WO2022052073A1 - 信道估计的方法、装置、通信设备及存储介质 - Google Patents

信道估计的方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022052073A1
WO2022052073A1 PCT/CN2020/114907 CN2020114907W WO2022052073A1 WO 2022052073 A1 WO2022052073 A1 WO 2022052073A1 CN 2020114907 W CN2020114907 W CN 2020114907W WO 2022052073 A1 WO2022052073 A1 WO 2022052073A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
frequency
comb
cdm
channel estimation
Prior art date
Application number
PCT/CN2020/114907
Other languages
English (en)
French (fr)
Inventor
李媛媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080002239.6A priority Critical patent/CN112236983B/zh
Priority to US18/025,096 priority patent/US20230327915A1/en
Priority to PCT/CN2020/114907 priority patent/WO2022052073A1/zh
Publication of WO2022052073A1 publication Critical patent/WO2022052073A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals

Definitions

  • the present disclosure relates to the technical field of wireless communication, but is not limited to the technical field of wireless communication, and in particular, relates to a method, apparatus, communication device, and storage medium for channel estimation.
  • Wireless coverage is one of the key factors operators consider when commercializing cellular networks.
  • LTE Long Term Evolution
  • NR New Radio
  • FR2 frequency band 2
  • FR1 frequency band 1
  • NR new radio interface
  • An embodiment of the present disclosure discloses a method for channel estimation, which is applied to a transmitting end, and the method includes:
  • the demodulation reference signal DMRS is sent;
  • the same pilot sequence is obtained; after the signal energy of the same multiple pilot sequences is superimposed, it is used for the wireless transmission channel channel estimation.
  • the comb-shaped resource corresponds to a first code division multiplexing CDM group and at least one second CDM group; wherein, the frequency bands included in the first CDM group and the second CDM group are different;
  • Described on the comb-shaped resource, sending the demodulation reference signal DMRS including:
  • the DMRS is transmitted on the frequency band in the first CDM group; wherein the DMRS is not transmitted on the frequency band of the second CDM group.
  • the method further includes:
  • the notification message indicates that the DMRS is not transmitted on the second CDM group.
  • the method further includes:
  • the mapping manner at least indicates the frequency-domain resource distribution density of the comb-shaped resources; different mapping manners correspond to different frequency-domain resource distribution densities.
  • the frequency-domain resource distribution density of the comb-shaped resource is determined according to the number of times of superposition required for the pilot sequence.
  • the number of times of superposition is negatively correlated with the distribution density of the frequency domain resources.
  • the method further includes:
  • DMRS configuration at least indicates a mapping mode of the DMRS
  • the mapping mode of the DMRS is determined.
  • a method for channel estimation is provided, wherein, applied to a receiving end, the method includes:
  • Channel estimation of the wireless transmission channel is performed according to the superimposed signal energy.
  • the comb-shaped resources correspond to a first code division multiplexing CDM group and at least one second CDM group; wherein, the frequency bands included in the first CDM group and the second CDM group are different;
  • the receiving DMRS on different frequency bands of the comb-shaped resource includes:
  • the DMRSs are respectively received on the frequency bands in the first CDM group; wherein the DMRSs are not transmitted on the frequency bands of the second CDM group.
  • the method further includes:
  • the notification message indicates that the DMRS is not transmitted on the second CDM group.
  • the performing channel estimation of the wireless transmission channel according to the superimposed signal energy includes:
  • the channel estimation impulse response value is obtained by dividing the pilot signal in the frequency domain by the reference pilot signal.
  • the method before dividing the pilot signal in the frequency domain by the reference pilot signal to obtain the channel estimation impulse response value, the method further includes:
  • the time domain position, frequency domain position and/or number of frequency bands in the first CDM group are determined according to the DMRS mapping manner.
  • the mapping manner at least indicates the frequency-domain resource distribution density of the comb-shaped resource; the frequency-domain resource distribution density corresponding to different mapping manners is different.
  • the frequency-domain resource distribution density of the comb-shaped resource is determined according to the number of times of superposition required for the pilot sequence.
  • the number of times of superposition is negatively correlated with the distribution density of the frequency domain resources.
  • the method further includes:
  • an apparatus for channel estimation wherein, when applied to a sending end, the apparatus includes a first sending module, wherein,
  • the first sending module is configured to send a demodulation reference signal DMRS on the comb-shaped resource
  • the same pilot sequence is obtained; after the signal energy of the same multiple pilot sequences is superimposed, it is used for the wireless transmission channel channel estimation.
  • the comb-shaped resources correspond to a first code division multiplexing CDM group and at least one second CDM group; wherein, the frequency bands included in the first CDM group and the second CDM group are different;
  • the first sending module is also configured to:
  • the DMRS is transmitted on the frequency band in the first CDM group; wherein the DMRS is not transmitted on the frequency band of the second CDM group.
  • the first sending module is further configured to:
  • the notification message indicates that the DMRS is not transmitted on the second CDM group.
  • the apparatus further includes a first determination module, wherein the first determination module is further configured to:
  • the first determining module is further configured to: the mapping mode at least indicates the frequency-domain resource distribution density of the comb-shaped resources; different mapping modes correspond to different frequency-domain resource distribution densities .
  • the first determining module is further configured to: the frequency-domain resource distribution density of the comb-shaped resources is determined according to the number of times of superposition required for the pilot sequence.
  • the first determining module is further configured to: the number of times of superposition is negatively correlated with the frequency domain resource distribution density.
  • the apparatus further includes a first receiving module, wherein the first receiving module is configured to:
  • DMRS configuration at least indicates a mapping mode of the DMRS
  • the first determining module is further configured to: determine a mapping manner of the DMRS according to the DMRS configuration.
  • an apparatus for channel estimation wherein, when applied to a receiving end, the apparatus includes a second receiving module, a transformation module, a superposition module, and a channel estimation module, wherein,
  • the second receiving module is configured to: respectively receive DMRS on different frequency bands of the comb-shaped resource;
  • the transformation module is configured to: transform the received DMRS from the frequency domain to the time domain to obtain a pilot signal in the time domain;
  • the superimposing module is configured to: superimpose the signal energy of a plurality of the same pilot signals in the time domain;
  • the channel estimation module is configured to: perform channel estimation of the wireless transmission channel according to the superimposed signal energy.
  • the comb-shaped resources correspond to a first code division multiplexing CDM group and at least one second CDM group; wherein, the frequency bands included in the first CDM group and the second CDM group are different;
  • the second receiving module is also configured to:
  • the DMRSs are respectively received on the frequency bands in the first CDM group; wherein the DMRSs are not transmitted on the frequency bands of the second CDM group.
  • the second receiving module is further configured to:
  • the notification message indicates that the DMRS is not transmitted on the second CDM group.
  • the channel estimation module is further configured to:
  • the channel estimation impulse response value is obtained by dividing the pilot signal in the frequency domain by the reference pilot signal.
  • the apparatus further includes a normalization processing module, wherein,
  • the normalization processing module is configured as:
  • the apparatus further includes a second determination module, the second determination module is configured to: the time domain position, the frequency domain position and/or the number of frequency bands in the first CDM group , which is determined according to the mapping mode of the DMRS.
  • the second determining module is further configured to: the mapping mode at least indicates the frequency-domain resource distribution density of the comb-shaped resource; the frequency-domain resource distribution density corresponding to different mapping modes different.
  • the second determining module is further configured to: the frequency-domain resource distribution density of the comb-shaped resources is determined according to the number of times of superposition required for the pilot sequence.
  • the second determining module is further configured to: the number of times of superposition is negatively correlated with the distribution density of the frequency domain resources.
  • the apparatus further includes a second sending module, wherein the second sending module is configured to:
  • a communication device comprising:
  • a memory for storing the processor-executable instructions
  • the processor is configured to: when executing the executable instructions, implement the method described in any embodiment of the present disclosure.
  • a computer storage medium stores a computer-executable program, and the executable program implements the method described in any embodiment of the present disclosure when the executable program is executed by a processor.
  • a demodulation reference signal is sent on the comb-shaped resource. Since the demodulation reference signal (DMRS) is transmitted on the comb-shaped resource, the demodulation reference signal (DMRS) transmitted on different frequency bands of the comb-shaped resource can be obtained after being transformed into the time domain the same multiple pilot sequences.
  • the technical solution of this embodiment performs channel estimation of the wireless transmission channel after superimposing the signal energy of the same multiple pilot sequences.
  • the solutions provided by the embodiments of the present disclosure reduce the phenomenon of large errors caused by too low signal energy, compared to when only the signal energy of a single pilot sequence can be obtained for channel estimation.
  • the solutions provided by the embodiments of the present disclosure can obtain large pilot frequencies for channel estimation when the signal energy of a single pilot sequence is small due to low transmit power and/or large path loss at the transmitting end.
  • the signal energy of the sequence makes the channel estimation result more accurate and improves the success rate of data demodulation.
  • FIG. 1 is a schematic structural diagram of a wireless communication system.
  • Fig. 2a is a schematic diagram showing a time-frequency domain resource according to an exemplary embodiment.
  • Fig. 2b is a schematic diagram showing a time-frequency domain resource according to an exemplary embodiment.
  • Fig. 3a is a schematic diagram showing a time-frequency domain resource according to an exemplary embodiment.
  • Fig. 3b is a schematic diagram showing a time-frequency domain resource according to an exemplary embodiment.
  • Fig. 4 is a flow chart of a method for channel estimation according to an exemplary embodiment.
  • Fig. 5 is a flow chart of a method for channel estimation according to an exemplary embodiment.
  • Fig. 6 is a flow chart of a method for channel estimation according to an exemplary embodiment.
  • Fig. 7 is a flow chart of a method for channel estimation according to an exemplary embodiment.
  • Fig. 8a is a schematic diagram showing a time-frequency domain resource according to an exemplary embodiment.
  • Fig. 8b is a schematic diagram showing a time-frequency domain resource according to an exemplary embodiment.
  • Fig. 9a is a schematic diagram showing a time-frequency domain resource according to an exemplary embodiment.
  • Fig. 9b is a schematic diagram showing a time-frequency domain resource according to an exemplary embodiment.
  • Fig. 10a is a schematic diagram showing a time-frequency domain resource according to an exemplary embodiment.
  • Fig. 10b is a schematic diagram showing a time-frequency domain resource according to an exemplary embodiment.
  • Fig. 11 is a flow chart of a method for channel estimation according to an exemplary embodiment.
  • Fig. 12 is a flow chart of a method for channel estimation according to an exemplary embodiment.
  • Fig. 13 is a flow chart of a method for channel estimation according to an exemplary embodiment.
  • Fig. 14 is a flowchart showing a method for channel estimation according to an exemplary embodiment.
  • Fig. 15 is a flowchart showing a method for channel estimation according to an exemplary embodiment.
  • Fig. 16 is a flow chart of a method for channel estimation according to an exemplary embodiment.
  • Fig. 17 is a flow chart of a method for channel estimation according to an exemplary embodiment.
  • Fig. 18 is a flow chart of a method for channel estimation according to an exemplary embodiment.
  • Fig. 19 is a schematic diagram of an apparatus for channel estimation according to an exemplary embodiment.
  • Fig. 20 is a schematic diagram of an apparatus for channel estimation according to an exemplary embodiment.
  • Fig. 21 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the terms “greater than” or “less than” are used herein when characterizing the relationship of size. However, those skilled in the art can understand that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of "less than or equal to”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several user equipments 110 and several base stations 120 .
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • User equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN), and user equipment 110 may be IoT user equipment such as sensor devices, mobile phones (or "cellular" phones) ) and a computer with IoT user equipment, for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • RAN Radio Access Network
  • IoT user equipment such as sensor devices, mobile phones (or "cellular" phones)
  • a computer with IoT user equipment for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • station Ses, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote user equipment
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user equipment 110 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless user equipment connected to an external trip computer.
  • the user equipment 110 may also be a roadside device, for example, may be a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as New Radio System or 5G NR System.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the user equipments 110 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above-mentioned user equipment may be regarded as the terminal equipment of the following embodiments.
  • the above wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rule functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 130 is not limited in this embodiment of the present disclosure.
  • the channel estimation process of the channel includes: when the transmitting end sends data, the pilot sequence is interspersed in the data.
  • the data may be user plane data or control plane data.
  • the receiver can calculate and obtain the transmission status of the channel according to the received pilot sequence and the stored pilot sequence sent by the transmitter.
  • the wireless communication system can be assisted to obtain the channel transmission condition of the data part.
  • signal demodulation is performed according to the transmission channel condition, the data content sent by the sender can be obtained.
  • the impulse response of the channel can be obtained by dividing the pilot sequence received by the receiver and the pilot sequence stored by the receiver and sent by the transmitter. This process is called channel estimation.
  • the demodulation reference signal (DMRS, DeModulation Reference Signal) is designed to assist the new air interface (NR) system to obtain a channel estimation value.
  • a New Radio (NR) system supports two demodulation reference signal (DMRS) types.
  • the type of demodulation reference signal (DMRS) used may be configured through higher layer signaling.
  • the high-layer signaling may be Radio Resource Control (RRC, Radio Resource Control) signaling.
  • the demodulation reference signal (DMRS) corresponding to each type of new air interface (NR) may include a single-symbol demodulation reference signal (DMRS) and a dual-symbol demodulation reference signal (DMRS).
  • the single-symbol demodulation reference signal (DMRS) occupies one orthogonal frequency division multiplexing (OFDM, Orthogonal Frequency Division Multiplexing) symbol.
  • a dual-symbol demodulation reference signal (DMRS) occupies two orthogonal frequency division multiplexing (OFDM) symbols.
  • the multiplexing and configuration methods of the two demodulation reference signal (DMRS) types are specifically described as follows:
  • each group of comb resources constitutes a Code Division Multiplexing (CDM, Code Division Multiplexing) group.
  • CDM Code Division Multiplexing
  • OCC Orthogonal Cover Code
  • the dual-symbol demodulation reference signal adds a time-domain Orthogonal Code (OCC) to the single-symbol demodulation reference signal (DMRS) structure.
  • OOCC Orthogonal Code
  • Each group of comb-shaped resources occupies two consecutive Orthogonal Frequency Division Multiplexing (OFDM) symbols, and each Code Division Multiplexing (CDM) group realizes 4 port orthogonality through 4 time-domain Orthogonal Codes (OCC), Therefore, up to 8 orthogonal ports are supported.
  • each code division multiplexing (CDM) group consists of two pairs of adjacent two subcarriers, and two positive Interleaved Code (OCC) supports 2 port multiplexing, so it supports up to 6 ports; see Figure 3b, Dual Symbol Demodulation Reference Signal (DMRS) adds Orthogonal Code (OCC) on the basis of single symbol structure, each A code division multiplexing (CDM) group occupies two consecutive orthogonal frequency division multiplexing (OFDM) symbols, and a maximum of 12 ports are supported in the three code division multiplexing (CDM) groups.
  • CDM code division multiplexing
  • OFDM orthogonal frequency division multiplexing
  • a demodulation reference signal (DMRS) is used to obtain a channel estimation value, and a demodulation reference signal (DMRS) sent by a terminal at the edge of the signal coverage of the cell reaches the base station side or when the signal is in the path between the terminal and the base station
  • DMRS demodulation reference signal
  • a method for channel estimation is provided in this embodiment, which is applied to a transmitting end, and the method includes:
  • Step 41 Send a demodulation reference signal (DMRS) on the comb resource;
  • DMRS demodulation reference signal
  • the same pilot sequence is obtained; after the signal energy of the same multiple pilot sequences is superimposed, it is used for the wireless transmission channel channel estimation.
  • the transmitting end may be a terminal, and the receiving end receiving a demodulation reference signal (DMRS) may be a base station.
  • the transmitting end may be a base station, and the receiving end receiving a demodulation reference signal (DMRS) may be a terminal.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a roadside unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a roadside unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • the base station is an interface device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • the channel estimation of the wireless transmission channel can be a Physical Uplink Control Channel (PUCCH, Physical Uplink Control Channel), a Physical Uplink Shared Channel (PUSCH, Physical Uplink Shared Channel), a Physical Downlink Control Channel (PDCCH, Physical Downlink Control Channel) and a physical uplink Channel estimation of various channels such as Downlink Shared Channel (PDSCH, Physical Downlink Shared CHannel).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared CHannel
  • the sender when the sender sends uplink data to the receiver, the sender needs to send a pilot sequence, so that the receiver can perform channel estimation of the wireless transmission channel according to the received pilot sequence, obtain the channel estimation result, and use the The channel estimation result completes the decoding of the received uplink data.
  • the pilot sequence may be transmitted through a demodulation reference signal (DMRS).
  • the comb resource may be at least one frequency band distributed within the same one or more Orthogonal Frequency Division Multiplexing (OFDM) symbols; different frequency bands have the same subcarrier spacing; each frequency band It can contain one resource element (RE, Resource element) or multiple adjacent resource element REs.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the comb resource is at least one frequency band distributed within an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • each row in FIG. 2a represents a subcarrier
  • each column represents an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • the comb-shaped resources are arranged in the 2nd Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 1st, 3rd, 5th, 7th, 9th and 11th subcarriers, respectively.
  • the demodulation reference signal DMRS may be sent on the 2nd Orthogonal Frequency Division Multiplexing (OFDM) symbol and on the 1st, 3rd, 5th, 7th, 9th and 11th subcarriers. That is, each frequency band corresponds to one resource element (RE), and the comb-shaped resource occupies a total of six resource elements (RE).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the comb resource is at least one frequency band distributed within a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • the plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols may be adjacent Orthogonal Multiplexing (OFDM) symbols in the time domain.
  • the comb-shaped resources are arranged in the 2nd OFDM symbol and the 3rd OFDM symbol and the corresponding subcarriers are the 1st and 3rd OFDM symbols, respectively. , 5, 7, 9 and 11 subcarriers. That is, each frequency band corresponds to 2 resource elements (REs), and the comb-shaped resources occupy 12 resource elements (REs) in total.
  • the comb resources may be divided into multiple code division multiplexing (CDM) groups.
  • the demodulation reference signal (DMRS) may be transmitted on the resources included in a code division multiplexing (CDM) group.
  • the code division multiplexing (CDM) group to which the resource for transmitting the demodulation reference signal (DMRS) among the plurality of code division multiplexing (CDM) groups belongs is the first code division multiplexing (CDM) group.
  • the other code division multiplexing (CDM) groups other than the second code division multiplexing (CDM) group among the plurality of code division multiplexing (CDM) groups are the second code division multiplexing (CDM) groups.
  • the transmitter may choose to transmit a demodulation reference signal (DMRS) on any one of the resources of a code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the comb resources are divided into 2 code division multiplexing (CDM) groups, and the resources of the first code division multiplexing (CDM) group are set at the second orthogonal frequency division
  • the sub-carriers within the multiplexed (OFDM) symbol and the corresponding sub-carriers are the 1st, 3rd, 5th, 7th, 9th and 11th sub-carriers, respectively.
  • the resources of the second Code Division Multiplexing (CDM) group are set in the second Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 2nd, 4th, 6th, 8th, 10th and 12th subcarriers respectively .
  • the transmitting end may choose to send a demodulation reference signal (DMRS) on the resources of the first code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the comb resources are divided into 2 code division multiplexing (CDM) groups, and the resources of the first code division multiplexing (CDM) group are set at the second orthogonal frequency division
  • the subcarriers within the multiplexed (OFDM) symbol and the 3rd Orthogonal Frequency Division Multiplexed (OFDM) symbol and the corresponding subcarriers are the 1st, 3rd, 5th, 7th, 9th and 11th subcarriers, respectively.
  • the resources of the second code division multiplexing (CDM) group are set in the second orthogonal frequency division multiplexing (OFDM) symbol and the third orthogonal frequency division multiplexing (OFDM) symbol and the corresponding subcarriers are respectively The 2nd, 4th, 6th, 8th, 10th and 12th subcarriers.
  • the transmitting end may choose to send a demodulation reference signal (DMRS) on the resources of the second code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the comb resources are divided into 3 code division multiplexing (CDM) groups, and the resources of the first code division multiplexing (CDM) group are set at the second orthogonal frequency division
  • the multiplexed (OFDM) symbols and corresponding sub-carriers are the 1st, 2nd, 7th and 8th sub-carriers, respectively.
  • the resources of the second Code Division Multiplexing (CDM) group are arranged in the third Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 3rd, 4th, 9th and 10th subcarriers, respectively.
  • the resources of the 3rd Code Division Multiplexing (CDM) group are arranged in the 2nd Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 5th, 6th, 11th and 12th subcarriers, respectively.
  • the transmitting end may choose to send a demodulation reference signal (DMRS) on the resources of the third code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the frequency-domain resource distribution density of the comb-shaped resources may be determined according to the requirement of the decoding success rate of the data. Referring to FIG. 2a and FIG. 3a again, the frequency-domain resource distribution density of the comb-shaped resources in FIG. 2a is greater than the frequency-domain resource distribution density of the comb-shaped resources in FIG. 3a.
  • the frequency domain resource distribution density of the comb resources is set to be less than the density threshold.
  • the frequency domain resource distribution density of the comb-shaped resources is set to be greater than the density threshold.
  • the frequency domain resource distribution density can be adapted to the required decoding success rate requirement.
  • the smaller the frequency domain resource distribution density is set the more accurate the channel estimation and the higher the decoding success rate.
  • the frequency-domain resource distribution density of the comb-shaped resources is set to be less than the density threshold; when the required number of identical pilot sequences is less than the number threshold, the comb resources are set
  • the frequency-domain resource distribution density of the state resource is greater than the density threshold.
  • the smaller the frequency-domain resource distribution density is set the greater the number of the same pilot sequences obtained after the demodulation reference signals (DMRS) transmitted in different frequency bands of the comb-shaped resource are transformed into the time domain.
  • DMRS demodulation reference signals
  • the frequency-domain resource distribution density is set to 1/2, the number of identical pilot sequences is 2; when the frequency-domain resource distribution density is set to 1/4, the number of identical pilot sequences is 4.
  • the greater the number of the same pilot sequences the greater the value of the superimposed signal energy of the same multiple pilot sequences, and the more accurate the channel estimation of the wireless transmission channel.
  • the frequency domain resource distribution density of the comb-shaped resources when the number of available subcarriers is greater than the number threshold, the frequency domain resource distribution density of the comb-shaped resources is set to be greater than the density threshold. When the number of available subcarriers is less than the number threshold, the frequency domain resource distribution density of the comb resources is set to be less than the density threshold. In this way, the frequency-domain resource distribution density of the comb-shaped resources can be adapted to the number of available sub-carriers, reducing the impact on data transmission caused by the setting of the frequency-domain distribution density of the comb-shaped resources too large and the small number of sub-carriers used for data transmission. Case.
  • the receiving end can perform multiple channel estimations in the same time period, so that the receiving end can synthesize the results of the multiple channel estimations to decode the data signal within the time period, thereby improving the decoding success rate.
  • synthesizing the results of multiple channel estimations may be averaging the results of multiple channel estimations.
  • the averaging of multiple channel estimation results may be averaging of all channel estimation results, or may be averaging of partial channel estimation results.
  • a demodulation reference signal (DMRS) is sent. Since the demodulation reference signal (DMRS) is transmitted on the comb-shaped resource, the demodulation reference signal (DMRS) transmitted on different frequency bands of the comb-shaped resource can obtain the same multiple pilot sequences after being transformed into the time domain.
  • the received demodulation reference signal (DMRS) is transformed into the time domain through Inverse Fast Fourier Transform (IFFT, Inverse Fast Fourier Transform) to obtain the same multiple pilot sequences.
  • IFFT Inverse Fast Fourier Transform
  • the pilot sequence sent by the demodulation reference signal (DMRS) is "0101", and the transmitting end modulates the pilot sequence and sends it on the subcarriers included in the comb-shaped resource.
  • the receiving end After receiving the demodulation reference signal (DMRS) on each subcarrier, the receiving end performs an inverse fast Fourier transform (IFFT) on the received demodulation reference signal (DMRS). Since there are subcarriers between the subcarriers of the comb resource interval, the result of the Fast Fourier Transform (IFFT) will have multiple identical pilot sequences. For example, when the frequency-domain resource distribution density of the comb resource is 1/2, there will be 2 identical pilot sequences. The frequency sequence is "0101 0101", that is, the pilot sequence "0101" appears twice.
  • superimposing the signal energy of the same multiple identical pilot sequences may be the signal energy a of the first occurrence of the pilot sequence "0101" and the second occurrence of the pilot sequence "0101"
  • the signal energy may refer to received power.
  • the channel estimation may be a correlation operation between the signal energy of the received pilot sequence and the signal energy of the transmitted pilot sequence.
  • a demodulation reference signal is sent on the comb-shaped resource. Since the demodulation reference signal (DMRS) is transmitted on the comb-shaped resource, the demodulation reference signal (DMRS) transmitted on different frequency bands of the comb-shaped resource can be obtained after being transformed into the time domain the same multiple pilot sequences.
  • the technical solution of this embodiment performs channel estimation of the wireless transmission channel after superimposing the signal energy of the same multiple pilot sequences.
  • the solutions provided by the embodiments of the present disclosure reduce the phenomenon of large errors caused by too low signal energy, compared to when only the signal energy of a single pilot sequence can be obtained for channel estimation.
  • the solutions provided by the embodiments of the present disclosure can obtain large pilot frequencies for channel estimation when the signal energy of a single pilot sequence is small due to low transmit power and/or large path loss at the transmitting end.
  • the signal energy of the sequence makes the channel estimation result more accurate and improves the success rate of data demodulation.
  • a method for channel estimation is provided in this embodiment, wherein the comb-shaped resources correspond to a first code division multiplexing (CDM) group and at least one second code division multiplexing (CDM) group; wherein , the frequency bands included in the first code division multiplexing (CDM) group and the second code division multiplexing (CDM) group are different;
  • DMRS demodulation reference signal
  • Step 51 Send a demodulation reference signal (DMRS) on the frequency band in the first code division multiplexing (CDM) group; wherein, the demodulation reference signal (DMRS) is not transmitted on the frequency band of the second code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the code division multiplexing (CDM) group to which the resources for transmitting demodulation reference signals (DMRS) in the multiple code division multiplexing (CDM) groups belong is the first code division multiplexing (CDM) group.
  • the other code division multiplexing (CDM) groups other than the second code division multiplexing (CDM) group among the plurality of code division multiplexing (CDM) groups are the second code division multiplexing (CDM) groups.
  • the first Code Division Multiplexing (CDM) group and the second Code Division Multiplexing (CDM) group comprise at least one frequency band distributed within the same one or more Orthogonal Frequency Division Multiplexing (OFDM) symbols ; different frequency bands have the same subcarrier spacing; each frequency band may contain one resource element (RE, Resource element) or multiple adjacent resource elements (RE).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first Code Division Multiplexing (CDM) group and the second Code Division Multiplexing (CDM) group comprise at least one frequency band distributed within the same Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • the comb resources are divided into 2 code division multiplexing (CDM) groups, which are a first code division multiplexing (CDM) group and a second code division multiplexing (CDM) group, respectively.
  • the resources of the first Code Division Multiplexing (CDM) group are set in the second Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 1st, 3rd, 5th, 7th, 9th and 11th subcarriers, respectively.
  • the resources of the second Code Division Multiplexing (CDM) group are arranged in the second Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 2nd, 4th, 6th, 8th, 10th and 12th subcarriers, respectively.
  • CDM Code Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • a frequency band in a code division multiplexing (CDM) group may be set according to the signal reception quality of the demodulation reference signal (DMRS) when the signal is transmitted on that frequency band.
  • DMRS demodulation reference signal
  • the receiving end requires that the signal reception quality of the demodulation reference signal (DMRS) sent on the frequency band in the first code division multiplexing (CDM) group is higher than that of the signal sent on the frequency band included in the second code division multiplexing (CDM) group.
  • DMRS Signal reception quality of the demodulation reference signal
  • the frequency band in the first code division multiplexing (CDM) group is set as the first frequency band; the frequency band in the second code division multiplexing (CDM) group is set as the second frequency band, wherein the first frequency band is transmitted in the wireless communication environment
  • the signal reception quality of the demodulation reference signal (DMRS) is higher than the signal reception quality of the demodulation reference signal (DMRS) transmitted in the wireless communication environment of the second frequency band.
  • neither demodulation reference signals (DMRS) nor user plane data and/or control plane data are transmitted on the frequency band of the second code division multiplexing (CDM) group.
  • CDM code division multiplexing
  • the comb resources included in the first code division multiplexing (CDM) group are determined according to the frequency domain resource distribution density of the comb resources. For example, there are 12 consecutive subcarriers in total.
  • the first code division multiplexing (CDM) group may include the 1st, 3rd, 5th, 7th, 9th and 11th subcarriers.
  • the frequency-domain resource distribution density of the comb-shaped resources is determined according to the required number of superpositions of the pilot sequences. In one embodiment, the number of times of stacking is greater than the number of times threshold, and the frequency-domain resource distribution density is set to be less than the density threshold.
  • the frequency-domain resource distribution density can be flexibly adjusted according to the number of times of stacking, so that the obtained channel estimation results are more in line with the channel estimation requirements in different channel estimation environments.
  • the greater the number of superpositions the greater the energy of the pilot signal, and the more accurate the channel estimation result.
  • the frequency-domain resource distribution density of the comb-shaped resources is 1/4, the number of repetitions of the pilot sequence is 4 times, and 4 times of superposition can be performed.
  • the comb-shaped resource shown in FIG. 8a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the comb resource shown in Figure 8b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • the frequency-domain resource distribution density of the comb-shaped resource is 1/6, and the number of repetitions of the pilot sequence is 6 times.
  • the comb-shaped resource shown in FIG. 9a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the comb resource shown in Figure 9b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • the frequency-domain resource distribution density of the comb-shaped resources is 1/12, the number of repetitions of the pilot sequence is 12, and 12 superpositions can be performed.
  • the comb-shaped resource shown in FIG. 10a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the comb resource shown in Figure 10b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • the remaining comb resources all belong to the second code division multiplexing (CDM) group.
  • CDM code division multiplexing
  • a method for channel estimation is provided in this embodiment, wherein the method further includes:
  • Step 61 sending a notification message to the receiver
  • the notification message indicates that: no demodulation reference signal (DMRS) is transmitted on the second code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the notification message may be sent to the receiving end in response to the establishment of a radio resource control (RRC) connection between the receiving end and the transmitting end.
  • RRC radio resource control
  • DMRS demodulation reference signal
  • the sending end can determine based on the notification message that the demodulation reference signal (DMRS) is sent on the comb resources included in the first code division multiplexing (CDM) group, and can receive based on the notification message demodulation of the signal.
  • DMRS demodulation reference signal
  • a method for channel estimation is provided in this embodiment, wherein the method further includes:
  • Step 71 Determine the time domain position, frequency domain position and/or number of frequency bands in the first code division multiplexing (CDM) group according to the mapping mode of the demodulation reference signal (DMRS).
  • CDM code division multiplexing
  • the time domain location, frequency domain location and/or number of frequency bands may be the time domain location, frequency domain location and/or number of resource elements (REs).
  • REs resource elements
  • the demodulation reference signals are mapped in different time domain positions and frequency domain positions for transmission in different mapping manners.
  • the mapping manner of the demodulation reference signal may directly indicate the time domain position, frequency domain position and/or number of frequency bands in the first code division multiplexing (CDM) group.
  • the mapping method of the demodulation reference signal may directly indicate that the time domain position in the first code division multiplexing (CDM) group is the position of the second symbol, and the frequency domain position is the first, third, fifth, seventh , 9 and 11 sub-carriers are located and the number is 6.
  • the mapping manner of the demodulation reference signal may directly indicate the frequency domain resource distribution density of the comb-shaped resources in the first code division multiplexing (CDM) group.
  • the receiving end may determine the time domain position, frequency domain position and/or number of frequency bands in the first code division multiplexing (CDM) group according to the frequency domain resource distribution density.
  • the time domain position, frequency domain position and/or number of frequency bands in the first code division multiplexing (CDM) group have a one-to-one mapping relationship with frequency domain resource distribution density.
  • the frequency domain resource distribution density is the first frequency domain resource distribution density
  • the time domain position of the frequency band in the first code division multiplexing (CDM) group is the first time domain position
  • the frequency domain position is the first frequency domain position position and the number is N, where N is a positive integer.
  • the mapping mode indicates at least the frequency-domain resource distribution density of the comb-shaped resources; different mapping modes correspond to different frequency-domain resource distribution densities.
  • FIG. 8a and FIG. 8b which shows a first mapping manner, and the frequency domain resource distribution density of the comb-shaped resources indicated by the first mapping manner is 1/4.
  • the first mapping manner shown in FIG. 8a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the first mapping manner shown in FIG. 8b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • FIG. 9a and FIG. 9b which shows a second mapping manner
  • the frequency-domain resource distribution density of the comb-shaped resources indicated by the second mapping manner is 1/6.
  • the second mapping manner shown in FIG. 9a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the second mapping manner shown in FIG. 9b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • FIG. 10a and FIG. 10b shows a third mapping manner
  • the frequency domain resource distribution density of comb resources indicated by the third mapping manner is 1/12.
  • the third mapping method shown in FIG. 10a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the third mapping method shown in FIG. 10b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • the frequency-domain resource distribution density of the comb-shaped resources is determined according to the required number of superpositions of the pilot sequences. In one embodiment, the number of times of stacking is greater than the number of times threshold, and the frequency-domain resource distribution density is set to be less than the density threshold.
  • the greater the number of superpositions the greater the energy of the pilot signal, and the more accurate the channel estimation result.
  • the number of superimpositions is negatively correlated with the frequency-domain resource distribution density. For example, when the number of times of superposition is N, the frequency domain resource distribution density is 1/N.
  • this embodiment provides a method for channel estimation, wherein the method further includes:
  • Step 111 Receive a radio resource control (RRC) message carrying a demodulation reference signal (DMRS) configuration; wherein, the demodulation reference signal (DMRS) configuration at least indicates a mapping mode of the demodulation reference signal (DMRS);
  • RRC radio resource control
  • Step 112 Determine the mapping mode of the demodulation reference signal (DMRS) according to the demodulation reference signal (DMRS) configuration.
  • the radio resource control (RRC) message is used to send a demodulation reference signal (DMRS) configuration, which improves the compatibility of the radio resource control (RRC) message.
  • DMRS demodulation reference signal
  • the transmitter may receive a radio resource control (RRC) message carrying a demodulation reference signal (DMRS) configuration when a radio resource control (RRC) connection is established between the transmitter and the receiver.
  • RRC radio resource control
  • DMRS demodulation reference signal
  • the system for channel estimation includes a terminal and a base station. As shown in FIG. 12 , a method for channel estimation is provided in this embodiment, wherein the method includes:
  • Step a1 the terminal sends a demodulation reference signal (DMRS) to the base station on the comb-shaped resources in the first code division multiplexing (CDM) group according to the mapping mode of the demodulation reference signal (DMRS). And send a notification message to the receiving end; wherein, the notification message indicates that: no demodulation reference signal (DMRS) is transmitted on the comb-shaped resource in the second code division multiplexing (CDM).
  • DMRS demodulation reference signal
  • CDM code division multiplexing
  • Step a2 The base station processes the data and pilot sequence parts separately in the digital domain, and performs N-point Fast Fourier Transform (FFT, Fast Fourier Transformation) transformation on the data part.
  • FFT Fast Fourier Transform
  • Step a3 After the demodulation reference signal (DMRS) is converted to the time domain through the Inverse Fast Fourier Transform (IFFT, Inverse Fast Fourier Transformation), the signal energy of the same pilot sequence in the time domain is superimposed.
  • DMRS demodulation reference signal
  • IFFT Inverse Fast Fourier Transform
  • Step a4 Perform fast Fourier transform (FFT) transformation on the signal energy of the superimposed pilot sequence to obtain a pilot sequence in the frequency domain.
  • FFT fast Fourier transform
  • energy normalization processing can be performed on the pilot sequence in the frequency domain.
  • Step a5 Divide the pilot sequence transformed into the frequency domain by the local known pilot sequence to obtain the channel estimation impulse response H value.
  • Step a6 After performing noise suppression processing on the obtained H value, the channel estimation value of the data part is obtained through an interpolation algorithm.
  • a method for channel estimation is provided in this embodiment, which is applied to a receiving end, and the method includes:
  • Step 131 Receive demodulation reference signals (DMRS) respectively on different frequency bands of the comb-shaped resource;
  • DMRS Receive demodulation reference signals
  • Step 132 Transform the received demodulation reference signal (DMRS) from the frequency domain to the time domain to obtain a pilot signal in the time domain;
  • DMRS received demodulation reference signal
  • Step 133 superimposing the signal energy of the same multiple pilot signals in the time domain
  • Step 134 Perform channel estimation of the wireless transmission channel according to the superimposed signal energy.
  • the transmitting end may be a terminal, and the receiving end receiving a demodulation reference signal (DMRS) may be a base station.
  • the transmitting end may be a base station, and the receiving end receiving a demodulation reference signal (DMRS) may be a terminal.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a roadside unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a roadside unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • the base station is an interface device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • the channel estimation of the wireless transmission channel may be a Physical Uplink Control Channel (PUCCH, Physical Uplink Control Channel), a Physical Uplink Shared Channel (PUSCH, Physical Uplink Shared Channel), a Physical Downlink Control Channel (PDCCH, Physical Downlink Control Channel) and a physical uplink Channel estimation of various channels such as the Downlink Shared Channel (PDSCH, Physical Downlink Shared CHannel).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared CHannel
  • the sender when the sender sends uplink data to the receiver, the sender needs to send a pilot sequence, so that the receiver can perform channel estimation of the wireless transmission channel according to the received pilot sequence, obtain the channel estimation result, and use the The channel estimation result completes the decoding of the received uplink data.
  • the pilot sequence may be transmitted through a demodulation reference signal (DMRS).
  • the comb resource may be included in at least one frequency band distributed within the same one or more Orthogonal Frequency Division Multiplexing (OFDM) symbols; different said frequency bands have the same subcarrier spacing; each A frequency band may contain one resource element (RE, Resource element) or multiple adjacent resource element REs.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the comb resource is at least one frequency band distributed within an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • each row in FIG. 2a represents a subcarrier
  • each column represents an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • the comb-shaped resources are arranged in the 2nd Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 1st, 3rd, 5th, 7th, 9th and 11th subcarriers, respectively.
  • the demodulation reference signal DMRS may be sent on the 2nd Orthogonal Frequency Division Multiplexing (OFDM) symbol and on the 1st, 3rd, 5th, 7th, 9th and 11th subcarriers. That is, each frequency band corresponds to one resource element (RE), and the comb-shaped resource occupies a total of six resource elements (RE).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the comb resource is at least one frequency band distributed within a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • the plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols may be adjacent Orthogonal Multiplexing (OFDM) symbols in the time domain.
  • the comb-shaped resources are arranged in the 2nd OFDM symbol and the 3rd OFDM symbol and the corresponding subcarriers are the 1st and 3rd OFDM symbols, respectively. , 5, 7, 9 and 11 subcarriers. That is, each frequency band corresponds to 2 resource elements (REs), and the comb-shaped resources occupy 12 resource elements (REs) in total.
  • the comb resources may be divided into multiple code division multiplexing (CDM) groups.
  • the demodulation reference signal (DMRS) may be transmitted on the resources included in a code division multiplexing (CDM) group.
  • the code division multiplexing (CDM) group to which the resource for transmitting the demodulation reference signal (DMRS) in the multiple code division multiplexing (CDM) groups belongs is the first code division multiplexing (CDM) group.
  • the other code division multiplexing (CDM) groups except the second code division multiplexing (CDM) group among the plurality of code division multiplexing (CDM) groups are the second code division multiplexing (CDM) groups.
  • the transmitter may choose to transmit a demodulation reference signal (DMRS) on any one of the resources of a code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the comb resources are divided into 2 code division multiplexing (CDM) groups, and the resources of the first code division multiplexing (CDM) group are set at the second orthogonal frequency division
  • the sub-carriers within the multiplexed (OFDM) symbol and the corresponding sub-carriers are the 1st, 3rd, 5th, 7th, 9th and 11th sub-carriers, respectively.
  • the resources of the second Code Division Multiplexing (CDM) group are set in the second Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 2nd, 4th, 6th, 8th, 10th and 12th subcarriers respectively .
  • the transmitting end may choose to send a demodulation reference signal (DMRS) on the resources of the first code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the comb resources are divided into 2 code division multiplexing (CDM) groups, and the resources of the first code division multiplexing (CDM) group are set at the second orthogonal frequency division
  • the subcarriers within the multiplexed (OFDM) symbol and the 3rd Orthogonal Frequency Division Multiplexed (OFDM) symbol and the corresponding subcarriers are the 1st, 3rd, 5th, 7th, 9th and 11th subcarriers, respectively.
  • the resources of the second code division multiplexing (CDM) group are set in the second orthogonal frequency division multiplexing (OFDM) symbol and the third orthogonal frequency division multiplexing (OFDM) symbol and the corresponding subcarriers are respectively The 2nd, 4th, 6th, 8th, 10th and 12th subcarriers.
  • the transmitting end may choose to send a demodulation reference signal (DMRS) on the resources of the second code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the comb resources are divided into 3 code division multiplexing (CDM) groups, and the resources of the first code division multiplexing (CDM) group are set at the second orthogonal frequency division
  • the multiplexed (OFDM) symbols and corresponding sub-carriers are the 1st, 2nd, 7th and 8th sub-carriers, respectively.
  • the resources of the second Code Division Multiplexing (CDM) group are arranged in the third Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 3rd, 4th, 9th and 10th subcarriers, respectively.
  • the resources of the 3rd Code Division Multiplexing (CDM) group are arranged in the 2nd Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 5th, 6th, 11th and 12th subcarriers, respectively.
  • the transmitting end may choose to send a demodulation reference signal (DMRS) on the resources of the third code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the frequency-domain resource distribution density of the comb-shaped resources may be determined according to the requirement of the decoding success rate of the data. Referring to FIG. 2a and FIG. 3a again, the frequency-domain resource distribution density of the comb-shaped resources in FIG. 2a is greater than the frequency-domain resource distribution density of the comb-shaped resources in FIG. 3a. In one embodiment, when the required decoding success rate of the data is greater than the decoding threshold, the frequency domain resource distribution density of the comb resources is set to be less than the density threshold. When the required decoding success rate of the data is less than the decoding threshold, the frequency domain resource distribution density of the comb-shaped resources is set to be greater than the density threshold.
  • the frequency domain resource distribution density can be adapted to the required decoding success rate requirement.
  • the smaller the frequency domain resource distribution density is set the more accurate the channel estimation and the higher the decoding success rate.
  • the frequency-domain resource distribution density of the comb-shaped resources when the required quantity of identical pilot sequences is greater than the quantity threshold, set the frequency-domain resource distribution density of the comb-shaped resources to be less than the density threshold; when the required quantity of identical pilot sequences is less than the quantity threshold, set the comb The frequency-domain resource distribution density of the state resource is greater than the density threshold.
  • the smaller the frequency-domain resource distribution density is set the greater the number of the same pilot sequences obtained after the demodulation reference signals (DMRS) transmitted in different frequency bands of the comb-shaped resource are transformed into the time domain.
  • the frequency-domain resource distribution density is set to 1/2, the number of identical pilot sequences is 2; when the frequency-domain resource distribution density is set to 1/4, the number of identical pilot sequences is 4.
  • the greater the number of the same pilot sequences the greater the value of the superimposed signal energy of the same multiple pilot sequences, and the more accurate the channel estimation of the wireless transmission channel.
  • the frequency domain resource distribution density of the comb-shaped resources when the number of available subcarriers is greater than the number threshold, the frequency domain resource distribution density of the comb-shaped resources is set to be greater than the density threshold. When the number of available subcarriers is less than the number threshold, the frequency domain resource distribution density of the comb resources is set to be less than the density threshold. In this way, the frequency-domain resource distribution density of the comb-shaped resources can be adapted to the number of available sub-carriers, reducing the impact on data transmission caused by the setting of the frequency-domain distribution density of the comb-shaped resources being too large and the small number of sub-carriers used for data transmission. Case.
  • the receiving end may perform multiple channel estimations in the same time period, so that the receiving end may synthesize the results of the multiple channel estimations to decode the data signal within the time period, thereby improving the decoding success rate.
  • synthesizing the results of multiple channel estimations may be averaging the results of multiple channel estimations.
  • the averaging of multiple channel estimation results may be averaging of all channel estimation results, or may be averaging of partial channel estimation results.
  • the received demodulation reference signal (DMRS) is transformed into the time domain through Inverse Fast Fourier Transform (IFFT, Inverse Fast Fourier Transform) to obtain the same multiple pilot sequences.
  • IFFT Inverse Fast Fourier Transform
  • the pilot sequence sent by the demodulation reference signal (DMRS) is "0101", and the transmitting end modulates the pilot sequence and sends it on the subcarriers included in the comb-shaped resource.
  • the receiving end After receiving the demodulation reference signal (DMRS) on each subcarrier, the receiving end performs an inverse fast Fourier transform (IFFT) on the received demodulation reference signal (DMRS). Since there are subcarriers between the subcarriers of the comb resource interval, the result of the Fast Fourier Transform (IFFT) will have multiple identical pilot sequences. For example, when the frequency-domain resource distribution density of the comb resource is 1/2, there will be 2 identical pilot sequences. The frequency sequence is "0101 0101", that is, the pilot sequence "0101" appears twice.
  • superimposing the signal energy of the same multiple identical pilot sequences may be the signal energy a of the first occurrence of the pilot sequence "0101" and the second occurrence of the pilot sequence "0101"
  • the signal energy may refer to received power.
  • the channel estimation may be a correlation operation between the signal energy of the received pilot sequence and the signal energy of the transmitted pilot sequence.
  • the channel estimation of the wireless transmission channel is performed after superimposing the signal energy of the same multiple pilot sequences.
  • the solutions provided by the embodiments of the present disclosure reduce the phenomenon of large errors caused by too low signal energy, compared to when only the signal energy of a single pilot sequence can be obtained for channel estimation.
  • the solutions provided by the embodiments of the present disclosure can obtain large pilot frequencies for channel estimation when the signal energy of a single pilot sequence is small due to low transmit power and/or large path loss at the transmitting end. The signal energy of the sequence makes the channel estimation result more accurate and improves the success rate of data demodulation.
  • a method for channel estimation is provided in this embodiment, wherein the comb-shaped resources correspond to a first code division multiplexing (CDM) group and a second code division multiplexing (CDM) group;
  • the frequency bands included in a code division multiplexing (CDM) group and the second code division multiplexing (CDM) group are different;
  • step 131 on different frequency bands of the comb-shaped resource, respectively receive demodulation reference signals (DMRS), including:
  • Step 141 Receive demodulation reference signals (DMRS) respectively on the frequency bands in the first code division multiplexing (CDM) group; wherein, no demodulation reference signals are transmitted on the frequency bands of the second code division multiplexing (CDM) group (DMRS).
  • DMRS demodulation reference signals
  • the code division multiplexing (CDM) group to which the resources for transmitting demodulation reference signals (DMRS) in the multiple code division multiplexing (CDM) groups belong is the first code division multiplexing (CDM) group.
  • the other code division multiplexing (CDM) groups other than the second code division multiplexing (CDM) group among the plurality of code division multiplexing (CDM) groups are the second code division multiplexing (CDM) groups.
  • the first Code Division Multiplexing (CDM) group and the second Code Division Multiplexing (CDM) group comprise at least one frequency band distributed within the same one or more Orthogonal Frequency Division Multiplexing (OFDM) symbols ; different frequency bands have the same subcarrier spacing; each frequency band may contain one resource element (RE, Resource element) or multiple adjacent resource elements (RE).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first Code Division Multiplexing (CDM) group and the second Code Division Multiplexing (CDM) group comprise at least one frequency band distributed within the same Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • the comb resources are divided into 2 code division multiplexing (CDM) groups, which are a first code division multiplexing (CDM) group and a second code division multiplexing (CDM) group, respectively.
  • the resources of the first Code Division Multiplexing (CDM) group are set in the second Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 1st, 3rd, 5th, 7th, 9th and 11th subcarriers, respectively.
  • the resources of the second Code Division Multiplexing (CDM) group are arranged in the second Orthogonal Frequency Division Multiplexing (OFDM) symbol and the corresponding subcarriers are the 2nd, 4th, 6th, 8th, 10th and 12th subcarriers, respectively.
  • CDM Code Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • a frequency band in a code division multiplexing (CDM) group may be set according to the signal reception quality of the demodulation reference signal (DMRS) when the signal is transmitted on that frequency band.
  • DMRS demodulation reference signal
  • the receiving end requires that the signal reception quality of the demodulation reference signal (DMRS) sent on the frequency band in the first code division multiplexing (CDM) group is higher than that of the signal sent on the frequency band included in the second code division multiplexing (CDM) group.
  • DMRS Signal reception quality of the demodulation reference signal
  • the frequency band in the first code division multiplexing (CDM) group is set as the first frequency band; the frequency band in the second code division multiplexing (CDM) group is set as the second frequency band, wherein the first frequency band is transmitted in the wireless communication environment
  • the signal reception quality of the demodulation reference signal (DMRS) is higher than the signal reception quality of the demodulation reference signal (DMRS) transmitted in the wireless communication environment of the second frequency band.
  • neither demodulation reference signals (DMRS) nor user plane data and/or control plane data are transmitted on the frequency band of the second code division multiplexing (CDM) group.
  • CDM code division multiplexing
  • the comb resources included in the first code division multiplexing (CDM) group are determined according to the frequency domain resource distribution density of the comb resources. For example, there are 12 consecutive subcarriers in total.
  • the first code division multiplexing (CDM) group may include the 1st, 3rd, 5th, 7th, 9th and 11th subcarriers.
  • the frequency-domain resource distribution density of the comb-shaped resources is determined according to the required number of superpositions of the pilot sequences. In one embodiment, the number of times of stacking is greater than the number of times threshold, and the frequency-domain resource distribution density is set to be less than the density threshold.
  • the frequency-domain resource distribution density can be flexibly adjusted according to the number of times of stacking, so that the obtained channel estimation results are more in line with the channel estimation requirements in different channel estimation environments.
  • the greater the number of superpositions the greater the energy of the pilot signal, and the more accurate the channel estimation result.
  • the frequency-domain resource distribution density of the comb-shaped resources is 1/4, the number of repetitions of the pilot sequence is 4 times, and 4 times of superposition can be performed.
  • the comb-shaped resource shown in FIG. 8a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the comb resource shown in Figure 8b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • the frequency-domain resource distribution density of the comb-shaped resource is 1/6, and the number of repetitions of the pilot sequence is 6 times.
  • the comb-shaped resource shown in FIG. 9a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the comb resource shown in Figure 9b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • the frequency-domain resource distribution density of the comb-shaped resources is 1/12, the number of repetitions of the pilot sequence is 12, and 12 superpositions can be performed.
  • the comb-shaped resource shown in FIG. 10a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the comb resource shown in Figure 10b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • the remaining comb resources all belong to the second code division multiplexing (CDM) group.
  • CDM code division multiplexing
  • a method for channel estimation is provided in this embodiment, wherein the method further includes:
  • Step 151 Receive a notification message sent by the receiver
  • the notification message indicates that: no demodulation reference signal (DMRS) is transmitted on the second code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the notification message sent by the sender may be received in response to the establishment of a radio resource control (RRC) connection between the receiver and the sender.
  • RRC radio resource control
  • DMRS demodulation reference signal
  • the sending end can determine based on the notification message that the demodulation reference signal (DMRS) is sent on the comb resources included in the first code division multiplexing (CDM) group, and can receive based on the notification message demodulation of the signal.
  • DMRS demodulation reference signal
  • step 134 channel estimation of the wireless transmission channel is performed according to the superimposed signal energy, including:
  • Step 161 Transform the superimposed signal energy from the time domain to the frequency domain to obtain a pilot signal in the frequency domain;
  • Step 162 Divide the pilot signal in the frequency domain by the reference pilot signal to obtain a channel estimation impulse response value.
  • the signal energy of the superimposed pilot sequence may be subjected to Fast Fourier Transform (FFT) to obtain the signal energy of the pilot sequence in the frequency domain.
  • FFT Fast Fourier Transform
  • the reference pilot signal may be a locally pre-stored pilot sequence sent by the transmitter.
  • the pilot sequence transformed into the frequency domain is divided by the locally stored pilot sequence to obtain the channel estimation impulse response H value.
  • the channel estimation value of the data part is obtained through an interpolation algorithm.
  • this embodiment provides a method for channel estimation, wherein, in step 132, before dividing the pilot signal in the frequency domain and the reference pilot signal to obtain the channel estimation impulse response value, further include:
  • Step 171 Normalize the signal energy of the pilot signal in the frequency domain to obtain a pilot signal in the frequency domain within the numerical range.
  • the numerical range may be predetermined.
  • the time domain position, frequency domain position and/or number of frequency bands in the first code division multiplexing (CDM) group are determined according to the mapping manner of demodulation reference signals (DMRS).
  • DMRS demodulation reference signals
  • the time domain location, frequency domain location and/or number of frequency bands may be the time domain location, frequency domain location and/or number of resource elements (REs).
  • REs resource elements
  • the demodulation reference signals are mapped in different time domain positions and frequency domain positions for transmission in different mapping manners.
  • the mapping manner of the demodulation reference signal may directly indicate the time domain position, frequency domain position and/or number of frequency bands in the first code division multiplexing (CDM) group.
  • the mapping method of the demodulation reference signal may directly indicate that the time domain position in the first code division multiplexing (CDM) group is the position of the second symbol, and the frequency domain position is the first, third, fifth, seventh , 9 and 11 sub-carriers are located and the number is 6.
  • the mapping manner of the demodulation reference signal may directly indicate the frequency domain resource distribution density of the comb-shaped resources in the first code division multiplexing (CDM) group.
  • the receiving end may determine the time domain position, frequency domain position and/or number of frequency bands in the first code division multiplexing (CDM) group according to the frequency domain resource distribution density.
  • the time domain position, frequency domain position and/or number of frequency bands in the first code division multiplexing (CDM) group have a one-to-one mapping relationship with frequency domain resource distribution density.
  • the frequency domain resource distribution density is the first frequency domain resource distribution density
  • the time domain position of the frequency band in the first code division multiplexing (CDM) group is the first time domain position
  • the frequency domain position is the first frequency domain position position and the number is N, where N is a positive integer.
  • the mapping mode indicates at least the frequency-domain resource distribution density of the comb-shaped resources; different mapping modes correspond to different frequency-domain resource distribution densities.
  • a first mapping manner is shown, and the frequency-domain resource distribution density of the comb-shaped resources indicated by the first mapping manner is 1/4.
  • the first mapping manner shown in FIG. 8a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the first mapping manner shown in FIG. 8b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • a second mapping manner is shown, and the frequency-domain resource distribution density of the comb-shaped resources indicated by the second mapping manner is 1/6.
  • the second mapping manner shown in FIG. 9a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the second mapping manner shown in FIG. 9b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • a third mapping manner is shown, and the frequency domain resource distribution density of comb-shaped resources indicated by the third mapping manner is 1/12.
  • the third mapping method shown in FIG. 10a is used to transmit a single-symbol demodulation reference signal (DMRS).
  • the third mapping method shown in FIG. 10b is used to transmit a dual-symbol demodulation reference signal (DMRS).
  • the frequency-domain resource distribution density of the comb-shaped resources is determined according to the required number of superpositions of the pilot sequences. In one embodiment, the number of times of stacking is greater than the number of times threshold, and the frequency-domain resource distribution density is set to be less than the density threshold.
  • the greater the number of superpositions the greater the energy of the pilot signal, and the more accurate the channel estimation result.
  • the number of superimpositions is negatively correlated with the frequency-domain resource distribution density. For example, when the number of times of superposition is N, the frequency domain resource distribution density is 1/N.
  • this embodiment provides a method for channel estimation, wherein the method further includes:
  • Step 181 Send a radio resource control (RRC) message carrying a demodulation reference signal (DMRS) configuration, wherein the demodulation reference signal (DMRS) configuration indicates a mapping mode of the demodulation reference signal (DMRS).
  • RRC radio resource control
  • the radio resource control (RRC) message is used to send a demodulation reference signal (DMRS) configuration, which improves the compatibility of the radio resource control (RRC) message.
  • DMRS demodulation reference signal
  • a radio resource control (RRC) message carrying a demodulation reference signal (DMRS) configuration may be sent when the transmitter and the receiver establish a radio resource control (RRC) connection.
  • RRC radio resource control
  • an apparatus for channel estimation is provided in this embodiment, wherein, when applied to a sending end, the apparatus includes a first sending module 191, wherein:
  • the first sending module 191 is configured to send a demodulation reference signal (DMRS) on the comb-shaped resource;
  • DMRS demodulation reference signal
  • the same pilot sequence is obtained; after the signal energy of the same multiple pilot sequences is superimposed, it is used for the wireless transmission channel channel estimation.
  • the comb resources correspond to a first code division multiplexing (CDM) group and a second code division multiplexing (CDM) group; wherein the first code division multiplexing (CDM) group and the second code division multiplexing (CDM) group
  • the frequency bands included in the multiplexing (CDM) group are different;
  • the first sending module 191 is further configured to:
  • a demodulation reference signal On the frequency band in the first code division multiplexing (CDM) group, a demodulation reference signal (DMRS) is transmitted; wherein, no demodulation reference signal (DMRS) is transmitted on the frequency band in the second code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the first sending module 191 is further configured to:
  • the notification message indicates that: no demodulation reference signal (DMRS) is transmitted on the second code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the apparatus further includes a first determination module 192, wherein the first determination module 192 is further configured to:
  • the mapping manner of the demodulation reference signal (DMRS), the time domain position, the frequency domain position and/or the number of the frequency bands in the first code division multiplexing (CDM) group are determined.
  • the first determining module 192 is further configured to: the mapping mode at least indicates the frequency-domain resource distribution density of the comb-shaped resources; different mapping modes correspond to different frequency-domain resource distribution densities.
  • the first determining module 192 is further configured to: the frequency-domain resource distribution density of the comb-shaped resource is determined according to the number of times of superposition required for the pilot sequence.
  • the first determining module 192 is further configured to: the number of superimpositions is negatively correlated with the frequency-domain resource distribution density.
  • the apparatus further includes a first receiving module 193, wherein the first receiving module 193 is configured to:
  • DMRS demodulation reference signal
  • the first determining module 192 is further configured to: determine a demodulation reference signal (DMRS) mapping manner according to the demodulation reference signal (DMRS) configuration.
  • DMRS demodulation reference signal
  • this embodiment provides an apparatus for channel estimation, wherein, when applied to a receiving end, the apparatus includes a second receiving module 201, a transformation module 202, a superposition module 203, and a channel estimation module 204, wherein,
  • the second receiving module 201 is configured to: respectively receive demodulation reference signals (DMRS) on different frequency bands of the comb resource;
  • DMRS demodulation reference signals
  • the transformation module 202 is configured to: transform the received demodulation reference signal (DMRS) from the frequency domain to the time domain to obtain a pilot signal in the time domain;
  • DMRS received demodulation reference signal
  • the superposition module 203 is configured to: superimpose the signal energy of the same multiple pilot signals in the time domain;
  • the channel estimation module 204 is configured to: perform channel estimation of the wireless transmission channel according to the superimposed signal energy.
  • the comb resources correspond to a first code division multiplexing (CDM) group and a second code division multiplexing (CDM) group; wherein the first code division multiplexing (CDM) group and the second code division multiplexing (CDM) group
  • the frequency bands included in the multiplexing (CDM) group are different;
  • the second receiving module 201 is further configured to:
  • demodulation reference signals On the frequency bands in the first code division multiplexing (CDM) group, demodulation reference signals (DMRS) are respectively received; wherein, no demodulation reference signals (DMRS) are transmitted on the frequency bands in the second code division multiplexing (CDM) group .
  • the second receiving module 201 is further configured to:
  • the notification message indicates that: no demodulation reference signal (DMRS) is transmitted on the second code division multiplexing (CDM) group.
  • DMRS demodulation reference signal
  • the channel estimation module 204 is further configured to:
  • the channel estimation impulse response value is obtained by dividing the pilot signal in the frequency domain with the reference pilot signal.
  • the apparatus further includes a normalization processing module 205, wherein,
  • the normalization processing module 205 is configured to:
  • the signal energy of the pilot signal in the frequency domain is normalized to obtain the pilot signal in the frequency domain within the numerical range.
  • the apparatus further includes a second determination module 206 configured to: time domain positions, frequency domain positions and/or numbers of frequency bands in the first code division multiplexing (CDM) group , which is determined according to the mapping method of the demodulation reference signal (DMRS).
  • CDM code division multiplexing
  • the second determining module 206 is further configured to: the mapping mode at least indicates the frequency-domain resource distribution density of the comb-shaped resources; the frequency-domain resource distribution densities corresponding to different mapping modes are different.
  • the second determining module 206 is further configured to: the frequency-domain resource distribution density of the comb-shaped resource is determined according to the number of times of superposition required for the pilot sequence.
  • the second determining module 206 is further configured to: the number of superimpositions is negatively correlated with the frequency domain resource distribution density.
  • the apparatus further includes a second sending module 207, wherein the second sending module 207 is configured to:
  • a radio resource control (RRC) message carrying a demodulation reference signal (DMRS) configuration is sent; wherein, the demodulation reference signal (DMRS) configuration indicates the mapping mode of the demodulation reference signal (DMRS).
  • RRC radio resource control
  • Embodiments of the present disclosure provide a communication device, the communication device includes:
  • memory for storing processor-executable instructions
  • the processor is configured to, when executing the executable instructions, implement the method applied to any embodiment of the present disclosure.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize and store information on the communication device after the power is turned off.
  • the processor can be connected to the memory through a bus or the like, and is used to read the executable program stored on the memory.
  • An embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, the method of any embodiment of the present disclosure is implemented.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource, represented by memory 932, for storing instructions executable by the processing component 922, such as application programs.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the base station.
  • the base station 900 may also include a power supply assembly 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to a network, and an input output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种信道估计的方法,其中,应用于发送端,所述方法,包括:在梳状资源上,发送解调参考信号(DMRS);其中,在梳状资源的不同频带上传输的解调参考信号(DMRS)变换到时域后,得到相同的导频序列;相同的多个导频序列的信号能量叠加后,用于无线传输信道的信道估计。

Description

信道估计的方法、装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种信道估计的方法、装置、通信设备及存储介质。
背景技术
由于无线信号覆盖会直接影响到无线通信的服务质量和运营成本。运营商在将蜂窝网络商业化时,无线信号覆盖是考虑的关键因素之一。与长期演进(LTE,Long Term Evolution)网络相比,新空口(NR,New Radio)网络的工作频率要高得多,例如,频段2(FR2,Frequency 2)的28GHz或39GHz。且许多国家正在为频段1(FR1,Frequency1)提供更多的频段,比如3.5GHz,新空口(NR)网路通常比长期演进LTE网络或3G网络的工作频率更高。由于采用更高的工作频率,无线信道将不可避免地出现更高的路径损耗,更高的路径损耗导致无线信号覆盖变差,无线通信的服务质量无法得到保证。
发明内容
本公开实施例公开了一种信道估计的方法,其中,应用于发送端,所述方法,包括:
在梳状资源上,发送解调参考信号DMRS;
其中,在所述梳状资源的不同频带上传输的所述DMRS变换到时域后,得到相同的导频序列;相同的多个所述导频序列的信号能量叠加后,用于无线传输信道的信道估计。
在一个实施例中,所述梳状资源对应于第一码分复用CDM组和至少一 个第二CDM组;其中,所述第一CDM组和所述第二CDM组所包含的频带不同;
所述在梳状资源上,发送解调参考信号DMRS,包括:
在所述第一CDM组中的频带上,发送所述DMRS;其中,所述第二CDM组的频带上不传输所述DMRS。
在一个实施例中,所述方法,还包括:
向接收端发送通知消息;
其中,所述通知消息,指示:所述第二CDM组上不传输所述DMRS。
在一个实施例中,所述方法,还包括:
根据所述DMRS的映射方式,确定所述第一CDM组中的频带的时域位置、频域位置和/或数量。
在一个实施例中,所述映射方式,至少指示所述梳状资源的频域资源分布密度;不同的映射方式对应所述频域资源分布密度不同。
在一个实施例中,所述梳状资源的频域资源分布密度是根据所述导频序列所需的叠加次数确定的。
在一个实施例中,所述叠加次数与所述频域资源分布密度负相关。
在一个实施例中,所述方法,还包括:
接收携带DMRS配置的无线资源控制RRC消息;其中,所述DMRS配置,至少指示所述DMRS的映射方式;
根据所述DMRS配置,确定所述DMRS的映射方式。
根据本公开实施例的第二方面,提供一种信道估计的方法,其中,应用于接收端,所述方法,包括:
在梳状资源的不同频带上,分别接收DMRS;
将接收的所述DMRS从频域变换到时域,得到时域的导频信号;
叠加时域内相同的多个所述导频信号的信号能量;
根据叠加后的所述信号能量,进行无线传输信道的信道估计。
在一个实施例中,所述梳状资源对应于第一码分复用CDM组和至少一个第二CDM组;其中,所述第一CDM组和所述第二CDM组所包含的频带不同;
所述在梳状资源的不同频带上,分别接收DMRS,包括:
在所述第一CDM组中的频带上,分别接收所述DMRS;其中,所述第二CDM组的频带上不传输所述DMRS。
在一个实施例中,所述方法,还包括:
接收接收端发送的通知消息;
其中,所述通知消息,指示:所述第二CDM组上不传输所述DMRS。
在一个实施例中,所述根据叠加后的所述信号能量,进行无线传输信道的信道估计,包括:
将叠加后的所述信号能量从时域变换到频域,获得频域的导频信号;
将所述频域的导频信号与参考的导频信号相除,获得信道估计冲击响应值。
在一个实施例中,所述在将所述频域的导频信号与参考的导频信号相除,获得信道估计冲击响应值之前,还包括:
对所述频域的导频信号进行信号能量的归一化处理,获得在数值范围内的所述频域的导频信号。
在一个实施例中,所述所述第一CDM组中的频带的时域位置、频域位置和/或数量,是根据所述DMRS的映射方式确定的。
在一个实施例中,所述映射方式,至少指示所述梳状资源的频域资源分布密度;不同的映射方式对应的所述频域资源分布密度不同。
在一个实施例中,所述梳状资源的频域资源分布密度是根据所述导频序列所需的叠加次数确定的。
在一个实施例中,所述叠加次数与所述频域资源分布密度负相关。
在一个实施例中,所述方法,还包括:
发送携带DMRS配置的无线资源控制RRC消息;其中,所述DMRS配置,指示所述DMRS的映射方式。
根据本公开实施例的第三方面,提供一种信道估计的装置,其中,应用于发送端,所述装置包括第一发送模块,其中,
所述第一发送模块,被配置为在梳状资源上,发送解调参考信号DMRS;
其中,在所述梳状资源的不同频带上传输的所述DMRS变换到时域后,得到相同的导频序列;相同的多个所述导频序列的信号能量叠加后,用于无线传输信道的信道估计。
在一个实施例中,所述梳状资源对应于第一码分复用CDM组和至少一个第二CDM组;其中,所述第一CDM组和所述第二CDM组所包含的频带不同;
所述第一发送模块,还被配置为:
在所述第一CDM组中的频带上,发送所述DMRS;其中,所述第二CDM组的频带上不传输所述DMRS。
在一个实施例中,所述第一发送模块,还被配置为:
向接收端发送通知消息;
其中,所述通知消息,指示:所述第二CDM组上不传输所述DMRS。
在一个实施例中,所述装置还包括第一确定模块,其中,所述第一确定模块,还被配置为:
根据所述DMRS的映射方式,确定所述第一CDM组中的频带的时域位置、频域位置和/或数量。
在一个实施例中,所述第一确定模块,还被配置为:所述映射方式,至少指示所述梳状资源的频域资源分布密度;不同的映射方式对应所述频域资源分布密度不同。
在一个实施例中,所述第一确定模块,还被配置为:所述梳状资源的 频域资源分布密度是根据所述导频序列所需的叠加次数确定的。
在一个实施例中,所述第一确定模块,还被配置为:所述叠加次数与所述频域资源分布密度负相关。
在一个实施例中,所述装置还包括第一接收模块,其中,所述第一接收模块,被配置为:
接收携带DMRS配置的无线资源控制RRC消息;其中,所述DMRS配置,至少指示所述DMRS的映射方式;
所述第一确定模块,还被配置为:根据所述DMRS配置,确定所述DMRS的映射方式。
根据本公开实施例的第四方面,提供一种信道估计的装置,其中,应用于接收端,所述装置包括第二接收模块、变换模块、叠加模块和信道估计模块,其中,
所述第二接收模块,被配置为:在梳状资源的不同频带上,分别接收DMRS;
所述变换模块,被配置为:将接收的所述DMRS从频域变换到时域,得到时域的导频信号;
所述叠加模块,被配置为:叠加时域内相同的多个所述导频信号的信号能量;
所述信道估计模块,被配置为:根据叠加后的所述信号能量,进行无线传输信道的信道估计。
在一个实施例中,所述梳状资源对应于第一码分复用CDM组和至少一个第二CDM组;其中,所述第一CDM组和所述第二CDM组所包含的频带不同;
所述第二接收模块,还被配置为:
在所述第一CDM组中的频带上,分别接收所述DMRS;其中,所述第二CDM组的频带上不传输所述DMRS。
在一个实施例中,所述第二接收模块,还被配置为:
接收接收端发送的通知消息;
其中,所述通知消息,指示:所述第二CDM组上不传输所述DMRS。
在一个实施例中,所述信道估计模块,还被配置为:
将叠加后的所述信号能量从时域变换到频域,获得频域的导频信号;
将所述频域的导频信号与参考的导频信号相除,获得信道估计冲击响应值。
在一个实施例中,所述装置还包括归一化处理模块,其中,
所述归一化处理模块,被配置为:
对所述频域的导频信号进行信号能量的归一化处理,获得在数值范围内的所述频域的导频信号。
在一个实施例中,所述装置还包括第二确定模块,所述第二确定模块,被配置为:所述所述第一CDM组中的频带的时域位置、频域位置和/或数量,是根据所述DMRS的映射方式确定的。
在一个实施例中,所述第二确定模块,还被配置为:所述映射方式,至少指示所述梳状资源的频域资源分布密度;不同的映射方式对应的所述频域资源分布密度不同。
在一个实施例中,所述第二确定模块,还被配置为:所述梳状资源的频域资源分布密度是根据所述导频序列所需的叠加次数确定的。
在一个实施例中,所述第二确定模块,还被配置为:所述叠加次数与所述频域资源分布密度负相关。
在一个实施例中,所述装置还包括第二发送模块,其中,所述第二发送模块,被配置为:
发送携带DMRS配置的无线资源控制RRC消息;其中,所述DMRS配置,指示所述DMRS的映射方式。
根据本公开实施例的第五方面,提供一种通信设备,所述通信设备, 包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第六方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
本公开实施例中,在梳状资源上,发送解调参考信号(DMRS)。由于所述解调参考信号(DMRS)是在所述梳状资源上发送的,在所述梳状资源的不同频带上传输的所述解调参考信号(DMRS)在变换到时域后能够获得相同的多个导频序列。本实施例技术方案将所述相同的多个导频序列的信号能量叠加后进行无线传输信道的信道估计。一方面,本公开实施例提供的方案,相较于只能获得单个导频序列的信号能量进行信道估计时,减少了信号能量过低导致的误差大的现象。另一方面,本公开实施例提供的方案,可以在发送端发射功率较小和/或路径损耗大导致的单个导频序列的信号能量小的情况下,获得大的用于信道估计的导频序列的信号能量,使得信道估计结果更加准确,提升数据解调的成功率。
附图说明
图1是一种无线通信系统的结构示意图。
图2a是根据一示例性实施例示出的一种时频域资源的示意图。
图2b是根据一示例性实施例示出的一种时频域资源的示意图。
图3a是根据一示例性实施例示出的一种时频域资源的示意图。
图3b是根据一示例性实施例示出的一种时频域资源的示意图。
图4是根据一示例性实施例示出的一种信道估计的方法的流程图。
图5是根据一示例性实施例示出的一种信道估计的方法的流程图。
图6是根据一示例性实施例示出的一种信道估计的方法的流程图。
图7是根据一示例性实施例示出的一种信道估计的方法的流程图。
图8a是根据一示例性实施例示出的一种时频域资源的示意图。
图8b是根据一示例性实施例示出的一种时频域资源的示意图。
图9a是根据一示例性实施例示出的一种时频域资源的示意图。
图9b是根据一示例性实施例示出的一种时频域资源的示意图。
图10a是根据一示例性实施例示出的一种时频域资源的示意图。
图10b是根据一示例性实施例示出的一种时频域资源的示意图。
图11是根据一示例性实施例示出的一种信道估计的方法的流程图。
图12是根据一示例性实施例示出的一种信道估计的方法的流程图。
图13是根据一示例性实施例示出的一种信道估计的方法的流程图。
图14是根据一示例性实施例示出的一种信道估计的方法的流程图。
图15是根据一示例性实施例示出的一种信道估计的方法的流程图。
图16是根据一示例性实施例示出的一种信道估计的方法的流程图。
图17是根据一示例性实施例示出的一种信道估计的方法的流程图。
图18是根据一示例性实施例示出的一种信道估计的方法的流程图。
图19是根据一示例性实施例示出的一种信道估计的装置的示意图。
图20是根据一示例性实施例示出的一种信道估计的装置的示意图。
图21是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述 的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、 用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了方便对本公开任一实施例的理解,首先,对信道估计的处理过程进行说明。
在一个实施例中,信道的信道估计的处理过程包括:发送端在发送数据时,会在数据中穿插导频序列。这里,数据可以是用户面数据也可以是控制面数据。接收端可以根据接收到的导频序列和存储的发送端发送的导频序列,计算获得信道的传输状况。根据该传输状况可以辅助无线通信系统获得数据部分的信道传输状况。在根据该传输信道状况进行信号解调后,可以获得发送端发送的数据内容。其中,将接收端接收到导频序列与接收端存储的发送端发送的导频序列做除法,即可获知信道的冲击响应。这个处理过程叫做信道估计。
在新空口(NR)系统中,解调参考信号(DMRS,DeModulation Reference Signal)的设计,就是为了辅助新空口(NR)系统获得信道估计值。在一个实施例中,新空口(NR)系统,支持两种解调参考信号(DMRS)类型。在一个实施例中,可以通过高层信令配置所使用的解调参考信号(DMRS)类型。这里,高层信令可以是无线资源控制(RRC,Radio Resource Control)信令。新空口(NR)的每种类型对应的解调参考信号(DMRS)可以包括单符号解调参考信号(DMRS)和双符号解调参考信号(DMRS)。其中,单符号解调参考信号(DMRS)占用一个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号。双符号解调参考信号(DMRS)占用两个正交频分复用(OFDM)符号。两种解调参考信号(DMRS)类型的复用和配置方式具体描述如下:
在一个实施例中,对应第一种类型的解调参考信号(DMRS),请参见图2a,对于单符号解调参考信号(DMRS),一个正交频分复用(OFDM)符号内的子载波被分为两组频分的梳状资源。其中,每组梳状资源构成一个码分复用(CDM,Code Division Multiplexing)组。码分复用(CDM)组内部通过2个正交码(OCC,OrthogonalCover Code)支持2个端口复用,最多支持4个端口复用。请参见图2b,双符号解调参考信号(DMRS)在单符号解调参考信号(DMRS)结构的基础上增加时域的正交码(OCC)。每组梳状资源占用连续的两个正交频分复用(OFDM)符号,每个码分复用(CDM)组通过4个时域的正交码(OCC)实现4个端口正交,因此,最多支持8个正交端口。
在一个实施例中,对应第二种类型的解调参考信号(DMRS),请参见图3a,对于单符号的解调参考信号(DMRS),一个正交频分复用(OFDM)符号内的子载波被分为3个码分复用(CDM)组,每个码分复用(CDM)组由两对相邻的两个子载波构成,码分复用(CDM)组内通过2个正交码(OCC)支持2个端口复用,因此最多支持6个端口;请参见图3b,双符 号解调参考信号(DMRS)在单符号结构的基础上增加了正交码(OCC),每个码分复用(CDM)组占用连续的两个正交频分复用(OFDM)符号,3个码分复用(CDM)组中最多支持12个端口。
在一个实施例中,采用解调参考信号(DMRS)获得信道估计值,在小区的信号覆盖边缘的终端发出的解调参考信号(DMRS)到达基站侧或者当信号在终端与基站之间的路径损耗大时,接收功率会很低,利用微弱的解调参考信号(DMRS)无法获得准确的信道估计,导致数据的解调会不准确。
如图4所示,本实施例中提供一种信道估计的方法,其中,应用于发送端,该方法,包括:
步骤41、在梳状资源上,发送解调参考信号(DMRS);
其中,在梳状资源的不同频带上传输的解调参考信号(DMRS)变换到时域后,得到相同的导频序列;相同的多个导频序列的信号能量叠加后,用于无线传输信道的信道估计。
在一个实施例中,发送端可以是终端,接收解调参考信号(DMRS)的接收端可以是基站。在另一个实施例中,发送端可以是基站,接收解调参考信号(DMRS)的接收端可以是终端。
该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
该基站为终端接入网络的接口设备。基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
这里,无线传输信道的信道估计可以是物理上行控制信道(PUCCH,Physical Uplink Control Channel)、物理上行共享信道(PUSCH,Physical Uplink Shared Channel)、物理下行控制信道(PDCCH,Physical Downlink  Control Channel)和物理下行共享信道(PDSCH,Physical Downlink Shared CHannel)等各种信道的信道估计。
在一个实施例中,发送端在向接收端发送上行数据时,发送端需要发送导频序列,以便接收端根据接收到的导频序列进行无线传输信道的信道估计,获得信道估计结果,并利用信道估计结果完成对接收的上行数据的解码。这里,可以是通过解调参考信号(DMRS)发送该导频序列。
在一个实施例中,梳状资源可以是在同一个或者多个正交频分复用(OFDM)符号内分布的至少一个频带;不同所述频带之间具有相同的子载波间隔;每个频带可以包含一个资源粒子(RE,Resource element)或者多个相邻的资源粒子RE。
在一个实施例中,梳状资源为在一个正交频分复用(OFDM)符号内分布的至少一个频带。请再次参见图2a,图2a中的每一行代表一个子载波,每一列代表一个正交频分复用(OFDM)符号。梳状资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第1、3、5、7、9和11个子载波。在一个实施例中,可以是在第2个正交频分复用(OFDM)符号上和第1、3、5、7、9和11个子载波上发送解调参考信号DMRS。即每个频带对应1个资源粒子(RE),梳状资源共占用6个资源粒子(RE)。
在一个实施例中,梳状资源为在多个正交频分复用(OFDM)符号内分布的至少一个频带。这里,多个正交频分复用(OFDM)符号可以是时域上相邻的正交复用(OFDM)符号。请再次参见图2b,梳状资源设置在第2个正交频分复用(OFDM)符号和第3个正交频分复用(OFDM)符号内且对应的子载波分别是第1、3、5、7、9和11个子载波。即每个频带对应2个资源粒子(RE),梳状资源共占用12个资源粒子(RE)。
在一个实施例中,梳状资源可以被分成多个码分复用(CDM)组。可以是在一个码分复用(CDM)组包含的资源上发送解调参考信号(DMRS)。这里,多个码分复用(CDM)组中发送解调参考信号(DMRS)的资源所 属码分复用(CDM)组为第一码分复用(CDM)组。多个码分复用(CDM)组中除第二码分复用(CDM)组之外的其它码分复用(CDM)组为第二码分复用(CDM)组。这里,第二码分复用(CDM)组可以有多个。
在一个实施例中,发送端可以选择在任意一个码分复用(CDM)组的资源上发送解调参考信号(DMRS)。
在一个实施例中,请再次参见图2a,梳状资源被分成2个码分复用(CDM)组,第1个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第1、3、5、7、9和11个子载波。第2个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第2、4、6、8、10和12个子载波。发送端可以选择在第1个码分复用(CDM)组的资源上发送解调参考信号(DMRS)。
在一个实施例中,请再次参见图2b,梳状资源被分成2个码分复用(CDM)组,第1个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号和第3个正交频分复用(OFDM)符号内且对应的子载波分别是第1、3、5、7、9和11个子载波。第2个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号和第3个正交频分复用(OFDM)符号内且对应的子载波分别是第2、4、6、8、10和12个子载波。发送端可以选择在第2个码分复用(CDM)组的资源上发送解调参考信号(DMRS)。
在一个实施例中,请再次参见图3a,梳状资源被分成3个码分复用(CDM)组,第1个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第1、2、7和8个子载波。第2个码分复用(CDM)组的资源设置在第3个正交频分复用(OFDM)符号内且对应的子载波分别是第3、4、9和10个子载波。第3个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第5、6、11和12个子载波。发送端可以选择在第3个码分复用(CDM)组的资源上发送解调参考信号(DMRS)。
在一个实施例中,可以根据数据的解码成功率要求确定梳状资源的频域资源分布密度。请再次参见图2a和图3a,图2a中梳状资源的频域资源分布密度大于图3a中梳状资源的频域资源分布密度。
在一个实施例中,当数据的解码成功率要求大于解码阈值时,设置梳状资源的频域资源分布密度小于密度阈值。当数据的解码成功率要求小于解码阈值时,设置梳状资源的频域资源分布密度大于密度阈值。
这样,频域资源分布密度可以与要求的解码成功率要求相适应。在一个实施例中,在设置的无线通信环境下,频域资源分布密度设置得越小,信道估计越准确,解码成功率越高。
在一个实施例中,当要求的相同的导频序列数量大于数量阈值时,设置梳状资源的频域资源分布密度小于密度阈值;当要求的相同的导频序列数量小于数量阈值时,设置梳状资源的频域资源分布密度大于密度阈值。这里,频域资源分布密度设置得越小,在梳状资源的不同频带上传输的解调参考信号(DMRS)变换到时域后,得到的相同的导频序列的数量越大。例如,当频域资源分布密度设置为1/2时,相同的导频序列的数量为2;当频域资源分布密度设置为1/4时,相同的导频序列的数量为4。这里,相同的导频序列的数量越大,相同的多个导频序列的信号能量叠加后的值也越大,无线传输信道的信道估计也会越准确。
在一个实施例中,当可用的子载波数量大于数量阈值时,设置梳状资源的频域资源分布密度大于密度阈值。当可用的子载波数量小于数量阈值时,设置梳状资源的频域资源分布密度小于密度阈值。这样,梳状资源的频域资源分布密度可以与可用的子载波数量相适应,减少因为梳状资源的频域分布密度设置过大而用于传输数据的子载波的数量小导致的影响数据传输的情况。
在一个实施例中,接收端可以在同一时间段内进行多次信道估计,这样,接收端可以综合多次信道估计的结果对该时间段内的数据信号进行解 码,提高解码成功率。这里,综合多次信道估计的结果可以是对多次信道估计的结果求平均值。对多次信道估计结果求平均值可以是对全部信道估计的结果求平均值,也可以是对部分信道估计的结果求平均值。
在本公开实施例中,在梳状资源上,发送解调参考信号(DMRS)。由于解调参考信号(DMRS)是在梳状资源上发送的,在梳状资源的不同频带上传输的解调参考信号(DMRS)在变换到时域后能够获得相同的多个导频序列。
在一个实施例中,通过快速反傅立叶变换(IFFT,Inverse Fast Fourier Transform)将接收到的解调参考信号(DMRS)变换至时域,获得相同的多个导频序列。
在一个实施例中,解调参考信号(DMRS)发送的导频序列为“0101”,发送端将该导频序列经过调制后在梳状资源包含的子载波上进行发送。接收端在各个子载波上接收到解调参考信号(DMRS)后,对接收到的解调参考信号(DMRS)进行快速反傅立叶变换(IFFT),由于梳状资源的子载波之间有子载波间隔,快速傅立叶变换(IFFT)的结果会出现多个相同的导频序列,例如,当梳状资源的频域资源分布密度为1/2时,会出现2个相同的导频序列,该导频序列为“0101 0101”,即重复出现两次导频序列“0101”。
在一个实施例中,对相同的多个相同的导频序列的信号能量进行叠加,可以是对第一次出现导频序列“0101”的信号能量a和第二次出现导频序列“0101”的信号能量b进行叠加,获得叠加后的信号能量X=a+b。这里,信号能量可以是指接收功率。
在一个实施例中,信道估计可以是对接收的导频序列的信号能量与发送的导频序列的信号能量做相关操作。在一个实施例中,导频序列的信号能量的相关操作可以用接收到的导频序列的信号能量除以发送的导频序列的信号能量。例如,接收到的导频序列的信号能量为A,发送的导频序列的信号能量为B,则信道估计的值H=A/B,这里,A小于B。
本公开实施例中,在梳状资源上,发送解调参考信号(DMRS)。由于所述解调参考信号(DMRS)是在所述梳状资源上发送的,在所述梳状资源的不同频带上传输的所述解调参考信号(DMRS)在变换到时域后能够获得相同的多个导频序列。本实施例技术方案将所述相同的多个导频序列的信号能量叠加后进行无线传输信道的信道估计。一方面,本公开实施例提供的方案,相较于只能获得单个导频序列的信号能量进行信道估计时,减少了信号能量过低导致的误差大的现象。另一方面,本公开实施例提供的方案,可以在发送端发射功率较小和/或路径损耗大导致的单个导频序列的信号能量小的情况下,获得大的用于信道估计的导频序列的信号能量,使得信道估计结果更加准确,提升数据解调的成功率。
如图5所示,本实施例中提供一种信道估计的方法,其中,梳状资源对应于第一码分复用(CDM)组和至少一个第二码分复用(CDM)组;其中,第一码分复用(CDM)组和第二码分复用(CDM)组所包含的频带不同;
在步骤41中,在梳状资源上,发送解调参考信号(DMRS),包括:
步骤51、在第一码分复用(CDM)组中的频带上,发送解调参考信号(DMRS);其中,第二码分复用(CDM)组的频带上不传输解调参考信号(DMRS)。
在一个实施例中,多个码分复用(CDM)组中发送解调参考信号(DMRS)的资源所属码分复用(CDM)组为第一码分复用(CDM)组。多个码分复用(CDM)组中除第二码分复用(CDM)组之外的其它码分复用(CDM)组为第二码分复用(CDM)组。这里,第二码分复用(CDM)组可以有多个。
在一个实施例中,第一码分复用(CDM)组和第二码分复用(CDM)组包含在同一个或者多个正交频分复用(OFDM)符号内分布的至少一个频带;不同所述频带之间具有相同的子载波间隔;每个频带可以包含一个资 源粒子(RE,Resource element)或者多个相邻的资源粒子(RE)。
在一个实施例中,第一码分复用(CDM)组和第二码分复用(CDM)组包含在同一个正交频分复用(OFDM)符号内分布的至少一个频带。请再次参见图2a,梳状资源被分成2个码分复用(CDM)组,分别为第一码分复用(CDM)组和第二码分复用(CDM)组。第一码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第1、3、5、7、9和11个子载波。第二码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第2、4、6、8、10和12个子载波。
在一个实施例中,码分复用(CDM)组中的频带可以是根据解调参考信号(DMRS)在该频带上发送信号时的信号接收质量设置的。例如,接收端要求在第一码分复用(CDM)组中的频带上发送解调参考信号(DMRS)的信号接收质量大于在第二码分复用(CDM)组内包含的频带上发送解调参考信号(DMRS)的信号接收质量。则第一码分复用(CDM)组中的频带设置为第一频带;第二码分复用(CDM)组中的频带设置为第二频带,其中,第一频带在无线通信环境中发送解调参考信号(DMRS)的信号接收质量大于第二频带在无线通信环境中发送解调参考信号(DMRS)的信号接收质量。
在一个实施例中,在第二码分复用(CDM)组的频带上既不会传输解调参考信号(DMRS),也不会传输用户面数据和/或控制面数据。如此,由于在频域的部分子载波上没有传输数据,当接收端接收的解调参考信号(DMRS)被转换至时域后,导频序列会出现重复,即会出现多个相同的导频序列。这样,接收端可以利用多个相同的导频序列进行信道估计。
在一个实施例中,根据梳状资源的频域资源分布密度确定第一码分复用(CDM)组中包含的梳状资源。例如,共有12个连续的子载波,当频域资源分布密度为1/2时,第一码分复用(CDM)组中可以包含第1、3、5、 7、9和11个子载波。
在一个实施例中,梳状资源的频域资源分布密度是根据导频序列所需的叠加次数确定的。在一个实施例中,叠加次数大于次数阈值,设置频域资源分布密度小于密度阈值。这里,频域资源分布密度可以灵活地根据叠加次数进行调整,使得获得的信道估计结果更加符合不同信道估计环境下的信道估计需求。这里,叠加次数越多,导频信号的能量会越大,信道估计的结果会越准确。
在一个实施例中,请参见图8a和图8b,梳状资源的频域资源分布密度为1/4,导频序列重复的次数为4次,可以进行4次叠加。这里,图8a示出的梳状资源用于发送单符号的解调参考信号(DMRS)。图8b示出的梳状资源用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,请参见图9a和图9b,梳状资源的频域资源分布密度为1/6,导频序列重复的次数为6次。这里,图9a示出的梳状资源用于发送单符号的解调参考信号(DMRS)。图9b示出的梳状资源用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,请参见图10a和图10b,梳状资源的频域资源分布密度为1/12,导频序列重复的次数为12次,可以进行12次叠加。这里,图10a示出的梳状资源用于发送单符号的解调参考信号(DMRS)。图10b示出的梳状资源用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,在确定出第一码分复用(CDM)组后,剩下的梳状资源均属于第二码分复用(CDM)组。这里,第二码分复用(CDM)组可以有多个。
如图6所示,本实施例中提供一种信道估计的方法,其中,该方法,还包括:
步骤61、向接收端发送通知消息;
其中,通知消息,指示:第二码分复用(CDM)组上不传输解调参考 信号(DMRS)。
在一个实施例中,可以是响应于接收端和发送端之间的无线资源控制(RRC)连接建立,向接收端发送通知消息。这样,接收端在接收到解调参考信号(DMRS)时就可以基于该通知消息进行接收信号的解调。
在一个实施例中,在确定出第一码分复用(CDM)组后,剩下的梳状资源均属于第二码分复用(CDM)组。发送端在确定出第二码分复用(CDM)组后,向接收端发送通知消息。这样,接收端在接收信号时可以基于该通知消息确定解调参考信号(DMRS)是在第一码分复用(CDM)组包含的梳状资源上发送的,就能基于该通知消息进行接收信号的解调。
如图7所示,本实施例中提供一种信道估计的方法,其中,该方法,还包括:
步骤71、根据解调参考信号(DMRS)的映射方式,确定第一码分复用(CDM)组中的频带的时域位置、频域位置和/或数量。
在一个实施例中,频带的时域位置、频域位置和/或数量可以是资源粒子(RE)的时域位置、频域位置和/或数量。
在一个实施例中,不同的映射方式将解调参考信号(DMRS)映射在不同的时域位置和频域位置上进行传输。
在一个实施例中,解调参考信号(DMRS)的映射方式可以直接指示第一码分复用(CDM)组中的频带的时域位置、频域位置和/或数量。例如,解调参考信号(DMRS)的映射方式可以直接指示第一码分复用(CDM)组中的时域位置为第2个符号所在位置、频域位置为第1、3、5、7、9和11个子载波所在位置和数量为6个。
在一个实施例中,解调参考信号(DMRS)的映射方式可以直接指示第一码分复用(CDM)组中的梳状资源的频域资源分布密度。接收端可以根据频域资源分布密度确定第一码分复用(CDM)组中的频带的时域位置、频域位置和/或数量。
在一个实施例中,第一码分复用(CDM)组中的频带的时域位置、频域位置和/或数量与频域资源分布密度具有一一对应的映射关系。例如,当频域资源分布密度为第一频域资源分布密度时,第一码分复用(CDM)组中的频带的时域位置为第一时域位置、频域位置为第一频域位置且数量为N,这里,N为正整数。
在一个实施例中,映射方式,至少指示梳状资源的频域资源分布密度;不同的映射方式对应频域资源分布密度不同。
在一个实施例中,请参见图8a和图8b,示出的为第一映射方式,第一映射方式指示的梳状资源的频域资源分布密度为1/4。这里,图8a示出的第一映射方式用于发送单符号的解调参考信号(DMRS)。图8b示出的第一映射方式用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,请参见图9a和图9b,示出的为第二映射方式,第二映射方式指示的梳状资源的频域资源分布密度为1/6。这里,图9a示出的第二映射方式用于发送单符号的解调参考信号(DMRS)。图9b示出的第二映射方式用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,请参见图10a和图10b,示出的为第三映射方式,第三映射方式指示的梳状资源的频域资源分布密度为1/12。这里,图10a示出的第三映射方式用于发送单符号的解调参考信号(DMRS)。图10b示出的第三映射方式用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,梳状资源的频域资源分布密度是根据导频序列所需的叠加次数确定的。在一个实施例中,叠加次数大于次数阈值,设置频域资源分布密度小于密度阈值。这里,叠加次数越多,导频信号的能量会越大,信道估计的结果会越准确。
在一个实施例中,叠加次数与频域资源分布密度负相关。例如,当叠加次数为N时,频域资源分布密度为1/N。
如图11所示,本实施例中提供一种信道估计的方法,其中,该方法, 还包括:
步骤111、接收携带解调参考信号(DMRS)配置的无线资源控制(RRC)消息;其中,解调参考信号(DMRS)配置,至少指示解调参考信号(DMRS)的映射方式;
步骤112、根据解调参考信号(DMRS)配置,确定解调参考信号(DMRS)的映射方式。
在一个实施例中,利用无线资源控制(RRC)消息发送携带解调参考信号(DMRS)配置,提升了无线资源控制(RRC)消息的兼容性。
在一个实施例中,可以是在发送端与接收端建立无线资源控制(RRC)连接时,接收携带解调参考信号(DMRS)配置的无线资源控制(RRC)消息。
为了方便对本公开任一实施例的理解,通过一个实施例对本申请技术方案进行进一步说明:
信道估计的系统包括终端和基站。如图12所示,本实施例中提供一种信道估计的方法,其中,该方法,包括:
步骤a1、终端根据解调参考信号(DMRS)的映射方式,在第一码分复用(CDM)组中的梳状资源上,向基站发送解调参考信号(DMRS)。并且向接收端发送通知消息;其中,通知消息,指示:第二码分复用(CDM)中的梳状资源上不传输解调参考信号(DMRS)。
步骤a2、基站在数字域通过将数据和导频序列部分分开处理,对数据部分进行N点的快速傅里叶变换(FFT,Fast Fourier Transformation)变换。
步骤a3、对通过逆快速傅里叶变换(IFFT,Inverse Fast Fourier Transformation)将解调参考信号(DMRS)转换至时域后,将时域上的相同的导频序列的信号能量进行叠加。
步骤a4、对叠加后的导频序列的信号能量进行快速傅里叶变换(FFT)变换,获得频域的导频序列。这里,可以对频域的导频序列进行能量的归 一化处理。
步骤a5、将变换到频域的导频序列,与本地的已知的导频序列相除,得到信道估计冲击响应H值。
步骤a6、对得到的H值进行抑制噪声处理等后,通过内插算法,得到数据部分的信道估计值。
如图13所示,本实施例中提供一种信道估计的方法,其中,应用于接收端,该方法,包括:
步骤131、在梳状资源的不同频带上,分别接收解调参考信号(DMRS);
步骤132、将接收的解调参考信号(DMRS)从频域变换到时域,得到时域的导频信号;
步骤133、叠加时域内相同的多个导频信号的信号能量;
步骤134、根据叠加后的信号能量,进行无线传输信道的信道估计。
在一个实施例中,发送端可以是终端,接收解调参考信号(DMRS)的接收端可以是基站。在另一个实施例中,发送端可以是基站,接收解调参考信号(DMRS)的接收端可以是终端。
该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
该基站为终端接入网络的接口设备。基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
这里,无线传输信道的信道估计可以是物理上行控制信道(PUCCH,Physical Uplink Control Channel)、物理上行共享信道(PUSCH,Physical Uplink Shared Channel)、物理下行控制信道(PDCCH,Physical Downlink Control Channel)和物理下行共享信道(PDSCH,Physical Downlink Shared  CHannel)等各种信道的信道估计。
在一个实施例中,发送端在向接收端发送上行数据时,发送端需要发送导频序列,以便接收端根据接收到的导频序列进行无线传输信道的信道估计,获得信道估计结果,并利用信道估计结果完成对接收的上行数据的解码。这里,可以是通过解调参考信号(DMRS)发送该导频序列。
在一个实施例中,梳状资源可以是包含在同一个或者多个正交频分复用(OFDM)符号内分布的至少一个频带;不同所述频带之间具有相同的子载波间隔;每个频带可以包含一个资源粒子(RE,Resource element)或者多个相邻的资源粒子RE。
在一个实施例中,梳状资源为在一个正交频分复用(OFDM)符号内分布的至少一个频带。请再次参见图2a,图2a中的每一行代表一个子载波,每一列代表一个正交频分复用(OFDM)符号。梳状资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第1、3、5、7、9和11个子载波。在一个实施例中,可以是在第2个正交频分复用(OFDM)符号上和第1、3、5、7、9和11个子载波上发送解调参考信号DMRS。即每个频带对应1个资源粒子(RE),梳状资源共占用6个资源粒子(RE)。
在一个实施例中,梳状资源为在多个正交频分复用(OFDM)符号内分布的至少一个频带。这里,多个正交频分复用(OFDM)符号可以是时域上相邻的正交复用(OFDM)符号。请再次参见图2b,梳状资源设置在第2个正交频分复用(OFDM)符号和第3个正交频分复用(OFDM)符号内且对应的子载波分别是第1、3、5、7、9和11个子载波。即每个频带对应2个资源粒子(RE),梳状资源共占用12个资源粒子(RE)。
在一个实施例中,梳状资源可以被分成多个码分复用(CDM)组。可以是在一个码分复用(CDM)组包含的资源上发送解调参考信号(DMRS)。这里,多个码分复用(CDM)组中发送解调参考信号(DMRS)的资源所属码分复用(CDM)组为第一码分复用(CDM)组。多个码分复用(CDM) 组中除第二码分复用(CDM)组之外的其它码分复用(CDM)组为第二码分复用(CDM)组。这里,第二码分复用(CDM)组可以有多个。
在一个实施例中,发送端可以选择在任意一个码分复用(CDM)组的资源上发送解调参考信号(DMRS)。
在一个实施例中,请再次参见图2a,梳状资源被分成2个码分复用(CDM)组,第1个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第1、3、5、7、9和11个子载波。第2个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第2、4、6、8、10和12个子载波。发送端可以选择在第1个码分复用(CDM)组的资源上发送解调参考信号(DMRS)。
在一个实施例中,请再次参见图2b,梳状资源被分成2个码分复用(CDM)组,第1个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号和第3个正交频分复用(OFDM)符号内且对应的子载波分别是第1、3、5、7、9和11个子载波。第2个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号和第3个正交频分复用(OFDM)符号内且对应的子载波分别是第2、4、6、8、10和12个子载波。发送端可以选择在第2个码分复用(CDM)组的资源上发送解调参考信号(DMRS)。
在一个实施例中,请再次参见图3a,梳状资源被分成3个码分复用(CDM)组,第1个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第1、2、7和8个子载波。第2个码分复用(CDM)组的资源设置在第3个正交频分复用(OFDM)符号内且对应的子载波分别是第3、4、9和10个子载波。第3个码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第5、6、11和12个子载波。发送端可以选择在第3个码分复用(CDM)组的资源上发送解调参考信号(DMRS)。
在一个实施例中,可以根据数据的解码成功率要求确定梳状资源的频 域资源分布密度。请再次参见图2a和图3a,图2a中梳状资源的频域资源分布密度大于图3a中梳状资源的频域资源分布密度。在一个实施例中,当数据的解码成功率要求大于解码阈值时,设置梳状资源的频域资源分布密度小于密度阈值。当数据的解码成功率要求小于解码阈值时,设置梳状资源的频域资源分布密度大于密度阈值。
这样,频域资源分布密度可以与要求的解码成功率要求相适应。在一个实施例中,在设置的无线通信环境下,频域资源分布密度设置得越小,信道估计越准确,解码成功率越高。
在一个实施例中,当要求的相同的导频序列数量大于数量阈值时,设置梳状资源的频域资源分布密度小于密度阈值;当要求的相同的导频序列数量小于数量阈值时,设置梳状资源的频域资源分布密度大于密度阈值。这里,频域资源分布密度设置得越小,在梳状资源的不同频带上传输的解调参考信号(DMRS)变换到时域后,得到的相同的导频序列的数量越大。例如,当频域资源分布密度设置为1/2时,相同的导频序列的数量为2;当频域资源分布密度设置为1/4时,相同的导频序列的数量为4。这里,相同的导频序列的数量越大,相同的多个导频序列的信号能量叠加后的值也越大,无线传输信道的信道估计也会越准确。
在一个实施例中,当可用的子载波数量大于数量阈值时,设置梳状资源的频域资源分布密度大于密度阈值。当可用的子载波数量小于数量阈值时,设置梳状资源的频域资源分布密度小于密度阈值。这样,梳状资源的频域资源分布密度可以与可用的子载波数量相适应,减少因为梳状资源的频域分布密度设置过大而用于传输数据的子载波的数量小导致的影响数据传输的情况。
在一个实施例中,接收端可以在同一时间段内进行多次信道估计,这样,接收端可以综合多次信道估计的结果对该时间段内的数据信号进行解码,提高解码成功率。这里,综合多次信道估计的结果可以是对多次信道 估计的结果求平均值。对多次信道估计结果求平均值可以是对全部信道估计的结果求平均值,也可以是对部分信道估计的结果求平均值。
在一个实施例中,通过快速反傅立叶变换(IFFT,Inverse Fast Fourier Transform)将接收到的解调参考信号(DMRS)变换至时域,获得相同的多个导频序列。
在一个实施例中,解调参考信号(DMRS)发送的导频序列为“0101”,发送端将该导频序列经过调制后在梳状资源包含的子载波上进行发送。接收端在各个子载波上接收到解调参考信号(DMRS)后,对接收到的解调参考信号(DMRS)进行快速反傅立叶变换(IFFT),由于梳状资源的子载波之间有子载波间隔,快速傅立叶变换(IFFT)的结果会出现多个相同的导频序列,例如,当梳状资源的频域资源分布密度为1/2时,会出现2个相同的导频序列,该导频序列为“0101 0101”,即重复出现两次导频序列“0101”。
在一个实施例中,对相同的多个相同的导频序列的信号能量进行叠加,可以是对第一次出现导频序列“0101”的信号能量a和第二次出现导频序列“0101”的信号能量b进行叠加,获得叠加后的信号能量X=a+b。这里,信号能量可以是指接收功率。
在一个实施例中,信道估计可以是对接收的导频序列的信号能量与发送的导频序列的信号能量做相关操作。在一个实施例中,导频序列的信号能量的相关操作可以用接收到的导频序列的信号能量除以发送的导频序列的信号能量。例如,接收到的导频序列的信号能量为A,发送的导频序列的信号能量为B,则信道估计的值H=A/B,这里,A小于B。
本公开实施例中,将所述相同的多个导频序列的信号能量叠加后进行无线传输信道的信道估计。一方面,本公开实施例提供的方案,相较于只能获得单个导频序列的信号能量进行信道估计时,减少了信号能量过低导致的误差大的现象。另一方面,本公开实施例提供的方案,可以在发送端发射功率较小和/或路径损耗大导致的单个导频序列的信号能量小的情况 下,获得大的用于信道估计的导频序列的信号能量,使得信道估计结果更加准确,提升数据解调的成功率。
如图14所示,本实施例中提供一种信道估计的方法,其中,梳状资源对应于第一码分复用(CDM)组和第二码分复用(CDM)组;其中,第一码分复用(CDM)组和第二码分复用(CDM)组所包含的频带不同;
步骤131中,在梳状资源的不同频带上,分别接收解调参考信号(DMRS),包括:
步骤141、在第一码分复用(CDM)组中的频带上,分别接收解调参考信号(DMRS);其中,第二码分复用(CDM)组的频带上不传输解调参考信号(DMRS)。
在一个实施例中,多个码分复用(CDM)组中发送解调参考信号(DMRS)的资源所属码分复用(CDM)组为第一码分复用(CDM)组。多个码分复用(CDM)组中除第二码分复用(CDM)组之外的其它码分复用(CDM)组为第二码分复用(CDM)组。这里,第二码分复用(CDM)组可以有多个。
在一个实施例中,第一码分复用(CDM)组和第二码分复用(CDM)组包含在同一个或者多个正交频分复用(OFDM)符号内分布的至少一个频带;不同所述频带之间具有相同的子载波间隔;每个频带可以包含一个资源粒子(RE,Resource element)或者多个相邻的资源粒子(RE)。
在一个实施例中,第一码分复用(CDM)组和第二码分复用(CDM)组包含在同一个正交频分复用(OFDM)符号内分布的至少一个频带。请再次参见图2a,梳状资源被分成2个码分复用(CDM)组,分别为第一码分复用(CDM)组和第二码分复用(CDM)组。第一码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第1、3、5、7、9和11个子载波。第二码分复用(CDM)组的资源设置在第2个正交频分复用(OFDM)符号内且对应的子载波分别是第2、4、6、8、 10和12个子载波。
在一个实施例中,码分复用(CDM)组中的频带可以是根据解调参考信号(DMRS)在该频带上发送信号时的信号接收质量设置的。例如,接收端要求在第一码分复用(CDM)组中的频带上发送解调参考信号(DMRS)的信号接收质量大于在第二码分复用(CDM)组内包含的频带上发送解调参考信号(DMRS)的信号接收质量。则第一码分复用(CDM)组中的频带设置为第一频带;第二码分复用(CDM)组中的频带设置为第二频带,其中,第一频带在无线通信环境中发送解调参考信号(DMRS)的信号接收质量大于第二频带在无线通信环境中发送解调参考信号(DMRS)的信号接收质量。
在一个实施例中,在第二码分复用(CDM)组的频带上既不会传输解调参考信号(DMRS),也不会传输用户面数据和/或控制面数据。如此,由于在频域的部分子载波上没有传输数据,当接收端接收的解调参考信号(DMRS)被转换至时域后,导频序列会出现重复,即会出现多个相同的导频序列。这样,接收端可以利用多个相同的导频序列进行信道估计。
在一个实施例中,根据梳状资源的频域资源分布密度确定第一码分复用(CDM)组中包含的梳状资源。例如,共有12个连续的子载波,当频域资源分布密度为1/2时,第一码分复用(CDM)组中可以包含第1、3、5、7、9和11个子载波。
在一个实施例中,梳状资源的频域资源分布密度是根据导频序列所需的叠加次数确定的。在一个实施例中,叠加次数大于次数阈值,设置频域资源分布密度小于密度阈值。这里,频域资源分布密度可以灵活地根据叠加次数进行调整,使得获得的信道估计结果更加符合不同信道估计环境下的信道估计需求。这里,叠加次数越多,导频信号的能量会越大,信道估计的结果会越准确。
在一个实施例中,请参见图8a和图8b,梳状资源的频域资源分布密度 为1/4,导频序列重复的次数为4次,可以进行4次叠加。这里,图8a示出的梳状资源用于发送单符号的解调参考信号(DMRS)。图8b示出的梳状资源用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,请参见图9a和图9b,梳状资源的频域资源分布密度为1/6,导频序列重复的次数为6次。这里,图9a示出的梳状资源用于发送单符号的解调参考信号(DMRS)。图9b示出的梳状资源用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,请参见图10a和图10b,梳状资源的频域资源分布密度为1/12,导频序列重复的次数为12次,可以进行12次叠加。这里,图10a示出的梳状资源用于发送单符号的解调参考信号(DMRS)。图10b示出的梳状资源用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,在确定出第一码分复用(CDM)组后,剩下的梳状资源均属于第二码分复用(CDM)组。这里,第二码分复用(CDM)组可以有多个。
如图15所示,本实施例中提供一种信道估计的方法,其中,该方法,还包括:
步骤151、接收接收端发送的通知消息;
其中,通知消息,指示:第二码分复用(CDM)组上不传输解调参考信号(DMRS)。
在一个实施例中,可以是响应于接收端和发送端之间的无线资源控制(RRC)连接建立,接收发送端发送的通知消息。这样,接收端在接收到解调参考信号(DMRS)时就可以基于该通知消息进行接收信号的解调。
在一个实施例中,在确定出第一码分复用(CDM)组后,剩下的梳状资源均属于第二码分复用(CDM)组。发送端在确定出第二码分复用(CDM)组后,向接收端发送通知消息。这样,接收端在接收信号时可以基于该通知消息确定解调参考信号(DMRS)是在第一码分复用(CDM)组包含的 梳状资源上发送的,就能基于该通知消息进行接收信号的解调。
如图16所示,本实施例中提供一种信道估计的方法,其中,步骤134中,根据叠加后的信号能量,进行无线传输信道的信道估计,包括:
步骤161、将叠加后的信号能量从时域变换到频域,获得频域的导频信号;
步骤162、将频域的导频信号与参考的导频信号相除,获得信道估计冲击响应值。
在一个实施例中,可以是对叠加后的导频序列的信号能量进行快速傅里叶变换(FFT)变换,获得频域的导频序列的信号能量。
在一个实施例中,参考的导频信号可以是本地事先存储的发送端发送的导频序列。
在一个实施例中,将变换到频域的导频序列,与本地存储的导频序列相除,得到信道估计冲击响应H值。在对得到的H值进行抑制噪声处理等后,通过内插算法,得到数据部分的信道估计值。
如图17所示,本实施例中提供一种信道估计的方法,其中,步骤132中,在将频域的导频信号与参考的导频信号相除,获得信道估计冲击响应值之前,还包括:
步骤171、对频域的导频信号进行信号能量的归一化处理,获得在数值范围内的频域的导频信号。
在一个实施例中,数值范围可以是预先确定的。
在一个实施例中,第一码分复用(CDM)组中的频带的时域位置、频域位置和/或数量,是根据解调参考信号(DMRS)的映射方式确定的。
在一个实施例中,频带的时域位置、频域位置和/或数量可以是资源粒子(RE)的时域位置、频域位置和/或数量。
在一个实施例中,不同的映射方式将解调参考信号(DMRS)映射在不同的时域位置和频域位置上进行传输。
在一个实施例中,解调参考信号(DMRS)的映射方式可以直接指示第一码分复用(CDM)组中的频带的时域位置、频域位置和/或数量。例如,解调参考信号(DMRS)的映射方式可以直接指示第一码分复用(CDM)组中的时域位置为第2个符号所在位置、频域位置为第1、3、5、7、9和11个子载波所在位置和数量为6个。
在一个实施例中,解调参考信号(DMRS)的映射方式可以直接指示第一码分复用(CDM)组中的梳状资源的频域资源分布密度。接收端可以根据频域资源分布密度确定第一码分复用(CDM)组中的频带的时域位置、频域位置和/或数量。
在一个实施例中,第一码分复用(CDM)组中的频带的时域位置、频域位置和/或数量与频域资源分布密度具有一一对应的映射关系。例如,当频域资源分布密度为第一频域资源分布密度时,第一码分复用(CDM)组中的频带的时域位置为第一时域位置、频域位置为第一频域位置且数量为N,这里,N为正整数。
在一个实施例中,映射方式,至少指示梳状资源的频域资源分布密度;不同的映射方式对应频域资源分布密度不同。
在一个实施例中,请再次参见图8a和图8b,示出的为第一映射方式,第一映射方式指示的梳状资源的频域资源分布密度为1/4。这里,图8a示出的第一映射方式用于发送单符号的解调参考信号(DMRS)。图8b示出的第一映射方式用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,请再次参见图9a和图9b,示出的为第二映射方式,第二映射方式指示的梳状资源的频域资源分布密度为1/6。这里,图9a示出的第二映射方式用于发送单符号的解调参考信号(DMRS)。图9b示出的第二映射方式用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,请再次参见图10a和图10b,示出的为第三映射方式,第三映射方式指示的梳状资源的频域资源分布密度为1/12。这里,图10a 示出的第三映射方式用于发送单符号的解调参考信号(DMRS)。图10b示出的第三映射方式用于发送双符号的解调参考信号(DMRS)。
在一个实施例中,梳状资源的频域资源分布密度是根据导频序列所需的叠加次数确定的。在一个实施例中,叠加次数大于次数阈值,设置频域资源分布密度小于密度阈值。这里,叠加次数越多,导频信号的能量会越大,信道估计的结果会越准确。
在一个实施例中,叠加次数与频域资源分布密度负相关。例如,当叠加次数为N时,频域资源分布密度为1/N。
如图18所示,本实施例中提供一种信道估计的方法,其中,该方法,还包括:
步骤181、发送携带解调参考信号(DMRS)配置的无线资源控制(RRC)消息;其中,解调参考信号(DMRS)配置,指示解调参考信号(DMRS)的映射方式。
在一个实施例中,利用无线资源控制(RRC)消息发送携带解调参考信号(DMRS)配置,提升了无线资源控制(RRC)消息的兼容性。
在一个实施例中,可以是在发送端与接收端建立无线资源控制(RRC)连接时,发送携带解调参考信号(DMRS)配置的无线资源控制(RRC)消息。
如图19所示,本实施例中提供一种信道估计的装置,其中,应用于发送端,该装置包括第一发送模块191,其中,
第一发送模块191,被配置为在梳状资源上,发送解调参考信号(DMRS);
其中,在梳状资源的不同频带上传输的解调参考信号(DMRS)变换到时域后,得到相同的导频序列;相同的多个导频序列的信号能量叠加后,用于无线传输信道的信道估计。
在一个实施例中,梳状资源对应于第一码分复用(CDM)组和第二码分复用(CDM)组;其中,第一码分复用(CDM)组和第二码分复用(CDM)组所包含的频带不同;
第一发送模块191,还被配置为:
在第一码分复用(CDM)组中的频带上,发送解调参考信号(DMRS);其中,第二码分复用(CDM)组的频带上不传输解调参考信号(DMRS)。
在一个实施例中,第一发送模块191,还被配置为:
向接收端发送通知消息;
其中,通知消息,指示:第二码分复用(CDM)组上不传输解调参考信号(DMRS)。
在一个实施例中,装置还包括第一确定模块192,其中,第一确定模块192,还被配置为:
根据解调参考信号(DMRS)的映射方式,确定第一码分复用(CDM)组中的频带的时域位置、频域位置和/或数量。
在一个实施例中,第一确定模块192,还被配置为:映射方式,至少指示梳状资源的频域资源分布密度;不同的映射方式对应频域资源分布密度不同。
在一个实施例中,第一确定模块192,还被配置为:梳状资源的频域资源分布密度是根据导频序列所需的叠加次数确定的。
在一个实施例中,第一确定模块192,还被配置为:叠加次数与频域资源分布密度负相关。
在一个实施例中,装置还包括第一接收模块193,其中,第一接收模块193,被配置为:
接收携带解调参考信号(DMRS)配置的无线资源控制(RRC)消息;其中,解调参考信号(DMRS)配置,至少指示解调参考信号(DMRS)的映射方式;
第一确定模块192,还被配置为:根据解调参考信号(DMRS)配置,确定解调参考信号(DMRS)的映射方式。
如图20所示,本实施例中提供一种信道估计的装置,其中,应用于接收端,该装置包括第二接收模块201、变换模块202、叠加模块203和信道估计模块204,其中,
第二接收模块201,被配置为:在梳状资源的不同频带上,分别接收解调参考信号(DMRS);
变换模块202,被配置为:将接收的解调参考信号(DMRS)从频域变换到时域,得到时域的导频信号;
叠加模块203,被配置为:叠加时域内相同的多个导频信号的信号能量;
信道估计模块204,被配置为:根据叠加后的信号能量,进行无线传输信道的信道估计。
在一个实施例中,梳状资源对应于第一码分复用(CDM)组和第二码分复用(CDM)组;其中,第一码分复用(CDM)组和第二码分复用(CDM)组所包含的频带不同;
第二接收模块201,还被配置为:
在第一码分复用(CDM)组中的频带上,分别接收解调参考信号(DMRS);其中,第二码分复用(CDM)组的频带上不传输解调参考信号(DMRS)。
在一个实施例中,第二接收模块201,还被配置为:
接收接收端发送的通知消息;
其中,通知消息,指示:第二码分复用(CDM)组上不传输解调参考信号(DMRS)。
在一个实施例中,信道估计模块204,还被配置为:
将叠加后的信号能量从时域变换到频域,获得频域的导频信号;
将频域的导频信号与参考的导频信号相除,获得信道估计冲击响应值。
在一个实施例中,装置还包括归一化处理模块205,其中,
归一化处理模块205,被配置为:
对频域的导频信号进行信号能量的归一化处理,获得在数值范围内的频域的导频信号。
在一个实施例中,装置还包括第二确定模块206,第二确定模块206,被配置为:第一码分复用(CDM)组中的频带的时域位置、频域位置和/或数量,是根据解调参考信号(DMRS)的映射方式确定的。
在一个实施例中,第二确定模块206,还被配置为:映射方式,至少指示梳状资源的频域资源分布密度;不同的映射方式对应的频域资源分布密度不同。
在一个实施例中,第二确定模块206,还被配置为:梳状资源的频域资源分布密度是根据导频序列所需的叠加次数确定的。
在一个实施例中,第二确定模块206,还被配置为:叠加次数与频域资源分布密度负相关。
在一个实施例中,该装置还包括第二发送模块207,其中,第二发送模块207,被配置为:
发送携带解调参考信号(DMRS)配置的无线资源控制(RRC)消息;其中,解调参考信号(DMRS)配置,指示解调参考信号(DMRS)的映射方式。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图21所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图21,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到 本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (38)

  1. 一种信道估计的方法,其中,应用于发送端,所述方法,包括:
    在梳状资源上,发送解调参考信号DMRS;
    其中,在所述梳状资源的不同频带上传输的所述DMRS变换到时域后,得到相同的导频序列;相同的多个所述导频序列的信号能量叠加后,用于无线传输信道的信道估计。
  2. 根据权利要求1所述的方法,其中,所述梳状资源对应于第一码分复用CDM组和至少一个第二CDM组;其中,所述第一CDM组和所述第二CDM组所包含的频带不同;
    所述在梳状资源上,发送解调参考信号DMRS,包括:
    在所述第一CDM组中的频带上,发送所述DMRS;其中,所述第二CDM组的频带上不传输所述DMRS。
  3. 根据权利要求2所述的方法,其中,所述方法,还包括:
    向接收端发送通知消息;
    其中,所述通知消息,指示:所述第二CDM组上不传输所述DMRS。
  4. 根据权利要求2所述的方法,其中,所述方法,还包括:
    根据所述DMRS的映射方式,确定所述第一CDM组中的频带的时域位置、频域位置和/或数量。
  5. 根据权利要求4所述的方法,其中,所述映射方式,至少指示所述梳状资源的频域资源分布密度;不同的映射方式对应所述频域资源分布密度不同。
  6. 根据权利要求5所述的方法,其中,所述梳状资源的频域资源分布密度是根据所述导频序列所需的叠加次数确定的。
  7. 根据权利要求6所述的方法,其中,所述叠加次数与所述频域资源分布密度负相关。
  8. 根据权利要求4所述的方法,其中,所述方法,还包括:
    接收携带DMRS配置的无线资源控制RRC消息;其中,所述DMRS配置,至少指示所述DMRS的映射方式;
    根据所述DMRS配置,确定所述DMRS的映射方式。
  9. 一种信道估计的方法,其中,应用于接收端,所述方法,包括:
    在梳状资源的不同频带上,分别接收DMRS;
    将接收的所述DMRS从频域变换到时域,得到时域的导频信号;
    叠加时域内相同的多个所述导频信号的信号能量;
    根据叠加后的所述信号能量,进行无线传输信道的信道估计。
  10. 根据权利要求9所述的方法,其中,所述梳状资源对应于第一码分复用CDM组和至少一个第二CDM组;其中,所述第一CDM组和所述第二CDM组所包含的频带不同;
    所述在梳状资源的不同频带上,分别接收DMRS,包括:
    在所述第一CDM组中的频带上,分别接收所述DMRS;其中,所述第二CDM组的频带上不传输所述DMRS。
  11. 根据权利要求10所述的方法,其中,所述方法,还包括:
    接收接收端发送的通知消息;
    其中,所述通知消息,指示:所述第二CDM组上不传输所述DMRS。
  12. 根据权利要求9所述的方法,其中,所述根据叠加后的所述信号能量,进行无线传输信道的信道估计,包括:
    将叠加后的所述信号能量从时域变换到频域,获得频域的导频信号;
    将所述频域的导频信号与参考的导频信号相除,获得信道估计冲击响应值。
  13. 根据权利要求12所述的方法,其中,所述在将所述频域的导频信号与参考的导频信号相除,获得信道估计冲击响应值之前,还包括:
    对所述频域的导频信号进行信号能量的归一化处理,获得在数值范围 内的所述频域的导频信号。
  14. 根据权利要求10所述的方法,其中,所述所述第一CDM组中的频带的时域位置、频域位置和/或数量,是根据所述DMRS的映射方式确定的。
  15. 根据权利要求14所述的方法,其中,所述映射方式,至少指示所述梳状资源的频域资源分布密度;不同的映射方式对应的所述频域资源分布密度不同。
  16. 根据权利要求15所述的方法,其中,所述梳状资源的频域资源分布密度是根据所述导频序列所需的叠加次数确定的。
  17. 根据权利要求16所述的方法,其中,所述叠加次数与所述频域资源分布密度负相关。
  18. 根据权利要求14所述的方法,其中,所述方法,还包括:
    发送携带DMRS配置的无线资源控制RRC消息;其中,所述DMRS配置,指示所述DMRS的映射方式。
  19. 一种信道估计的装置,其中,应用于发送端,所述装置包括第一发送模块,其中,
    所述第一发送模块,被配置为在梳状资源上,发送解调参考信号DMRS;
    其中,在所述梳状资源的不同频带上传输的所述DMRS变换到时域后,得到相同的导频序列;相同的多个所述导频序列的信号能量叠加后,用于无线传输信道的信道估计。
  20. 根据权利要求19所述的装置,其中,所述梳状资源对应于第一码分复用CDM组和至少一个第二CDM组;其中,所述第一CDM组和所述第二CDM组所包含的频带不同;
    所述第一发送模块,还被配置为:
    在所述第一CDM组中的频带上,发送所述DMRS;其中,所述第二 CDM组的频带上不传输所述DMRS。
  21. 根据权利要求20所述的装置,其中,所述第一发送模块,还被配置为:
    向接收端发送通知消息;
    其中,所述通知消息,指示:所述第二CDM组上不传输所述DMRS。
  22. 根据权利要求20所述的装置,其中,所述装置还包括第一确定模块,其中,所述第一确定模块,还被配置为:
    根据所述DMRS的映射方式,确定所述第一CDM组中的频带的时域位置、频域位置和/或数量。
  23. 根据权利要求22所述的装置,其中,所述第一确定模块,还被配置为:所述映射方式,至少指示所述梳状资源的频域资源分布密度;不同的映射方式对应所述频域资源分布密度不同。
  24. 根据权利要求5所述的装置,其中,所述第一确定模块,还被配置为:所述梳状资源的频域资源分布密度是根据所述导频序列所需的叠加次数确定的。
  25. 根据权利要求24所述的装置,其中,所述第一确定模块,还被配置为:所述叠加次数与所述频域资源分布密度负相关。
  26. 根据权利要求22所述的装置,其中,所述装置还包括第一接收模块,其中,所述第一接收模块,被配置为:
    接收携带DMRS配置的无线资源控制RRC消息;其中,所述DMRS配置,至少指示所述DMRS的映射方式;
    所述第一确定模块,还被配置为:根据所述DMRS配置,确定所述DMRS的映射方式。
  27. 一种信道估计的装置,其中,应用于接收端,所述装置包括第二接收模块、变换模块、叠加模块和信道估计模块,其中,
    所述第二接收模块,被配置为:在梳状资源的不同频带上,分别接收 DMRS;
    所述变换模块,被配置为:将接收的所述DMRS从频域变换到时域,得到时域的导频信号;
    所述叠加模块,被配置为:叠加时域内相同的多个所述导频信号的信号能量;
    所述信道估计模块,被配置为:根据叠加后的所述信号能量,进行无线传输信道的信道估计。
  28. 根据权利要求27所述的装置,其中,所述梳状资源对应于第一码分复用CDM组和至少一个第二CDM组;其中,所述第一CDM组和所述第二CDM组所包含的频带不同;
    所述第二接收模块,还被配置为:
    在所述第一CDM组中的频带上,分别接收所述DMRS;其中,所述第二CDM组的频带上不传输所述DMRS。
  29. 根据权利要求28所述的装置,其中,所述第二接收模块,还被配置为:
    接收接收端发送的通知消息;
    其中,所述通知消息,指示:所述第二CDM组上不传输所述DMRS。
  30. 根据权利要求27所述的装置,其中,所述信道估计模块,还被配置为:
    将叠加后的所述信号能量从时域变换到频域,获得频域的导频信号;
    将所述频域的导频信号与参考的导频信号相除,获得信道估计冲击响应值。
  31. 根据权利要求30所述的装置,其中,所述装置还包括归一化处理模块,其中,
    所述归一化处理模块,被配置为:
    对所述频域的导频信号进行信号能量的归一化处理,获得在数值范围 内的所述频域的导频信号。
  32. 根据权利要求28所述的装置,其中,所述装置还包括第二确定模块,所述第二确定模块,被配置为:所述所述第一CDM组中的频带的时域位置、频域位置和/或数量,是根据所述DMRS的映射方式确定的。
  33. 根据权利要求32所述的装置,其中,所述第二确定模块,还被配置为:所述映射方式,至少指示所述梳状资源的频域资源分布密度;不同的映射方式对应的所述频域资源分布密度不同。
  34. 根据权利要求33所述的装置,其中,所述第二确定模块,还被配置为:所述梳状资源的频域资源分布密度是根据所述导频序列所需的叠加次数确定的。
  35. 根据权利要求34所述的装置,其中,所述第二确定模块,还被配置为:所述叠加次数与所述频域资源分布密度负相关。
  36. 根据权利要求32所述的装置,其中,所述装置还包括第二发送模块,其中,所述第二发送模块,被配置为:
    发送携带DMRS配置的无线资源控制RRC消息;其中,所述DMRS配置,指示所述DMRS的映射方式。
  37. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,被配置为通执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至8或权利要求9至权利要求18任一项提供的方法。
  38. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至8或权利要求9至权利要求18任一项提供的方法。
PCT/CN2020/114907 2020-09-11 2020-09-11 信道估计的方法、装置、通信设备及存储介质 WO2022052073A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080002239.6A CN112236983B (zh) 2020-09-11 2020-09-11 信道估计的方法、装置、通信设备及存储介质
US18/025,096 US20230327915A1 (en) 2020-09-11 2020-09-11 Channel estimation method and apparatus, communication device, and storage medium
PCT/CN2020/114907 WO2022052073A1 (zh) 2020-09-11 2020-09-11 信道估计的方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114907 WO2022052073A1 (zh) 2020-09-11 2020-09-11 信道估计的方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022052073A1 true WO2022052073A1 (zh) 2022-03-17

Family

ID=74123626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114907 WO2022052073A1 (zh) 2020-09-11 2020-09-11 信道估计的方法、装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20230327915A1 (zh)
CN (1) CN112236983B (zh)
WO (1) WO2022052073A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059733A (zh) * 2016-05-27 2016-10-26 深圳市金立通信设备有限公司 一种解调参考信号增强的方法及相关设备
CN107294674A (zh) * 2016-03-31 2017-10-24 电信科学技术研究院 传输方法、设备及系统
WO2019074408A1 (en) * 2017-10-10 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) NODES AND ASSOCIATED METHODS FOR ENHANCING MULTI-USER TRANSMISSIONS IN A WIRELESS COMMUNICATION NETWORK
CN110166194A (zh) * 2018-02-12 2019-08-23 华为技术有限公司 一种导频信号生成方法及装置
US20200084592A1 (en) * 2018-09-06 2020-03-12 Qualcomm Incorporated Link identity determination and signaling

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202027B (zh) * 2010-03-26 2015-08-12 中兴通讯股份有限公司 一种导频序列的产生方法和装置
CN106559363B (zh) * 2015-09-25 2020-06-05 电信科学技术研究院 一种解调参考信号传输方法、信道估计方法及装置
EP3439218B1 (en) * 2016-03-27 2021-01-13 LG Electronics Inc. -1- Method for transmitting and receiving uplink demodulation reference signal in wireless communication system, and apparatus therefor
CN114884640A (zh) * 2016-03-31 2022-08-09 北京三星通信技术研究有限公司 通信系统中的终端、基站及其方法
CN108289018B (zh) * 2017-01-09 2023-12-29 华为技术有限公司 一种传输参考信号的方法以及设备
CN108400848B (zh) * 2017-02-04 2024-01-19 华为技术有限公司 一种指示方法及装置
CN109150472B (zh) * 2017-06-19 2021-03-09 维沃移动通信有限公司 解调参考信号的发送方法、接收方法、终端及网络侧设备
CN114422098A (zh) * 2017-08-03 2022-04-29 维沃移动通信有限公司 解调参考信号传输方法、网络设备及计算机可读存储介质
CN108111273B (zh) * 2017-08-11 2021-11-02 中兴通讯股份有限公司 参考信号的传输方法及装置
CN108566266B (zh) * 2018-01-08 2021-05-25 海能达通信股份有限公司 一种高速移动信道下宽带专网的可靠传输方法及装置
CN115189855A (zh) * 2019-01-10 2022-10-14 华为技术有限公司 信号处理的方法和装置
CN111586873B (zh) * 2019-02-15 2022-07-08 大唐移动通信设备有限公司 信息处理方法、装置、通信设备及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294674A (zh) * 2016-03-31 2017-10-24 电信科学技术研究院 传输方法、设备及系统
CN106059733A (zh) * 2016-05-27 2016-10-26 深圳市金立通信设备有限公司 一种解调参考信号增强的方法及相关设备
WO2019074408A1 (en) * 2017-10-10 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) NODES AND ASSOCIATED METHODS FOR ENHANCING MULTI-USER TRANSMISSIONS IN A WIRELESS COMMUNICATION NETWORK
CN110166194A (zh) * 2018-02-12 2019-08-23 华为技术有限公司 一种导频信号生成方法及装置
US20200084592A1 (en) * 2018-09-06 2020-03-12 Qualcomm Incorporated Link identity determination and signaling

Also Published As

Publication number Publication date
CN112236983A (zh) 2021-01-15
CN112236983B (zh) 2023-10-03
US20230327915A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
US11128510B2 (en) Data transmission method, user equipment, and network side device
CN108347778B (zh) 通信方法及装置
US11528728B2 (en) Information transmission method and device
US20230188396A1 (en) Spectral Shaping with Spectrum Extension for Reference Signals for Wireless Networks
CN111867038B (zh) 一种通信方法及装置
WO2021155800A1 (en) Method and device in a node used for wireless communication
WO2014173292A1 (zh) 一种导频信号的传输方法及设备
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
EP3614603B1 (en) User device and device in base station for multi-antenna transmission
CN117857000A (zh) 一种被用于无线通信的节点中的方法和装置
CN112291851A (zh) 一种被用于无线通信的节点中的方法和装置
US20240015740A1 (en) Method and apparatus for downlink transmission in physical downlink control channel
WO2018132944A1 (zh) 信号传输方法和设备
US11051335B2 (en) Method and device for wireless communication in a first node and base station
WO2018112933A1 (zh) 传输信息的方法、网络设备和终端设备
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备
WO2022052073A1 (zh) 信道估计的方法、装置、通信设备及存储介质
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022253166A1 (zh) 一种通信的方法和装置
WO2022206271A1 (zh) 一种确定资源的方法和装置
WO2022194114A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20240120981A1 (en) Method and device in nodes used for wireless communication
WO2023050428A1 (zh) 信息传输方法以及通信装置
WO2021207958A1 (zh) 参考信号处理方法、装置及可读存储介质
WO2022152246A1 (en) Method and device in a node used for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952861

Country of ref document: EP

Kind code of ref document: A1