WO2020173096A1 - 一种平面复合结构空间大行程的柔顺铰链 - Google Patents

一种平面复合结构空间大行程的柔顺铰链 Download PDF

Info

Publication number
WO2020173096A1
WO2020173096A1 PCT/CN2019/110289 CN2019110289W WO2020173096A1 WO 2020173096 A1 WO2020173096 A1 WO 2020173096A1 CN 2019110289 W CN2019110289 W CN 2019110289W WO 2020173096 A1 WO2020173096 A1 WO 2020173096A1
Authority
WO
WIPO (PCT)
Prior art keywords
fork
straight beam
rectangular
plane
unit
Prior art date
Application number
PCT/CN2019/110289
Other languages
English (en)
French (fr)
Inventor
张宪民
张洪川
朱本亮
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/265,763 priority Critical patent/US11745334B2/en
Priority to JP2021509175A priority patent/JP7039092B2/ja
Publication of WO2020173096A1 publication Critical patent/WO2020173096A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/12Pivotal connections incorporating flexible connections, e.g. leaf springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • B25J9/0015Flexure members, i.e. parts of manipulators having a narrowed section allowing articulation by flexion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/47Cosmonautic vehicles, i.e. bearings adapted for use in outer-space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1028Vibration-dampers; Shock-absorbers using inertia effect the inertia-producing means being a constituent part of the system which is to be damped

Definitions

  • the invention relates to the technical field of compliant mechanisms, in particular to a compliant hinge with a large space travel in a planar composite structure.
  • the compliant mechanism refers to a mechanism that uses its own elastic deformation to transmit input force or displacement.
  • the advantages of the compliant mechanism such as no gap, no lubrication, no assembly, high precision, and high rigidity, have been discovered by researchers and are widely used in aerospace, mechanical engineering, robotics, medical equipment and other fields.
  • One of the mainstream design methods of the compliant mechanism is the rigid body substitution method. Its basic idea is to equivalently replace the rigid hinge of the traditional rigid mechanism with the corresponding compliant hinge to form the corresponding compliant mechanism. Therefore, the design of compliant hinges and the design of new spatial compliant mechanisms have always been the focus and hotspot of mechanism.
  • LET compliant hinges Lamina Emergent Torsional Joint
  • LEMs Lamina Emergent Mechanisms
  • LET compliant hinges Lamina Emergent Torsional Joint
  • LEMs Lamina Emergent Mechanisms
  • LET compliant hinges a flat structure with narrow rectangular shape, which is processed by thin plate material. It can realize out-of-plane rotation. It is a new type of compliant hinge with single degree of freedom.
  • LEMs compliant mechanism is a compliant mechanism composed of LET compliant hinges.
  • This type of compliant mechanism also has the characteristic of realizing out-of-plane space movement through a planar structure.
  • Both LET compliant hinges and LEMs compliant mechanisms can achieve large deformations and are simple to process.
  • Conventional methods (such as wire cutting, 3D printing, laser cutting) can be used to manufacture macro-scale mechanisms or equipment, or microelectromechanical systems (MEMS, Micro-Electro-Mechanical System (Micro-Electro-Mechanical (System)) field of micro-processing technology produces micro-scale mechanisms or equipment.
  • MEMS Micro-Electro-Mechanical System
  • LET hinges and LEMs mechanisms provide new ideas for the need to realize spatial compliant mechanisms with spatial movement functions and spatial micro-compliant mechanisms, but since LET compliant hinges are equivalent to the single-degree-of-freedom joints of rigid mechanisms, this makes LET compliant hinges constitute
  • the equivalent rigid mechanism of LEMs compliant mechanism is often a mechanism with less space and less degrees of freedom composed of low motion pairs. Therefore, in the design of a large-stroke spatial multi-degree-of-freedom compliant mechanism with a flat sheet, the LET compliant hinge has certain limitations, such as the Delta mechanism, Gough-Stewart mechanism and patent (201810223057.6) that require multiple degrees of freedom joints.
  • the flipped multi-stable compliant mechanism cannot only use LET compliant hinges to form the above-mentioned equivalent compliant mechanism.
  • the purpose of the present invention is to overcome the problems that the existing planar structure compliant hinges can only be equivalent to a single degree of freedom large-stroke low-motion pair and the existing LEMs compliant mechanism equivalent multi-degree-of-freedom compliant hinge has a small overall stroke, etc., and proposes A compliant hinge with a large-travel plane composite structure space has the advantages of simple structure, easy processing, easy analysis and calculation, equivalent large-travel space and multiple degrees of freedom flexibility.
  • the technical solution proposed by the present invention is: a compliant hinge with a large-stroke planar composite structure space, comprising a connected rectangular planar unit and a fork-shaped planar unit, the rectangular planar unit is used to realize the out-of-plane torsion function ,
  • the rectangular plane unit is a rectangular structure surrounded by two flexible long straight beams and two flexible short straight beams. The center of one of the long straight beams is a fixed section, and its two ends are respectively the first torsion section.
  • the center of the other long straight beam is the second torsion section, and its two ends are respectively the third torsion section;
  • the fork-shaped plane unit is used to realize the in-plane rotation function, and the fork-shaped plane unit is composed of two flexible parallel A fork-shaped structure formed by intersecting straight beams and thin plates.
  • the outer side of the fork-shaped structure and the second torsion section are connected by an external connection to form a triangular structure with high rigidity and stable structure, which is used to connect the fork-shaped structure and the rectangular structure and transmit torque .
  • the rectangular plane unit has a narrow rectangular structure, that is, the length-to-width ratio of the long straight beam and the short straight beam is large, so that the torsional rigidity of the long straight beam is reduced, and a large range of bending deformation outside the plane of the rectangular plane unit can be realized.
  • the ratio of the width of the long straight beam to the thickness of the entire compliant hinge does not exceed 0.35; the angle of the fork-like structure formed by the two straight beam thin plates towards the long straight beam is 30-90 degrees, and the width of the straight beam thin plates is equal to The width of the long straight beam is similar, and the ratio of the thickness to the thickness of the entire compliant hinge is not more than 0.31, so that the torsional flexibility of the rectangular plane unit is equivalent to that of the fork-shaped plane unit.
  • the length of the first torsion section is greater than the length of the short straight beam
  • the width of the first torsion section is smaller than the width of the short straight beam
  • the ratio of the width of the first torsion section to the thickness of the entire compliant hinge is 0.1 to 0.35
  • the length of the straight beam sheet is equal to the length of the fixed section and the length of the second torsion section, and its deformation length does not exceed 1.414 times the length of the fixed section, and the ratio of the width of the straight beam sheet to the thickness of the entire compliant hinge It is 0.1 ⁇ 0.25.
  • the ratio of the torsional flexibility of the rectangular plane unit to the bending flexibility of the fork-shaped plane unit is 0.2-1.
  • a large-stroke compliant hinge for a planar composite structure comprising a connected rectangular planar unit and a fork-shaped planar unit with a connecting beam.
  • the rectangular planar unit is used to realize the out-of-plane torsion function.
  • the rectangular planar unit is composed of two A rectangular structure surrounded by a flexible long straight beam and two flexible short straight beams.
  • the center of one of the long straight beams is a fixed section, and the two ends are the first torsion section, and the center of the other long straight beam is
  • the two ends of the second torsion section are respectively the third torsion section;
  • the fork-shaped planar unit with connecting beams is used to realize the in-plane rotation function, and the fork-shaped planar unit is composed of two flexible and intersecting straight beam thin plates
  • the connecting beam connects the two ends of the fork-shaped structure on one side close to the rectangular structure.
  • the center of the connecting beam is the fourth torsion section, and both sides are the fifth torsion section.
  • the inner side of the shape structure that is, the fourth torsion section and the second torsion section form a triangular structure through in-line connection, and the outer side of the fork-shaped structure is not connected to any structure.
  • the triangular structure is used to connect the fork-shaped structure and the rectangular structure and transfer
  • the part of the triangular structure on the thin plate of the straight beam can realize in-plane bending deformation, and the part connected with the rectangular structure can realize out-of-plane torsional deformation.
  • the rectangular plane unit has a narrow rectangular structure, that is, the length-to-width ratio of the long straight beam and the short straight beam is large, so that the torsional rigidity of the long straight beam is reduced, and a large range of bending deformation outside the plane of the rectangular plane unit can be realized.
  • the ratio of the width of the long straight beam to the thickness of the entire compliant hinge does not exceed 0.35; the angle of the fork-like structure formed by the two straight beam thin plates towards the long straight beam is 30-90 degrees, and the width of the straight beam thin plates is equal to The width of the long straight beam is similar, and the ratio of the thickness to the thickness of the entire compliant hinge is not more than 0.31, so that the torsional flexibility of the rectangular plane unit is equivalent to that of the fork-shaped plane unit.
  • the length of the first torsion section is greater than the length of the short straight beam
  • the width of the first torsion section is smaller than the width of the short straight beam
  • the ratio of the width of the first torsion section to the thickness of the entire compliant hinge is 0.1 to 0.35
  • the length of the straight beam sheet is equal to the length of the fixed section and the length of the second torsion section, and its deformation length does not exceed 1.414 times the length of the fixed section, and the ratio of the width of the straight beam sheet to the thickness of the entire compliant hinge It is 0.1 ⁇ 0.25.
  • the ratio of the torsional flexibility of the rectangular plane unit to the bending flexibility of the fork-shaped plane unit is 0.2-1.
  • the present invention has the following advantages and beneficial effects:
  • the present invention can be equivalent to a two-degree-of-freedom rotating joint, which can realize large-scale rotation in the plane through the bending of the fork-shaped plane unit, and realize large-scale rotation out of the plane through the torsional deformation of the rectangular plane unit.
  • the rectangular flat unit of the present invention has a narrow rectangular structure, the torsional rigidity of the long straight beam is reduced, and a large range of bending deformation outside the plane of the rectangular flat unit can be realized.
  • the compliant mechanism of the present invention can realize large out-of-plane deformation and movement, with one or more plane degrees of freedom.
  • Fig. 1 is a three-dimensional structural diagram of an external compliant hinge of the present invention.
  • Figure 2 is a plan view of the externally connected compliant hinge of the present invention.
  • Figure 3 is a three-dimensional structural diagram of the built-in compliant hinge of the present invention.
  • Figure 4 is a plan view of the built-in compliant hinge of the present invention.
  • Fig. 5 is a schematic diagram of the planar structure of the inverted multi-stable compliance mechanism designed by the present invention.
  • Fig. 6 is the four steady-state schematic diagrams of the above-mentioned inverted multi-stable compliance mechanism.
  • Fig. 7 is a top view of a compliant folding delta mechanism adopting the equivalent design of the present invention.
  • Fig. 8 is the first schematic diagram of the unfolding work of the aforementioned compliant folding delta mechanism.
  • Figure 9 is the second schematic diagram of the unfolding work of the above-mentioned compliant folding delta mechanism.
  • a compliant hinge with a large-stroke planar composite structure proposed in this embodiment includes a connected rectangular planar unit 1 and a fork-shaped planar unit 2, and the rectangular planar unit 1 is used to realize Out-of-plane torsion function.
  • the rectangular plane unit 1 is a rectangular structure surrounded by two flexible long straight beams and two flexible short straight beams 102.
  • the center of one of the long straight beams is a fixed section 100, and its two ends Respectively the first torsion section 101, the center of the other long straight beam is the second torsion section 103, and its two ends are respectively the third torsion section 104;
  • the fork-shaped plane unit 2 is used to realize the in-plane rotation function.
  • the fork-shaped plane unit 2 is a fork-shaped structure composed of two flexible and intersecting straight beam thin plates 201.
  • the outer side of the fork-shaped structure and the second torsion section 103 are connected by an external connection to form a triangle with high rigidity and stable structure.
  • the structure is used to connect the fork structure and the rectangular structure and transmit torque.
  • the main feature of the present invention is that it can be equivalent to a two-degree-of-freedom revolute joint, and can achieve large-scale rotation in the plane through the bending of the fork-shaped plane unit 2.
  • the large-scale rotation in the plane refers to the plane where the structure of the present invention is in the initial state.
  • the large-scale rotation movement on the above-mentioned, and the large-scale rotation outside the plane can be realized by the torsional deformation of the rectangular plane unit 1.
  • the large-scale rotation outside the plane refers to the equivalent rotation axis and plane outside the initial plane where the structure of the present invention is located.
  • the normal vector is perpendicular to a wide range of rotational movement.
  • the present invention has decoupling large space deformation ability. Its main deformation part is the first torsion section 101 of the long straight beam.
  • the rectangular plane unit 1 has a narrow rectangular structure, that is, the length-to-width ratio of the long straight beam and the short straight beam 102 is large, so that the torsional stiffness of the long straight beam is reduced, and the rectangular plane unit 1 can achieve large-scale bending deformation outside the plane.
  • the length of the first torsion section 101 is also greater than the length of the short straight beam 102
  • the width of the first torsion section 101 is smaller than the width of the short straight beam 102
  • the width of the first torsion section 101 is smaller than the thickness of the entire hinge
  • the ratio of the width of the first torsion section 101 to the thickness of the entire hinge should be 0.1-0.35.
  • the angle 204 of the fork-like structure formed by the two straight beam thin plates 201 toward the long straight beam is 30-90 degrees.
  • the width of the straight beam thin plate 201 is similar to the width of the long straight beam and is equal to the thickness of the entire hinge. The ratio does not exceed 0.31. Taking into account the difficulty of processing, the ratio of their values should be 0.1 to 0.25, so that the torsional flexibility of the rectangular plane unit 1 is equivalent to that of the fork-shaped plane unit 2.
  • the straight beam thin plate 201 The length of is equal to the length of the fixed section 100 and the length of the second torsion section 103, and its deformation length does not exceed 1.414 times the length of the fixed section 100.
  • the ratio of the torsional flexibility of the rectangular flat unit 1 to the bending flexibility of the fork-shaped flat unit 2 should be 0.2-1.
  • another flat composite structure proposed in this embodiment has a large-stroke compliant hinge, which includes a connected rectangular flat unit 1 and a fork-shaped flat unit 2 with connecting beams.
  • the plane unit 1 is used to realize the out-of-plane torsion function.
  • the rectangular plane unit 1 is a rectangular structure surrounded by two flexible long straight beams and two flexible short straight beams 102.
  • the center of one of the long straight beams is fixed Section 100, the two ends of which are respectively the first torsion section 101, the center of the other long straight beam is the second torsion section 103, and the two ends are respectively the third torsion section 104;
  • the fork-shaped plane unit 2 with connecting beam Used to realize the in-plane rotation function, the fork-shaped plane unit 2 is a fork-shaped structure composed of two flexible and intersecting straight beam thin plates 201, and the connecting beams bring the fork-shaped structure close to the two ends of the rectangular structure.
  • the connecting beam has a fourth torsion section 202 at the center, and a fifth torsion section 203 on both sides.
  • the inner side of the fork-shaped structure, that is, the fourth torsion section 202 and the second torsion section 103 are embedded Type connection constitutes a triangular structure, and the outside of the fork-shaped structure is not connected to any structure.
  • the triangular structure is used to connect the fork-shaped structure and the rectangular structure and transmit torque, and the part of the triangular structure located on the straight beam thin plate 201 can achieve in-plane
  • the part connected with the rectangular structure realizes the torsional deformation out of the plane.
  • the main feature of the present invention is that it can be equivalent to a two-degree-of-freedom revolute joint, and can achieve large-scale rotation in the plane through the bending of the fork-shaped plane unit 2.
  • the large-scale rotation in the plane refers to the plane where the structure of the present invention is in the initial state.
  • the large-scale rotation movement on the above-mentioned, and the large-scale rotation outside the plane can be realized by the torsional deformation of the rectangular plane unit 1.
  • the large-scale rotation outside the plane refers to the equivalent rotation axis and plane outside the initial plane where the structure of the present invention is located.
  • the normal vector is perpendicular to a wide range of rotational movement.
  • the main deformation parts of the built-in compliant hinge during the entire deformation process are the first torsion section 101 of the long straight beam and the fifth torsion section 203 inside the fork-shaped plane unit 2. Its main function is to make the entire rectangular plane unit 1 only have windings.
  • the rotation capability of the Y-axis 002 the rotation flexibility of the rectangular plane unit 1 along the Y-axis 002 is also greater than its rotation flexibility along the X-axis 001 and the Z-axis 003, and the fork-shaped plane unit 2 mainly realizes around the Z-axis 003 Therefore, the rotation flexibility of the fork-shaped plane unit 2 along the Z axis 003 is also greater than the rotation flexibility along the X axis 001 and the Y axis 002.
  • the rectangular plane unit 1 has a narrow rectangular structure, that is, the length-to-width ratio of the long straight beam and the short straight beam 102 is large, so that the torsional stiffness of the long straight beam is reduced, and the rectangular plane unit 1 can achieve large-scale bending deformation outside the plane.
  • the length of the first torsion section 101 is also greater than the length of the short straight beam 102, the width of the first torsion section 101 is smaller than the width of the short straight beam 102, and the width of the first torsion section 101 is smaller than the thickness of the entire hinge Considering the complexity of processing, the ratio of the width of the first torsion section 101 to the thickness of the entire hinge should be 0.1-0.35.
  • the angle 204 of the fork-like structure formed by the two straight beam thin plates 201 toward the long straight beam is 30-90 degrees.
  • the width of the straight beam thin plate 201 is similar to the width of the long straight beam and is equal to the thickness of the entire hinge. The ratio does not exceed 0.31. Taking into account the difficulty of processing, the ratio of their values should be 0.1 to 0.25, so that the torsional flexibility of the rectangular plane unit 1 is equivalent to that of the fork-shaped plane unit 2.
  • the straight beam thin plate 201 The length of is equal to the length of the fixed section 100 and the length of the second torsion section 103, and its deformation length does not exceed 1.414 times the length of the fixed section 100.
  • the ratio of the torsional flexibility of the rectangular flat unit 1 to the bending flexibility of the fork-shaped flat unit 2 should be 0.2-1.
  • the specific flexibility values of the entire structure can be adjusted according to actual working conditions through fine-tuning of parameters or size optimization, and finally Obtain the final structural parameter value of the compliant hinge.
  • a plurality of external or embedded compliant hinges of the present invention and other traditional planar hinges are connected in series or in parallel, which can realize large deformation and movement outside the plane and have one or more plane degrees of freedom.
  • rigid body substitution method it is equivalent to the large-stroke flexible folding mechanism with the characteristics of spatial multi-degree-of-freedom movement, such as multi-stable turning mechanism and delta mechanism.
  • the equivalent of the present invention is a two-degree-of-freedom hinge, and the rotation flexibility in both directions is equivalent, so it can be used for the reversing multi-stable compliance mechanism described in the patent number (201810223057.6), as shown in Figure 5.
  • 501 is a set of deformation units of the turning mechanism, that is, the flat composite structure proposed by the present invention has a large-stroke compliant hinge.
  • the compliant hinge of the present invention made of ABS engineering plastics can rotate 22.5 degrees in all directions, so only the first 16 compliant hinges of the present invention are connected in series to design into the patent number (201810223057.6)
  • the said reversing multi-stable compliance mechanism has four stable states, and its steady state states as shown in Fig. 6 are 601, 602, 603, 604, through X axis 001, Y axis 002 and Z axis 003
  • the direction of deformation of the overall structure can be distinguished from the figure.
  • Figure 7 is a plan view of the compliant folding and unfolding delta mechanism equivalently designed by the compliant hinge of the present invention folded into a plane state.
  • 701 is the Hooker hinge part of the end link of the delta mechanism designed by the compliant hinge of the present invention. It can be seen that this planar structure greatly simplifies the processing technology of the delta mechanism.
  • Figures 8 and 9 show the two unfolded states of the compliant folding delta mechanism equivalently designed by the compliant hinge of the present invention. After the mechanism is unfolded, it can move in three directions in the X, Y, and Z directions of space, with a movement displacement The advantages of large, small inertial mass of the moving platform and high positioning accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Micromachines (AREA)
  • Telephone Set Structure (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Transmission Devices (AREA)

Abstract

一种平面复合结构空间大行程的柔顺铰链,包括用于实现平面外扭转功能的矩形平面单元(1)和用于实现平面内旋转功能的叉形平面单元(2),所述叉形平面单元(2)是由两条柔性的直梁薄板(201)相交成带有夹角的叉状结构,所述矩形平面单元(1)与叉形平面单元(2)通过外联式或内嵌式连接。克服了现有的平面结构柔顺铰链只能等效单自由度的大行程低运动副及现有的LEMs柔顺机构等效的多自由度柔顺铰链总体行程较小等问题,具有结构简单、易于加工、易于分析计算、等效大行程空间多自由度柔度等优点。

Description

一种平面复合结构空间大行程的柔顺铰链 技术领域
本发明涉及柔顺机构的技术领域,尤其是指一种平面复合结构空间大行程的柔顺铰链。
背景技术
柔顺机构的是指一类利用自身弹性变形传递输入力或位移的机构。柔顺机构无间隙、无润滑、不需要装配、高精度、高刚度等优点早已被学者发现并广泛应用于航空航天、机械工程、机器人科学、医疗设备等多个领域。而柔顺机构主流设计方法之一是刚体替代法,它的基本思想就是将传统的刚性机构的刚性铰链等效替换成相应的柔顺铰链,进而组成与之对应的柔顺机构。因此柔顺铰链的设计以及新型空间柔顺机构的设计一直是机构学的重点和热点。
近年来,随着柔顺机构在微机电加工技术领域的应用以及发展,具有平面结构的各类柔顺铰链以及柔顺机构均被提出。但大多平面结构的柔顺铰链或者机构也只能实现其结构所在的平面内的运动,而具有空间运动能力的柔顺机构和铰链往往又不是简单的平面的结构,这样使得空间柔顺机构或者柔顺铰链加工困难,不易实现小尺度加工或者制造。
LET柔顺铰链(LET,Lamina Emergent Torsional Joint)以及由LET柔顺铰链组成的LEMs柔顺机构(LEMs,Lamina Emergent Mechanisms)具有通过特殊的平面结构实现平面外运动的特点,这类柔顺机构引起了柔顺机构领域学者们的广泛关注并引起了重视(详见专利US 9,157,497 B1)。LET柔顺铰链具体是一种是由薄板材料加工完成,具有窄边矩形形状的平面结构,它可实现平面外转动,是一类新型单自由度的柔顺铰链。LEMs柔顺机构是一种由LET柔顺铰链组成的柔顺机构,该类柔顺机构亦具有通过平面结构实现平面外空间运动的特点。LET柔顺铰链以及LEMs柔顺机构均可以实现较大变形,且加工简单, 既可以用常规方法(如线切割、3D打印、激光切割)制造宏观尺度的机构或设备,也可用微机电系统(MEMS,Micro-Electro-Mechanical System)领域的微加工技术制造出微观尺度的机构或设备。
LET铰链和LEMs机构为需要实现具备空间移动功能的空间柔顺机构以及空间微柔顺机构提供新的思路,但由于LET柔顺铰链等效的是刚性机构的单自由度关节,这使得LET柔顺铰链构成的LEMs柔顺机构的等效的刚性机构往往是由低运动副构成的空间少自由度机构。因此在设计平面薄片复合的大行程的空间多自由度柔顺机构中,LET柔顺铰链就具有一定的局限性,譬如需要多自由度关节的Delta机构、Gough-Stewart机构以及专利(201810223057.6)中所述的翻转多稳态柔顺机构则无法只用LET柔顺铰链组成上述的等效柔顺机构。
发明内容
本发明的目的在于克服现有的平面结构柔顺铰链只能等效单自由度的大行程低运动副及现有的LEMs柔顺机构等效的多自由度柔顺铰链总体行程较小等问题,提出了一种平面复合结构空间大行程的柔顺铰链,具有结构简单、易于加工、易于分析计算、等效大行程空间多自由度柔度等优点。
为实现上述目的,本发明所提出的技术方案为:一种平面复合结构空间大行程的柔顺铰链,包括相连的矩形平面单元和叉形平面单元,所述矩形平面单元用于实现平面外扭转功能,该矩形平面单元是由两条柔性的长直梁和两条柔性的短直梁围成的矩形结构,其中一条长直梁的中心处为固定段,其两端分别为第一扭转段,另一条长直梁的中心处为第二扭转段,其两端分别为第三扭转段;所述叉形平面单元用于实现平面内旋转功能,该叉形平面单元是由两条柔性并相交叉的直梁薄板构成的叉状结构,所述叉状结构的外侧与第二扭转段通过外联式连接构成刚度高、结构稳定的三角形结构,用于连接叉状结构与矩形结构并传递力矩。
进一步,所述矩形平面单元为窄矩形结构,即所述长直梁和短直梁的长宽比大,从而长直梁的扭转刚度降低,能够实现矩形平面单元平面外大范围的弯曲变形,且长直梁的宽度与整个柔顺铰链的厚度之比不超过0.35;所述两条直梁薄板构成的叉状结构朝向长直梁的夹角为30-90度,且直梁薄板的宽度与长直梁的宽度相近,并与整个柔顺铰链的厚度之比不超过0.31,从而使矩形平面单元的扭转柔度与叉形平面单元的转动柔度相当。
进一步,所述第一扭转段的长度大于短直梁的长度,所述第一扭转段的宽度小于短直梁的宽度,第一扭转段的宽度与整个柔顺铰链的厚度之比为0.1~0.35,所述直梁薄板的长度分别与固定段的长度和第二扭转段的长度相等,其变形长度不超过固定段长度的1.414倍,所述直梁薄板的宽度与整个柔顺铰链的厚度之比为0.1~0.25。
进一步,所述矩形平面单元的扭转柔度与叉形平面单元的弯曲柔度之比为0.2~1。
一种平面复合结构空间大行程的柔顺铰链,包括相连的矩形平面单元和带有连接梁的叉形平面单元,所述矩形平面单元用于实现平面外扭转功能,该矩形平面单元是由两条柔性的长直梁和两条柔性的短直梁围成的矩形结构,其中一条长直梁的中心处为固定段,其两端分别为第一扭转段,另一条长直梁的中心处为第二扭转段,其两端分别为第三扭转段;带有连接梁的叉形平面单元用于实现平面内旋转功能,该叉形平面单元是由两条柔性并相交叉的直梁薄板构成的叉状结构,所述连接梁将叉状结构靠近矩形结构一侧的两个端部相连接,该连接梁的中心处为第四扭转段,其两侧为第五扭转段,所述叉状结构的内侧,即第四扭转段与第二扭转段通过内嵌式连接构成三角形结构,且叉状结构的外侧不与任何结构连接,该三角形结构用于连接叉状结构与矩形结构并传递力矩, 且该三角形结构位于直梁薄板上的部分能够实现平面内的弯曲变形,其与矩形结构连接的部分实现平面外的扭转变形。
进一步,所述矩形平面单元为窄矩形结构,即所述长直梁和短直梁的长宽比大,从而长直梁的扭转刚度降低,能够实现矩形平面单元平面外大范围的弯曲变形,且长直梁的宽度与整个柔顺铰链的厚度之比不超过0.35;所述两条直梁薄板构成的叉状结构朝向长直梁的夹角为30-90度,且直梁薄板的宽度与长直梁的宽度相近,并与整个柔顺铰链的厚度之比不超过0.31,从而使矩形平面单元的扭转柔度与叉形平面单元的转动柔度相当。
进一步,所述第一扭转段的长度大于短直梁的长度,所述第一扭转段的宽度小于短直梁的宽度,第一扭转段的宽度与整个柔顺铰链的厚度之比为0.1~0.35,所述直梁薄板的长度分别与固定段的长度和第二扭转段的长度相等,其变形长度不超过固定段长度的1.414倍,所述直梁薄板的宽度与整个柔顺铰链的厚度之比为0.1~0.25。
进一步,所述矩形平面单元的扭转柔度与叉形平面单元的弯曲柔度之比为0.2~1。
本发明与现有技术相比,具有如下优点与有益效果:
1、本发明可以等效两自由度转动关节,既可以通过叉形平面单元的弯曲实现平面内的大范围转动,又可以通过矩形平面单元的扭转变形实现平面外的大范围转动。
2、本发明的矩形平面单元为窄矩形结构,长直梁的扭转刚度降低,能够实现矩形平面单元平面外大范围的弯曲变形。
3、采用本发明的柔顺机构可以实现平面外大的变形以及运动,具有一个或者多个平面自由度。
附图说明
图1为本发明外联式柔顺铰链的立体结构图。
图2为本发明外联式柔顺铰链的平面结构图。
图3为本发明内嵌式柔顺铰链的立体结构图。
图4为本发明内嵌式柔顺铰链的平面结构图。
图5为采用本发明所设计的翻转多稳态柔顺机构的平面结构示意图。
图6为上述翻转多稳态柔顺机构的四个稳态示意图。
图7为采用本发明等效设计的柔顺折展delta机构的俯视图。
图8为上述柔顺折展delta机构的展开工作示意图一。
图9为上述柔顺折展delta机构的展开工作示意图二。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
如图1、图2所示,本实施例所提出的一种平面复合结构空间大行程的柔顺铰链,包括相连的矩形平面单元1和叉形平面单元2,所述矩形平面单元1用于实现平面外扭转功能,该矩形平面单元1是由两条柔性的长直梁和两条柔性的短直梁102围成的矩形结构,其中一条长直梁的中心处为固定段100,其两端分别为第一扭转段101,另一条长直梁的中心处为第二扭转段103,其两端分别为第三扭转段104;所述叉形平面单元2用于实现平面内旋转功能,该叉形平面单元2是由两条柔性并相交叉的直梁薄板201构成的叉状结构,所述叉状结构的外侧与第二扭转段103通过外联式连接构成刚度高、结构稳定的三角形结构,用于连接叉状结构与矩形结构并传递力矩。本发明的主要特点是可以等效两自由度转动关节,既可以通过叉形平面单元2的弯曲实现平面内的大范围转动,平面内大范围的转动是指在本发明结构初始状态所在的平面上的大范围的转动 运动,又可以通过矩形平面单元1的扭转变形实现平面外的大范围转动,平面外大范围的转动是指在本发明结构所在初始平面外的且等效转动轴与平面法向量垂直的大范围转动运动。
外联式的柔顺铰链在整个变形过程中三角形结构平面内的弯曲变形较大、平面外的扭转变形较小,矩形平面单元1只能绕Y轴002和叉形平面单元2只能绕Z轴003转动变形能力,通过这两种变形使本发明具有解耦的空间大变形能力,其主要变形部分为长直梁的第一扭转段101,其主要功能是使整个矩形平面单元1只具有绕Y轴002的转动能力,因此矩形平面单元1沿着Y轴002的转动柔度明显大于其沿着X轴001和Z轴003的转动柔度,叉形平面单元2主要实现绕Z轴003的转动,因此叉形平面单元2沿Z轴003的转动柔顺明显大于沿X轴001和Y轴002的转动柔度。
为了实现上述性能其几何尺寸关系需作如下约束:
1)矩形平面单元1为窄矩形结构,即所述长直梁和短直梁102的长宽比大,从而长直梁的扭转刚度降低,能够实现矩形平面单元1平面外大范围的弯曲变形,其中,第一扭转段101的长度也要大于短直梁102的长度,第一扭转段101的宽度小于短直梁102的宽度,且第一扭转段101的宽度要小于整个铰链的厚度,考虑到加工的复杂程度,第一扭转段101的宽度与整个铰链的厚度之比应为0.1~0.35。
2)所述两条直梁薄板201构成的叉状结构朝向长直梁的夹角204为30-90度,直梁薄板201的宽度与长直梁的宽度相近,并与整个铰链的厚度之比不超过0.31,考虑到加工难度,它们的数值之比应为0.1~0.25,从而使所矩形平面单元1的扭转柔度与叉形平面单元2的转动柔度相当,所述直梁薄板201的长度分别与固定段100的长度和第二扭转段103的长度相等,其变形长度不超过固 定段100长度的1.414倍。
考虑到矩形平面单元1可以通过串联的方式增加柔度,因此矩形平面单元1的扭转柔度与叉形平面单元2的弯曲柔度之比应为0.2~1。最后通过条件约束优化各尺寸参数可以得到满足上述要求的外联式连接的所述柔顺铰链。
如图3、图4所示,本实施例所提出的另一种平面复合结构空间大行程的柔顺铰链,包括相连的矩形平面单元1和带有连接梁的叉形平面单元2,所述矩形平面单元1用于实现平面外扭转功能,该矩形平面单元1是由两条柔性的长直梁和两条柔性的短直梁102围成的矩形结构,其中一条长直梁的中心处为固定段100,其两端分别为第一扭转段101,另一条长直梁的中心处为第二扭转段103,其两端分别为第三扭转段104;带有连接梁的叉形平面单元2用于实现平面内旋转功能,该叉形平面单元2是由两条柔性并相交叉的直梁薄板201构成的叉状结构,所述连接梁将叉状结构靠近矩形结构一侧的两个端部相连接,该连接梁的中心处为第四扭转段202,其两侧为第五扭转段203,所述叉状结构的内侧,即第四扭转段202与第二扭转段103通过内嵌式连接构成三角形结构,且叉状结构的外侧不与任何结构连接,该三角形结构用于连接叉状结构与矩形结构并传递力矩,且该三角形结构位于直梁薄板201上的部分能够实现平面内的弯曲变形,其与矩形结构连接的部分实现平面外的扭转变形。本发明的主要特点是可以等效两自由度转动关节,既可以通过叉形平面单元2的弯曲实现平面内的大范围转动,平面内大范围的转动是指在本发明结构初始状态所在的平面上的大范围的转动运动,又可以通过矩形平面单元1的扭转变形实现平面外的大范围转动,平面外大范围的转动是指在本发明结构所在初始平面外的且等效转动轴与平面法向量垂直的大范围转动运动。
内嵌式柔顺铰链在整个变形过程中主要变形部分为长直梁的第一扭转段 101和叉形平面单元2内侧的第五扭转段203,其主要功能是使整个矩形平面单元1只具有绕Y轴002的转动能力,矩形平面单元1沿着Y轴002的转动柔度也大于其沿着X轴001和Z轴003的转动柔度,所述叉形平面单元2主要实现绕Z轴003的转动,因此叉形平面单元2沿着Z轴003的转动柔度也大于沿着X轴001和Y轴002的转动柔度。
为了实现上述性能其几何尺寸关系需作如下约束:
1)矩形平面单元1为窄矩形结构,即所述长直梁和短直梁102的长宽比大,从而长直梁的扭转刚度降低,能够实现矩形平面单元1平面外大范围的弯曲变形,所述第一扭转段101的长度也要大于短直梁102的长度,所述第一扭转段101的宽度小于短直梁102的宽度,第一扭转段101的宽度要小于整个铰链的厚度,考虑到加工的复杂程度,第一扭转段101的宽度与整个铰链的厚度之比应为0.1~0.35。
2)所述两条直梁薄板201构成的叉状结构朝向长直梁的夹角204为30-90度,直梁薄板201的宽度与长直梁的宽度相近,并与整个铰链的厚度之比不超过0.31,考虑到加工难度,它们的数值之比应为0.1~0.25,从而使所矩形平面单元1的扭转柔度与叉形平面单元2的转动柔度相当,所述直梁薄板201的长度分别与固定段100的长度和第二扭转段103的长度相等,其变形长度不超过固定段100长度的1.414倍。
考虑到矩形平面单元1可以通过串联的方向增加柔度,因此矩形平面单元1的扭转柔度与叉形平面单元2的弯曲柔度之比应为0.2~1。最后通过条件约束优化各尺寸参数可以得到满足上述要求的内嵌式连接的所述柔顺铰链。
以上两种外联式或内嵌式平面结构的柔顺铰链在分别满足以上特征要求后,还可以根据实际工况需求,通过参数微调或者尺寸优化的方式对整个结构 具体柔度值进行调整,最后获得所述柔顺铰链的最终结构参数值。
由多个本发明所述的外联式或内嵌式柔顺铰链和其他传统平面铰链通过串联或者并联连接构成,可以实现平面外大的变形以及运动,具有一个或者多个平面自由度。通过刚体替代法的思想等效诸如多稳态翻转机构、delta机构等具有空间多自由度运动特点的大行程柔顺折展机构。
本发明所等效的是一种两自由度铰链,且两个方向的转动柔度相当,因此可以用于专利号(201810223057.6)中所述的翻转多稳态柔顺机构,如图5所示,501即是该翻转机构的一组变形单元,即本发明所提出的平面复合结构空间大行程的柔顺铰链。经理论分析和实验验证,采用ABS工程塑料制作本发明所述柔顺铰链各个方向均可以转动22.5度,因此只需要首位串联16个本发明所述的柔顺铰链即可设计成专利号(201810223057.6)中所述的翻转多稳态柔顺机构,该柔顺机构具有四个稳态,其稳态状态如图6中所示的601、602、603、604,通过X轴001、Y轴002和Z轴003可以从图中区分整体结构的变形的朝向。
如图7为采用本发明柔顺铰链所等效设计的柔顺折展delta机构折叠成平面状态的俯视图,701即为采用本发明柔顺铰链所设计的delta机构末端连杆的胡克铰链部分,由图可知这种平面结构极大的简化了delta机构的加工工艺。
如图8、图9为本发明柔顺铰链所等效设计的柔顺折展delta机构的两个展开状态,该机构展开后可以实现空间X、Y和Z方向的三个方向的移动,具有移动位移大、动平台惯性质量小、定位精度高等优点。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (8)

  1. 一种平面复合结构空间大行程的柔顺铰链,其特征在于:包括相连的矩形平面单元和叉形平面单元,所述矩形平面单元用于实现平面外扭转功能,该矩形平面单元是由两条柔性的长直梁和两条柔性的短直梁围成的矩形结构,其中一条长直梁的中心处为固定段,其两端分别为第一扭转段,另一条长直梁的中心处为第二扭转段,其两端分别为第三扭转段;所述叉形平面单元用于实现平面内旋转功能,该叉形平面单元是由两条柔性并相交叉的直梁薄板构成的叉状结构,所述叉状结构的外侧与第二扭转段通过外联式连接构成刚度高、结构稳定的三角形结构,用于连接叉状结构与矩形结构并传递力矩。
  2. 根据权利要求1所述的一种平面复合结构空间大行程的柔顺铰链,其特征在于:所述矩形平面单元为窄矩形结构,即所述长直梁和短直梁的长宽比大,从而长直梁的扭转刚度降低,能够实现矩形平面单元平面外大范围的弯曲变形,且长直梁的宽度与整个柔顺铰链的厚度之比不超过0.35;所述两条直梁薄板构成的叉状结构朝向长直梁的夹角为30-90度,且直梁薄板的宽度与长直梁的宽度相近,并与整个柔顺铰链的厚度之比不超过0.31,从而使矩形平面单元的扭转柔度与叉形平面单元的转动柔度相当。
  3. 根据权利要求2所述的一种平面复合结构空间大行程的柔顺铰链,其特征在于:所述第一扭转段的长度大于短直梁的长度,所述第一扭转段的宽度小于短直梁的宽度,第一扭转段的宽度与整个柔顺铰链的厚度之比为0.1~0.35,所述直梁薄板的长度分别与固定段的长度和第二扭转段的长度相等,其变形长度不超过固定段长度的1.414倍,所述直梁薄板的宽度与整个柔顺铰链的厚度之比为0.1~0.25。
  4. 根据权利要求1所述的一种平面复合结构空间大行程的柔顺铰链,其特征在于:所述矩形平面单元的扭转柔度与叉形平面单元的弯曲柔度之比为0.2~1。
  5. 一种平面复合结构空间大行程的柔顺铰链,其特征在于:包括相连的矩形平面单元和带有连接梁的叉形平面单元,所述矩形平面单元用于实现平面外扭转功能,该矩形平面单元是由两条柔性的长直梁和两条柔性的短直梁围成的矩形结构,其中一条长直梁的中心处为固定段,其两端分别为第一扭转段,另一条长直梁的中心处为第二扭转段,其两端分别为第三扭转段;带有连接梁的叉形平面单元用于实现平面内旋转功能,该叉形平面单元是由两条柔性并相交叉的直梁薄板构成的叉状结构,所述连接梁将叉状结构靠近矩形结构一侧的两个端部相连接,该连接梁的中心处为第四扭转段,其两侧为第五扭转段,所述叉状结构的内侧,即第四扭转段与第二扭转段通过内嵌式连接构成三角形结构,且叉状结构的外侧不与任何结构连接,该三角形结构用于连接叉状结构与矩形结构并传递力矩,且该三角形结构位于直梁薄板上的部分能够实现平面内的弯曲变形,其与矩形结构连接的部分实现平面外的扭转变形。
  6. 根据权利要求5所述的一种平面复合结构空间大行程的柔顺铰链,其特征在于:所述矩形平面单元为窄矩形结构,即所述长直梁和短直梁的长宽比大,从而长直梁的扭转刚度降低,能够实现矩形平面单元平面外大范围的弯曲变形,且长直梁的宽度与整个柔顺铰链的厚度之比不超过0.35;所述两条直梁薄板构成的叉状结构朝向长直梁的夹角为30-90度,且直梁薄板的宽度与长直梁的宽度相近,并与整个柔顺铰链的厚度之比不超过0.31,从而使矩形平面单元的扭转柔度与叉形平面单元的转动柔度相当。
  7. 根据权利要求6所述的一种平面复合结构空间大行程的柔顺铰链,其特征在于:所述第一扭转段的长度大于短直梁的长度,所述第一扭转段的宽度小于短直梁的宽度,第一扭转段的宽度与整个柔顺铰链的厚度之比为0.1~0.35,所述直梁薄板的长度分别与固定段的长度和第二扭转段的长度相等,其变形长度 不超过固定段长度的1.414倍,所述直梁薄板的宽度与整个柔顺铰链的厚度之比为0.1~0.25。
  8. 根据权利要求5所述的一种平面复合结构空间大行程的柔顺铰链,其特征在于:所述矩形平面单元的扭转柔度与叉形平面单元的弯曲柔度之比为0.2~1。
PCT/CN2019/110289 2019-02-26 2019-10-10 一种平面复合结构空间大行程的柔顺铰链 WO2020173096A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/265,763 US11745334B2 (en) 2019-02-26 2019-10-10 Spatial large-stroke compliant hinge with hybrid structure
JP2021509175A JP7039092B2 (ja) 2019-02-26 2019-10-10 平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910141050.4A CN109732584B (zh) 2019-02-26 2019-02-26 一种平面复合结构空间大行程的柔顺铰链
CN201910141050.4 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020173096A1 true WO2020173096A1 (zh) 2020-09-03

Family

ID=66368420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110289 WO2020173096A1 (zh) 2019-02-26 2019-10-10 一种平面复合结构空间大行程的柔顺铰链

Country Status (4)

Country Link
US (1) US11745334B2 (zh)
JP (1) JP7039092B2 (zh)
CN (1) CN109732584B (zh)
WO (1) WO2020173096A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109732584B (zh) 2019-02-26 2024-04-16 华南理工大学 一种平面复合结构空间大行程的柔顺铰链
CN110281218B (zh) * 2019-07-08 2022-02-15 太原理工大学 一种柔性铰链冗余驱动并联结构刚度杆
JP7113587B1 (ja) * 2022-02-10 2022-08-05 NatureArchitects株式会社 シザース構造体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235460A1 (en) * 2002-05-09 2003-12-25 Yong-Mo Moon Displacement compliant joints
CN101387315A (zh) * 2008-10-27 2009-03-18 北京航空航天大学 交叉簧片转动型柔性铰链
CN101504030A (zh) * 2009-03-10 2009-08-12 北京航空航天大学 一种斜置簧片组合的一维柔性直线导引机构
CN106128512A (zh) * 2016-07-04 2016-11-16 北京航空航天大学 球面三自由度转动柔性机构
CN109207343A (zh) * 2018-08-24 2019-01-15 苏州大学 一种基于三角形柔性机构的细胞显微注射装置
CN109323090A (zh) * 2018-10-23 2019-02-12 安徽理工大学 一种柔顺恒力支撑台
CN109732584A (zh) * 2019-02-26 2019-05-10 华南理工大学 一种平面复合结构空间大行程的柔顺铰链

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793028A (en) * 1954-09-10 1957-05-21 Hughes Aircraft Co Cross-spring flexure pivot
US3675588A (en) * 1970-05-05 1972-07-11 Paul E Gaynor Ski lift apparatus
US3653626A (en) * 1970-11-02 1972-04-04 Mattel Inc Adjustable trestle
DE2653427C3 (de) * 1976-11-24 1979-05-03 Anschuetz & Co Gmbh, 2300 Kiel Federgelenk zur schwenkbaren Verbindung zweier Körper miteinander u. Verfahren zur Herstellung des Gelenks
US4382709A (en) * 1981-03-30 1983-05-10 Rockwell International Corporation On-axis flex web gimbal
FR2503387B1 (fr) * 1981-04-03 1986-05-23 Reosc Dispositif de liaison entre une piece optique et un support situe a distance de cette piece
US4497465A (en) * 1983-03-31 1985-02-05 Storage Technology Partners Ii Pivotal mechanism upon which tracking mirrors and the like used in optical systems may be mounted
US4825713A (en) * 1987-09-30 1989-05-02 Honeywell, Inc. Monolithic suspension assembly using cross flexure pivots
FR2754577B1 (fr) * 1996-10-11 1998-12-11 Suisse Electronique Microtech Pivot flexible planaire a modules unitaires monolithiques
US7044459B2 (en) * 2002-11-22 2006-05-16 Scott Edward Watson Simplified flexural pivot
US7832880B2 (en) * 2006-08-08 2010-11-16 Selex Galileo Ltd Mirror mount having plural flexure elements
US8400721B2 (en) * 2007-03-08 2013-03-19 Redstone Aerospace Corporation Leaf-cartwheel flexure, and mounting systems and methods utilizing same
US8402711B2 (en) * 2010-07-16 2013-03-26 University Of South Florida Multistable shape-shifting surfaces
JP6221391B2 (ja) * 2013-06-19 2017-11-01 日本精工株式会社 一方向クラッチ用ばね及び一方向クラッチ
CN104912915B (zh) * 2015-06-16 2018-09-21 江南大学 LEMs抗拉柔性铰链
CN105605090B (zh) * 2016-02-14 2018-05-11 西安电子科技大学 一种零轴漂大转角交叉簧片式柔性铰链
CN209755206U (zh) * 2019-02-26 2019-12-10 华南理工大学 一种平面复合结构空间大行程的柔顺铰链

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235460A1 (en) * 2002-05-09 2003-12-25 Yong-Mo Moon Displacement compliant joints
CN101387315A (zh) * 2008-10-27 2009-03-18 北京航空航天大学 交叉簧片转动型柔性铰链
CN101504030A (zh) * 2009-03-10 2009-08-12 北京航空航天大学 一种斜置簧片组合的一维柔性直线导引机构
CN106128512A (zh) * 2016-07-04 2016-11-16 北京航空航天大学 球面三自由度转动柔性机构
CN109207343A (zh) * 2018-08-24 2019-01-15 苏州大学 一种基于三角形柔性机构的细胞显微注射装置
CN109323090A (zh) * 2018-10-23 2019-02-12 安徽理工大学 一种柔顺恒力支撑台
CN109732584A (zh) * 2019-02-26 2019-05-10 华南理工大学 一种平面复合结构空间大行程的柔顺铰链

Also Published As

Publication number Publication date
CN109732584A (zh) 2019-05-10
JP2021535328A (ja) 2021-12-16
US20210162586A1 (en) 2021-06-03
US11745334B2 (en) 2023-09-05
JP7039092B2 (ja) 2022-03-22
CN109732584B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2020173096A1 (zh) 一种平面复合结构空间大行程的柔顺铰链
Farhadi Machekposhti et al. A review on compliant joints and rigid-body constant velocity universal joints toward the design of compliant homokinetic couplings
JP6494967B2 (ja) 球面座標操縦装置
US7275332B2 (en) Multi-axis positioning apparatus
CN100453833C (zh) 具有虚拟转动中心的大变形柔性虎克铰
WO2013014720A1 (ja) パラレルリンクロボット
WO2018195762A1 (zh) 一种具有弧形移动副的三自由度并联机构
CN102626919B (zh) 无汇交轴线的对称两转动一移动并联机构
ITRM20090250A1 (it) Meccanismi rotazionali in catena chiusa con attuazione disaccoppiata ed omocinetica.
JP7147061B2 (ja) フレクシャデバイス
JP5306393B2 (ja) 鏡支持機構
CN209755206U (zh) 一种平面复合结构空间大行程的柔顺铰链
CN106128512B (zh) 球面三自由度转动柔性机构
JPH03264280A (ja) 産業用ロボット
Farhadi Machekposhti et al. The scope for a compliant homokinetic coupling based on review of compliant joints and rigid-body constant velocity universal joints
CN201866122U (zh) 一种分布式多簧片柔性虎克铰
CN114087275A (zh) 一种具有椭圆横断截面的新型双轴柔性铰链
JP2013052487A (ja) パラレルメカニズム及びパラレルメカニズムを用いた位置決め装置
Kuo et al. A non-overconstrained variant of the Agile Eye with a special decoupled kinematics
Wang et al. Design of a compact compliant constant-force XY precision positioning stage
Zhu et al. A mirror-symmetrical xy compliant parallel manipulator with improved performances without increasing the footprint
CN210599838U (zh) 一种大行程转动柔性铰链
Ma et al. Design, Simulation and Implementation of a 3-PUU Parallel Mechanism for a Macro/mini Manipulator.
CN101985960A (zh) 一种多簧片大变形柔性虎克铰
Zhang et al. Type synthesis of uncoupled 2T2R parallel manipulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916594

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19916594

Country of ref document: EP

Kind code of ref document: A1