET的频域位置相比SSB的频域位置偏移的RB个数可以为0、2、4、12、16、38。表1中的SSB与CORESET的复用方式为方式1,即PDCCH与SSB采用时分复用方式。当然,SSB与CORESET的复用方式还可以是方式2(PDCCH与SSB采用频分和时分复用方式)或方式3(PDCCH与SSB采用频分复用方式)。上述表1仅作为示例,对于不同子载波间隔或不同复用方式,对应的表格内容存在差异。
具体的,在SSB的PBCH承载的MIB信息的pdcch-ConfigSIB1字段中,还指示了type0PDCCH的搜索空间Searchspace信息,该信息用于确定type0 PDCCH的监听时机(即起始OFDM符号编号)。
type0 PDCCH的监听时机通过以下方式确定:
对于SSB与CORESET的复用方式为方式1,UE在两个连续的时隙监听type0 PDCCH公共搜索空间。两个连续的时隙中起始时隙的编号为n 0,每个索引的SSB对应一个监听窗口,该监听窗口的起始时隙的编号n 0可通过公式一确定:
Figure PCTCN2020077255-appb-000002
式中,i为SSB的索引号,μ为与子载波间隔Δf相关的系统参数,
Figure PCTCN2020077255-appb-000003
为一个无线帧中的时隙的个数,M和O均通过PBCH中的Searchspace信息指示。O的取值在6GHz以下频域(frequency range 1)时包括{0,2,5,7},在6GHz以上频域(frequency range 2)时包括{0,2.5,5,7.5}。M的取值包括{1/2,1,2}。
在确定起始时隙的编号n 0之后,还需要进一步确定监听窗口所在的无线帧编号SFN C,可通过公式二或三确定:
Figure PCTCN2020077255-appb-000004
Figure PCTCN2020077255-appb-000005
即如果
Figure PCTCN2020077255-appb-000006
计算得到的时隙个数小于一个无线帧包含的时隙个数,SFN C为偶数无线帧,如果
Figure PCTCN2020077255-appb-000007
计算得到的时隙个数大于或等于一个无线帧包含的时隙个数,SFN C为奇数无线帧。
在本申请实施例中,SSB的PBCH承载的MIB信息的pdcch-ConfigSIB1字段包含8比特,type0 PDCCH的CORESET信息和Searchspace信息各占4比特。不同索引的SSB的PBCH承载的CORESET信息可以相同也可以不同,其中,不同索引的SSB的PBCH承载的CORESET信息不同即不同索引的SSB对应的MIB信息不同。
步骤102、根据SSB包含的CORESET信息和SSB索引信息,确定SSB的索引对应的CORESET信息。
其中,包含不同SSB索引信息的多个SSB对应的CORESET信息不完全相同。
在本申请实施例中,UE接收多个SSB,根据多个SSB确定多个SSB对应的CORESET信息。为了便于理解,下面以第一SSB为例进行说明,第一SSB为多个SSB中的任意一个SSB。其中,第一SSB包括以下两种情况:
在第一种情况下,第一SSB包含的CORESET信息为第一SSB对应的CORESET信息。需要指出的是,第一SSB包含的CORESET信息是指第一SSB的PBCH中指示的CORESET信息。该情况下,第一SSB包含的CORESET信息就是第一SSB对应的CORESET信息。不同索引的SSB包含的CORESET信息不完全相同,即不同索引的SSB对应的CORESET信息不完全相同。
作为一种示例,UE接收到多个SSB,例如SSB0、SSB1、SSB2、SSB3。SSB0包含的CORESET信息为SSB0对应的CORESET信息,SSB1包含的CORESET信息为SSB1对应的CORESET信息,SSB2包含的CORESET信息为SSB2对应的CORESET信息,SSB3包含的CORESET信息为SSB3对应的CORESET信息。上述4个索引的SSB包含的CORESET信息不完全相同,即指示的这4个索引的SSB对应的CORESET信息不完全相同。其中,CORESET信息不完全相同包括RB不完全相同(即RB可以部分重叠或者不重叠)。可选的,上述4个索引的SSB中存在至少两个SSB包含的CORESET信息不完全相同。
作为另一种示例,如图3所示,上述4个索引的SSB包含的CORESET信息不同,即指示的这4个索引的SSB对应的CORESET信息不同。其中,CORESET信息不同包括RB 不同(RB不重叠),或者,RB不同且符号数不同。RB由RB个数和RB偏移值确定,RB不同包括RB个数不同,和/或,RB偏移值不同。图3示出的4个索引的SSB对应的CORESET信息,分别为CORESET#0-0、CORESET#0-1、CORESET#0-2、CORESET#0-3,它们具有相同的RB个数、符号数,只是RB偏移值不同。可选的,上述4个索引的SSB中存在至少两个SSB包含的CORESET信息不同,即指示的这4个索引的SSB中存在至少两个SSB对应的CORESET信息不同。
采用上述第一种情况确定多个SSB对应的CORESET信息,由于不同索引的SSB中存在至少两个SSB包含的CORESET信息不完全相同,即不同索引的SSB中存在至少两个SSB对应的CORESET信息不完全相同,那么即使不同索引的SSB对应的type0 PDCCH的监听时机发生了重叠,由于CORESET信息不完全相同,UE可以在同一时间单元的不完全相同的CORESET上接收对应的type0 PDCCH,从而避免占用大量的下行子帧,降低接收SIB1的延迟,使系统设计更加灵活。
在第二种情况下,第一SSB包含的CORESET信息并非第一SSB对应的CORESET信息,第一SSB包含的CORESET信息可以被看作是一个参考的CORESET信息。
具体的,可通过如下一种可能的实现方式确定第一SSB对应的CORESET信息:
根据第一SSB包含的CORESET信息和索引信息,确定第一SSB对应的CORESET信息。其中,索引信息用于指示CORESET与第一SSB的RB偏移值,可通过如下公式四确定RB偏移值。
RB offset i=RB offset 0+i×NB          公式四
式中,RB offset i为第一SSB对应的CORESET信息中的RB偏移值,RB offset 0为第一SSB包含的CORESET信息中的RB偏移值,i为第一SSB的索引号,NB表示窄带narrow band的带宽。
其中,i的取值范围为[0,L-1],L为SSB所在频段对应的SSB的最大个数。SSB的最大个数L与系统的频段有如下关系:频段(frequency range)小于或者等于3GHz,L取4;频段大于3GHz且小于6GHz,L取8;频段大于或者等于6GHz且小于52.6GHz,L取64。
其中,第一SSB的索引号可通过PBCH的解调参考信号(Demodulation Reference Signal,DMRS)或者PBCH承载的信息来指示。
通过公式四可确定第一SBB对应的CORESET信息,由公式四可知,第一SSB包含的CORESET信息与第一SSB对应的CORESET信息通常是不同的。
需要说明的是,上述的实现方式仅作为一种示例,还可根据其他预设规则确定第一SSB对应的CORESET信息,对此本申请实施例不作任何限制。
上述第二种情况下,不同索引的SSB包含的CORESET信息均为上述参考的CORESET信息,即不同索引的SSB包含的CORESET信息相同。不同索引的SSB对应的CORESET信息均可以通过上述的实现方式确定。
作为一种示例,UE接收到多个SSB,例如SSB0、SSB1、SSB2、SSB3。SSB0、SSB1、SSB2、SSB3包含的CORESET信息相同。UE根据SSB0包含的CORESET信息和SSB0的索引号,确定SSB0对应的CORESET信息,SSB0对应的CORESET信息为SSB0真实的CORESET信息。同理,UE根据SSB1包含的CORESET信息和SSB1的索引号,确定SSB1对应的CORESET信息;UE根据SSB2包含的CORESET信息和SSB2的索引号,确定SSB2对应的CORESET信息;UE根据SSB3包含的CORESET信息和SSB3的索引号,确定SSB3对应的CORESET信息。如此一来,上述4个索引的SSB对应的CORESET平移至不同的窄带上,如图4所示,上述4个索引的SSB对应的CORESET信息,具有相同的RB个数、符号数,只是RB偏移值不同。上述4个索引的SSB对应的CORESET分别为CORESET#0-0、CORESET#0-1、CORESET#0-2、CORESET#0-3,它们是基于相同的CORESET信息(即参考的CORESET信息)分别平移不同的RB偏移值(RB Offset 0、RB  Offset 1、RB Offset 2、RB Offset 3)得到的。上述4个索引的SSB对应的CORESET信息不同。
该示例中确定的4个索引的SSB对应的CORESET信息不同,与第一种情况的图3示例的结果一致,两者的区别在于:第一种情况不同索引的SSB包含的CORESET信息本身就不同,指示的不同索引的SSB对应的CORESET信息就不同;第二种情况不同索引的SSB包含的CORESET信息相同,需要通过其他信息(例如索引信息)确定不同索引的SSB对应的CORESET信息不同。
采用上述第二种情况确定多个SSB对应的CORESET信息,由于确定的不同索引的SSB对应的CORESET信息不同,那么即使不同索引的SSB对应的type0 PDCCH的监听时机发生了重叠,由于CORESET信息不同,UE可以在同一时间单元的不同CORESET上接收对应的type0 PDCCH,从而避免占用大量的下行子帧,降低接收SIB1的延迟,使系统设计更加灵活。另外,由于不同索引的SSB中的PBCH指示相同的CORESET信息,对相关技术改动小,便于不同索引的SSB的PBCH进行合并。
可选的,上述第一SSB对应的CORESET信息在不同时间单元中的至少两个时间单元不完全相同。
步骤103、根据多个SSB对应的CORESET信息检测PDCCH。
本申请实施例提供的控制信道资源的确定方法,UE接收多个SSB,其中多个SSB中的每个SSB包含CORESET信息和SSB索引信息,针对每一个SSB,UE根据SSB包含的CORESET信息和SSB索引信息确定SSB对应的CORESET信息。UE确定的包含不同索引信息的多个SSB对应的CORESET信息不完全相同,UE根据多个SSB对应的CORESET信息检测PDCCH。由于不同索引的SSB对应CORESET信息不完全相同,UE可以在同一时间单元的不完全相同的CORESET上接收不同索引SSB对应的PDCCH,提高了PDCCH的接收性能,降低了UE接收SIB1的延迟,使系统设计更加灵活。
图5为本申请实施例提供的一种控制信息资源的确定方法的流程图。如图5所示,本实施例提供的方法可应用于图1所示的任意一个UE,该方法包括如下步骤:
步骤201、接收第一SSB,第一SSB包含第一CORESET信息和第一SSB的索引信息。
相关技术中,第一SSB包含的第一CORESET信息通常为第一SSB对应的CORESET信息,即指示该SSB对应的真实的CORESET信息。本步骤中,第一SSB包含的第一CORESET信息为一个参考的CORESET信息,UE需要结合其他信息确定该SSB对应的真实的CORESET信息。
步骤202、根据第一CORESET信息和第一SSB的索引信息,确定第一SSB对应的第二CORESET信息;
步骤203、根据第一SSB对应的第二CORESET信息检测PDCCH。
本申请实施例中的步骤202同上述实施例中步骤102的第二种情况,其实现原理和技术效果可参见上述实施例,此处不再赘述。
相关技术中,第一SSB对应的CORESET信息通常是固定不变的,除非网络设备重新配置了新的第一SSB对应的CORESET信息。为了进一步提升type0 PDCCH的接收性能,下述实施例从多个SSB的任意一个SSB角度出发,确定低能力UE如何实现type0 PDCCH的CORESET的窄带跳频,通过窄带跳频,不仅可以实现SSB对应的CORESET信息在不同时间单元不完全相同,还可以实现在某一时间单元的不同索引的SSB对应的CORESET信息不完全相同。
下面结合附图6对本申请实施例提供的控制信道资源的确定方法进行详细描述。
图6为本申请实施例提供的一种控制信息资源的确定方法的流程图。如图6所示,本实施例提供的方法可应用于图1所示的任意一个UE,该方法包括如下步骤:
步骤301、确定第一SSB对应的第二CORESET信息。
在本申请实施例中,第一SSB包含的第一CORESET信息可以为第一SSB对应的第二CORESET信息。相应的,UE可根据第一SSB包含的第一CORESET信息确定第一SSB对应的第二CORESET信息。
或者,第一SSB包含的第一CORESET信息为一个参考的CORESET信息。相应的,UE可根据第一SSB包含的第一CORESET信息和第一SSB的索引信息确定第一SSB对应的第二CORESET信息。
步骤302、根据第二CORESET信息和时间单元信息,确定第一SSB对应的多个第三CORESET信息。
其中,多个第三CORESET信息分别对应不同的时间单元,多个第三CORESET信息不完全相同。
多个第三CORESET信息不完全相同可以理解为多个第三CORESET信息中的至少两个第三CORESET信息不完全相同,还可以理解为多个第三CORESET信息中的任意两个不完全相同。
作为一种示例,时间单元信息包括时间单元的编号,例如无线帧号、子帧号、时隙号等,时间单元的编号可以是一个或多个。
作为另一种示例,时间单元信息可以是UE监听type0 PDCCH的搜索空间的一个或多个监听时机。例如,第一SSB对应的CORESET属于UE监听type0 PDCCH的搜索空间的CORESET,该搜索空间包括不同的监听时机,该监听时机属于时间单元信息的一种,UE可以根据第一SSB对应的CORESET确定第一SSB对应的不同监听时机的多个CORESET。
本申请实施例中的时间单元可以是无线帧、子帧、时隙等,对此本申请实施例不作任何限制。
作为一种示例,步骤302包括:
通过如下公式五确定第一SSB对应的多个第三CORESET信息。
RB offset j=RB offset 0+j×NB             公式五
式中,RB offset j为第一SSB对应的第三CORESET信息中的RB偏移值,RB offset 0为第一SSB对应的第二CORESET信息中的RB偏移值,j为第一时间单元的编号,NB表示窄带narrow band的带宽。
通过公式五可确定第一SSB对应的多个第三CORESET信息,由公式五可知,第一SSB对应的多个第三CORESET信息不完全相同。
需要说明的是,上述的实现方式仅作为一种示例,还可根据其他预设规则确定第一SSB对应的多个第三CORESET信息,对此本申请实施例不作任何限制。
综上,UE可以根据第一SSB包含的第一CORESET信息和时间单元信息确定第一SSB对应的多个第三CORESET信息,其中,第一SSB包含的第一CORESET信息为第一SSB对应的CORESET信息(即上述第二CORESET信息)。UE还可以根据第一SSB包含的第一CORESET信息、第一SSB的索引信息和时间单元信息,确定第一SSB对应的多个第三CORESEST信息。其中,上述的多个第三CORESET信息分别对应不同的时间单元,多个第三CORESET信息不完全相同。
作为一种示例,UE接收SSB0,SSB0包含的第一CORESET信息为SSB0对应的CORESET信息,UE根据SSB0包含的第一CORESET信息和无线帧SFN信息,确定多个第二CORESET信息,例如图7所示的第n个无线帧的第二CORESET信息(图7中的CORESET#0-0),以及第n+i个无线帧的第二CORESET信息(图7中的CORESET#0-0’)。其中,n和i均为大于或者等于1的正整数。由图7可知,第n个无线帧和第n+i个无线帧的第二CORESET信息不同,此处的第二CORESET信息不 同是指RB个数和符号数相同,只是RB偏移值不同。
步骤303、根据多个第二CORESET信息检测PDCCH。
本申请实施例提供的控制信道资源的确定方法,UE接收第一SSB,其中第一SSB包含第一CORESET信息,UE根据第一CORESET信息确定第一SSB对应的第二CORESET信息,或者,UE根据第一CORESET信息和第一SSB的索引信息确定第一SSB对应的第二CORESET信息。随后,UE根据确定的第二CORESET信息和时间单元信息,确定第一SBB对应的多个第三CORESET信息,其中,多个第三CORESET信息对应不同的时间单元,确定的多个第三CORESET信息不完全相同。UE根据多个第三CORESET信息检测PDCCH。由于SSB对应的CORESET信息不再是固定不变的,SSB对应的CORESET信息随着时间的变化而变化,增加了检测type0 PDCCH的频率分集,提高了type0 PDCCH的接收性能。另外,从多个不同索引的SSB角度,可以使得同一时间单元的不同索引的SSB对应的CORESET不完全相同,UE在同一时间单元的不同CORESET上检测type0PDCCH,降低UE接收SIB1的延迟,使系统设计更加灵活。
图8为本申请实施例提供的一种控制信息资源的确定方法的流程图。如图8所示,本实施例提供的方法可应用于图1所示的基站,该方法包括如下步骤:
步骤401、确定多个SSB对应的CORESET信息。
其中,多个SSB中的每个SSB对应的CORESET信息是根据SSB包含的CORESET信息,或者,根据SSB包含的CORESET信息和SSB索引信息确定的。包含不同索引信息的多个SSB对应的CORESET信息不完全相同。
在本申请实施例中,基站以波束扫描方式向UE发送一系列SSB,例如SSB0、SSB1、SSB2、SSB3。相应的,UE可能接收到该基站发送的一系列SSB中的至少一个SSB,即UE可能接收到一个SSB,或者,UE接收到多个SSB(两个或两个以上)。
对于基站发送的一系列SSB中的任意一个SSB,例如第一SSB,该第一SSB包含的CORESET信息包括以下两种情况:
在第一种情况下,第一SSB包含的CORESET信息为第一SSB对应的CORESET信息,即第一SSB包含的CORESET信息直接指示了该第一SSB对应的CORESET信息。该情况下,基站直接根据第一SSB包含的CORESET信息确定第一SSB对应的CORESET信息。
在第二种情况下,第一SSB包含的CORESET信息并非第一SSB对应的CORESET信息,第一SSB包含的CORESET信息可以被看作是一个参考的CORESET信息。需要说明的是,在该情况下,不同索引的SSB包含的CORESET信息相同,基站可根据每个SSB包含的CORESET信息和该SSB的索引信息,确定该SSB对应的CORESET信息。示例性的,基站可根据第一SSB包含的CORESET信息和第一SSB的索引信息,确定第一SSB对应的CORESET信息。
步骤402、根据多个SSB对应的CORESET信息发送物理下行控制信道PDCCH。
具体的,基站根据步骤401确定的多个SSB对应的CORESET信息发送PDCCH。确定的不同索引的多个SSB对应的CORESET信息不完全相同。多个SSB对应的CORESET信息不完全相同可以理解为多个SSB中的至少两个SSB对应的CORESET信息不完全相同,还可以理解为多个SSB中的任意两个SSB对应的CORESET信息不完全相同。
其中,至少两个SSB对应的CORESET信息不完全相同包括至少两个SSB对应的RB不完全相同。
本申请实施例中的部分名词与UE侧的方法实施例相同,具体可参见上述实施例,此处不再赘述。
本申请实施例提供的控制信道资源的确定方法中,基站通过SSB包含的CORESET信息确定SSB对应的CORESET信息,或者通过SSB包含的CORESET信息和SSB索引信息确定SSB对应的CORESET信息。其中,基站确定的包含不同索引信息的多个SSB对 应的CORESET信息不完全相同。基站根据确定的多个SSB对应的CORESET信息发送PDCCH。上述方法减小了SIB1的发送延迟,使系统设计更加灵活。
在上述实施例的基础上,可选的,多个SSB中的任意一个SSB对应的CORESET信息在不同时间单元中的至少两个时间单元不完全相同。
图9为本申请实施例提供的一种控制信道资源的确定方法的流程图。如图9所示,本实施例提供的方法可应用于图1所示的基站,该方法包括如下步骤:
步骤501、根据第一SSB包含的第一CORESET信息和第一SSB的索引信息,确定第一SSB对应的第二CORESET信息。
在本申请实施例中,第一SSB包含的第一CORESET信息为一个参考的CORESET信息,基站需要根据该参考的CORESET信息和第一SSB的索引信息,确定第一SSB对应的第二CORESET信息。其中,第二CORESET信息为第一SSB对应的真实的CORESET信息。本步骤的具体实现方式可参见图2所示实施例中步骤102的第二种情况,此处不再赘述。
步骤502、根据第二CORESET信息发送PDCCH。
基站根据上述实施例的确定方法,确定第一SSB对应的第二CORESET信息,该第一SSB对应的第二CORESET信息可以随着时间的变化而变化,即该第一SSB对应的CORESET信息在不同时间单元可以不完全相同。
下面结合附图10对基站如何确定在不同时间单元的某一SSB对应的CORESET信息进行详细说明。
图10为本申请实施例提供的一种控制信道资源的确定方法的流程图。如图10所示,本实施例提供的方法可应用于图1所示的基站,该方法包括如下步骤:
步骤601、确定第一SSB对应的第二CORESET信息。
在一种可能的实现方式中,基站根据第一SSB包含的第一CORESET信息确定第一SSB对应的第二COERSET信息。
在另一种可能的实现方式中,基站根据第一SSB包含的第一CORESET信息确定第一SSB对应的第二CORESET信息。
步骤602、根据第二CORESET信息和时间单元信息,确定第一SSB对应的多个第三CORESET信息。其中,多个第三CORESET信息分别对应不同的时间单元,多个第三CORESET信息不完全相同。
本步骤的具体实现同图6所示实施例的步骤302,具体可参见上述实施例,此处不再赘述。
步骤603、根据多个第三CORESET信息发送PDCCH。
本申请实施例提供的控制信道资源的确定方法,基站首先根据第一SSB包含的第一CORESET信息,或者,根据第一SSB包含的第一CORESET信息和第一SSB的索引信息,确定第一SSB对应的第二CORESET信息。随后,基站根据确定第二CORESET信息和时间单元信息,确定第一SBB对应的多个第三CORESET信息,其中,确定的多个第三CORESET信息不完全相同。基站根据多个第三CORESET信息发送PDCCH。由于SSB对应的CORESET信息不再是固定不变的,SSB对应的CORESET信息随着时间的变化而变化,增加了发送type0 PDCCH的频率分集。另外,从多个不同索引的SSB角度,可以使得同一时间单元的不同索引的SSB对应的CORESET不完全相同,基站在同一时间单元的不同CORESET上发送type0 PDCCH,降低基站发送SIB1的延迟,使系统设计更加灵活。
上文中详细描述了本申请实施例提供的控制信道资源的确定方法,下面将描述本申请实施例提供的终端设备和网络设备。
图11为本申请实施例提供的一种终端设备的结构示意图。如图11所示,本申请实施 例提供的终端设备700,包括:
接收模块701,用于接收多个同步信号块SSB,所述多个SSB中的每个SSB包含控制资源集合CORESET信息和SSB索引信息;
处理模块702,用于根据所述SSB包含的CORESET信息和所述SSB索引信息,确定所述SSB的索引对应的CORESET信息;包含不同SSB索引信息的多个SSB对应的CORESET信息不完全相同;
根据所述多个SSB对应的CORESET信息检测物理下行控制信道PDCCH。
可选的,所述多个SSB中的第一SSB包含的CORESET信息为所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信息不完全相同。
可选的,所述处理模块702,具体用于:
根据所述多个SSB中的第一SSB包含的CORESET信息和所述第一SSB的索引信息,确定所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信息相同。
可选的,所述第一SSB对应的CORESET信息在不同时间单元中的至少两个时间单元不完全相同。
可选的,所述多个SSB对应的CORESET信息不完全相同,包括:
所述多个SSB对应的资源块RB不完全相同。
本申请实施例提供的终端设备,用于执行前述图2所示方法实施例的终端设备的技术方案,其实现原理和技术效果类似,在此不再赘述。
图12为本申请实施例提供的一种终端设备的结构示意图。如图12所示,本申请实施例提供的终端设备800,包括:
接收模块801,用于接收第一SSB,所述第一SSB包含第一CORESET信息和所述第一SSB的索引信息;
处理模块802,用于根据所述第一CORESET信息和所述第一SSB的索引信息,确定所述第一SSB对应的第二CORESET信息;
根据所述第一SSB对应的第二CORESET信息检测PDCCH。
可选的,所述处理模块802,还用于:
根据所述第一SSB对应的第二CORESET信息和时间单元信息,确定所述第一SSB对应的多个第三CORESET信息;所述多个第三CORESET信息分别对应不同的时间单元,所述多个第三CORESET信息不完全相同;
根据所述多个第三CORESET信息检测PDCCH。
本申请实施例提供的终端设备,用于执行前述图5、图6所示方法实施例的终端设备的技术方案,其实现原理和技术效果类似,在此不再赘述。
图13为本申请实施例提供的一种网络设备的结构示意图。如图13所示,本申请实施例提供的网络设备900,包括:
处理模块901,用于确定多个SSB对应的CORESET信息,所述多个SSB中的每个SSB对应的CORESET信息是根据所述SSB包含的CORESET信息和所述SSB索引信息确定的;包含不同SSB索引信息的多个SSB对应的CORESET信息不完全相同;
发送模块902,用于根据所述多个SSB对应的CORESET信息发送物理下行控制信道PDCCH。
可选的,所述多个SSB中的第一SSB包含的CORESET信息为所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信息不完全相同。
可选的,所述处理模块901,具体用于:
根据所述多个SSB中的第一SSB包含的CORESET信息和所述第一SSB的索引信息,确定所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信 息相同。
可选的,所述第一SSB对应的CORESET信息在不同时间单元中的至少两个时间单元不完全相同。
可选的,所述多个SSB对应的CORESET信息不完全相同,包括:
所述多个SSB对应的资源块RB不完全相同。
本申请实施例提供的网络设备,用于执行前述图8所示方法实施例的网络设备的技术方案,其实现原理和技术效果类似,在此不再赘述。
图14为本申请实施例提供的一种网络设备的结构示意图。如图14所示,本申请实施例提供的网络设备1000,包括:
处理模块1001,用于根据第一SSB包含的第一CORESET信息和所述第一SSB索引信息,确定第一SSB对应的第二CORESET信息;
发送模块1002,用于根据所述第二CORESET信息发送PDCCH。
可选的,所述处理模块1001,还用于:
根据所述第一SSB对应的第二CORESET信息和时间单元信息,确定所述第一SSB对应的多个第三CORESET信息;所述多个第三CORESET信息分别对应不同的时间单元,所述多个第三CORESET信息不完全相同;
发送模块1002,还用于根据所述多个第三CORESET信息发送PDCCH。
本申请实施例提供的网络设备,用于执行前述图9、图10所示方法实施例的网络设备的技术方案,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上终端设备或网络设备的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机 可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
图15为本申请实施例提供的一种终端设备的硬件结构示意图。如图15所示,该终端设备1100可以包括:
收发器1101、处理器1102、存储器1103;
所述存储器1103存储计算机执行指令;
所述处理器1102执行所述存储器1103存储的计算机执行指令,使得所述处理器1102执行如前述任一方法实施例中的终端设备侧的控制信道资源的确定方法的技术方案。
可选的,处理器1102可以为芯片。
图16为本申请实施例提供的一种网络设备的硬件结构示意图。如图16所示,该终端设备1200可以包括:
收发器1201、处理器1202、存储器1203;
所述存储器1203存储计算机执行指令;
所述处理器1202执行所述存储器1203存储的计算机执行指令,使得所述处理器1202执行如前述任一方法实施例中的网络设备侧的控制信道资源的确定方法的技术方案。
可选的,处理器1202可以为芯片。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中终端设备侧的技术方案。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中网络设备侧的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中终端设备侧的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中网络设备侧的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中终端设备侧的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中网络设备侧的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中终端设备侧的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行终端设备侧的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中网络设备侧的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行网络设备侧的技术方案。
本申请中,“至少两个”是指两个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中,a,b,c可以是单个,也可以是多个。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (32)

  1. 一种控制信道资源的确定方法,其特征在于,包括:
    接收多个同步信号块SSB,所述多个SSB中的每个SSB包含控制资源集合CORESET信息和SSB索引信息;
    根据所述SSB包含的CORESET信息和所述SSB索引信息,确定所述SSB的索引对应的CORESET信息;包含不同SSB索引信息的多个SSB对应的CORESET信息不完全相同;
    根据所述多个SSB对应的CORESET信息检测物理下行控制信道PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,
    所述多个SSB中的第一SSB包含的CORESET信息为所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信息不完全相同。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述SSB包含的CORESET信息和所述SSB索引信息,确定所述SSB的索引对应的CORESET信息,包括:
    根据所述多个SSB中的第一SSB包含的CORESET信息和所述第一SSB的索引信息,确定所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信息相同。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一SSB对应的CORESET信息在不同时间单元中的至少两个时间单元不完全相同。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述多个SSB对应的CORESET信息不完全相同,包括:
    所述多个SSB对应的资源块RB不完全相同。
  6. 一种控制信道资源的确定方法,其特征在于,包括:
    接收第一SSB,所述第一SSB包含第一CORESET信息和所述第一SSB的索引信息;
    根据所述第一CORESET信息和所述第一SSB的索引信息,确定所述第一SSB对应的第二CORESET信息;
    根据所述第一SSB对应的第二CORESET信息检测PDCCH。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    根据所述第一SSB对应的第二CORESET信息和时间单元信息,确定所述第一SSB对应的多个第三CORESET信息;所述多个第三CORESET信息分别对应不同的时间单元,所述多个第三CORESET信息不完全相同;
    根据所述多个第三CORESET信息检测PDCCH。
  8. 一种控制信道资源的确定方法,其特征在于,包括:
    确定多个SSB对应的CORESET信息,所述多个SSB中的每个SSB对应的CORESET信息是根据所述SSB包含的CORESET信息和所述SSB索引信息确定的;包含不同SSB索引信息的多个SSB对应的CORESET信息不完全相同;
    根据所述多个SSB对应的CORESET信息发送物理下行控制信道PDCCH。
  9. 根据权利要求8所述的方法,其特征在于,
    所述多个SSB中的第一SSB包含的CORESET信息为所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信息不完全相同。
  10. 根据权利要求8所述的方法,其特征在于,所述确定多个SSB对应的CORESET信息,包括:
    根据所述多个SSB中的第一SSB包含的CORESET信息和所述第一SSB的索引信息,确定所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信息相同。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一SSB对应的CORESET信息在不同时间单元中的至少两个时间单元不完全相同。
  12. 根据权利要求8-11中任一项所述的方法,其特征在于,所述多个SSB对应的CORESET信息不完全相同,包括:
    所述多个SSB对应的资源块RB不完全相同。
  13. 一种控制信道资源的确定方法,其特征在于,包括:
    根据第一SSB包含的第一CORESET信息和所述第一SSB索引信息,确定第一SSB对应的第二CORESET信息;
    根据所述第二CORESET信息发送PDCCH。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    根据所述第一SSB对应的第二CORESET信息和时间单元信息,确定所述第一SSB对应的多个第三CORESET信息;所述多个第三CORESET信息分别对应不同的时间单元,所述多个第三CORESET信息不完全相同;
    根据所述多个第三CORESET信息发送PDCCH。
  15. 一种终端设备,其特征在于,包括:
    接收模块,用于接收多个同步信号块SSB,所述多个SSB中的每个SSB包含控制资源集合CORESET信息和SSB索引信息;
    处理模块,用于根据所述SSB包含的CORESET信息和所述SSB索引信息,确定所述SSB的索引对应的CORESET信息;包含不同SSB索引信息的多个SSB对应的CORESET信息不完全相同;
    根据所述多个SSB对应的CORESET信息检测物理下行控制信道PDCCH。
  16. 根据权利要求15所述的设备,其特征在于,
    所述多个SSB中的第一SSB包含的CORESET信息为所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信息不完全相同。
  17. 根据权利要求15所述的设备,其特征在于,所述处理模块,具体用于:
    根据所述多个SSB中的第一SSB包含的CORESET信息和所述第一SSB的索引信息,确定所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信息相同。
  18. 根据权利要求16或17所述的设备,其特征在于,所述第一SSB对应的CORESET信息在不同时间单元中的至少两个时间单元不完全相同。
  19. 根据权利要求15-18中任一项所述的设备,其特征在于,所述多个SSB对应的CORESET信息不完全相同,包括:
    所述多个SSB对应的资源块RB不完全相同。
  20. 一种终端设备,其特征在于,包括:
    接收模块,用于接收第一SSB,所述第一SSB包含第一CORESET信息和所述第一SSB的索引信息;
    处理模块,用于根据所述第一CORESET信息和所述第一SSB的索引信息,确定所述第一SSB对应的第二CORESET信息;
    根据所述第一SSB对应的第二CORESET信息检测PDCCH。
  21. 根据权利要求20所述的设备,其特征在于,所述处理模块,还用于:
    根据所述第一SSB对应的第二CORESET信息和时间单元信息,确定所述第一SSB对应的多个第三CORESET信息;所述多个第三CORESET信息分别对应不同的时间单元,所述多个第三CORESET信息不完全相同;
    根据所述多个第三CORESET信息检测PDCCH。
  22. 一种网络设备,其特征在于,包括:
    处理模块,用于确定多个SSB对应的CORESET信息,所述多个SSB中的每个SSB对应的CORESET信息是根据所述SSB包含的CORESET信息和所述SSB索引信息确定的;包含不同SSB索引信息的多个SSB对应的CORESET信息不完全相同;
    发送模块,用于根据所述多个SSB对应的CORESET信息发送物理下行控制信道PDCCH。
  23. 根据权利要求22所述的设备,其特征在于,
    所述多个SSB中的第一SSB包含的CORESET信息为所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信息不完全相同。
  24. 根据权利要求22所述的设备,其特征在于,所述处理模块,具体用于:
    根据所述多个SSB中的第一SSB包含的CORESET信息和所述第一SSB的索引信息,确定所述第一SSB对应的CORESET信息;所述多个SSB包含的CORESET信息相同。
  25. 根据权利要求23或24所述的设备,其特征在于,所述第一SSB对应的CORESET信息在不同时间单元中的至少两个时间单元不完全相同。
  26. 根据权利要求22-25中任一项所述的设备,其特征在于,所述多个SSB对应的CORESET信息不完全相同,包括:
    所述多个SSB对应的资源块RB不完全相同。
  27. 一种网络设备,其特征在于,包括:
    处理模块,用于根据第一SSB包含的第一CORESET信息和所述第一SSB索引信息,确定第一SSB对应的第二CORESET信息;
    发送模块,用于根据所述第二CORESET信息发送PDCCH。
  28. 根据权利要求27所述的设备,其特征在于,所述处理模块,还用于:
    根据所述第一SSB对应的第二CORESET信息和时间单元信息,确定所述第一SSB对应的多个第三CORESET信息;所述多个第三CORESET信息分别对应不同的时间单元,所述多个第三CORESET信息不完全相同;
    发送模块,还用于根据所述多个第三CORESET信息发送PDCCH。
  29. 一种终端设备,其特征在于,包括:收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1-5中任一项所述的方法,或者权利要求6或7所述的方法。
  30. 一种网络设备,其特征在于,包括:收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求8-12中任一项所述的方法,或者权利要求13或14所述的方法。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现权利要求1-5中任一项所述的方法,或者权利要求6或7所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现权利要求8-12中任一项所述的方法,或者权利要求13或14中任一项所述的方法。
PCT/CN2020/077255 2020-02-28 2020-02-28 控制信道资源的确定方法、设备及存储介质 WO2021168824A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080084237.6A CN114762380A (zh) 2020-02-28 2020-02-28 控制信道资源的确定方法、设备及存储介质
PCT/CN2020/077255 WO2021168824A1 (zh) 2020-02-28 2020-02-28 控制信道资源的确定方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077255 WO2021168824A1 (zh) 2020-02-28 2020-02-28 控制信道资源的确定方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021168824A1 true WO2021168824A1 (zh) 2021-09-02

Family

ID=77489838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077255 WO2021168824A1 (zh) 2020-02-28 2020-02-28 控制信道资源的确定方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN114762380A (zh)
WO (1) WO2021168824A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560904A (zh) * 2017-09-25 2019-04-02 中国移动通信有限公司研究院 一种传输方法、网络设备及移动通信终端
CN110535542A (zh) * 2019-01-11 2019-12-03 中兴通讯股份有限公司 控制信道的监测方法及装置、发送方法及装置、存储介质
US20200045569A1 (en) * 2018-07-31 2020-02-06 Lg Electronics Inc. Method for monitoring control signal of terminal in wireless communication system and terminal using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560904A (zh) * 2017-09-25 2019-04-02 中国移动通信有限公司研究院 一种传输方法、网络设备及移动通信终端
US20200045569A1 (en) * 2018-07-31 2020-02-06 Lg Electronics Inc. Method for monitoring control signal of terminal in wireless communication system and terminal using the same
CN110535542A (zh) * 2019-01-11 2019-12-03 中兴通讯股份有限公司 控制信道的监测方法及装置、发送方法及装置、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for control (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.213, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.0.0, 14 January 2020 (2020-01-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 146, XP051860806 *

Also Published As

Publication number Publication date
CN114762380A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
US10764884B2 (en) Method for sending or receiving physical downlink control channel and device
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
TWI751294B (zh) 傳輸訊號的方法、終端設備和網路設備
US11589357B2 (en) Detection window indication method and apparatus
WO2021179327A1 (zh) 一种同步信号块的确定方法以及相关装置
US20210160852A1 (en) Resource configuration method and terminal device
WO2019063007A1 (zh) 随机接入方法及装置
WO2018202012A1 (zh) 确定时隙格式的方法、终端设备和网络设备
WO2018081975A1 (zh) 用于传输上行信号的方法和装置
WO2020061958A1 (zh) 接收信息、发送信息的方法和设备
WO2018137700A1 (zh) 一种通信方法,装置及系统
WO2019052494A1 (zh) 传输方法和传输装置
CN113424618A (zh) 一种通信方法、装置及计算机可读存储介质
WO2021062689A1 (zh) 一种上行传输的方法及装置
US11910336B2 (en) Signal transmission method and related device
TW202008827A (zh) 資源配置的方法、終端設備和網路設備
WO2021098570A1 (en) Method for determining prach occasion and terminal device, network device
TW201919359A (zh) 無線通訊方法、網路設備和終端設備
WO2020030253A1 (en) Reducing dci payload
US20220416980A1 (en) Control Channel Determination Method and Apparatus, and Storage Medium and Processor
WO2020000142A1 (zh) 无线通信方法、网络设备和终端设备
WO2020061954A1 (zh) 区分寻呼消息的方法、网络设备和终端设备
US11856539B2 (en) Method and device for transmitting downlink control information
WO2021168824A1 (zh) 控制信道资源的确定方法、设备及存储介质
TWI829704B (zh) 一種資訊傳輸方法及裝置、終端設備、網路設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921832

Country of ref document: EP

Kind code of ref document: A1