WO2020173100A1 - 加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法 - Google Patents

加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法 Download PDF

Info

Publication number
WO2020173100A1
WO2020173100A1 PCT/CN2019/110662 CN2019110662W WO2020173100A1 WO 2020173100 A1 WO2020173100 A1 WO 2020173100A1 CN 2019110662 W CN2019110662 W CN 2019110662W WO 2020173100 A1 WO2020173100 A1 WO 2020173100A1
Authority
WO
WIPO (PCT)
Prior art keywords
foundation pit
excavation
construction
water
freezing
Prior art date
Application number
PCT/CN2019/110662
Other languages
English (en)
French (fr)
Inventor
徐勇
王永军
周建国
孙连勇
李春
赵乾坤
李圃
Original Assignee
济南轨道交通集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南轨道交通集团有限公司 filed Critical 济南轨道交通集团有限公司
Priority to KR1020217026177A priority Critical patent/KR20210130725A/ko
Publication of WO2020173100A1 publication Critical patent/WO2020173100A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/02Foundation pits
    • E02D17/04Bordering surfacing or stiffening the sides of foundation pits
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/11Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means
    • E02D3/115Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means by freezing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/003Injection of material

Definitions

  • the present disclosure belongs to the technical field of municipal engineering construction, and in particular relates to a reinforcement device and a local freezing reinforcement construction method for a deep foundation pit in a water-rich gravel formation.
  • in-situ protected pipelines will also affect the construction of deep foundation pits or the structural construction of underground structures, which makes the construction of the retaining structure of deep foundation pits difficult.
  • the enclosure structure cannot be closed or the enclosure structure is difficult to meet the conditions of deep foundation pit excavation, which poses a major risk for deep foundation pit excavation.
  • the first aspect of the present disclosure provides a reinforcement device, which can improve the stability of a deep foundation pit during the excavation process.
  • a reinforcement device including:
  • the unclosed side of the underground continuous wall is provided with I-beam, and the underground continuous wall is provided on the outside of the side wall of the foundation pit;
  • a steel grating is arranged between two adjacent concrete pouring piles and between the concrete pouring pile and the I-steel, and the steel grating is located above the bottom of the foundation pit.
  • the I-beam is a component part of the underground continuous wall
  • the underground continuous wall is arranged on the outside of the side wall of the foundation pit and is a component part of the station structure.
  • the steel grids are arranged at equal intervals.
  • a first crown beam is provided at the set elevation of the top of the cast-in-place pile
  • a second crown beam is provided on the top of the underground continuous wall
  • the first crown beam and the second crown beam are connected to form a crown beam integral structure .
  • the advantage of the above-mentioned technical solution is that the steel grid is arranged between two adjacent concrete grouting piles and between the concrete grouting pile and the I-steel to connect the grouting pile and the underground continuous wall into a whole, and the top of the grouting pile is the first crown
  • the beam and the second crown beam on the top of the underground continuous wall form a whole to improve the stability of the entire reinforcement device.
  • the overall structure of the crown beam is provided with a military beam, a steel wire rope is suspended on the military beam, and a power pipe trench is suspended on the steel wire rope.
  • the military beams are erected on the overall structure of the crown beams on both sides of the foundation pit.
  • the second aspect of the present disclosure provides a construction method for local freezing and strengthening of deep foundation pits in water-rich gravel stratum.
  • the local freezing technology is adopted to form a stable and closed water-stop structure, which can ensure the opening of deep foundation pits.
  • Dig safe is adopted to form a stable and closed water-stop structure, which can ensure the opening of deep foundation pits.
  • a technical solution for a construction method for partial freezing and reinforcement of a deep foundation pit in a water-rich gravel formation is:
  • a construction method for local freezing and strengthening of deep foundation pits in water-rich sand and gravel stratum including:
  • the reinforcement device as described above is used to initially support the excavation of the unclosed underground continuous wall;
  • the freezing range is below the preset height of the high-voltage cable, and the part above the preset height of the high-voltage cable will not be frozen;
  • the waterproofing and main structure construction shall be carried out, the freezing shall be stopped after the structure construction is completed, and the second grouting shall be carried out in time according to the melting and settlement situation.
  • the preset height of the high-voltage cable in the freezing range can be set to 1m; in other technical solutions, it can also be set to other height values.
  • the preset excavation safety requirements include support safety and other preset index requirements.
  • the foundation pit is excavated in layers, the steel grating and the I-steel of the underground continuous wall and the reinforcement welding connection of the cast-in-place pile are carried out in sequence, and the steel grating and the cast-in-place pile are used between the cast-in-place piles. Welding of steel bars and sprayed concrete support between steel grids.
  • the thickness of steel grating and shotcrete meets the requirements of supporting strength.
  • the deep foundation pit excavation construction in the water-rich gravel stratum also includes: the protection construction of the high-voltage power pipeline, the erection of the suspension beam of the suspended high-voltage power pipeline, and the suspension protection of the pipeline.
  • the advantage of the above-mentioned technical scheme is that, according to the hydrogeological conditions of the location of the pipeline, a targeted pipeline excavation and protection construction plan is formulated to protect the pipeline.
  • grouting is carried out in conjunction with ground deformation monitoring, and ground drilling is used as a fusion grouting hole, and the grouting sequence is carried out from bottom to top.
  • the grouting is mainly made of cement-water glass two-liquid slurry, supplemented by single-liquid cement slurry, based on the principle of small amount, multiple times and uniformity, the grouting pressure is not greater than the preset pressure value, and the grouting range is the entire frozen area .
  • the preset pressure value of the grouting pressure can be set to 0.5Mpa; in other solutions, the preset pressure value of the grouting pressure can be set to other pressure values according to actual engineering needs.
  • the advantage of the above technical solution is that the purpose of injecting double liquid slurry is to reduce the flow of groundwater and improve the water stop effect.
  • the method also includes: restoring the original landform and ecology after the excavation of the foundation pit is completed.
  • the reinforcement device provided by the present disclosure includes a number of concrete cast-in-place piles and I-beams on the unclosed side of the underground continuous wall.
  • the concrete cast-in-place piles go deep into the bottom of the foundation pit; a steel grid is also provided above the bottom of the foundation pit.
  • the steel grid is set between two adjacent concrete cast-in-place piles and between the concrete cast-in-place pile and the I-steel on the unclosed side of the underground continuous wall, which improves the stability of deep foundation pit excavation.
  • Fig. 1 is a schematic structural diagram of a reinforcement device provided by an embodiment of the present disclosure.
  • Fig. 2 is a flowchart of a construction method for partial freezing and reinforcement of a deep foundation pit in a water-rich gravel stratum according to an embodiment of the present disclosure.
  • Fig. 3 is a plan view of a high-voltage power pipeline of a deep foundation pit provided by an embodiment of the present disclosure.
  • Fig. 4 is a plan view of the pipeline protection construction on the north side of the structure provided by an embodiment of the present disclosure.
  • Fig. 5 is a plan view of the construction of pipeline protection on the south side provided by an embodiment of the present disclosure.
  • Fig. 6 is a longitudinal sectional view of a freezing wall provided by an embodiment of the present disclosure.
  • a reinforcement device of this embodiment includes:
  • the unclosed side of the underground continuous wall is provided with I-beam, and the underground continuous wall is provided on the outside of the side wall of the foundation pit;
  • a steel grating is arranged between two adjacent concrete pouring piles and between the concrete pouring pile and the I-steel, and the steel grating is located above the bottom of the foundation pit.
  • the I-beam is a component part of the underground continuous wall
  • the underground continuous wall is arranged on the outside of the side wall of the foundation pit and is a component part of the station structure.
  • the steel grating is composed of a set of parallel steel gratings.
  • the steel grids are arranged at equal intervals.
  • the spacing of the steel grids can be set to 50 cm.
  • the optimal distance between the steel grids is 50cm, which on the one hand can save the consumables of the entire reinforcement device, and on the other hand can improve the stability of the reinforcement device.
  • the steel grid spacing can also be set to other distance values according to the specific engineering hydrogeology and the depth of the foundation pit.
  • a first crown beam is arranged at the set elevation of the top of the cast-in-place pile
  • a second crown beam is arranged on the top of the underground continuous wall
  • the first crown beam and the second crown beam are connected to form a crown beam integral structure.
  • the I-beam is a structural component of the framing construction of the underground continuous wall
  • the top of the cast-in-place pile is applied as a first crown beam and connected with the second crown beam on the top of the underground continuous wall to form an integral structure.
  • the overall structure of the crown beam is used to improve the stability of the entire reinforcement device.
  • the overall structure of the crown beam is provided with a military beam, a steel wire rope is suspended on the military beam, and a power pipe trench is suspended on the steel wire.
  • the armoured beams are erected on the integral structure of the crown beams on both sides of the foundation pit.
  • the crown beam is a reinforced concrete continuous beam on the top of the supporting (enclosing) structure (mostly piles and walls) around the foundation pit.
  • One of its functions is to connect all the pile foundations together (such as bored piles, Rotary digging cast-in-place piles, etc.) to prevent the top edge of the foundation pit (shaft) from collapsing.
  • the second is to use the corbel to bear the horizontal squeezing force and vertical shear force of the steel support (or reinforced concrete support).
  • the crown beam must be drilled during construction. In addition to the floating slurry on the top of the pile, etc.
  • Military beams also known as military beams, are a kind of assembled structural steel beams composed of many lightweight steel components. Generally, bolts and pins are used to connect them into a whole at the place of use, or they can be assembled as a whole set. It is characterized by light components, strong interchangeability, quick assembly and disassembly, and convenient transportation. It can form different small and medium-span beams, and the components can be reused.
  • a construction method for partial freezing and reinforcement of a deep foundation pit in a water-rich gravel stratum in this embodiment includes:
  • Step 1 In the process of deep foundation pit excavation in the water-rich gravel stratum, the aforementioned reinforcement device is used to initially support the unclosed underground continuous wall.
  • the preparation stage is used to familiarize yourself with the relevant drawings of the pre-construction deep foundation pit and master the key points of construction technology.
  • In-situ protected high-voltage power pipelines shall be investigated in detail, and they shall be familiar with the types of pipelines, original buried construction methods, buried depth, direction, and identification of corresponding construction risk sources.
  • a targeted pipeline excavation and protection construction plan is formulated to protect the pipeline.
  • the pipeline excavation construction process is:
  • FIG 3 shows the plan view of the high-voltage power pipeline of a deep foundation pit
  • Figure 4 the construction plan of the pipeline protection on the north side of the structure
  • Figure 5 the construction plan of the pipeline protection on the south side of the structure.
  • the length, cross-sectional size and weight of the suspension protection pipeline need to be suspended, and the foundation pit excavation plan should be considered as a whole to determine the supporting column structure arrangement to meet military convenience
  • the stiffness of the beam deformed by force is required.
  • the jet grouting piles in Figures 4 and 5 are drilled to a set depth by a drilling rig, and the pre-configured high-pressure cement slurry pumped by a high-pressure pump is sprayed from the shotcrete hole of the drill bit to form a highly concentrated energy
  • the liquid flow directly destroys the soil.
  • the drill pipe is rotated while lifting, so that the slurry and the soil are fully stirred and mixed to form a columnar consolidation of a certain diameter in the soil, thereby strengthening the foundation.
  • the construction is generally divided into two work processes, that is, first drill to the set depth, and then perform the rotary grouting operation.
  • the suspension spacing of the pipeline is determined according to the shape, structure and weight of the pre-protected high-voltage power pipeline, and flexible and rigid materials and necessary equipment and tools are used to reliably suspend the pipeline to meet subsequent requirements. Construction requirements for pipeline suspension protection.
  • the rotary drilling construction of the bored pile is closer to the high-voltage pipeline.
  • the underground diaphragm wall adopts manual excavation. The excavation is carried out to 1.5m, and the ring-shaped top template is installed, and the concrete is poured. After the concrete strength reaches 75%, continue to excavate downwards to a depth of 1.5m, and continue to install the formwork to pour the concrete for support until the excavation depth is 7m.
  • the template shall not be removed; after the manual digging is completed, ⁇ 1.2m protective cylinder, ⁇ 200mm pre-embedded refrigerating pipe, ⁇ 200mm grouting pipe and observation pipe shall be buried. Connect and fix all protective cylinders and embedded steel pipes with steel bars, backfill and compact them in layers until the distance between the protective cylinder and the top of the steel pipe is 300mm, and finally use concrete encapsulation to prevent touching the protective cylinder and damage the pipeline during the process of rotary drilling and drilling .
  • the construction of the bored pile is given priority.
  • the bored piles are drilled by rotary drilling to form holes, and the walls are protected by mud. After the holes are cleared, the steel cage is lowered and underwater concrete is poured. After the strength of the bored pile reaches 75%, construction of the underground continuous walls on both sides begins.
  • the pipeline spans a large distance across the foundation pit, and a lattice column connecting beam is added in the middle.
  • the construction is carried out by rotary drilling and the steel casing is buried by the above method.
  • Step 2 Perform vertical freezing of the unenclosed section and adopt partial freezing.
  • the freezing range is below the preset height of the high-voltage cable (for example, 1m), and the part above the preset height (for example, 1m) of the high-voltage cable is not frozen.
  • the freezing reinforcement process is:
  • the vertical freezing method is used to reinforce the enclosure structure to ensure the safety of the excavation and construction.
  • the design reinforcement range is 9m on the north side of the stubble joint of the enclosure structure and 7.5m on the south side.
  • the vertical reinforcement range is the depth of the enclosure structure is 26m and the thickness of the frozen wall is 1.5m. Partial freezing technology is adopted.
  • the freezing range is less than 1m for the high-voltage cable. It will not be frozen.
  • Figure 6 shows a longitudinal section view of the freezing wall.
  • the ground connecting wall in Figure 6 refers to the underground continuous wall.
  • the freezing reinforcement process is:
  • Construction preparation ⁇ vertical freezing hole drilling ⁇ pipeline connection ⁇ active freezing ⁇ freezing meets the design requirements ⁇ excavation of foundation pit ⁇ cutting and blocking of freezing pipe ⁇ thaw grouting.
  • Step 3 When the frozen soil layer meets the preset excavation safety requirements, carry out foundation pit excavation; under the temporary protection of the frozen soil curtain, carry out layered excavation and foundation pit support in sequence.
  • the preset excavation safety requirements include support safety and other preset index requirements.
  • the foundation pit is excavated in layers, the steel grating and the I-steel of the underground continuous wall and the reinforcement welding connection of the cast-in-place pile are carried out in sequence, and the steel grating and the cast-in-place pile are used between the cast-in-place piles. Welding of steel bars and sprayed concrete support between steel grids.
  • the thickness of steel grating and shotcrete meets the requirements of supporting strength.
  • Step 4 After the excavation of the foundation pit is completed, carry out waterproofing and main structure construction, stop freezing after the structure construction is completed, and carry out a second grouting in time according to the thawing settlement.
  • the process of grouting reinforcement is:
  • Thaw grouting is carried out in conjunction with ground deformation monitoring.
  • Ground drilling is used as a thaw grouting hole, and the grouting sequence is carried out from bottom to top.
  • the fusion grouting mainly adopts cement-water glass two-liquid slurry, supplemented by single liquid cement slurry, based on the principle of small amount, multiple times and uniformity, the grouting pressure is not greater than the preset pressure value (for example, 0.5MPa), and the grouting range For the entire frozen area.
  • the preset pressure value of the grouting pressure can be set to other pressure values according to actual engineering needs.
  • the construction of the armchair beam suspension is also carried out, and the process is as follows:
  • the four lattice columns are used to construct concrete connecting beams.
  • the pad rail and steel plate on the concrete contact beam ⁇ measure and set the line (at the same time adjust the top surface of the steel plate) ⁇ lift the military beam ⁇ erect the military beam ⁇ calibrate the plane of the military beam
  • the position and elevation are suspended step by step according to the elevation of the high-voltage power pipeline.
  • the diameter of the wire rope used for suspension shall not be less than ⁇ 20mm.
  • the wire rope and the pipeline are fixed in indirect contact with two clamps, and the clamp and the pull tube are cushioned by a rubber plate.
  • the wire rope is embedded between the two clamps to prevent the wire rope from slipping.
  • the distance between the wire ropes shall not be greater than 3m.
  • the concrete cast-in-place piles are designed to strip the surface concrete to expose the steel bars and hang the steel mesh according to the design requirements.
  • the steel grating is reliably welded to the I-beam and cast-in-place pile reinforcement.
  • the steel grating is 500mm apart, and the net is sprayed in time for every 2m of excavation depth.
  • the excavation and construction method for local freezing and reinforcement of deep foundation pits in water-rich sand and gravel stratum in this embodiment properly solves the problem of difficult to relocate high-voltage power pipelines in municipal engineering construction such as urban rail transit construction and comprehensive development of underground space. After the protection, it interferes with the construction of the structure. In-situ suspension protection of high-voltage power lines is provided.
  • the local freezing technology is adopted to form a closed water-stop structure to ensure The excavation of deep foundation pits is safe and meets the safety protection requirements of high-voltage power pipelines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Foundations (AREA)

Abstract

本公开提供了一种加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法。其中,加固装置包括若干根混凝土灌注桩及未封闭的地下连续墙,每根所述混凝土灌注桩的长度均大于基坑的深度;每根所述混凝土灌注桩内设置有钢筋;所述地下连续墙的未封闭侧设有工字钢,所述地下连续墙设置在基坑的侧墙外侧;相邻的两个混凝土灌注桩之间以及混凝土灌注桩与工字钢之间均设置有钢格栅,所述钢格栅位于基坑底部上方。

Description

加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法 技术领域
本公开属于市政工程施工技术领域,尤其涉及一种加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。
在城市轨道交通明挖车站及附属设施深基坑开挖施工、地下空间综合开发等市政工程施工中,常常遇到各种管线难以迁改的问题,一般采用原地保护措施。
发明人发现,在某些特定环境条件下,原地保护的管线还会影响的深基坑的开挖施工或地下构筑物的结构施工,这样给深基坑开挖施工的围护结构施工困难,尤其是在富水的砂砾地层中,围护结构不能封闭或围护结构难以满足深基坑开挖条件,形成了深基坑开挖施工的重大风险。
发明内容
为了解决上述问题,本公开的第一方面提供了一种加固装置,其能够提高深基坑在开挖过程中施工的稳定性。
本公开的第一方面的一种加固装置的技术方案为:
一种加固装置,包括:
若干根混凝土灌注桩及未封闭的地下连续墙,每根所述混凝土灌注桩的长度均大于基坑的深度;每根所述混凝土灌注桩内设置有钢筋;
所述地下连续墙的未封闭侧设有工字钢,所述地下连续墙设置在基坑的侧墙外侧;
相邻的两个混凝土灌注桩之间以及混凝土灌注桩与工字钢之间均设置有钢格栅,所述钢格栅位于基坑底部上方。
其中,所述工字钢为地下连续墙的组成部分,所述地下连续墙设置在基坑侧墙外侧是车站结构的组成部分。
进一步地,所述钢格栅等间距设置。
进一步地,在灌注桩顶部的设定标高处设置有第一冠梁,所述地下连续墙的 顶部设置有第二冠梁,所述第一冠梁与第二冠梁连接形成冠梁整体结构。
上述技术方案的优点在于,利用设置在相邻的两个混凝土灌注桩之间以及混凝土灌注桩与工字钢之间钢格栅将灌注桩与地下连续墙连接成整体,灌注桩顶部第一冠梁与地下连续墙顶部第二冠梁形成整体,提高整个加固装置的稳定性。
进一步地,所述冠梁整体结构上设置有军便梁,军便梁上悬挂有钢丝绳,钢丝绳上悬吊有电力管沟。
进一步地,所述军便梁架设于基坑两侧的冠梁整体结构上。
为了解决上述问题,本公开的第二方面提供了一种富水砂砾地层中深基坑局部冷冻加固施工方法,采用局部冷冻技术,以形成稳定封闭的止水结构,能够保证深基坑的开挖安全。
本公开的第二方面的一种富水砂砾地层中深基坑局部冷冻加固施工方法的技术方案为:
一种富水砂砾地层中深基坑局部冷冻加固施工方法,包括:
在富水砂砾地层进行深基坑开挖施工的过程中,采用如上述所述的加固装置来对施工未封闭的地下连续墙进行基坑开挖初期支护;
对未封闭区段进行竖向冷冻且采用局部冻结,冻结范围为高压电缆预设高度以下,高压电缆预设高度以上部分不予冻结;
当冻土层满足预设开挖安全要求时,进行基坑开挖施工;在冻土帷幕的临时防护下,依次进行分层开挖基坑及基坑支护;
基坑开挖完成后,进行防水及主体结构施工,结构施工完成停止冷冻,根据融沉情况及时进行二次注浆。
其中,冻结范围高压电缆的预设高度可设置为1m;在其他技术方案中,也可设定为其他高度数值。
具体地,预设开挖安全要求包括支护安全以及其他预先设定的指标要求。
具体地,在冻土帷幕的临时防护下,依次进行分层开挖基坑、钢格栅与地下连续墙的工字钢及灌注桩的钢筋焊接连接、灌注桩间采用钢格栅与灌注桩钢筋焊接连接以及钢格栅间喷射混凝土支护。
其中,钢格栅及喷射混凝土厚度满足支护强度要求。
进一步地,在富水砂砾地层进行深基坑开挖施工前,还包括:对高压电力管 线的保护施工、悬吊高压电力管线军便梁的架设以及管线的悬吊保护作业。
上述技术方案的优点在于,根据管线所处位置的水文地质条件,制定针对性的管线开挖、保护施工方案,对管线进行保护。
进一步地,注浆配合地面变形监测进行,通过地面钻孔做为融沉注浆孔,注浆顺序由下至上进行。
进一步地,注浆采用水泥-水玻璃双液浆为主,单液水泥浆为辅,以少量、多次和均匀为原则,注浆压力不大于预设压力值,注浆范围为整个冻结区域。
其中,注浆压力的预设压力值可设置为0.5Mpa;在其他方案中,可根据实际工程的需要,注浆压力的预设压力值可设定为其他压力值。
上述技术方案的优点在于,注双液浆的目的为减少地下水的流动,提高止水效果。
进一步地,该方法还包括:基坑开挖完成后,恢复原地貌及生态。
本公开的有益效果是:
(1)本公开提供的加固装置包括若干根混凝土灌注桩和地下连续墙未封闭侧的工字钢,混凝土灌注桩深入到基坑底部;在基坑底部上方还设置有钢格栅,所述钢格栅设置在相邻的两个混凝土灌注桩之间以及混凝土灌注桩与地下连续墙未封闭侧的工字钢之间,提高了深基坑开挖施工的稳定性。
(2)本公开提供的富水砂砾地层中深基坑局部冷冻加固的开挖施工方法,能够满足富水砂砾地层中深基坑围护结构难以封闭的条件下进行开挖施工,既实现了难以迁改管线的原地保护,又保证了富水砂砾地层中深基坑开挖的安全。
(3)本公开提供的富水砂砾地层中深基坑局部冷冻加固的开挖施工方法,妥善地解决了城市轨道交通施工、地下空间综合开发等市政工程施工中对难以迁改的高压电力管线,经原地保护后又与构筑物结构施工相干涉的问题,提供高压电力管线原地悬吊保护及构筑物深基坑地下连续墙不能形成封闭时,采用局部冷冻技术,以形成封闭的止水结构,保证了深基坑的开挖安全,满足了高压电力管线的安全保护要求。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1是本公开实施例提供的一种加固装置结构示意图。
图2是本公开实施例提供的一种富水砂砾地层中深基坑局部冷冻加固施工方法流程图。
图3是本公开实施例提供的某深基坑的高压电力管线的平面图。
图4是本公开实施例提供的结构北侧管线保护施工平面图。
图5是本公开实施例提供的南侧管线保护施工平面图。
图6是本公开实施例提供的冻结壁纵剖面图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步地说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例一
如图1所示,本实施例的一种加固装置,包括:
若干根混凝土灌注桩及未封闭的地下连续墙,每根所述混凝土灌注桩的长度均大于基坑的深度;每根所述混凝土灌注桩内设置有钢筋;
所述地下连续墙的未封闭侧设有工字钢,所述地下连续墙设置在基坑的侧墙外侧;
相邻的两个混凝土灌注桩之间以及混凝土灌注桩与工字钢之间均设置有钢格栅,所述钢格栅位于基坑底部上方。
其中,所述工字钢为地下连续墙的组成部分,所述地下连续墙设置在基坑侧墙外侧是车站结构的组成部分。
其中,钢格栅是由一组平行的钢栅条组成。
在具体实施中,所述钢格栅等间距设置。
具体地,钢格栅的间距可设置为50cm。
钢格栅间距的最优距离为50cm,这样一方面能够节省整个加固装置的耗材,另一方面能够提高加固装置稳定性的目的。
在其他可替换的技术方案中,钢格栅间距也可依据具体的工程水文地质及基坑深度设置为其他距离值。
其中,在灌注桩顶部的设定标高处设置有第一冠梁,所述地下连续墙的顶部设置有第二冠梁,所述第一冠梁与第二冠梁连接形成冠梁整体结构。
具体地,所述工字钢为地下连续墙分幅施工的结构组成部分,灌注桩顶部施做第一冠梁且与地下连续墙顶部第二冠梁连接形成整体结构。
利用冠梁整体结构提高整个加固装置的稳定性。
其中,所述冠梁整体结构上设置有军便梁,军便梁上悬挂有钢丝绳,钢丝绳上悬吊有电力管沟。
具体地,所述军便梁架设与基坑两侧的冠梁整体结构上。
其中,冠梁设置在基坑周边支护(围护)结构(多为桩和墙)顶部的钢筋混凝土连续梁,其作用其一是把所有的桩基连到一起(如钻孔灌注桩,旋挖灌注桩等),防止基坑(竖井)顶部边缘产生坍塌,其二是通过牛腿承担钢支撑(或钢筋混凝土支撑)的水平挤靠力和竖向剪力,冠梁施工时必须凿除桩顶的浮浆等。
军便梁,也称为军用梁,是一种拼装式构架钢梁,由许多轻便钢构件组成。一般在使用地点用螺栓、销钉联结成整体,也可拼成整组架设。其特点是构件重量轻,互换性强,拼拆迅速,运输方便,可组成不同的中小跨度梁,构件可重复使用。
实施二
如图2所示,本实施例的一种富水砂砾地层中深基坑局部冷冻加固施工方法,包括:
步骤1:在富水砂砾地层进行深基坑开挖施工的过程中,采用上述所述的加固装置来对施工未封闭的地下连续墙进行初期支护。
在具体实施中,在富水砂砾地层进行深基坑开挖施工前的工作统称为准备阶段,准备阶段是用来熟悉预施工的深基坑相关图纸,掌握施工技术要点,对难以迁改需要原地保护的高压电力管线进行详细调查,熟悉管线的类型、原埋设的施工方法、埋深、走向及相应的施工风险源辨识。根据管线所处位置的水文地质条 件,制定针对性的管线开挖、保护施工方案,对管线进行保护。
在富水砂砾地层进行深基坑开挖施工前还包括:对高压电力管线的保护施工、悬吊高压电力管线军便梁的架设以及管线的悬吊保护作业。
具体地,管线开挖施工的过程为:
根据制定的管线开挖方案进行管线表层覆土开挖,暴露管线并妥善保护。如图3所示为某深基坑的高压电力管线的平面图,图4结构北侧管线保护施工平面图,图5南侧管线保护施工平面图。
其中,根据高压电力管线与预开挖基坑的位置关系,需要悬吊保护管线的长度、横断面尺寸及重量,并统筹考虑基坑开挖方案,确定支撑立柱结构布置方式,以满足军便梁受力变形的刚度需要。
图4和图5中的旋喷桩是利用钻机钻孔至设定深度,将预配置好的由高压泵泵出的高压水泥浆液由钻头的喷浆孔喷出,形成一股能量高度集中的液流,直接破坏土体,喷射过程中,钻杆边旋转边提升,使浆液与土体充分搅拌混合,在土中形成一定直径的柱状固结体,从而使地基得到加固。施工中一般分为两个工作流程,即先钻孔至设定深度,再进行旋喷作业。
在军便梁等悬吊保护结构完成后,根据预保护高压电力管线外形结构、重量等确定管线的悬吊间距,采用柔性和刚性材料及必要的设备工具将管线进行可靠悬吊,以满足后续施工对管线悬吊保护的要求。
在富水砂砾地层进行深基坑开挖施工前,还包括:护筒施工,其具体过程为:
根据管线保护施工平面图将3根φ1.2m护筒及12根φ200mm预埋管位置挖出,深度要超过高压电力管线底500mm。将做好的地下连续墙导向槽中线拉通,预留出钢格栅位置,用PE板将电力管线包住;
根据高压电力管线的结构型式及风险源等级,结合现场实际情况,旋挖钻施工钻孔灌注桩距离高压管线较近,为确保高压电力管线的安全,地下连续墙处采用人工开挖施工,人工开挖进行到1.5m,安装环形对顶模板,浇筑砼。待砼强度达到75%后,继续向下开挖,开挖深度到1.5m,继续安装模板浇筑砼进行支护,直至达到开挖深度7m。期间模板不得拆除;人工挖孔完成后埋设φ1.2m护筒、φ200mm预埋冷冻管、φ200mm注浆管以及观测管埋设。用钢筋将所 有护筒及预埋钢管连接固定,分层回填并夯实,直至距离护筒及钢管顶部300mm,最后采用砼包封,防止在旋挖钻钻孔过程中碰触护筒伤及管线。
在富水砂砾地层进行深基坑开挖施工前,还包括:钻孔桩及地下连续墙施工,其具体过程为:
地下连续墙成槽机施工时存在抓斗触及护筒伤及电力拉管的风险,优先施工钻孔灌注桩。钻孔桩利用旋挖钻成孔,采用泥浆护壁,清孔之后将钢筋笼下放及浇筑水下混凝土。在钻孔桩强度达到75%后,开始施工两侧的地下连续墙。
在富水砂砾地层进行深基坑开挖施工前,还包括:钢管柱桩施工,其具体过程为:
根据高压电力管线的结构型式及风险源等级,管线跨越基坑距离较大,在其中间增加格构柱连系梁,采用旋挖钻施工,采用上述方法埋设钢护筒。
步骤2:对未封闭区段进行竖向冷冻且采用局部冻结,冻结范围为高压电缆预设高度(例如1m)以下,高压电缆预设高度(例如1m)以上部分不予冻结。
具体地,冻结加固的过程为:
采用垂直冷冻法对该围护结构进行加固,以保证开挖构筑施工的安全。设计加固范围为围护结构接茬缝北侧9m、南侧7.5m范围,垂直加固范围为围护结构深度26m,冻结壁厚度1.5m,采用局部冻结技术,冻结范围为高压电缆1m以下,以上部分不予冻结。图6所示为冻结壁纵剖面图。图6中的地连墙,指的是地下连续墙。
其中,冻结加固流程为:
施工准备→竖直冻结孔钻孔→管路连接→积极冻结→冻结符合设计要求→基坑开挖→冻结管割除、封堵→融沉注浆。
步骤3:当冻土层满足预设开挖安全要求时,进行基坑开挖施工;在冻土帷幕的临时防护下,依次进行分层开挖基坑及基坑支护。
具体地,预设开挖安全要求包括支护安全以及其他预先设定的指标要求。
具体地,在冻土帷幕的临时防护下,依次进行分层开挖基坑、钢格栅与地下连续墙的工字钢及灌注桩的钢筋焊接连接、灌注桩间采用钢格栅与灌注桩钢筋焊接连接以及钢格栅间喷射混凝土支护。
其中,钢格栅及喷射混凝土厚度满足支护强度要求。
步骤4:基坑开挖完成后,进行防水及主体结构施工,结构施工完成停止冷冻,根据融沉情况及时进行二次注浆。
其中,注浆加固的过程为:
除两处各预埋4根200mm注浆管外,其余直接从地面钻进成孔。在冻结加固之前将注浆孔完成,并完成注浆。
施工工艺及流程,准备工作→钻机进场→定位安装→开孔→钻进成孔→孔口密封处理→下注浆管→注双液浆。注双液浆的目的为减少地下水的流动,提高止水效果。
融沉处理的过程为:
融沉注浆配合地面变形监测进行,通过地面钻孔做为融沉注浆孔,注浆顺序由下至上进行。融沉注浆采用水泥-水玻璃双液浆为主,单液水泥浆为辅,以少量、多次和均匀为原则,注浆压力不大于预设压力值(例如0.5MPa),注浆范围为整个冻结区域。
在其他方案中,可根据实际工程的需要,注浆压力的预设压力值可设定为其他压力值。
具体地,在融沉处理之后,还进行军便梁悬吊施工,其过程为:
开挖至冠梁底标高,通过四根格构柱施作砼联系梁。军便梁进场拼装完成后,在砼联系梁上开始安装垫轨及钢板→测量放线(同时调整好钢板顶面标高)→军便梁试起吊→架设军便梁→校准军便梁平面位置和高程,根据高压电力管线的标高情况分步悬吊,悬吊使用的钢丝绳直径不得小于φ20mm,钢丝绳与管线采用两个卡箍间接接触固定,卡箍与拉管之间垫橡胶板缓冲,钢丝绳嵌在两个卡箍之间,防止钢丝绳滑移。钢丝绳间距不得大3m。
在军便梁悬吊施工之后,还进行桩间格栅施工及喷锚,其过程为:
管线两侧地下连续墙接茬处预留完整工字钢,随着基坑开挖,接茬处工字钢清理洁净,混凝土灌注桩按设计要求剥除表层混凝土露出钢筋并按设计要求挂钢筋网片,钢格栅与工字钢、灌注桩钢筋可靠焊接,钢格栅500mm间距,每开挖深度2m及时挂网喷射混凝土。
基坑开挖完成后按图施工防水及主体结构,结构完成后恢复原地貌及生态。
本实施例的富水砂砾地层中深基坑局部冷冻加固的开挖施工方法,妥善地解 决了城市轨道交通施工、地下空间综合开发等市政工程施工中对难以迁改高压电力管线的经原地保护后又与构筑物结构施工相干涉的问题,提供高压电力管线的原地悬吊保护及构筑物深基坑地下连续墙不能形成封闭时,采用局部冷冻技术,以形成封闭的止水结构,保证了深基坑的开挖安全,满足了高压电力管线的安全保护要求。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

Claims (10)

  1. 一种加固装置,其特征在于,包括:
    若干根混凝土灌注桩及未封闭的地下连续墙,每根所述混凝土灌注桩的长度均大于基坑的深度;每根所述混凝土灌注桩内设置有钢筋;
    所述地下连续墙的未封闭侧设有工字钢,所述地下连续墙设置在基坑的侧墙外侧;
    相邻的两个混凝土灌注桩之间以及混凝土灌注桩与工字钢之间均设置有钢格栅,所述钢格栅位于基坑底部上方。
  2. 如权利要求1所述的一种加固装置,其特征在于,所述钢格栅等间距设置。
  3. 如权利要求1所述的一种加固装置,其特征在于,在灌注桩顶部的设定标高处设置有第一冠梁,所述地下连续墙的顶部设置有第二冠梁,所述第一冠梁与第二冠梁连接形成冠梁整体结构。
  4. 如权利要求3所述的一种加固装置,其特征在于,所述冠梁整体结构上设置有军便梁,军便梁上悬挂有钢丝绳,钢丝绳上悬吊有电力管沟。
  5. 如权利要求4所述的一种加固装置,其特征在于,所述军便梁架设于基坑两侧的冠梁整体结构上。
  6. 一种富水砂砾地层中深基坑局部冷冻加固施工方法,其特征在于,包括:
    在富水砂砾地层进行深基坑开挖施工的过程中,采用如权利要求1-5中任一项所述的加固装置来对施工未封闭的地下连续墙进行基坑开挖初期支护;
    对未封闭区段进行竖向冷冻且采用局部冻结,冻结范围为高压电缆预设高度以下,高压电缆预设高度以上部分不予冻结;
    当冻土层满足预设开挖安全要求时,进行基坑开挖施工;在冻土帷幕的临时防护下,依次进行分层开挖基坑及基坑支护;
    基坑开挖完成后,进行防水及主体结构施工,结构施工完成停止冷冻,根据融沉情况及时进行二次注浆。
  7. 如权利要求6所述的一种富水砂砾地层中深基坑局部冷冻加固施工方法,其特征在于,在富水砂砾地层进行深基坑开挖施工前,还包括:对高压电力管线的保护施工、悬吊高压电力管线军便梁的架设以及管线的悬吊保护作业。
  8. 如权利要求6所述的一种富水砂砾地层中深基坑局部冷冻加固施工方法,其特征在于,注浆配合地面变形监测,通过地面钻孔做为融沉注浆孔,注浆顺序由下至上进行。
  9. 如权利要求6所述的一种富水砂砾地层中深基坑局部冷冻加固施工方法,其特征在于,注浆采用水泥-水玻璃双液浆为主,单液水泥浆为辅,以少量、多次和均匀为原则,注浆压力不大于预设压力值,注浆范围为整个冻结区域。
  10. 如权利要求6所述的一种富水砂砾地层中深基坑局部冷冻加固施工方法,其特征在于,该方法还包括:基坑开挖完成后,进行防水、主体结构施工及恢复原地貌及生态。
PCT/CN2019/110662 2019-02-26 2019-10-11 加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法 WO2020173100A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217026177A KR20210130725A (ko) 2019-02-26 2019-10-11 보강장치 및 다량 수분 함유 자갈 지층 중 심층 피트 국소 냉동 보강 시공 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910143249.0A CN109723065B (zh) 2019-02-26 2019-02-26 加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法
CN201910143249.0 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020173100A1 true WO2020173100A1 (zh) 2020-09-03

Family

ID=66301876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110662 WO2020173100A1 (zh) 2019-02-26 2019-10-11 加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法

Country Status (3)

Country Link
KR (1) KR20210130725A (zh)
CN (1) CN109723065B (zh)
WO (1) WO2020173100A1 (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112664203A (zh) * 2020-12-25 2021-04-16 北京市政路桥股份有限公司 一种盾构隧道上方河流拓浚控制盾构隧道变形的加固体系及构建方法
CN113149548A (zh) * 2021-03-31 2021-07-23 南京同力建设集团股份有限公司 富水粉细砂层超长大直径密集桩群空桩回填材料及方法
CN113216237A (zh) * 2021-04-19 2021-08-06 中建八局第一建设有限公司 一种地系梁的建筑结构体系及施工方法
CN113235612A (zh) * 2021-05-17 2021-08-10 中铁二十四局集团有限公司 邻近高铁的软土地基高承压水环境的深基坑支护施工方法
CN113309083A (zh) * 2021-05-29 2021-08-27 中核华辰建筑工程有限公司 一种大直径超长灌注桩施工方法
CN113338947A (zh) * 2021-04-14 2021-09-03 浙江交工集团股份有限公司 富水砂层防流砂涌水工作井及其施工方法
CN113463659A (zh) * 2021-08-16 2021-10-01 自然资源部第二大地测量队(黑龙江第一测绘工程院) 一种基于冻土地区测量标志埋设的基坑安全保护装置
CN113585273A (zh) * 2021-08-06 2021-11-02 中交隧道工程局有限公司 一种土夹石地质基坑成型施工方法
CN113622996A (zh) * 2021-09-03 2021-11-09 中交投资南京有限公司 一种富水地质地下结构施工渗水控制施工方法
CN113718782A (zh) * 2021-08-30 2021-11-30 中国三冶集团有限公司 一种深基坑二次开挖及支护施工方法
CN113803073A (zh) * 2021-09-27 2021-12-17 长江勘测规划设计研究有限责任公司 富水砂层人工清障的隧道结构的施工方法
CN113846646A (zh) * 2021-10-12 2021-12-28 中铁七局集团郑州工程有限公司 富水砾石或碎石类土层桥梁承台基坑复合式止水支护方法
CN114016516A (zh) * 2021-11-08 2022-02-08 贵州建工集团第一建筑工程有限责任公司 一种混凝土-钢结构混合的角支撑施工方法
CN114134903A (zh) * 2021-12-11 2022-03-04 中冶建筑研究总院(深圳)有限公司 基于水平冻结法的软土地区深大基坑土体超前加固方法
CN114232654A (zh) * 2021-12-31 2022-03-25 中交路桥建设有限公司 边坡防护加固施工方法
CN114352317A (zh) * 2021-12-20 2022-04-15 四川共拓岩土科技股份有限公司 一种基于砂层或砂卵石层的地铁洞室不降水施工方法
CN114607390A (zh) * 2022-03-28 2022-06-10 中铁二十局集团第五工程有限公司 基于软土富水地层冻结法的联络通道混凝土灌注方法
CN114920537A (zh) * 2022-06-06 2022-08-19 山东大学 一种适用于富水碎粉岩地层的高渗透、高粘结型注浆加固材料及其制备方法
CN115030136A (zh) * 2022-06-15 2022-09-09 中铁十一局集团有限公司 管线横穿基坑区域地下连续墙的施工方法
CN115045290A (zh) * 2022-06-16 2022-09-13 中国五冶集团有限公司 上墙下桩式深基坑围护建造方法
CN115217119A (zh) * 2022-08-12 2022-10-21 中国一冶集团有限公司 一种深基坑临边道路与管线布置系统及施工方法
CN115262657A (zh) * 2022-08-11 2022-11-01 中交一公局集团有限公司 一种基坑回灌后涌水通道的封堵方法
CN115387347A (zh) * 2022-06-06 2022-11-25 中煤江南建设发展集团有限公司 一种基于受限空间的深基坑支护方法
CN115506369A (zh) * 2022-10-19 2022-12-23 上海市基础工程集团有限公司 可精确调节钢筋笼标高的扁担装置
CN115874570A (zh) * 2023-02-17 2023-03-31 中交第一航务工程局有限公司 一种深窄河道的支护结构及其施工方法
CN115899442A (zh) * 2022-12-08 2023-04-04 中交第四航务工程局有限公司 新建河道跨越油气管道包封保护装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109723065B (zh) * 2019-02-26 2023-11-03 济南轨道交通集团有限公司 加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法
CN111910646A (zh) * 2020-08-19 2020-11-10 上海隧道工程有限公司 上跨既有地下构筑物的基坑复合围护结构及其施工方法
CN112924945B (zh) * 2021-03-10 2023-09-22 大连理工大学 基于跨孔雷达成像的地下连续墙模型试验系统
CN113482044B (zh) * 2021-07-19 2022-06-03 中国葛洲坝集团市政工程有限公司 一种侵入地铁车站结构的电力管线改迁方法
CN114032938B (zh) * 2021-11-24 2023-12-05 上海建工集团股份有限公司 一种深基坑水平冻结封底施工方法
CN115234477B (zh) * 2022-07-07 2023-12-05 华能陇东能源有限责任公司 用于黄土地质的重力压缩空气储能系统的竖井及加固方法
CN115929399B (zh) * 2023-02-07 2024-01-23 中交四航局第一工程有限公司 一种用于电力隧道的施工保护装置及施工保护方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2737647A1 (de) * 1977-08-20 1979-02-22 Hochtief Ag Hoch Tiefbauten Verfahren zur errichtung eines tiefbauwerkes
JP2012036720A (ja) * 2010-08-04 2012-02-23 Kunmin Composite Infrastructure Inc 覆工パネルを用いる開削式掘削構造及び開削式掘削施工方法
CN102409691A (zh) * 2011-09-08 2012-04-11 同济大学 地下连续墙墙体开口处预埋冻结管的冻结法止水装置
CN204080789U (zh) * 2014-08-29 2015-01-07 上海建工七建集团有限公司 地下连续墙墙幅缺口的修补结构
CN108442382A (zh) * 2018-03-06 2018-08-24 中铁十局集团城市轨道工程有限公司 横穿深基坑的压力管线原位保护及围护挡土结构及施工方法
CN109723065A (zh) * 2019-02-26 2019-05-07 济南轨道交通集团有限公司 加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321429A (ja) * 2006-05-31 2007-12-13 Ohbayashi Corp 地下構造物施工方法
CN103603368B (zh) * 2013-11-26 2015-11-18 中铁第四勘察设计院集团有限公司 连续墙遇地下管线逆做的施工方法
CN104652418B (zh) * 2014-12-24 2016-08-17 广州机施建设集团有限公司 连续墙地下管线位置施工方法
CN105862722A (zh) * 2016-04-07 2016-08-17 中建交通建设集团有限公司 一种岩溶强烈发育地区地铁深基坑三维处理方法
CN106120799A (zh) * 2016-06-27 2016-11-16 中铁第四勘察设计院集团有限公司 地下管线横跨基坑免改迁施工方法
CN106120801B (zh) * 2016-08-18 2018-02-16 中铁隧道集团二处有限公司 富水砂层中管线横穿基坑处的施工方法
CN109296825A (zh) * 2018-09-29 2019-02-01 中铁第勘察设计院集团有限公司 大直径承插口供水砼管悬吊保护体系及其施工方法
CN209941689U (zh) * 2019-02-26 2020-01-14 济南轨道交通集团有限公司 加固装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2737647A1 (de) * 1977-08-20 1979-02-22 Hochtief Ag Hoch Tiefbauten Verfahren zur errichtung eines tiefbauwerkes
JP2012036720A (ja) * 2010-08-04 2012-02-23 Kunmin Composite Infrastructure Inc 覆工パネルを用いる開削式掘削構造及び開削式掘削施工方法
CN102409691A (zh) * 2011-09-08 2012-04-11 同济大学 地下连续墙墙体开口处预埋冻结管的冻结法止水装置
CN204080789U (zh) * 2014-08-29 2015-01-07 上海建工七建集团有限公司 地下连续墙墙幅缺口的修补结构
CN108442382A (zh) * 2018-03-06 2018-08-24 中铁十局集团城市轨道工程有限公司 横穿深基坑的压力管线原位保护及围护挡土结构及施工方法
CN109723065A (zh) * 2019-02-26 2019-05-07 济南轨道交通集团有限公司 加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112664203B (zh) * 2020-12-25 2023-06-27 北京市政路桥股份有限公司 一种盾构隧道上方河流拓浚控制盾构隧道变形的加固体系及构建方法
CN112664203A (zh) * 2020-12-25 2021-04-16 北京市政路桥股份有限公司 一种盾构隧道上方河流拓浚控制盾构隧道变形的加固体系及构建方法
CN113149548A (zh) * 2021-03-31 2021-07-23 南京同力建设集团股份有限公司 富水粉细砂层超长大直径密集桩群空桩回填材料及方法
CN113338947A (zh) * 2021-04-14 2021-09-03 浙江交工集团股份有限公司 富水砂层防流砂涌水工作井及其施工方法
CN113338947B (zh) * 2021-04-14 2024-04-09 浙江交工集团股份有限公司 富水砂层防流砂涌水工作井及其施工方法
CN113216237A (zh) * 2021-04-19 2021-08-06 中建八局第一建设有限公司 一种地系梁的建筑结构体系及施工方法
CN113235612A (zh) * 2021-05-17 2021-08-10 中铁二十四局集团有限公司 邻近高铁的软土地基高承压水环境的深基坑支护施工方法
CN113309083A (zh) * 2021-05-29 2021-08-27 中核华辰建筑工程有限公司 一种大直径超长灌注桩施工方法
CN113585273A (zh) * 2021-08-06 2021-11-02 中交隧道工程局有限公司 一种土夹石地质基坑成型施工方法
CN113463659A (zh) * 2021-08-16 2021-10-01 自然资源部第二大地测量队(黑龙江第一测绘工程院) 一种基于冻土地区测量标志埋设的基坑安全保护装置
CN113463659B (zh) * 2021-08-16 2022-11-04 自然资源部第二大地测量队(黑龙江第一测绘工程院) 一种基于冻土地区测量标志埋设的基坑安全保护装置
CN113718782A (zh) * 2021-08-30 2021-11-30 中国三冶集团有限公司 一种深基坑二次开挖及支护施工方法
CN113622996B (zh) * 2021-09-03 2023-12-26 中交投资南京有限公司 一种富水地质地下结构施工渗水控制施工方法
CN113622996A (zh) * 2021-09-03 2021-11-09 中交投资南京有限公司 一种富水地质地下结构施工渗水控制施工方法
CN113803073A (zh) * 2021-09-27 2021-12-17 长江勘测规划设计研究有限责任公司 富水砂层人工清障的隧道结构的施工方法
CN113803073B (zh) * 2021-09-27 2024-01-19 长江勘测规划设计研究有限责任公司 富水砂层人工清障的隧道结构的施工方法
CN113846646A (zh) * 2021-10-12 2021-12-28 中铁七局集团郑州工程有限公司 富水砾石或碎石类土层桥梁承台基坑复合式止水支护方法
CN114016516A (zh) * 2021-11-08 2022-02-08 贵州建工集团第一建筑工程有限责任公司 一种混凝土-钢结构混合的角支撑施工方法
CN114134903A (zh) * 2021-12-11 2022-03-04 中冶建筑研究总院(深圳)有限公司 基于水平冻结法的软土地区深大基坑土体超前加固方法
CN114352317A (zh) * 2021-12-20 2022-04-15 四川共拓岩土科技股份有限公司 一种基于砂层或砂卵石层的地铁洞室不降水施工方法
CN114352317B (zh) * 2021-12-20 2023-11-21 四川共拓岩土科技股份有限公司 一种基于砂层或砂卵石层的地铁洞室不降水施工方法
CN114232654A (zh) * 2021-12-31 2022-03-25 中交路桥建设有限公司 边坡防护加固施工方法
CN114607390A (zh) * 2022-03-28 2022-06-10 中铁二十局集团第五工程有限公司 基于软土富水地层冻结法的联络通道混凝土灌注方法
CN115387347A (zh) * 2022-06-06 2022-11-25 中煤江南建设发展集团有限公司 一种基于受限空间的深基坑支护方法
CN114920537A (zh) * 2022-06-06 2022-08-19 山东大学 一种适用于富水碎粉岩地层的高渗透、高粘结型注浆加固材料及其制备方法
CN115030136A (zh) * 2022-06-15 2022-09-09 中铁十一局集团有限公司 管线横穿基坑区域地下连续墙的施工方法
CN115045290A (zh) * 2022-06-16 2022-09-13 中国五冶集团有限公司 上墙下桩式深基坑围护建造方法
CN115262657A (zh) * 2022-08-11 2022-11-01 中交一公局集团有限公司 一种基坑回灌后涌水通道的封堵方法
CN115262657B (zh) * 2022-08-11 2024-03-15 中交一公局集团有限公司 一种基坑回灌后涌水通道的封堵方法
CN115217119A (zh) * 2022-08-12 2022-10-21 中国一冶集团有限公司 一种深基坑临边道路与管线布置系统及施工方法
CN115506369A (zh) * 2022-10-19 2022-12-23 上海市基础工程集团有限公司 可精确调节钢筋笼标高的扁担装置
CN115899442A (zh) * 2022-12-08 2023-04-04 中交第四航务工程局有限公司 新建河道跨越油气管道包封保护装置
CN115899442B (zh) * 2022-12-08 2023-09-15 中交第四航务工程局有限公司 新建河道跨越油气管道包封保护装置
CN115874570A (zh) * 2023-02-17 2023-03-31 中交第一航务工程局有限公司 一种深窄河道的支护结构及其施工方法

Also Published As

Publication number Publication date
CN109723065B (zh) 2023-11-03
KR20210130725A (ko) 2021-11-01
CN109723065A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2020173100A1 (zh) 加固装置及富水砂砾地层中深基坑局部冷冻加固施工方法
CN104612162B (zh) 一种地铁车站深基坑开挖施工方法
CN110821503B (zh) 一种超深盾构区间风井先隧后主体施工方法
CN106050266A (zh) 富水砂卵石地层隧道内盾构区间联络通道暗挖的施工方法
WO2022083096A1 (zh) 上软下硬地层的隧道开挖方法
CN107542108A (zh) 一种建筑物地下室结构的逆向施工方法
CN107268688B (zh) 地下连续墙工字钢接头加固止水的施工方法
CN109371980B (zh) 喷锚逆作与冲孔桩组合的深基坑围护施工方法
CN113266392B (zh) 一种穿越既有锚索群的顶管施工方法
CN112727466A (zh) 一种无支护预制拼装式盾构隧道风井结构施工方法
CN114411756A (zh) 一种富水砂层地铁车站明挖基坑无降水施工方法及施工装置
CN110306989B (zh) 一种非明挖装配式管沟开挖支护加固方法
CN110565686A (zh) 管廊下穿河道的施工方法
CN104863183A (zh) 大断面隧道近接建筑物施工隔离减震桩结构及施工方法
CN109610473A (zh) 一种市政大型池体构筑物基坑支护体系的施工方法
CN110735641B (zh) 下穿管线的换乘通道的施工方法
CN110529120B (zh) Ⅵ级围岩浅埋暗挖黄土隧道凿除侵限构筑物施工方法
CN110512649B (zh) 既有建筑下增设地下室及连通道结构的暗挖施工方法
CN209941754U (zh) 一种高压电力管涵原地保护结构
CN106988337A (zh) 一种用于减小条形浅基础房屋不均匀沉降的加固方法
CN112483126A (zh) 上软下硬复合地层的暗挖风道施工方法
CN220910657U (zh) 一种燃气管道用水平管幕防护结构
CN110552702A (zh) 一种拼装波纹钢板地下综合管廊的暗挖施工方法
CN114809106B (zh) 一种既有隧道的组合式保护结构的施工方法
CN113669084B (zh) 一种湖相沉积软弱地层地铁先隧后站管片拆除方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917008

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19917008

Country of ref document: EP

Kind code of ref document: A1