WO2021179327A1 - 一种同步信号块的确定方法以及相关装置 - Google Patents

一种同步信号块的确定方法以及相关装置 Download PDF

Info

Publication number
WO2021179327A1
WO2021179327A1 PCT/CN2020/079363 CN2020079363W WO2021179327A1 WO 2021179327 A1 WO2021179327 A1 WO 2021179327A1 CN 2020079363 W CN2020079363 W CN 2020079363W WO 2021179327 A1 WO2021179327 A1 WO 2021179327A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
frequency domain
domain position
rbs
synchronization signal
Prior art date
Application number
PCT/CN2020/079363
Other languages
English (en)
French (fr)
Inventor
高宽栋
颜矛
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080098132.6A priority Critical patent/CN115244998A/zh
Priority to PCT/CN2020/079363 priority patent/WO2021179327A1/zh
Priority to EP20924585.1A priority patent/EP4099769A4/en
Publication of WO2021179327A1 publication Critical patent/WO2021179327A1/zh
Priority to US17/931,303 priority patent/US20230007656A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a method for determining a synchronization signal block and related devices.
  • the synchronization signal block is a signal structure defined in New Radio (NR), which includes a primary synchronization signal (Primary Synchronization Signal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS), and a physical broadcast channel (Physical Broadcast Channel).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the main function of PSS and SSS is to help User Equipment (UE) identify and synchronize with the cell, while PBCH contains the most basic system information, such as system frame number, timing information within the frame, and so on.
  • UE User Equipment
  • the successful reception of the synchronization signal block by the UE is a prerequisite for the UE to access the cell.
  • NCD-SSB Two SSBs are defined in NR, one is the cell-defining (CD) SSB, referred to as CD-SSB, and the other is the non-cell-defined SSB (Nonecell Defining, NCD) SSB, referred to as NCD- SSB. NCD-SSB will indicate where the frequency domain position of CD-SSB is. Normally, NR can support multiple SSBs in one frequency domain bandwidth, but only one CD-SSB is allowed. A cell uses a CD-SSB frequency domain location for data transmission, which limits the coverage of a cell.
  • This application provides a method for determining a synchronization signal block and a related device, so that a terminal device can determine a second SSB according to a detected first SSB, and the second SSB can be regarded as a backup SSB of the first SSB.
  • the terminal device can jointly receive signals through the found first SSB and the second SSB, thereby improving the signal-to-noise ratio and increasing the coverage of the cell.
  • this application provides a method for determining a synchronization signal block.
  • the method includes: a terminal device detects a first synchronization signal block SSB; the terminal device determines a second SSB according to the first SSB, and the first The frequency domain position of the SSB and the frequency domain position of the second SSB are within a preset bandwidth, or the frequency domain offsets of the first SSB and the second SSB are preset values, and the first SSB and The second SSB is a synchronization information block CD-SSB defined by the cell.
  • the second SSB can be regarded as a backup SSB for the first SSB.
  • the terminal device can jointly receive the signal after finding the first SSB and the second SSB, which can increase the signal-to-noise ratio, reduce the power of the noise signal in the received signal by half, improve the reliability of information transmission, and increase the reliability of information transmission. Coverage of large and small districts.
  • the preset bandwidth is one of 21 resource block RBs, 22 RBs, 23 RBs, 24 RBs, 48 RBs, or 96 RBs .
  • the absolute value of the preset value is 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 , 35, 37, 38, 41, 42, 43, 47, 49, 95, 97 resource block RB values.
  • the preset value can be a positive value or a negative value.
  • the frequency domain position of the first SSB belongs to a global synchronization channel grid GSCN, and the frequency domain position of the second SSB does not belong to the GSCN. In this way, it is possible to prevent other terminal devices from detecting the second SSB, so that the problem that the cell corresponding to the first SSB and the cell corresponding to the second SSB are not the same will not be caused to the terminal device.
  • the first SSB and the second SSB on the same time index have a quasi co-located QCL relationship. In this way, it is convenient for the terminal device to receive the information of the first SSB and the second SSB.
  • the cell corresponding to the first SSB is the same as the cell corresponding to the second SSB.
  • the synchronization signal of the first SSB carries the same information as the synchronization signal of the second SSB, and the physical broadcast channel PBCH of the first SSB carries information
  • the information carried in the PBCH of the second SSB is the same.
  • the method further includes: the terminal device performs combined demodulation on the PBCH of the first SSB and the PBCH of the second SSB.
  • the present application provides a method for transmitting synchronization information blocks.
  • the method includes: a terminal device receives a first synchronization signal of a first synchronization information block SSB sent by a network device; The signal determines the frequency domain position of the first SSB; the terminal device determines the frequency domain position of the second SSB according to the frequency domain position of the first SSB.
  • the second SSB can be regarded as a backup SSB for the first SSB.
  • the terminal device can jointly receive the signal after finding the first SSB and the second SSB, which can increase the signal-to-noise ratio, reduce the power of the noise signal in the received signal by half, improve the reliability of information transmission, and increase the reliability of information transmission. Coverage of large and small districts.
  • the terminal device determining the frequency domain position of the second SSB according to the frequency domain position of the first SSB includes: Within the preset bandwidth of the frequency domain position, the second synchronization signal of the second SSB is detected; the terminal device determines the frequency domain position of the second SSB according to the second synchronization signal.
  • the preset bandwidth is any value of 21 RBs, 22 RBs, 23 RBs, 24 RBs, 48 RBs, or 96 RBs.
  • the terminal device determining the frequency domain position of the second SSB according to the frequency domain position of the first SSB includes: the terminal device is in contact with the first SSB The third synchronization signal of the second SSB is detected at a frequency domain position that is different from the preset value in the frequency domain position; the terminal device determines the frequency domain position of the second SSB according to the third synchronization signal.
  • the absolute value of the preset value is 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 , 35, 37, 38, 41, 42, 43, 47, 49, 95, 97 RB value.
  • the preset value can be a positive value or a negative value.
  • the frequency domain position of the first SSB belongs to a global synchronization channel grid GSCN, and the frequency domain position of the second SSB does not belong to the GSCN. In this way, it is possible to prevent other terminal devices from detecting the second SSB, so that the problem that the cell corresponding to the first SSB and the cell corresponding to the second SSB are not the same will not be caused to the terminal device.
  • the first SSB and the second SSB on the same time index have a quasi co-located QCL relationship. In this way, it is convenient for the terminal device to receive the information of the first SSB and the second SSB.
  • the first SSB is a synchronization information block CD-SSB defined by a cell
  • the second SSB is a CD-SSB.
  • the cell corresponding to the first SSB is the same as the cell corresponding to the second SSB.
  • the synchronization signal of the first SSB carries the same information as the synchronization signal of the second SSB, and the physical broadcast channel PBCH of the first SSB carries information
  • the information carried in the PBCH of the second SSB is the same.
  • the method further includes: the terminal device performs combined demodulation on the PBCH of the first SSB and the PBCH of the second SSB.
  • the present application provides a communication device, the communication device includes a detection unit and a determination unit, wherein: the detection unit is used to detect the first synchronization signal block SSB; The first SSB determines the second SSB.
  • the frequency domain position of the first SSB and the frequency domain position of the second SSB are within a preset bandwidth, or the frequency domain offsets of the first SSB and the second SSB are preset values,
  • the first SSB and the second SSB are both a synchronization information block CD-SSB defined by a cell.
  • the second SSB can be regarded as a backup SSB for the first SSB.
  • the communication device can jointly receive the signal after finding the first SSB and the second SSB, which can increase the signal-to-noise ratio, reduce the noise signal power in the received signal by half, and improve the reliability of information transmission, thereby increasing the reliability of information transmission. Coverage of large and small districts.
  • the preset bandwidth is one of 21 resource block RBs, 22 RBs, 23 RBs, 24 RBs, 48 RBs, or 96 RBs .
  • the absolute value of the preset value is 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 , 35, 37, 38, 41, 42, 43, 47, 49, 95, 97 resource block RB values.
  • the preset value can be a positive value or a negative value.
  • the frequency domain position of the first SSB belongs to a global synchronization channel grid GSCN, and the frequency domain position of the second SSB does not belong to the GSCN. In this way, it is possible to prevent other communication devices from detecting the second SSB, so that the problem that the cell corresponding to the first SSB and the cell corresponding to the second SSB are not the same will not be caused to the terminal equipment.
  • the first SSB and the second SSB on the same time index have a quasi co-located QCL relationship. In this way, it is convenient for the communication device to receive the information of the first SSB and the second SSB.
  • the cell corresponding to the first SSB is the same as the cell corresponding to the second SSB.
  • the synchronization signal of the first SSB carries the same information as the synchronization signal of the second SSB, and the physical broadcast channel PBCH of the first SSB carries information
  • the information carried in the PBCH of the second SSB is the same.
  • the communication device further includes a demodulation unit configured to perform combined demodulation on the PBCH of the first SSB and the PBCH of the second SSB .
  • the present application provides yet another communication device.
  • the communication device includes a receiving unit, a first determining unit, and a second determining unit.
  • the receiving unit may be configured to receive the first synchronization information block SSB sent by the network device.
  • the first synchronization signal; the first determining unit may be used to determine the frequency domain position of the first SSB according to the first synchronization signal;
  • the second determining unit may be used to determine the frequency domain position of the first SSB according to the Determine the frequency domain position of the second SSB.
  • the second SSB can be regarded as a backup SSB for the first SSB.
  • the communication device can jointly receive the signal after finding the first SSB and the second SSB, which can increase the signal-to-noise ratio, reduce the noise signal power in the received signal by half, and improve the reliability of information transmission, thereby increasing the reliability of information transmission. Coverage of large and small districts.
  • the second determining unit is specifically configured to detect the second synchronization signal of the second SSB within a preset bandwidth of the frequency domain position of the first SSB; The second synchronization signal determines the frequency domain position of the second SSB.
  • the preset bandwidth is any one of 21 resource block RBs, 22 RBs, 23 RBs, 24 RBs, 48 RBs, or 96 RBs value.
  • the second determining unit is specifically configured to detect the third SSB of the second SSB at a frequency domain position that is different from the frequency domain position of the first SSB by a preset value. Synchronization signal; determining the frequency domain position of the second SSB according to the third synchronization signal.
  • the absolute value of the preset value is 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 , 35, 37, 38, 41, 42, 43, 47, 49, 95, 97 resource block RB values.
  • the preset value can be a positive value or a negative value.
  • the frequency domain position of the first SSB belongs to a global synchronization channel grid GSCN, and the frequency domain position of the second SSB does not belong to the GSCN. In this way, it is possible to prevent other communication devices from detecting the second SSB, so that the problem that the cell corresponding to the first SSB and the cell corresponding to the second SSB are not the same will not be caused to the terminal equipment.
  • the first SSB and the second SSB on the same time index have a quasi co-located QCL relationship. In this way, it is convenient for the communication device to receive the information of the first SSB and the second SSB.
  • the first SSB is a synchronization information block CD-SSB defined by a cell
  • the second SSB is a CD-SSB.
  • the cell corresponding to the first SSB is the same as the cell corresponding to the second SSB.
  • the synchronization signal of the first SSB carries the same information as the synchronization signal of the second SSB, and the physical broadcast channel PBCH of the first SSB carries information
  • the information carried in the PBCH of the second SSB is the same.
  • the communication device further includes a mediation unit configured to perform combined demodulation on the PBCH of the first SSB and the PBCH of the second SSB.
  • the present application provides yet another communication device.
  • the communication device includes a processor and a memory, wherein the memory is used to store a computer program, and the processor is used to execute the above-mentioned first aspect and according to the computer program.
  • the method in any implementation manner of the first aspect, or execute the foregoing second aspect and the method in any implementation manner of the second aspect.
  • the present application provides yet another communication device, which is characterized by comprising a processor, a memory, and a transceiver; the transceiver is used for receiving signals or sending signals; the memory is used for storing program codes; The processor is configured to call the program code from the memory to execute the method in any one of the foregoing first aspect and the first aspect, or execute any one of the foregoing second aspect and the second aspect The method in the implementation mode.
  • the present application provides yet another communication device.
  • the communication device includes a processor.
  • the processor invokes the computer program in the memory, the processor executes the first aspect and any one of the implementation manners of the first aspect. Or execute the method in the second aspect and any one of the implementation manners of the second aspect.
  • the present application provides a computer-readable storage medium including a computer program or instruction, which when the computer program or instruction runs on a computer, causes the computer to execute the first aspect and The method in any implementation manner of the first aspect, or execute the foregoing second aspect and the method in any implementation manner of the second aspect.
  • this application provides a computer program product, which includes a computer program or instruction, which when the computer program or instruction runs on a computer, causes the computer to execute the above-mentioned first aspect and any of the first aspects.
  • a method in an implementation manner, or a method in the foregoing second aspect and any one of the implementation manners of the second aspect is executed.
  • the present application provides a chip that includes a processor and a communication interface, and the processor is configured to execute the above-mentioned first aspect and the method in any one of the first aspect, or execute the above-mentioned first aspect.
  • the second aspect and the method in any one of the implementation manners of the second aspect.
  • this application provides yet another chip, including a processor, a memory, and a communication interface.
  • the memory stores a computer program
  • the processor is configured to execute the computer program to implement the first aspect and The method in any one of the implementation manners of the first aspect, or the method in the foregoing second aspect and any one of the implementation manners of the second aspect is executed.
  • the terminal device can find the second SSB according to the detected first SSB.
  • the second SSB can be regarded as a backup SSB for the first SSB.
  • the terminal device can jointly receive the signal after finding the first SSB and the second SSB, which can increase the signal-to-noise ratio, reduce the power of the noise signal in the received signal by half, improve the reliability of information transmission, and increase the reliability of information transmission. Coverage of large and small districts.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a flow of a terminal device accessing a cell according to an embodiment of the present application
  • FIG. 3 is a flowchart of a method for determining an SSB according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the embodiments of the present application can be applied to the schematic diagram of the network architecture shown in FIG. 1.
  • the network architecture shown in FIG. 1 is the network architecture of a wireless communication system.
  • the network architecture usually includes terminal equipment and network equipment.
  • the network device may be a base station (Base Station, BS), the base station may provide communication services to multiple terminal devices, and multiple base stations may also provide communication services to the same terminal device.
  • BS Base Station
  • wireless communication systems mentioned in the embodiments of this application include but are not limited to: narrowband-internet of things (NB-IoT), global system for mobile communications (GSM) , Enhanced data rate for GSM evolution (EDGE), wideband code division multiple access (WCDMA), code division multiple access (CDMA2000), Time division-synchronization code division multiple access system (time division-synchronization code division multiple access, TD-SCDMA), long term evolution (LTE), fifth-generation mobile communication (5th-generation, 5G) system, and future mobile communications system.
  • NB-IoT narrowband-internet of things
  • GSM global system for mobile communications
  • EDGE Enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access
  • Time division-synchronization code division multiple access system time division-synchronization code division multiple access
  • LTE long term evolution
  • 5th-generation 5G system
  • future mobile communications system future mobile communications system.
  • a base station is a device deployed in a wireless access network to provide wireless communication functions for terminal equipment.
  • the base station equipment can be a base station, a relay station, or an access point.
  • the base station can be the Base Transceiver Station (BTS) in the Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) network, or it can be a broadband code division.
  • the NB (NodeB) in Wideband Code Division Multiple Access (WCDMA) can also be the eNB or eNodeB (Evolutional NodeB) in Long Term Evolution (LTE).
  • the base station equipment may also be a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN) scenario.
  • the base station equipment may also be a base station equipment in a future 5G network or a network equipment in a future evolved PLMN network.
  • the base station device can also be a wearable device or a vehicle-mounted device.
  • the terminal equipment involved in the embodiments of the present application may include various user equipment (UE), access terminals, UE units, UE stations, mobile stations, mobile stations, remote stations, and remote terminals with wireless communication functions. , Mobile equipment, UE terminal, terminal, wireless communication equipment, UE agent or UE device, etc.
  • UE user equipment
  • access terminals UE units
  • UE stations mobile stations
  • mobile stations mobile stations
  • remote stations and remote terminals with wireless communication functions.
  • Mobile equipment UE terminal, terminal, wireless communication equipment, UE agent or UE device, etc.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or terminal devices in the future evolved PLMN network, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the quasi co-located (QCL) relationship is an association relationship between two signals.
  • the association in this application can also be referred to as mapping, correspondence, and correlation.
  • There is a QCL relationship between the two signals which means that the two signals can use the same delay spread, the same Doppler spread, the same average gain, the same average delay, and the same spatial parameters to send or receive signals.
  • the QCL relationship parameter may include one or more of Doppler spread, Doppler frequency shift, average delay, delay spread, and spatial reception parameters.
  • QCL relations can be divided into four categories: "QCL-TypeA”: ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ; "QCL-TypeB”: ⁇ Doppler frequency shift, Doppler spread ⁇ ; "QCL-TypeC”: ⁇ Doppler frequency shift, average delay ⁇ ; “QCL-TypeD”: ⁇ spatial domain receiving parameters ⁇ .
  • QCL-TypeA ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • QL-TypeB ⁇ Doppler frequency shift, Doppler spread ⁇
  • QL-TypeC ⁇ Doppler frequency shift, average delay ⁇
  • QCL-TypeD ⁇ spatial domain receiving parameters ⁇ .
  • QCL-TypeA ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • QL-TypeB ⁇ Doppler frequency shift, Doppler spread ⁇
  • QL-TypeC ⁇ Doppler frequency shift, average delay ⁇
  • QCL-TypeD ⁇ spatial domain receiving
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit a signal can be called a transmission beam (Tx beam), can be called a spatial domain transmission filter or a spatial transmission parameter (spatial transmission parameter);
  • the beam used to receive a signal can be called To receive the beam (reception beam, Rx beam), it can be called a spatial domain receive filter or a spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technologies.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, etc.
  • Beams generally correspond to resources or signals. For example, when performing beam measurement, network devices use different resources to measure different beams. The terminal device feeds back the measured resource quality, and the network device knows the quality of the corresponding beam. In data transmission, the beam information is also indicated by its corresponding resource. For example, the network device indicates the PDSCH beam information of the terminal device through the resources in the transmission configure indication (TCI) of the DCI.
  • TCI transmission configure indication
  • multiple beams having the same or similar communication characteristics are regarded as one beam.
  • One or more antenna ports can be included in one beam, which are used to transmit data channels, control channels, and sounding signals.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the beam refers to the transmission beam of the network device.
  • each beam of the network device corresponds to a resource, so the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the beam can be expressed in the standard using the QCL relationship.
  • multiple beams having a QCL relationship may be regarded as one beam.
  • System information block (system information block, SIB): Contains system information. There can be multiple system information blocks in a cell. These system information blocks carry different information, such as SIB1. SIB1 mainly carries some configuration information of the cell itself, such as random access related information, PDCCH related information, other information block related information, UE access cell information, cell identification information and other information.
  • the synchronization signal block (synchronization signal and PBCH block, SSB) can also be called a synchronization signal/physical broadcast channel (physical broadcast channel, PBCH) block.
  • the synchronization signal block may include one or more of PBCH, primary synchronization signal (PSS), and secondary synchronization signal (SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the synchronization signal block can also be abbreviated as SSB or SS/PBCH block.
  • the PBCH may include a main information block (MIB), the content of the PBCH generated by the physical layer, and the demodulation reference signal of the PBCH.
  • MIB main information block
  • Two SSBs are defined in the 5G communication standard New Radio (NR) defined by 3GPP.
  • One is the cell defining (CD) SSB, referred to as CD-SSB, and the other is the none cell defining (none cell defining, SSB).
  • NCD) SSB abbreviated as NCD-SSB.
  • NCD-SSB will not be associated with SIB1 and cannot define a cell.
  • the NCD-SSB can indicate where the frequency domain position of the CD-SSB is.
  • the terminal apparatus can distinguish CD-SSB and NCD-SSB in accordance with the value k SSB. For example, when the value of K when SSB 0 to 11, the SSB is a CD-SSB, when the K value of 12, 13, when the SSB, the SSB is NCD-SSB.
  • FIG. 2 is a schematic flowchart of a terminal device accessing a cell according to an embodiment of the present application.
  • the terminal equipment blindly detects the SSB within a certain bandwidth.
  • the terminal device will receive the MIB information carried in the CD-SSB.
  • the MIB information includes the CORESET time-frequency position indication of SIB1, and other indications (for example, sub-carrier spacing).
  • the terminal device receives the CORESET of SIB1 according to the CORESET time-frequency position indication of SIB1.
  • the CORESET of SIB1 includes the PDCCH of SIB1.
  • the PDCCH of SIB1 indicates the PDSCH position of SIB1 and related information such as modulation and coding strategy.
  • the terminal device receives the PDSCH according to the indication of the PDCCH.
  • the PDCCH of SIB1 and the PDSCH of SIB1 have the same subcarrier spacing.
  • a terminal device searches for a CD-SSB, then the terminal device will camp on the cell corresponding to the CD-SSB (or, if the terminal device may search for multiple CD-SSBs, then the terminal device can choose to camp on To a cell corresponding to a CD-SSB); if the terminal device searches for an NCD-SSB, the terminal will determine that the SSB is an NCD-SSB based on the value of Kssb, and there is no associated SIB1, and it will continue to detect the CD-SSB. It can be seen that in the prior art, one cell corresponds to one CD-SSB, and the coverage of the cell is affected by the communication quality of the one CD-SSB and the noise signal in the environment.
  • FIG. 3 is a flowchart of a method for determining an SSB according to an embodiment of the present application.
  • the terminal device detects the first synchronization signal block SSB.
  • the first SSB is CD-SSB. That is, the first SSB is associated with SIB1, and one cell can be defined.
  • the frequency domain position of the first SSB belongs to a global synchronization channel grid (Global Synchronization Channel Number, GSCN) or a synchronization grid (syncraster). It should be noted that there are a series of GSCNs in NR, and each GSCN corresponds to a frequency domain position.
  • the frequency domain of GSCN ranges from 24.25GHz to 100GHz. Starting from 24.2508GHz, a grid is set up every 17.28MHz. There are 4384 grids in total, with indexes ranging from 0 to 4283.
  • Table 1 is the global synchronization frequency grid GSCN parameters (GSCN parameters for the global frequency raster).
  • the terminal device can blindly check the SSB according to the GSCN. See Table 2.
  • Table 2 shows the applicable SS raster entries per operating band for some frequency bands. It should be noted that this table corresponds to FR1 (frequnecy range 1).
  • different operating bands are allocated to different operators. For example, if n8 is allocated to operator A, when searching for SSB, terminal equipment belonging to operator A can perform blind detection on GSCN in the range of 2318- ⁇ 1>-2395, and only search for 15kHz subcarriers Interval, SSB under Case A.
  • the terminal device determines the second SSB according to the first SSB.
  • the terminal device may determine the frequency domain position of the first SSB according to the first synchronization signal of the first SSB, and then, the terminal device may determine the second SSB according to the frequency domain position of the first SSB.
  • the frequency domain position Specifically, according to the introduction in the above content, the terminal device performs blind detection of GSCN within a preset frequency domain range (for example, 2318- ⁇ 1>-2395). If the terminal device detects the first frequency domain position The first synchronization signal of the SSB determines the frequency domain position as the frequency domain position of the first SSB.
  • the k SSB of the first SSB may be 30 or 14.
  • the terminal device before the 5G R17 standard protocol detects the first SSB, it does not search for the second SSB, and communicates through the cell determined by the first SSB.
  • the terminal device adopting the 5G R17 standard protocol detects the first SSB, it can determine the second SSB according to the first SSB, and communicate through the cells determined by the first SSB and the second SSB. Since the processing capabilities of terminal devices under different 5G standard protocols are different, in this way, terminal devices using different 5G standard protocols can have a suitable processing method for the first SSB.
  • the following describes the manner in which the terminal device determines the frequency domain position of the second SSB according to the frequency domain position of the first SSB.
  • the terminal device detects the second synchronization signal of the second SSB within the preset bandwidth of the frequency domain position of the first SSB, and then the terminal device determines according to the second synchronization signal
  • the frequency domain position of the second SSB is the frequency domain position at which the terminal device detects the second synchronization signal.
  • the preset bandwidth may be 24 resource blocks (resource block, RB), 48 RBs, or one of 96 RBs, or 23 RBs or 25 RBs, or 21 RBs or 22 RBs. RB.
  • 21, 22, 23, 24 are the values between the size of the minimum initial part bandwidth and the size of the SSB bandwidth.
  • the frequency domain position can be positive or negative.
  • the frequency domain position may be the first RB of the first SSB as the reference position, the last RB of the first SSB may be used as the reference position, or the center RB of the first SSB may be used as the reference position, for example, the 10th RB.
  • the RB is either the 9th RB or the 11th RB as the reference position.
  • the terminal device may detect the second synchronization signal at a frequency domain position smaller than the preset bandwidth of the frequency domain position of the first SSB and within a range of the frequency domain position of the first SSB. For example, if the frequency domain position of the first SSB is aRB and the preset bandwidth is 24RB, the terminal device can detect the second synchronization signal within the bandwidth from a-24RB to aRB.
  • the terminal device may detect the second synchronization signal within a range of the frequency domain position of the first SSB to a frequency domain position greater than the preset bandwidth of the frequency domain position of the first SSB. For example, if the frequency domain position of the first SSB is aRB and the preset bandwidth is 24RB, the terminal device can detect the second synchronization signal within the bandwidth from aRB to a+24RB.
  • the terminal device may detect the second synchronization signal within a frequency domain position smaller than the preset bandwidth of the frequency domain position of the first SSB to a frequency domain position greater than the preset bandwidth of the frequency domain position of the first SSB.
  • the frequency domain position of the first SSB is aRB and the preset bandwidth is 24RB, then the terminal device can detect the second synchronization signal within the bandwidth from a-24RB to a+24RB.
  • the manner in which the terminal device determines the frequency domain position of the second SSB according to the second synchronization signal may refer to the manner in which the terminal device determines the frequency domain position of the first SSB according to the first synchronization signal , I won’t repeat it here.
  • the terminal device detects the third synchronization signal of the second SSB at a frequency domain position that is different from the frequency domain position of the first SSB by a preset value.
  • the synchronization signal determines the frequency domain position of the second SSB. That is, the frequency domain offset of the first SSB and the second SSB is a preset value.
  • the absolute value of the preset value is 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 41, One or more values of 42, 43, 47, 49, 95, 97 resource block RB. These values are less than 96 RBs and greater than 20 RBs, which satisfies the detection bandwidth capability of the terminal device.
  • 21, 22, 23, 24 are the values between the size of the minimum initial part bandwidth and the size of the SSB bandwidth.
  • the preset value may be positive or negative, and represents the frequency domain offset of the first SSB and the second SSB.
  • the terminal device may detect the third synchronization signal at the frequency domain position obtained by subtracting (or adding) the preset value from the frequency domain position of the first SSB. For example, if the frequency domain position of the first SSB is bRB, and the preset value is 21RB, the terminal device can detect the third synchronization signal at the frequency domain position of b-21RB.
  • the preset value may not be positive or negative, and represents the absolute value of the frequency domain offset of the first SSB and the second SSB.
  • the terminal device may detect the third synchronization signal at the frequency domain position obtained by subtracting the preset value from the frequency domain position of the first SSB, and the frequency domain position obtained by adding the preset value to the frequency domain position of the first SSB. For example, if the frequency domain position of the first SSB is bRB, and the preset value is 21RB, the terminal device can detect the third synchronization signal at the frequency domain positions of b-21RB and b+21RB.
  • the preset value can be multiple preset values.
  • the multiple preset values may be positive or negative, or they may not be positive or negative.
  • the frequency domain position of the first SSB is cRB
  • the preset value is two
  • these two preset values are positive and negative, specifically 27RB and -28RB.
  • the terminal device can detect the third synchronization signal at the frequency domain positions of c-27RB and c+28RB.
  • the frequency domain position of the first SSB is cRB
  • the preset value is two. These two preset values are not positive or negative, specifically 27RB and 28RB.
  • the terminal device can detect the third synchronization signal at the frequency domain positions of c-27RB, c-28RB, c+27RB, and c+28RB.
  • the manner in which the terminal device determines the frequency domain position of the second SSB according to the third synchronization signal may refer to the manner in which the terminal device determines the frequency domain position of the first SSB according to the first synchronization signal , I won’t repeat it here.
  • the carrying information of the synchronization signal (Synchronization Signal, SS) of the first SSB is the same as the carrying information of the SS of the second SSB, and the carrying information of the physical broadcast channel (PBCH) of the first SSB is the same as that of the SS of the second SSB.
  • the information carried in the PBCH of the second SSB is the same.
  • the synchronization signal of the SSB includes a primary synchronization signal (Primary Synchronization Signal, PSS) and a secondary synchronization signal (Secondary Synchronization Signal, SSS).
  • the information carried by the primary synchronization signal can be a part of the cell ID
  • the information carried by the secondary synchronization signal can be another part of the cell ID
  • the information carried by the primary synchronization signal and the secondary synchronization can form a complete cell ID.
  • the information carried by the SSB PBCH may include: system frame number, subcarrier spacing indication information of system information, physical downlink control channel configuration information of system information, cell reselection information, SSB index information, half-frame indication information, and cell connection Enter information, etc.
  • the information carried by the primary synchronization signal of the first SSB is the same as the information carried by the PSS of the second SSB.
  • the carrying information of the secondary synchronization signal of the first SSB is the same as the carrying information of the SSS of the second SSB.
  • the information carried in the physical broadcast channel (Physical Broadcast Channel, PBCH) of the first SSB is the same as the information carried in the PBCH of the second SSB.
  • the carrying information of the SSS of the first SSB is the same as the carrying information of the SSS of the second SSB
  • the carrying information of the PSS of the first SSB is the same as the carrying information of the PSS of the second SSB.
  • the carrying information of the PSS of the first SSB is the same as the carrying information of the PSS of the second SSB, and the carrying information of the PBCH of the first SSB is the same as the carrying information of the PBCH of the second SSB.
  • the carrying information of the SSS of the first SSB is the same as the carrying information of the SSS of the second SSB, and the carrying information of the PBCH of the first SSB is the same as the carrying information of the PBCH of the second SSB.
  • the carrying information of the PBCHs of the first SSB and the second SSB are the same, and it can also be understood that the demodulation reference signals (Demodulation Reference Signal, DMRS) of the PBCHs of the first SSB and the second SSB are the same.
  • DMRS Demodulation Reference Signal
  • part of the content carried by the PBCH of the first SSB and the second SSB may be different, and these different contents may be preset.
  • the preset value of the SSB index or the SSB time index difference between the first SSB and the second SSB, or the preset value of the field indicator difference between the first SSB and the second SSB, or the difference between the first SSB and the second SSB The value indicated by the frame number differs from the preset value.
  • the preset value can be stipulated in the agreement, thereby reducing the peak-to-average ratio of the signal.
  • the terminal device may perform combined demodulation on the PBCH of the first SSB and the PBCH of the second SSB. Since the information carried by the first SSB is the same as the information carried by the second SSB, the terminal device can combine and demodulate the PBCH of the first SSB and the PBCH of the second SSB. In this way, the signal-to-noise ratio can be improved. The power of noise signals in the environment is halved, the reliability of information transmission is improved, and the coverage of the cell is increased.
  • the second SSB is also a CD-SSB, and the cell corresponding to the first SSB is the same as the cell corresponding to the second SSB.
  • the second SSB can be regarded as a backup SSB for the first SSB.
  • the terminal device can synchronize the cells through the first SSB and the second SSB, and the terminal device can synchronize the cells through the first SSB and the second SSB.
  • SSB determines that it is the same cell.
  • the frequency domain position of the second SSB does not belong to the GSCN, that is, it belongs to a non-GSCN position. Since the positions of the Physical Down Link Control Channel (PDCCH) of SIB1 indicated by the first SSB and the second SSB may be different, if the frequency domain position of the second SSB belongs to the GSCN; then, In the process of blind SSB detection, terminal device A may detect the first SSB, terminal device B may detect the second SSB, terminal device A will determine a cell through the first SSB, and terminal device B will determine another cell through the second SSB.
  • PDCCH Physical Down Link Control Channel
  • the frequency domain position of the second SSB if the frequency domain position of the second SSB belongs to the GSCN, it may cause the problem of two cells generated by the first SSB and the second SSB. Therefore, the frequency domain position of the second SSB does not belong to the GSCN. In this way, it can be avoided that other terminal devices detect the second SSB, which causes the problem that the cell corresponding to the first SSB is different from the cell corresponding to the second SSB.
  • the first SSB and the second SSB on the same time index have a quasi co-located QCL relationship.
  • the same time index may indicate the same symbol position or the same slot position.
  • the first SSB and the second SSB have a quasi co-located QCL relationship, which means that the first SSB and the second SSB can use the same delay spread, the same Doppler spread, the same average gain, and the same average time.
  • One or more of sending or receiving signals with the same spatial parameters, and sending or receiving with the same beam is convenient for the terminal device to receive the information of the first SSB and the second SSB.
  • the methods of the embodiments of this application can also be applied to the transmission of the public physical downlink control channel.
  • the public physical downlink control channel contains the physical downlink control channel of the system information, the physical downlink control channel of the paging message, and the random access channel. Incoming response physical downlink control channel.
  • the positions of multiple public physical downlink control channels can be configured using system information.
  • the terminal device can find the second SSB according to the detected first SSB.
  • the second SSB can be regarded as a backup SSB for the first SSB.
  • the terminal device can jointly receive the signal after finding the first SSB and the second SSB, which can increase the signal-to-noise ratio, reduce the power of the noise signal in the received signal by half, improve the reliability of information transmission, and increase the reliability of information transmission. Coverage of large and small districts.
  • the embodiment of the present invention may divide the device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiment of the present invention is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 4 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device, and the communication device may also be a chip.
  • the communication device 40 includes a detection unit 410 and a determination unit 420, specifically:
  • the detecting unit 410 is used to detect the first SSB. Specifically, for the operation performed by the detection unit 410, reference may be made to the introduction in step S101 in the foregoing content.
  • the determining unit 420 is configured to determine the second SSB according to the first SSB.
  • the frequency domain position of the first SSB and the frequency domain position of the second SSB are within a preset bandwidth, or the frequency domain offsets of the first SSB and the second SSB are preset values
  • the first SSB and the second SSB are both a synchronization information block CD-SSB defined by a cell.
  • the preset bandwidth is one of 21 RBs, 22 RBs, 23 RBs, 24 RBs, 48 RBs, or 96 RBs.
  • the absolute value of the preset value is 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 41 , 42, 43, 47, 49, 95, 97 RB one or more values.
  • Transceiver includes receiver and transmitter, transceiver
  • the frequency domain position of the first SSB belongs to a global synchronization channel grid (GSCN), and the frequency domain position of the second SSB does not belong to the GSCN.
  • GSCN global synchronization channel grid
  • the first SSB and the second SSB on the same time index have a quasi co-located QCL relationship.
  • the cell corresponding to the first SSB is the same as the cell corresponding to the second SSB.
  • the information carried in the synchronization signal of the first SSB is the same as the information carried in the synchronization signal of the second SSB, and the information carried in the PBCH of the first SSB is the same as the information carried in the PBCH of the second SSB. same.
  • the communication device further includes a demodulation unit configured to perform combined demodulation on the PBCH of the first SSB and the PBCH of the second SSB.
  • the operations performed by the units of the communication device 40 shown in FIG. 4 can be referred to the introduction in the embodiment shown in FIG. 3, which will not be repeated here.
  • Each of the above-mentioned units may be implemented in a manner of hardware, software, or a combination of software and hardware.
  • the functions of the detection unit 410, the determination unit 420, and the demodulation unit in the foregoing content may be implemented by one or more processors in the communication device.
  • the second SSB can be found based on the detected first SSB.
  • the second SSB can be regarded as a backup SSB for the first SSB.
  • the communication device can jointly receive the signal after finding the first SSB and the second SSB, which can increase the signal-to-noise ratio, reduce the noise signal power in the received signal by half, and improve the reliability of information transmission, thereby increasing the reliability of information transmission. Coverage of large and small districts.
  • FIG. 5 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device, and the communication device may also be a chip.
  • the communication device 50 includes a receiving unit 510, a first determining unit 520, and a second determining unit 530, specifically:
  • the receiving unit 510 may be configured to receive the first synchronization signal of the first SSB sent by the network device. Specifically, for the operation performed by the receiving unit 510, reference may be made to the introduction in step S101 in the foregoing content.
  • the first determining unit 520 may be configured to determine the frequency domain position of the first SSB according to the first synchronization signal.
  • the second determining unit 530 may be configured to determine the frequency domain position of the second SSB according to the frequency domain position of the first SSB. Specifically, for the operations performed by the first determining unit 520 and the second determining unit 530, reference may be made to the introduction in step S102 in the foregoing content.
  • the second determining unit 530 is specifically configured to detect the second synchronization signal of the second SSB within the preset bandwidth of the frequency domain position of the first SSB; determine according to the second synchronization signal The frequency domain position of the second SSB.
  • the preset bandwidth is any value of 21 RBs, 22 RBs, 23 RBs, 24 RBs, 48 RBs, or 96 RBs.
  • the second determining unit 530 is specifically configured to detect the third synchronization signal of the second SSB at a frequency domain position that is different from the frequency domain position of the first SSB by a preset value; The triple synchronization signal determines the frequency domain position of the second SSB.
  • the absolute value of the preset value is 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 41 , 42, 43, 47, 49, 95, 97 RB value.
  • the frequency domain position of the first SSB belongs to GSCN, and the frequency domain position of the second SSB does not belong to the GSCN.
  • the first SSB and the second SSB on the same time index have a quasi co-located QCL relationship.
  • the first SSB is a synchronization information block CD-SSB defined by a cell
  • the second SSB is a CD-SSB
  • the cell corresponding to the first SSB is the same as the cell corresponding to the second SSB.
  • the information carried in the synchronization signal of the first SSB is the same as the information carried in the synchronization signal of the second SSB, and the information carried in the PBCH of the first SSB is the same as the information carried in the PBCH of the second SSB. same.
  • the communication device further includes a mediation unit configured to perform combined demodulation on the PBCH of the first SSB and the PBCH of the second SSB.
  • the operations performed by the units of the communication device 50 shown in FIG. 5 can be referred to the introduction in the embodiment shown in FIG. 3, which will not be repeated here.
  • Each of the above-mentioned units may be implemented in a manner of hardware, software, or a combination of software and hardware.
  • the functions of the detection unit 510, the first determination unit 520, the second determination unit 530, and the demodulation unit in the foregoing content may be implemented by one or more processors in the communication device.
  • the second SSB can be found based on the detected first SSB.
  • the second SSB can be regarded as a backup SSB for the first SSB.
  • the communication device can jointly synchronize the received signal after the first SSB and the second SSB found, thereby improving the signal-to-noise ratio, halving the noise signal power in the ambient received signal, and improving the reliability of information transmission. Performance, thereby increasing the coverage of the cell.
  • the communication device may be a terminal device.
  • the communication device 60 may include: one or more processors 601; one or more input devices 602, one or more output devices 603, and a memory 604.
  • the aforementioned processor 601, input device 602, output device 603, and memory 604 are connected via a bus 605.
  • the memory 604 is used to store programs.
  • the so-called processor 601 may be a central processing unit (CPU, central processing unit), a general-purpose processor, a coprocessor, a digital signal processor (digital signal processor, DSP), and an application-specific integrated circuit (ASIC) , Field programmable gate array (FPGA, field programmable gate array) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the processor 601 may also be a combination that implements computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the input device 602 may include an antenna, a communication interface, and the like, and the output device 603 may include an antenna, a communication interface, and the like.
  • the input device 602 may be a receiver, and the output device 603 may be a transmitter.
  • the input device 602 and the output device 603 may jointly constitute a transceiver.
  • the memory 604 may include a read-only memory and a random access memory, and provides programs and data to the processor 601. A part of the memory 604 may also include a non-volatile random access memory. For example, the memory 604 may also store device type information.
  • the processor 601 is configured to run a program stored in the memory 604 to perform the following operations:
  • the processor 601 may detect the first SSB through an input device 602, and the input device 602 may be a receiver in a transceiver.
  • the input device 602 may be a receiver in a transceiver.
  • the frequency domain position of the first SSB and the frequency domain position of the second SSB are within a preset bandwidth, or the frequency domain offsets of the first SSB and the second SSB are preset values,
  • the first SSB and the second SSB are both a synchronization information block CD-SSB defined by a cell. Specifically, for the manner of performing this operation, refer to the introduction in step S102 in the foregoing content.
  • each operation in FIG. 6 may also correspond to the corresponding description of the method embodiment shown in FIG. 3.
  • the second SSB can be found based on the detected first SSB.
  • the second SSB can be regarded as a backup SSB for the first SSB.
  • the communication device can increase the signal-to-noise ratio by jointly synchronizing the received signal after the first SSB and the second SSB found, so that the power of the noise signal in the environment received signal is halved, and the reliability of information transmission is improved. Performance, thereby increasing the coverage of the cell.
  • the communication device may be a terminal device.
  • the communication apparatus 70 may include: one or more processors 701; one or more input devices 702, one or more output devices 703, and a memory 704.
  • the aforementioned processor 701, input device 702, output device 703, and memory 704 are connected through a bus 705.
  • the memory 704 is used to store programs.
  • the so-called processor 701 may be a central processing unit (CPU, central processing unit), a general-purpose processor, a coprocessor, a digital signal processor (digital signal processor, DSP), and an application-specific integrated circuit (ASIC) , Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the processor 701 may also be a combination that implements computing functions, for example, it includes a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the input device 702 may include an antenna, a communication interface, and the like, and the output device 703 may include an antenna, a communication interface, and the like.
  • the input device 702 may be a receiver, and the output device 703 may also be a transmitter.
  • the input device 702 and the output device 703 can jointly constitute a transceiver.
  • the memory 704 may include a read-only memory and a random access memory, and provides programs and data to the processor 701. A part of the memory 704 may also include a non-volatile random access memory. For example, the memory 704 may also store device type information.
  • the processor 701 is configured to run a program stored in the memory 704 to perform the following operations:
  • the processor 701 may detect the first SSB through an input device 702, and the input device 702 may be a receiver in a transceiver.
  • the manner of performing this operation refer to the introduction in step S101 in the foregoing content.
  • the frequency domain position of the first SSB is determined according to the first synchronization signal.
  • the frequency domain position of the second SSB is determined according to the frequency domain position of the first SSB. Specifically, for the manner of performing this operation, refer to the introduction in step S102 in the foregoing content.
  • each operation in FIG. 7 may also correspond to the corresponding description of the method embodiment shown in FIG. 3.
  • the second SSB can be found based on the detected first SSB.
  • the second SSB can be regarded as a backup SSB for the first SSB.
  • the communication device can increase the signal-to-noise ratio by jointly synchronizing the received signal after the first SSB and the second SSB found, so that the power of the noise signal in the environment received signal is halved, and the reliability of information transmission is improved. Performance, thereby increasing the coverage of the cell.
  • the present application also provides yet another communication device, which includes a processor, and when the processor invokes the computer program in the memory, the method implemented by the embodiment shown in FIG. 3 is executed.
  • the present application also provides another communication device, which includes a memory and a processor; the memory is used to store a computer program, and when the processor calls the computer program in the memory, as shown in the foregoing FIG. 3 The method implemented by the embodiment is executed.
  • the present application also provides a computer-readable storage medium, which includes a computer program or instruction.
  • a computer program or instruction runs on a computer
  • the computer executes the implementation shown in FIG. 3 above.
  • the present application also provides a computer program product, which includes a computer program or instruction, when the computer program or instruction runs on a computer, the computer executes the method implemented by the embodiment shown in FIG. 3 .
  • the present application also provides a chip, which includes a processor and a communication interface, and the processor is configured to execute the method implemented by the embodiment shown in FIG. 3.
  • This application also provides yet another chip, including a processor, a memory, and a communication interface.
  • a computer program is stored in the memory. Method of realization.
  • the functions described in the present invention can be implemented by hardware, software, firmware, or any combination thereof.
  • these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer-readable storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Abstract

本申请实施例公开了一种同步信号块的确定方法及相关设备,可以应用于5G通信技术,该方法包括:终端设备检测第一同步信号块(SSB);所述终端设备根据所述第一SSB确定第二SSB,所述第一SSB的频域位置和所述第二SSB的频域位置在预设带宽内,或者所述第一SSB和所述第二SSB的频域偏移量为预设值,所述第一SSB和所述第二SSB均为CD-SSB。第二SSB可以视为第一SSB的备份SSB。通过这种方式,终端设备可以在查找到第一SSB和第二SSB之后,联合接收信号,可以提升信噪比,使得接收信号中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。

Description

一种同步信号块的确定方法以及相关装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种同步信号块的确定方法以及相关装置。
背景技术
同步信号块是新无线(New Radio,NR)中定义的一种信号结构,其包含主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary SynchronizationSignal,SSS)以及物理广播信道(Physical Broadcast Channel,PBCH)中的至少一个信号。PSS和SSS主要作用是帮助用户设备(User Equipment,UE)识别小区以及和小区进行同步,PBCH则包含了最基本的系统信息,例如系统帧号、帧内定时信息等。UE成功接收同步信号块是UE接入小区的前提。
在NR中定义了两种SSB,一种是小区定义(cell defining,CD)的SSB,简称为CD-SSB,另一种是非小区定义的SSB(nonecell defining,NCD)的SSB,简称为NCD-SSB。NCD-SSB会指示CD-SSB的频域位置在哪里。通常情况下,NR可以支持一个频域带宽内存在多个SSB,但是只允许存在一个CD-SSB。一个小区使用一个CD-SSB的频域位置进行数据的传输,这种方式限制了一个小区的覆盖范围。
发明内容
本申请提供一种同步信号块的确定方法以及相关装置,可以使得终端设备根据检测到的第一SSB确定第二SSB,第二SSB可以视为第一SSB的备份SSB。终端设备可以通过查找到的第一SSB和第二SSB联合接收信号,进而提升信噪比,增大小区的覆盖范围。
第一方面,本申请提供了一种同步信号块的确定方法,该方法包括:终端设备检测第一同步信号块SSB;所述终端设备根据所述第一SSB确定第二SSB,所述第一SSB的频域位置和所述第二SSB的频域位置在预设带宽内,或者所述第一SSB和所述第二SSB的频域偏移量为预设值,所述第一SSB和所述第二SSB均为小区定义的同步信息块CD-SSB。其中,该第二SSB可以视为针对该第一SSB的备份SSB。通过这种方式,终端设备可以在查找到第一SSB和第二SSB之后,联合接收信号,可以提升信噪比,使得接收信号中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。
结合第一方面,在一种可能的实现方式中,所述预设带宽为21个资源块RB、22个RB、23个RB、24个RB、48个RB,或者96个RB中的一个值。
结合第一方面,在一种可能的实现方式中,所述预设值的绝对值是21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、37、38、41、42、43、47、49、95、97个资源块RB中的一个或多个值。所述的预设值可以为正值,也可以为负值。
结合第一方面,在一种可能的实现方式中,所述第一SSB的频域位置属于全局同步信道栅格GSCN,所述第二SSB的频域位置不属于所述GSCN。通过这种方式,可以避免其他终端设备检测到第二SSB,从而不会对终端设备造成第一SSB对应的小区和第二SSB对应的小区不相同的问题。
结合第一方面,在一种可能的实现方式中,相同时间索引上的所述第一SSB和所述第二SSB具有准共址QCL关系。通过这种方式,可以方便终端设备接收第一SSB和第二SSB的信息。
结合第一方面,在一种可能的实现方式中,所述第一SSB对应的小区与所述第二SSB对应的小区相同。
结合第一方面,在一种可能的实现方式中,所述第一SSB的同步信号的携带信息和第二SSB的同步信号的携带信息相同,所述第一SSB的物理广播信道PBCH的携带信息与所述第二SSB的PBCH的携带信息相同。
结合第一方面,在一种可能的实现方式中,所述方法还包括:所述终端设备对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调。
第二方面,本申请提供了一种同步信息块的传输方法,该方法包括:终端设备接收网络设备发送的第一同步信息块SSB的第一同步信号;所述终端设备根据所述第一同步信号确定所述第一SSB的频域位置;所述终端设备根据所述第一SSB的频域位置确定第二SSB的频域位置。其中,该第二SSB可以视为针对该第一SSB的备份SSB。通过这种方式,终端设备可以在查找到第一SSB和第二SSB之后,联合接收信号,可以提升信噪比,使得接收信号中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。
结合第二方面,在一种可能的实现方式中,所述终端设备根据所述第一SSB的频域位置确定第二SSB的频域位置,包括:所述终端设备在所述第一SSB的频域位置的预设带宽内,检测第二SSB的第二同步信号;所述终端设备根据所述第二同步信号确定所述第二SSB的频域位置。
结合第二方面,在一种可能的实现方式中,所述预设带宽为21个RB、22个RB、23个RB、24个RB、48个RB,或者96个RB中的任何一个值。
结合第二方面,在一种可能的实现方式中,所述终端设备根据所述第一SSB的频域位置确定第二SSB的频域位置,包括:所述终端设备在与所述第一SSB的频域位置相差预设值的频域位置上检测第二SSB的第三同步信号;所述终端设备根据所述第三同步信号确定所述第二SSB的频域位置。
结合第二方面,在一种可能的实现方式中,所述预设值的绝对值是21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、37、38、41、42、43、47、49、95、97个RB中的任意一个值。所述的预设值可以为正值,也可以为负值。
结合第二方面,在一种可能的实现方式中,所述第一SSB的频域位置属于全局同步信道栅格GSCN,所述第二SSB的频域位置不属于所述GSCN。通过这种方式,可以避免其他终端设备检测到第二SSB,从而不会对终端设备造成第一SSB对应的小区和第二SSB对应的小区不相同的问题。
结合第二方面,在一种可能的实现方式中,相同时间索引上的所述第一SSB和所述第二SSB具有准共址QCL关系。通过这种方式,可以方便终端设备接收第一SSB和第二SSB的信息。
结合第二方面,在一种可能的实现方式中,所述第一SSB为小区定义的同步信息块CD-SSB,所述第二SSB为CD-SSB。
结合第二方面,在一种可能的实现方式中,所述第一SSB对应的小区与所述第二SSB对应的小区相同。
结合第二方面,在一种可能的实现方式中,所述第一SSB的同步信号的携带信息和第二SSB的同步信号的携带信息相同,所述第一SSB的物理广播信道PBCH的携带信息与所述第二SSB的PBCH的携带信息相同。
结合第二方面,在一种可能的实现方式中,所述方法还包括:所述终端设备对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调。
第三方面,本申请提供了一种通信装置,该通信装置包括该通信装置包括检测单元和确定单元,其中:检测单元,用于检测第一同步信号块SSB;确定单元,用于根据所述第一SSB确定第二SSB。其中,所述第一SSB的频域位置和所述第二SSB的频域位置在预设带宽内,或者所述第一SSB和所述第二SSB的频域偏移量为预设值,所述第一SSB和所述第二SSB均为小区定义的同步信息块CD-SSB。该第二SSB可以视为针对该第一SSB的备份SSB。通过这种方式,通信装置可以在查找到第一SSB和第二SSB之后,联合接收信号,可以提升信噪比,使得接收信号中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。
结合第三方面,在一种可能的实现方式中,所述预设带宽为21个资源块RB、22个RB、23个RB、24个RB、48个RB,或者96个RB中的一个值。
结合第三方面,在一种可能的实现方式中,所述预设值的绝对值是21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、37、38、41、42、43、47、49、95、97个资源块RB中的一个或多个值。所述的预设值可以为正值,也可以为负值。
结合第三方面,在一种可能的实现方式中,所述第一SSB的频域位置属于全局同步信道栅格GSCN,所述第二SSB的频域位置不属于所述GSCN。通过这种方式,可以避免其他通信装置检测到第二SSB,从而不会对终端设备造成第一SSB对应的小区和第二SSB对应的小区不相同的问题。
结合第三方面,在一种可能的实现方式中,相同时间索引上的所述第一SSB和所述第二SSB具有准共址QCL关系。通过这种方式,可以方便通信装置接收第一SSB和第二SSB的信息。
结合第三方面,在一种可能的实现方式中,所述第一SSB对应的小区与所述第二SSB对应的小区相同。
结合第三方面,在一种可能的实现方式中,所述第一SSB的同步信号的携带信息和第二SSB的同步信号的携带信息相同,所述第一SSB的物理广播信道PBCH的携带信息与所述第二SSB的PBCH的携带信息相同。
结合第三方面,在一种可能的实现方式中,所述通信装置还包括解调单元,该解调单元用于对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调。
第四方面,本申请提供了又一种通信装置,该通信装置包括接收单元、第一确定单元和第二确定单元,其中:接收单元,可以用于接收网络设备发送的第一同步信息块SSB的第一同步信号;第一确定单元,可以用于根据所述第一同步信号确定所述第一SSB的频域位置;第二确定单元,可以用于根据所述第一SSB的频域位置确定第二SSB的频域位置。 该第二SSB可以视为针对该第一SSB的备份SSB。通过这种方式,通信装置可以在查找到第一SSB和第二SSB之后,联合接收信号,可以提升信噪比,使得接收信号中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。
结合第四方面,在一种可能的实现方式中,所述第二确定单元具体用于在所述第一SSB的频域位置的预设带宽内,检测第二SSB的第二同步信号;根据所述第二同步信号确定所述第二SSB的频域位置。
结合第四方面,在一种可能的实现方式中,所述预设带宽为21个资源块RB、22个RB、23个RB、24个RB、48个RB,或者96个RB中的任何一个值。
结合第四方面,在一种可能的实现方式中,所述第二确定单元具体用于在与所述第一SSB的频域位置相差预设值的频域位置上检测第二SSB的第三同步信号;根据所述第三同步信号确定所述第二SSB的频域位置。
结合第四方面,在一种可能的实现方式中,所述预设值的绝对值是21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、37、38、41、42、43、47、49、95、97个资源块RB中的任意一个值。所述的预设值可以为正值,也可以为负值。
结合第四方面,在一种可能的实现方式中,所述第一SSB的频域位置属于全局同步信道栅格GSCN,所述第二SSB的频域位置不属于所述GSCN。通过这种方式,可以避免其他通信装置检测到第二SSB,从而不会对终端设备造成第一SSB对应的小区和第二SSB对应的小区不相同的问题。
结合第四方面,在一种可能的实现方式中,相同时间索引上的所述第一SSB和所述第二SSB具有准共址QCL关系。通过这种方式,可以方便通信装置接收第一SSB和第二SSB的信息。
结合第四方面,在一种可能的实现方式中,所述第一SSB为小区定义的同步信息块CD-SSB,所述第二SSB为CD-SSB。
结合第四方面,在一种可能的实现方式中,所述第一SSB对应的小区与所述第二SSB对应的小区相同。
结合第四方面,在一种可能的实现方式中,所述第一SSB的同步信号的携带信息和第二SSB的同步信号的携带信息相同,所述第一SSB的物理广播信道PBCH的携带信息与所述第二SSB的PBCH的携带信息相同。
结合第四方面,在一种可能的实现方式中,所述通信装置还包括调解单元,所述调解单元用于对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调。
第五方面,本申请提供了又一种通信装置,该通信装置包括处理器和存储器,其中,所述存储器用于存储计算机程序,所述处理器用于根据所述计算机程序执行上述第一方面以及第一方面的任意一种实现方式中的方法,或者执行上述第二方面以及第二方面的任意一种实现方式中的方法。
第六方面,本申请提供了又一种通信装置,其特征在于,包括处理器、存储器和收发器;所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如上述第一方面以及第一方面的任意一种实现方式中的方法,或者执行上述第二方面以及第二方面的任意一种实施方式中的方法。
第七方面,本申请提供了又一种通信装置,该通信装置包括处理器,当所述处理器调用存储器中的计算机程序时,执行如上述第一方面以及第一方面的任意一种实现方式中的方法,或者执行上述第二方面以及第二方面的任意一种实施方式中的方法。
第八方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行上述第一方面以及第一方面的任意一种实现方式中的方法,或者执行上述第二方面以及第二方面的任意一种实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行上述第一方面以及第一方面的任意一种实现方式中的方法,或者执行上述第二方面以及第二方面的任意一种实施方式中的方法。
第十方面,本申请提供了一种芯片,该芯片包括处理器和通信接口,所述处理器用于执行如上述第一方面以及第一方面的任意一种实现方式中的方法,或者执行上述第二方面以及第二方面的任意一种实施方式中的方法。
第十一方面,本申请提供了又一种芯片,包括处理器、存储器和通信接口,所述存储器中存储有计算机程序,所述处理器用于执行所述计算机程序以实现如上述第一方面以及第一方面的任意一种实现方式中的方法,或者执行上述第二方面以及第二方面的任意一种实施方式中的方法。
在本申请实施例中,终端设备可以根据检测到的第一SSB,查找到第二SSB。该第二SSB可以视为针对该第一SSB的备份SSB。通过这种方式,终端设备可以在查找到第一SSB和第二SSB之后,联合接收信号,可以提升信噪比,使得接收信号中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种网络架构的示意图;
图2是本申请实施例提供的一种终端设备接入小区的流程示意图;
图3是本申请实施例提供的一种SSB的确定方法的流程图;
图4是本申请实施例提供的一种通信装置的示意图;
图5是本申请实施例提供的又一种通信装置的示意图;
图6是本申请实施例提供的又一种通信装置的示意图;
图7是本申请实施例提供的又一种通信装置的示意图。
具体实施方式
下面对本申请实施例中的技术方案进行更详细地描述。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为 对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本申请实施例可以应用于图1所示的网络架构示意图,图1所示的网络架构为无线通信系统的网络架构,该网络架构通常包括终端设备和网络设备,各个设备数量以及形态并不构成对本申请实施例的限定。其中,网络设备可以是基站(Base Station,BS),基站可以向多个终端设备提供通信服务,多个基站也可以向同一个终端设备提供通信服务。
需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)、第五代移动通信(5th-generation,5G)系统以及未来移动通信系统。
在本申请实施例中,基站是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。基站设备可以是基站、中继站或接入点。基站可以是全球移动通信系统(Global System for Mobile Communication,GSM)或码分多址(Code Division Multiple Access,CDMA)网络中的基站收发信台(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的NB(NodeB),还可以是长期演进(Long Term Evolution,LTE)中的eNB或eNodeB(Evolutional NodeB)。基站设备还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器。基站设备还可以是未来5G网络中的基站设备或者未来演进的PLMN网络中的网络设备。基站设备还可以是可穿戴设备或车载设备等。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
以下对本申请实施例涉及到的一些概念进行介绍。
准共址(quasi co-located,QCL)关系,是两个信号之间的一种关联关系。本申请中的关联也可以称为映射,对应,相关。两个信号之间具有QCL关系,表示这两个信号可以采用相同的时延扩展、相同的多普勒扩展、相同的平均增益、相同的平均时延、相同的空域 参数发送或接收信号,相同的波束发送或接收中的一项或者多项。QCL关系参数可以包含:多普勒扩展,多普勒频移,平均时延,时延扩展和空域接收参数中的一项或者多项。在一种可能的方案中,可以将QCL关系分为四类:“QCL-TypeA”:{多普勒频移,多普勒扩展,平均时延,时延扩展};“QCL-TypeB”:{多普勒频移,多普勒扩展};“QCL-TypeC”:{多普勒频移,平均时延};“QCL-TypeD”:{空域接收参数}。一般,在选取QCL关系参数的时候,可以任意选取,例如选取平均增益和“QCL-TypeD”。
波束:波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源或信号对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。在数据传输是,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过DCI的传输配置指示(transmission configure indication,TCI)中资源,来指示终端设备PDSCH波束的信息。
可选地,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在本申请实施例中,若未做出特别说明,波束是指网络设备的发送波束。在波束测量中,网络设备的每一个波束对应一个资源,因此可以以资源的索引来唯一标识该资源对应的波束。波束在标准中可以使用QCL关系进行表示。在本申请实施例中,具有QCL关系的多个波束可以视为一个波束。
系统信息块(system information block,SIB):包含系统信息,一个小区中可以有多个系统信息块,这些系统信息块承载的信息不相同,例如SIB1。SIB1主要承载一些小区的本身的配置信息,例如随机接入相关的信息,PDCCH相关的信息,其他信息块相关的信息,UE接入小区的信息,小区的标识信息等信息。
同步信号块(synchronization signal and PBCH block,SSB),也可以称为同步信号/物理广播信道(physical broadcast channel,PBCH)块。同步信号块可以包含PBCH,主同步信号(primary synchronization signal,PSS),辅同步信号(secondary synchronization signal,SSS)中的一个或多个。同步信号块也可以简称为SSB或者为SS/PBCH block。其中,PBCH中可以包含主信息块(main information block,MIB),物理层生成的PBCH内容以及PBCH 的解调参考信号。
在3GPP定义的5G通信标准New Radio(NR)中定义了两种SSB,一种是小区定义(cell defining,CD)的SSB,简称为CD-SSB,另一种是非小区定义(none cell defining,NCD)的SSB,简称为NCD-SSB。NCD-SSB不会关联SIB1,无法定义一个小区。NCD-SSB可以指示CD-SSB的频域位置在哪里。终端设备可以根据k SSB的值区分CD-SSB和NCD-SSB。举例而言,当k SSB取值为0~11的时候,该SSB为CD-SSB,当k SSB取值为12、13、15的时候,该SSB为NCD-SSB。
接下来,对现有技术中的SSB的传输方式进行介绍。参见图2,是本申请实施例提供的一种终端设备接入小区的流程示意图。首先,终端设备在一定带宽内盲检SSB。在终端设备检测到一个CD-SSB之后,会接收该一个CD-SSB中携带的MIB信息。MIB信息包含有SIB1的CORESET时频位置指示,以及其他指示(例如,子载波间隔)。终端设备根据SIB1的CORESET时频位置指示接收SIB1的CORESET。SIB1的CORESET包含SIB1的PDCCH。SIB1的PDCCH指示SIB1的PDSCH位置以及调制编码策略等相关信息。终端设备根据PDCCH的指示接收PDSCH。在NR中,SIB1的PDCCH和SIB1的PDSCH具有相同的子载波间隔。通常情况下,如果终端设备搜索到CD-SSB,那么这个终端设备就会驻留到该CD-SSB对应的小区(或者,终端设备可能搜索到多个CD-SSB,那么终端设备可以选择驻留到一个CD-SSB对应的小区);如果终端设备搜索NCD-SSB,终端会通过Kssb的取值判断出该SSB是NCD-SSB,没有关联的SIB1,会继续进行检测CD-SSB。可以看出,现有技术中,一个小区对应一个CD-SSB,小区的覆盖范围受该一个CD-SSB的通信质量和环境中的噪声信号所影响。
下面基于上述内容中介绍的网络架构、终端设备以及网络设备,对本申请实施例提供的一种SSB的传输方法进行介绍。参见图3,图3是本申请实施例提供的一种SSB的确定方法的流程图。
S101、终端设备检测第一同步信号块SSB。
其中,第一SSB为CD-SSB。即,第一SSB关联有SIB1,可以定义一个小区。
具体的,第一SSB的频域位置属于全局同步信道栅格(Global Synchronization Channel Number,GSCN)或同步栅格上(syncraster)。需要说明的是,NR中有一系列GSCN,每个GSCN会对应一个频域位置。GSCN的频域范围为24.25GHz~100GHz,从24.2508GHz开始,每17.28MHz设置一个栅格,总共有4384个,索引为0~4283。对于52.6GHz以上的频率范围,其带宽可能大于等于5GHz,5000/17.28=290,导致现有的数据比特指示不完一个频带内的所有同步栅格(Sync Raster),其他位置为非同步栅格或者为非GSCN。参见表1,表1为全局同步频率栅格GSCN参数(GSCN parameters for the global frequency raster)。
表1
Figure PCTCN2020079363-appb-000001
在一种可能的实现方式中,终端设备可以根据GSCN盲检SSB。参见表2,表2示出了部分频带适用的同步信道栅格(Applicable SS raster entries per operating band),需要说明的是,该表对应于FR1(frequnecy range 1)。在应用中,不同的运营频带(operating band)分配给不同运营商的。举例而言,n8分配给运营商甲,那么,属于运营商甲的终端设备在搜索SSB的时候,可以在2318-<1>-2395这个范围内的GSCN进行盲检,并且只搜索15kHz子载波间隔、Case A下的SSB。
表2
Figure PCTCN2020079363-appb-000002
S102、终端设备根据该第一SSB确定第二SSB。
在一些实施例中,终端设备可以根据所述第一SSB的第一同步信号确定所述第一SSB的频域位置,之后,终端设备再根据所述第一SSB的频域位置确定第二SSB的频域位置。具体的,根据上述内容中的介绍,终端设备对一个预设频域范围(例如,2318-<1>-2395)内的GSCN进行盲检,若终端设备在一个频域位置上检测到第一SSB的第一同步信号,则将该一个频域位置确定为第一SSB的频域位置。
在一些实施例中,第一SSB的k SSB可以30或者14。在一种可能的实现方式中,只采用5G R17标准协议之前的终端设备检测到该第一SSB之后,不再查找第二SSB,通过第一SSB确定的小区进行通信。采用5G R17标准协议之后的终端设备检测到该第一SSB之 后,可以根据第一SSB确定第二SSB,通过第一SSB和第二SSB确定的小区进行通信。由于不同5G标准协议下的终端设备的处理能力不同,通过这种方式,可以使得使用不同5G标准协议的终端设备对第一SSB有适宜的处理方式。
以下对终端设备根据所述第一SSB的频域位置确定第二SSB的频域位置的方式进行介绍。
第一种方式,所述终端设备在所述第一SSB的频域位置的预设带宽内,检测第二SSB的第二同步信号,之后,所述终端设备再根据所述第二同步信号确定所述第二SSB的频域位置。也即,第一SSB的频域位置和第二SSB的频域位置在预设带宽内。第二SSB的频域位置即为终端设备检测到第二同步信号的频域位置。在一些实施例中,预设带宽可以为24个资源块(resource block,RB)、48个RB,或者96个RB中的一个值,或23个RB或者25个RB或者为21个RB或者22个RB。例如21,22,23,24为最小初始部分带宽的大小和SSB带宽大小之间的值。所述的频域位置可以为正,也可以为负。所述的频域位置可以为第一SSB的第一个RB作为参考位置,也可以将第一SSB最后一个RB作为参考位置,也可以将第一SSB的中心RB作为参考位置,例如第10个RB或者为第9个RB或者为第11个RB作为参考位置。
可选的,终端设备可以在小于第一SSB的频域位置预设带宽的频域位置,到第一SSB的频域位置的范围内,检测第二同步信号。例如,第一SSB的频域位置为aRB,预设带宽为24RB,则终端设备可以在a-24RB到aRB的带宽内,检测第二同步信号。
可选的,终端设备可以在第一SSB的频域位置,到大于第一SSB的频域位置预设带宽的频域位置的范围内,检测第二同步信号。例如,第一SSB的频域位置为aRB,预设带宽为24RB,则终端设备可以在aRB到a+24RB的带宽内,检测第二同步信号。
可选的,终端设备可以在小于第一SSB的频域位置预设带宽的频域位置,到大于第一SSB的频域位置预设带宽的频域位置的范围内,检测第二同步信号。例如第一SSB的频域位置为aRB,预设带宽为24RB,则终端设备可以在a-24RB到a+24RB的带宽内,检测第二同步信号。
需要说明的是,终端设备根据所述第二同步信号确定所述第二SSB的频域位置的方式,可以参照终端设备根据所述第一同步信号确定所述第一SSB的频域位置的方式,此处不再赘述。
第二种方式,所述终端设备在与所述第一SSB的频域位置相差预设值的频域位置上检测第二SSB的第三同步信号,之后,所述终端设备根据所述第三同步信号确定所述第二SSB的频域位置。也即,第一SSB和第二SSB的频域偏移量为预设值。在一些实施例中,该预设值的绝对值是21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、37、38、41、42、43、47、49、95、97个资源块RB中的一个或多个值。这些值小于96个RB大于20个RB,满足了终端设备检测带宽能力。例如21,22,23,24为最小初始部分带宽的大小和SSB带宽大小之间的值。
可选的,该预设值可以有正负性,代表第一SSB和第二SSB的频域偏移量。终端设备可以在第一SSB的频域位置减去(或者加上)预设值后得到的频域位置上检测第三同步信号。例如,第一SSB的频域位置为bRB,预设值为21RB,则终端设备可以在b-21RB的频 域位置,检测第三同步信号。
可选的,该预设值可以没有正负性,代表第一SSB和第二SSB的频域偏移量的绝对值。终端设备可以在第一SSB的频域位置减去预设值后得到的频域位置,以及第一SSB的频域位置加上预设值后得到的频域位置上检测第三同步信号。例如,第一SSB的频域位置为bRB,预设值为21RB,则终端设备可以在b-21RB和b+21RB的频域位置,检测第三同步信号。
可选的,该预设值可以为多个为预设值。该多个预设值可以有正负性,也可以没有正负性。在一个示例中,第一SSB的频域位置为cRB,该预设值为2个,这2个预设值有正负性,具体为27RB,-28RB。则,则终端设备可以在c-27RB和c+28RB的频域位置,检测第三同步信号。在另一个示例中,第一SSB的频域位置为cRB,该预设值为2个,这2个预设值没有正负性,具体为27RB,28RB。则,则终端设备可以在c-27RB、c-28RB、c+27RB和c+28RB的频域位置,检测第三同步信号。
需要说明的是,终端设备根据所述第三同步信号确定所述第二SSB的频域位置的方式,可以参照终端设备根据所述第一同步信号确定所述第一SSB的频域位置的方式,此处不再赘述。
在一些实施例中,所述第一SSB的同步信号(Synchronization Signal,SS)的携带信息和第二SSB的SS的携带信息相同,所述第一SSB的物理广播信道(PBCH)的携带信息与所述第二SSB的PBCH的携带信息相同。示例性的,SSB的同步信号包括主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)。主同步信号携带的信息可以为一部分的小区ID,辅同步信号携带的信息可以为另一部分的小区ID,主同步信号和辅同步携带的信息可以组成完整的小区ID。SSB的PBCH携带的信息可以包括:系统帧号、系统信息的子载波间隔指示信息、系统信息的物理下行控制信道的配置信息、小区重选信息、SSB的索引信息、半帧指示信息以及小区接入信息等。
在另一些实施例中,第一SSB的主同步信号的携带信息与第二SSB的PSS的携带信息是相同的。或者,第一SSB的辅同步信号的携带信息与第二SSB的SSS的携带信息是相同的。或者,第一SSB的物理广播信道(Physical Broadcast Channel,PBCH)的携带信息与第二SSB的PBCH的携带信息是相同的。在另一些实施例中,第一SSB的SSS的携带信息与第二SSB的SSS的携带信息相同,并且第一SSB的PSS的携带信息与第二SSB的PSS的携带信息相同。或者,第一SSB的PSS的携带信息与第二SSB的PSS的携带信息相同,并且第一SSB的PBCH的携带信息与第二SSB的PBCH的携带信息相同。或者第一SSB的SSS的携带信息与第二SSB的SSS的携带信息相同,第一SSB的PBCH的携带信息与第二SSB的PBCH的携带信息相同。可选的,第一SSB和第二SSB的PBCH的携带信息相同,还可以理解为第一SSB和第二SSB的PBCH的解调参考信号(Demodulation Reference Signal,DMRS)相同。
作为一个可选的实施例,第一SSB和第二SSB的PBCH携带的部分内容可以不相同,这些不相同的内容可以是预设的。例如第一SSB和第二SSB之间的SSB索引或者SSB时间索引差预设的值,或者第一SSB和第二SSB的半帧指示差预设的值,或者第一SSB和第二SSB的帧号指示的值差预设的值。该预设的值可以是协议规定的,从而降低信号的峰 均比。
在一些实施例中,在终端设备根据该第一SSB确定第二SSB之后,所述终端设备可以对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调。由于第一SSB携带的信息与第二SSB携带的信息相同,终端设备可以对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调,通过这种方式可以提升信噪比,使得环境中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。
在一些实施例中,所述第二SSB也为CD-SSB,并且所述第一SSB对应的小区与所述第二SSB对应的小区相同。也就是说,该第二SSB可以视为针对第一SSB的备份SSB,通过这种方式,终端设备可以通过第一SSB和第二SSB进行小区的同步,并且终端设备通过第一SSB和第二SSB确定的是同一个小区。
在一些实施例中,所述第二SSB的频域位置不属于所述GSCN,即属于非GSCN位置上。由于第一SSB和第二SSB指示的SIB1的物理下行控制信道(Physical Down Link Control Channel,PDCCH)的位置可能会不一样,如果所述第二SSB的频域位置属于所述GSCN;那么,在盲检SSB的过程中,终端设备甲可能检测到第一SSB,终端设备乙可能会检测到第二SSB,终端设备甲将通过第一SSB确定一个小区,终端设备乙将通过第二SSB确定另一个小区。也即是说,若所述第二SSB的频域位置属于所述GSCN,可能会导致通过第一SSB和第二SSB产生两个小区的问题。因此,所述第二SSB的频域位置不属于所述GSCN。通过这种方式,可以避免其他终端设备检测到第二SSB,从而造成第一SSB对应的小区和第二SSB对应的小区不相同的问题。
在一些实施例中,相同时间索引上的所述第一SSB和所述第二SSB具有准共址QCL关系。具体的,相同时间索引可以表示具有相同符号位置,或者相同时隙位置。第一SSB和所述第二SSB具有准共址QCL关系,表示第一SSB和所述第二SSB可以采用相同的时延扩展、相同的多普勒扩展、相同的平均增益、相同的平均时延、相同的空域参数发送或接收信号,相同的波束发送或接收中的一项或者多项。通过这种方式,可以方便终端设备接收第一SSB和第二SSB的信息。
在一些实施例中,本申请实施例的方法也可以应用在公共物理下行控制信道的传输上,公共物理下行控制信道包含系统信息的物理下行控制信道,寻呼消息的物理下行控制信道和随机接入响应的物理下行控制信道。多个公共物理下行控制信道的位置可以使用系统信息进行配置。
根据图2以及上文的描述,可以看出本申请实施例中,终端设备可以根据检测到的第一SSB,查找到第二SSB。该第二SSB可以视为针对该第一SSB的备份SSB。通过这种方式,终端设备可以在查找到第一SSB和第二SSB之后,联合接收信号,可以提升信噪比,使得接收信号中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。
本发明实施例可以根据上述方法示例对设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有 另外的划分方式。
参见图4,图4是本申请实施例提供的一种通信装置的示意图。示例性的,该通信装置可以为终端设备,该通信装置还可以为芯片。该通信装置40包括检测单元410和确定单元420,具体的:
检测单元410,用于检测第一SSB。具体的,该检测单元410所执行的操作可以参照上述内容中步骤S101中的介绍。
确定单元420,用于根据所述第一SSB确定第二SSB。其中,所述第一SSB的频域位置和所述第二SSB的频域位置在预设带宽内,或者所述第一SSB和所述第二SSB的频域偏移量为预设值,所述第一SSB和所述第二SSB均为小区定义的同步信息块CD-SSB。具体的,该确定单元420所执行的操作可以参照上述内容中步骤S102中的介绍。
在一些实施例中,所述预设带宽为21个RB、22个RB、23个RB、24个RB、48个RB,或者96个RB中的一个值。
在一些实施例中,所述预设值的绝对值是21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、37、38、41、42、43、47、49、95、97个RB中的一个或多个值。收发器包括接收器和发送器,收发器
在一些实施例中,所述第一SSB的频域位置属于全局同步信道栅格(GSCN),所述第二SSB的频域位置不属于所述GSCN。
在一些实施例中,相同时间索引上的所述第一SSB和所述第二SSB具有准共址QCL关系。
在一些实施例中,所述第一SSB对应的小区与所述第二SSB对应的小区相同。
在一些实施例中,所述第一SSB的同步信号的携带信息和第二SSB的同步信号的携带信息相同,所述第一SSB的PBCH的携带信息与所述第二SSB的PBCH的携带信息相同。
在一些实施例中,所述通信装置还包括解调单元,该解调单元用于对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调。
需要说明的是,图4所示的通信装置40各个单元执行的操作可以参照图3所示的实施例中的介绍,此处不再赘述。上述各个单元可以以硬件,软件或者软硬件结合的方式来实现。在一个实施例中,上述内容中的检测单元410、确定单元420和解调单元的功能可以由通信装置中的一个或多个处理器来实现。
通过图4所示的通信装置,可以根据检测到的第一SSB,查找到第二SSB。该第二SSB可以视为针对该第一SSB的备份SSB。通过这种方式,通信装置可以在查找到第一SSB和第二SSB之后,联合接收信号,可以提升信噪比,使得接收信号中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。
参见图5,图5是本申请实施例提供的又一种通信装置的示意图。示例性的,该通信装置可以为终端设备,该通信装置还可以为芯片。该通信装置50包括接收单元510、第一确定单元520和第二确定单元530,具体的:
接收单元510,可以用于接收网络设备发送的第一SSB的第一同步信号。具体的,该接收单元510所执行的操作可以参照上述内容中步骤S101中的介绍。
第一确定单元520,可以用于根据所述第一同步信号确定所述第一SSB的频域位置。
第二确定单元530,可以用于根据所述第一SSB的频域位置确定第二SSB的频域位置。具体的,该第一确定单元520和第二确定单元530所执行的操作可以参照上述内容中步骤S102中的介绍。
在一些实施例中,所述第二确定单元530具体用于在所述第一SSB的频域位置的预设带宽内,检测第二SSB的第二同步信号;根据所述第二同步信号确定所述第二SSB的频域位置。
在一些实施例中,所述预设带宽为21个RB、22个RB、23个RB、24个RB、48个RB,或者96个RB中的任何一个值。
在一些实施例中,所述第二确定单元530具体用于在与所述第一SSB的频域位置相差预设值的频域位置上检测第二SSB的第三同步信号;根据所述第三同步信号确定所述第二SSB的频域位置。
在一些实施例中,所述预设值的绝对值是21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、37、38、41、42、43、47、49、95、97个RB中的任意一个值。
在一些实施例中,所述第一SSB的频域位置属于GSCN,所述第二SSB的频域位置不属于所述GSCN。
在一些实施例中,相同时间索引上的所述第一SSB和所述第二SSB具有准共址QCL关系。
在一些实施例中,所述第一SSB为小区定义的同步信息块CD-SSB,所述第二SSB为CD-SSB。
在一些实施例中,所述第一SSB对应的小区与所述第二SSB对应的小区相同。
在一些实施例中,所述第一SSB的同步信号的携带信息和第二SSB的同步信号的携带信息相同,所述第一SSB的PBCH的携带信息与所述第二SSB的PBCH的携带信息相同。
在一些实施例中,所述通信装置还包括调解单元,所述调解单元用于对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调。
需要说明的是,图5所示的通信装置50各个单元执行的操作可以参照图3所示的实施例中的介绍,此处不再赘述。上述各个单元可以以硬件,软件或者软硬件结合的方式来实现。在一个实施例中,上述内容中的检测单元510、第一确定单元520、第二确定单元530和解调单元的功能可以由通信装置中的一个或多个处理器来实现。通过图5所示的通信装置,可以根据检测到的第一SSB,查找到第二SSB。该第二SSB可以视为针对该第一SSB的备份SSB。通过这种方式,通信装置可以通过在查找到的第一SSB和第二SSB之后,联合同步接收信号,可以提升信噪比,使得环境接收信号中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。
参见图6,是本申请实施例提供的又一种通信装置的示意图。示例性的,该通信装置可以为终端设备。该通信装置60可以包括:一个或多个处理器601;一个或多个输入设备602,一个或多个输出设备603和存储器604。上述处理器601、输入设备602、输出设备603和存储器604通过总线605连接。存储器604用于存储程序。
所称处理器601可以是中央处理器(CPU,central processing unit),通用处理器,协处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(ASIC,application-specific integrated circuit),现场可编程门阵列(FPGA,field programmable gate array)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。该处理器601也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
输入设备602可以包括天线,通信接口等,输出设备603可以包括天线,通信接口等。可选的,该输入设备602可以为接收器,该输出设备603可以为发射器。该输入设备602和输出设备603可以共同组成收发器。
该存储器604可以包括只读存储器和随机存取存储器,并向处理器601提供程序和数据。存储器604的一部分还可以包括非易失性随机存取存储器。例如,存储器604还可以存储设备类型的信息。
处理器601用于运行存储器604存储的程序来执行如下操作:
检测第一SSB。可选的,处理器601可以通过输入设备602检测第一SSB,该输入设备602可以为收发器中的接收器。具体的,该操作的执行方式可以参照上述内容中步骤S101中的介绍。
根据所述第一SSB确定第二SSB。其中,所述第一SSB的频域位置和所述第二SSB的频域位置在预设带宽内,或者所述第一SSB和所述第二SSB的频域偏移量为预设值,所述第一SSB和所述第二SSB均为小区定义的同步信息块CD-SSB。具体的,该操作的执行方式可以参照上述内容中步骤S102中的介绍。
图6中的各个操作的实现还可以对应参照图3所示的方法实施例的相应描述。
通过图6所示的通信装置,可以根据检测到的第一SSB,查找到第二SSB。该第二SSB可以视为针对该第一SSB的备份SSB。通过这种方式,通信装置可以通过在查找到的第一SSB和第二SSB之后,联合同步接收信号,可以提升信噪比,使得环境接收信号中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。
参见图7,是本申请实施例提供的又一种通信装置的示意图。示例性的,该通信装置可以为终端设备。该通信装置70可以包括:一个或多个处理器701;一个或多个输入设备702,一个或多个输出设备703和存储器704。上述处理器701、输入设备702、输出设备703和存储器704通过总线705连接。存储器704用于存储程序。
所称处理器701可以是中央处理器(CPU,central processing unit),通用处理器,协处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。该处理器701也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
输入设备702可以包括天线,通信接口等,输出设备703可以包括天线,通信接口等。可选的,该输入设备702可以是接收器,该输出设备703还可以为是发射器。该输入设备702和输出设备703可以共同组成收发器。
该存储器704可以包括只读存储器和随机存取存储器,并向处理器701提供程序和数据。存储器704的一部分还可以包括非易失性随机存取存储器。例如,存储器704还可以存储设备类型的信息。
处理器701用于运行存储器704存储的程序来执行如下操作:
接收网络设备发送的第一SSB的第一同步信号。可选的,处理器701可以通过输入设备702检测第一SSB,该输入设备702可以为收发器中的接收器。具体的,该操作的执行方式可以参照上述内容中步骤S101中的介绍。
根据所述第一同步信号确定所述第一SSB的频域位置。
根据所述第一SSB的频域位置确定第二SSB的频域位置。具体的,该操作的执行方式可以参照上述内容中步骤S102中的介绍。
图7中的各个操作的实现还可以对应参照图3所示的方法实施例的相应描述。
通过图7所示的通信装置,可以根据检测到的第一SSB,查找到第二SSB。该第二SSB可以视为针对该第一SSB的备份SSB。通过这种方式,通信装置可以通过在查找到的第一SSB和第二SSB之后,联合同步接收信号,可以提升信噪比,使得环境接收信号中的噪声信号功率减半,提升信息传输的可靠性,进而增大小区的覆盖范围。
本申请还提供了又一种通信装置,该通信装置包括处理器,当所述处理器调用存储器中的计算机程序时,如前述图3所示的实施例所实现的方法被执行。
本申请还提供了又一种通信装置,该通信装置包括存储器和处理器;所述存储器用于存储计算机程序,当所述处理器调用所述存储器中的计算机程序时,如前述图3所示的实施例所实现的方法被执行。
本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行如前述图3所示的实施例所实现的方法。
本申请还提供了一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行如前述图3所示的实施例所实现的方法。
本申请还提供了一种芯片,该芯片包括处理器和通信接口,所述处理器用于执行如前述图3所示的实施例所实现的方法。
本申请还提供了又一种芯片,包括处理器、存储器和通信接口,所述存储器中存储有计算机程序,所述处理器用于执行所述计算机程序以实现如前述图3所示的实施例所实现的方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (45)

  1. 一种同步信号块的确定方法,其特征在于,所述方法包括:
    终端设备检测第一同步信号块SSB;
    所述终端设备根据所述第一SSB确定第二SSB,所述第一SSB的频域位置和所述第二SSB的频域位置在预设带宽内,或者所述第一SSB和所述第二SSB的频域偏移量为预设值,所述第一SSB和所述第二SSB均为小区定义的同步信息块CD-SSB。
  2. 根据权利要求1所述的方法,其特征在于,所述预设带宽为21个资源块RB、22个RB、23个RB、24个RB、48个RB,或者96个RB中的一个值。
  3. 根据权利要求1所述的方法,其特征在于,所述预设值的绝对值是21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、37、38、41、42、43、47、49、95、97个RB中的一个或多个值。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一SSB的频域位置属于全局同步信道栅格GSCN,所述第二SSB的频域位置不属于所述GSCN。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,相同时间索引上的所述第一SSB和所述第二SSB具有准共址QCL关系。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一SSB对应的小区与所述第二SSB对应的小区相同。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一SSB的同步信号的携带信息和第二SSB的同步信号的携带信息相同,所述第一SSB的物理广播信道PBCH的携带信息与所述第二SSB的PBCH的携带信息相同。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调。
  9. 一种同步信息块的确定方法,其特征在于,所述方法包括:
    终端设备接收网络设备发送的第一同步信息块SSB的第一同步信号;
    所述终端设备根据所述第一同步信号确定所述第一SSB的频域位置;
    所述终端设备根据所述第一SSB的频域位置确定第二SSB的频域位置。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备根据所述第一SSB的频域位置确定第二SSB的频域位置,包括:
    所述终端设备在所述第一SSB的频域位置的预设带宽内,检测第二SSB的第二同步信号;
    所述终端设备根据所述第二同步信号确定所述第二SSB的频域位置。
  11. 根据权利要求10所述的方法,其特征在于,所述预设带宽为21个资源块RB、22个RB、23个RB、24个RB、48个RB,或者96个RB中的任何一个值。
  12. 根据权利要求9所述的方法,其特征在于,所述终端设备根据所述第一SSB的频域位置确定第二SSB的频域位置,包括:
    所述终端设备在与所述第一SSB的频域位置相差预设值的频域位置上检测第二SSB的第三同步信号;
    所述终端设备根据所述第三同步信号确定所述第二SSB的频域位置。
  13. 根据权利要求12所述的方法,其特征在于,所述预设值的绝对值是21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、37、38、41、42、43、47、49、95、97个资源块RB中的任意一个值。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述第一SSB的频域位置属于全局同步信道栅格GSCN,所述第二SSB的频域位置不属于所述GSCN。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,相同时间索引上的所述第一SSB和所述第二SSB具有准共址QCL关系。
  16. 根据权利要求9-15任一项所述的方法,其特征在于,所述第一SSB为小区定义的同步信息块CD-SSB,所述第二SSB为CD-SSB。
  17. 根据权利要求9-16任一项所述的方法,其特征在于,所述第一SSB对应的小区与所述第二SSB对应的小区相同。
  18. 根据权利要求9-17任一项所述的方法,其特征在于,所述第一SSB的同步信号SS的携带信息和第二SSB的SS的携带信息相同,所述第一SSB的物理广播信道PBCH的携带信息与所述第二SSB的PBCH的携带信息相同。
  19. 根据权利要求9-18任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调。
  20. 一种通信装置,其特征在于,所述通信装置包括检测单元和确定单元,其中:
    所述检测单元,用于检测第一SSB;
    所述确定单元,用于根据所述第一SSB确定第二SSB,所述第一SSB的频域位置和所述第二SSB的频域位置在预设带宽内,或者所述第一SSB和所述第二SSB的频域偏移量为预设值,所述第一SSB和所述第二SSB均为小区定义的同步信息块CD-SSB。
  21. 根据权利要求20所述的通信装置,其特征在于,所述预设带宽为21个RB、22个RB、23个RB、24个RB、48个RB,或者96个RB中的一个值。
  22. 根据权利要求21所述的通信装置,其特征在于,所述预设值的绝对值是21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、37、38、41、42、43、47、49、95、97个RB中的一个或多个值。
  23. 根据权利要求20-22任一项所述的通信装置,其特征在于,所述第一SSB的频域位置属于GSCN,所述第二SSB的频域位置不属于所述GSCN。
  24. 根据权利要求20-23任一项所述的通信装置,其特征在于,相同时间索引上的所述第一SSB和所述第二SSB具有准共址QCL关系。
  25. 根据权利要求20-24任一项所述的通信装置,其特征在于,所述第一SSB对应的小区与所述第二SSB对应的小区相同。
  26. 根据权利要求20-25任一项所述的通信装置,其特征在于,所述第一SSB的同步信号的携带信息和第二SSB的同步信号的携带信息相同,所述第一SSB的物理广播信道PBCH的携带信息与所述第二SSB的PBCH的携带信息相同。
  27. 根据权利要求20-26任一项所述的方法,其特征在于,所述通信装置还包括解调单元:
    所述解调单元,用于对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调。
  28. 一种通信装置,其特征在于,所述通信装置包括接收单元,第一确定单元,第二确定单元,其中:
    所述接收单元,用于接收网络设备发送的第一同步信息块SSB的第一同步信号;
    所述第一确定单元,用于根据所述第一同步信号确定所述第一SSB的频域位置;
    所述第二确定单元,用于根据所述第一SSB的频域位置确定第二SSB的频域位置。
  29. 根据权利要求28所述的通信装置,所述第二确定单元具体用于:
    在所述第一SSB的频域位置的预设带宽内,检测第二SSB的第二同步信号;
    根据所述第二同步信号确定所述第二SSB的频域位置。
  30. 根据权利要求29所述的通信装置,其特征在于,所述预设带宽为21个RB、22个RB、23个RB、24个RB、48个RB,或者96个RB中的任何一个值。
  31. 根据权利要求28所述的通信装置,其特征在于,所述终端设备根据所述第一SSB的频域位置确定第二SSB的频域位置,包括:
    所述终端设备在与所述第一SSB的频域位置相差预设值的频域位置上检测第二SSB的第三同步信号;
    所述终端设备根据所述第三同步信号确定所述第二SSB的频域位置。
  32. 根据权利要求31所述的通信装置,其特征在于,所述预设值的绝对值是21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、37、38、41、42、43、47、49、95、97个RB中的任意一个值。
  33. 根据权利要求28-32任一项所述的通信装置,其特征在于,所述第一SSB的频域位置属于GSCN,所述第二SSB的频域位置不属于所述GSCN。
  34. 根据权利要求28-33任一项所述的通信装置,其特征在于,相同时间索引上的所述第一SSB和所述第二SSB具有准共址QCL关系。
  35. 根据权利要求28-34任一项所述的通信装置,其特征在于,所述第一SSB为小区定义的同步信息块CD-SSB,所述第二SSB为CD-SSB。
  36. 根据权利要求28-35任一项所述的通信装置,其特征在于,所述第一SSB对应的小区与所述第二SSB对应的小区相同。
  37. 根据权利要求28-36任一项所述的通信装置,其特征在于,所述第一SSB的同步信号SS的携带信息和第二SSB的SS的携带信息相同,所述第一SSB的物理广播信道PBCH的携带信息与所述第二SSB的PBCH的携带信息相同。
  38. 根据权利要求28-37任一项所述的通信装置,其特征在于,所述通信装置还包括解调单元:
    所述解调单元,用于对所述第一SSB的PBCH和所述第二SSB的PBCH进行合并解调。
  39. 一种通信装置,其特征在于,包括处理器、存储器和收发器;所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如权利要求1-8中任一项所述的方法或权利要求9-19中任一项所 述的方法。
  40. 一种通信装置,其特征在于,包括:处理器,当所述处理器调用存储器中的计算机程序时,如权利要求1-8中任一项所述的方法或权利要求9-19中任一项所述的方法被执行。
  41. 一种通信装置,其特征在于,包括:存储器和处理器;所述存储器用于存储计算机程序,当所述处理器调用所述存储器中的计算机程序时,所述通信装置执行如权利要求1-8中任一项所述的方法或权利要求9-19中任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行如权利要求1-8中任一项所述的方法或权利要求9-19中任一项所述的方法。
  43. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行如权利要求1-8中任一项所述的方法或权利要求9-19中任一项所述的方法。
  44. 一种芯片,其特征在于,处理器和通信接口,所述处理器用于执行如权利要求1-8中任一项所述的方法或权利要求9-19中任一项所述的方法。
  45. 一种芯片,包括处理器、存储器和通信接口,所述存储器中存储有计算机程序,所述处理器用于执行所述计算机程序以实现如权利要求1-8中任一项所述的方法或权利要求9-19中任一项所述的方法。
PCT/CN2020/079363 2020-03-13 2020-03-13 一种同步信号块的确定方法以及相关装置 WO2021179327A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080098132.6A CN115244998A (zh) 2020-03-13 2020-03-13 一种同步信号块的确定方法以及相关装置
PCT/CN2020/079363 WO2021179327A1 (zh) 2020-03-13 2020-03-13 一种同步信号块的确定方法以及相关装置
EP20924585.1A EP4099769A4 (en) 2020-03-13 2020-03-13 METHOD FOR DETERMINING BLOCKS OF A SYNCHRONIZATION SIGNAL AND ASSOCIATED APPARATUS
US17/931,303 US20230007656A1 (en) 2020-03-13 2022-09-12 Synchronization Signal Block Determining Method And Related Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079363 WO2021179327A1 (zh) 2020-03-13 2020-03-13 一种同步信号块的确定方法以及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/931,303 Continuation US20230007656A1 (en) 2020-03-13 2022-09-12 Synchronization Signal Block Determining Method And Related Apparatus

Publications (1)

Publication Number Publication Date
WO2021179327A1 true WO2021179327A1 (zh) 2021-09-16

Family

ID=77670435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079363 WO2021179327A1 (zh) 2020-03-13 2020-03-13 一种同步信号块的确定方法以及相关装置

Country Status (4)

Country Link
US (1) US20230007656A1 (zh)
EP (1) EP4099769A4 (zh)
CN (1) CN115244998A (zh)
WO (1) WO2021179327A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080593A1 (en) * 2021-11-03 2023-05-11 Samsung Electronics Co., Ltd. Method of transmitting/receiving a signal set and apparatus thereof
WO2023125237A1 (zh) * 2021-12-28 2023-07-06 维沃移动通信有限公司 小区选择或重选方法、装置、终端及可读存储介质
WO2023130255A1 (en) * 2022-01-05 2023-07-13 Apple Inc. Radio resource management for reduced capability user equipment
WO2023130427A1 (zh) * 2022-01-10 2023-07-13 富士通株式会社 小区选择或重选方法、装置和系统
WO2023225210A1 (en) * 2022-05-19 2023-11-23 Qualcomm Incorporated Non-cell-defining synchronization signal block configurations
WO2024030270A1 (en) * 2022-08-05 2024-02-08 Qualcomm Incorporated Beam devoted for alignment initiation before p1
WO2024055173A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 同步信号块的接收方法、发送方法、装置、介质及产品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022041289A1 (zh) * 2020-08-31 2022-03-03 华为技术有限公司 同步信号传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702700A (zh) * 2018-03-16 2018-10-23 北京小米移动软件有限公司 定义小区同步广播块位置的指示、搜索方法及装置和基站
WO2019066575A1 (ko) * 2017-09-28 2019-04-04 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN110392991A (zh) * 2017-06-16 2019-10-29 Lg电子株式会社 测量同步信号块的方法及其装置
CN110521146A (zh) * 2017-07-28 2019-11-29 Lg电子株式会社 接收同步信号块的方法及其设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7241070B2 (ja) * 2017-09-30 2023-03-16 華為技術有限公司 通信方法及び通信装置
PL3694271T3 (pl) * 2017-11-01 2022-11-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Sposób i urządzenie do transmisji informacji
CN109644418B (zh) * 2017-11-01 2020-11-17 Oppo广东移动通信有限公司 无线通信方法和设备
CN110035493B (zh) * 2018-01-12 2022-04-15 大唐移动通信设备有限公司 一种信息指示、确定方法、终端及基站
JP2021511717A (ja) * 2018-01-12 2021-05-06 ノキア テクノロジーズ オサケユイチア 高度化セル探索

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392991A (zh) * 2017-06-16 2019-10-29 Lg电子株式会社 测量同步信号块的方法及其装置
CN110521146A (zh) * 2017-07-28 2019-11-29 Lg电子株式会社 接收同步信号块的方法及其设备
WO2019066575A1 (ko) * 2017-09-28 2019-04-04 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN108702700A (zh) * 2018-03-16 2018-10-23 北京小米移动软件有限公司 定义小区同步广播块位置的指示、搜索方法及装置和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099769A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080593A1 (en) * 2021-11-03 2023-05-11 Samsung Electronics Co., Ltd. Method of transmitting/receiving a signal set and apparatus thereof
WO2023125237A1 (zh) * 2021-12-28 2023-07-06 维沃移动通信有限公司 小区选择或重选方法、装置、终端及可读存储介质
WO2023130255A1 (en) * 2022-01-05 2023-07-13 Apple Inc. Radio resource management for reduced capability user equipment
WO2023130427A1 (zh) * 2022-01-10 2023-07-13 富士通株式会社 小区选择或重选方法、装置和系统
WO2023225210A1 (en) * 2022-05-19 2023-11-23 Qualcomm Incorporated Non-cell-defining synchronization signal block configurations
WO2024030270A1 (en) * 2022-08-05 2024-02-08 Qualcomm Incorporated Beam devoted for alignment initiation before p1
WO2024055173A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 同步信号块的接收方法、发送方法、装置、介质及产品

Also Published As

Publication number Publication date
EP4099769A1 (en) 2022-12-07
EP4099769A4 (en) 2023-04-05
CN115244998A (zh) 2022-10-25
US20230007656A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
WO2021179327A1 (zh) 一种同步信号块的确定方法以及相关装置
US11330576B2 (en) Method for monitoring PDCCH, terminal and network device
US11665697B2 (en) Method for transmitting downlink control information, terminal device and network device
JP6545910B2 (ja) 複数のトーンホッピング距離をもつ狭帯域prach
CN108347778B (zh) 通信方法及装置
US11395267B2 (en) Wireless communication method, terminal device, and network device
TWI751294B (zh) 傳輸訊號的方法、終端設備和網路設備
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
CN114024812B (zh) 一种prs资源的配置方法及装置、用户设备、网络设备
TW202008766A (zh) 傳輸信號的方法、終端設備和網路設備
WO2020164600A1 (zh) 信息指示的方法及装置
WO2019080120A1 (zh) 无线通信方法和设备
WO2017045205A1 (zh) 一种发送参考信号功率信息的方法及基站
CN113490278B (zh) 下行信号传输的方法和设备
WO2019052494A1 (zh) 传输方法和传输装置
US20230362842A1 (en) Wireless communication method, network device and terminal device
EP3937564A1 (en) Communication method and apparatus
WO2021098570A1 (en) Method for determining prach occasion and terminal device, network device
TW201919359A (zh) 無線通訊方法、網路設備和終端設備
AU2017411184A1 (en) Signal processing method and apparatus
US20230073106A1 (en) Information transmission method, network device, and terminal device
WO2020103316A1 (zh) 一种传输数据的方法和终端设备
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备
WO2018006741A1 (zh) 传输信号的方法和装置
WO2021168824A1 (zh) 控制信道资源的确定方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020924585

Country of ref document: EP

Effective date: 20220830

NENP Non-entry into the national phase

Ref country code: DE