JP7039092B2 - 平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ - Google Patents

平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ Download PDF

Info

Publication number
JP7039092B2
JP7039092B2 JP2021509175A JP2021509175A JP7039092B2 JP 7039092 B2 JP7039092 B2 JP 7039092B2 JP 2021509175 A JP2021509175 A JP 2021509175A JP 2021509175 A JP2021509175 A JP 2021509175A JP 7039092 B2 JP7039092 B2 JP 7039092B2
Authority
JP
Japan
Prior art keywords
girder
plane
segment
forked
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021509175A
Other languages
English (en)
Other versions
JP2021535328A (ja
Inventor
憲民 張
洪川 張
本亮 朱
Original Assignee
華南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華南理工大学 filed Critical 華南理工大学
Publication of JP2021535328A publication Critical patent/JP2021535328A/ja
Application granted granted Critical
Publication of JP7039092B2 publication Critical patent/JP7039092B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • B25J9/0015Flexure members, i.e. parts of manipulators having a narrowed section allowing articulation by flexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/12Pivotal connections incorporating flexible connections, e.g. leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/47Cosmonautic vehicles, i.e. bearings adapted for use in outer-space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1028Vibration-dampers; Shock-absorbers using inertia effect the inertia-producing means being a constituent part of the system which is to be damped

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Micromachines (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Telephone Set Structure (AREA)
  • Transmission Devices (AREA)

Description

本発明は、柔軟機構の技術分野に関し、特に、平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジに関する。
柔軟機構とは、自身の弾性変形を利用して入力や変位を伝達する機構のことである。柔軟機構は、クリアランスがない、潤滑がない、組立が不要である、高精度、高剛性である等の利点が、学者によって発見され、航空宇宙、機械工学、ロボット科学、医療機器等の多くの分野で広く利用されている。柔軟機構の主流設計方法の一つに剛体代替法があり、その基本的な考え方は、従来の剛性機構の剛性ヒンジを等価的に対応する柔軟性ヒンジに置き換え、これに対応する柔軟機構を構成することである。従って、柔軟性ヒンジの設計、及び新規な空間柔軟機構の設計は、機構学的な重点及びホットスポットに常にあった。
近年、微小電気機械加工技術分野における柔軟機構の応用及び発展に伴い、平面構造を有する各種の柔軟性ヒンジ及び柔軟機構が提案されている。しかし、平面構造の柔軟性ヒンジ又は機構の多くは、その構造が存在する平面内での運動しか実現できず、空間運動能力を有する柔軟機構及びヒンジは、単純な平面構造ではなく、空間柔軟機構又は柔軟性ヒンジの加工を困難にし、小規模加工又は製造を困難にする。
LET(Lamina Emergent Torsional Joint)柔軟性ヒンジ及びLET柔軟性ヒンジからなるLEMs(Lamina Emergent Mechanisms)柔軟機構は、特定の平面構造によって面外運動を実現するという特徴を有し、このような柔軟機構は、柔軟機構の分野の学者にとって広範な関心をもたらし、かつ重要視される(詳細は米国特許第9,157,497号を参照)。LET柔軟性ヒンジは、具体的には、薄い板材を加工して形成され、面外回転を可能にする狭幅矩形の平面構造を有し、新規な1自由度の柔軟性ヒンジである。LEMs柔軟機構は、LET柔軟性ヒンジからなる柔軟機構であり、このような柔軟機構も、平面構造によって平面外空間運動を実現するという特徴を有する。LET柔軟性ヒンジ及びLEMs柔軟機構は、両方とも、大きな変形を可能にし、機械加工が簡単である。ワイヤ切断、3D印刷、レーザ切断などの従来の方法により、マクロ規模の機構又はデバイスを製造することもできるし、マイクロ電気機械システムMEMS(Micro-Electro-Mechanical System)の分野の微小加工技術を用いてマイクロ規模の機械又はデバイスを製造することもできる。
LETヒンジ及びLEMs機構は、空間移動機能を有する空間柔軟機構及び空間マイクロ柔軟機構を実現するために新たな発想を提供するが、LET柔軟性ヒンジは、剛性機構の単一自由度関節と等価であるため、LET柔軟性ヒンジから構成されるLEMs柔軟機構の等価な剛性機構は、低次対偶によって構成される空間的に少ない自由度機構であることが多い。従って、平面シート複合体における大きなストロークを設計する空間多自由度柔軟機構では、LET柔軟性ヒンジは、一定の制限性を有する。多自由度関節を必要とするデルタ機構、Gough-Stewart機構、及び中国特許出願第201810223057.6号に記載されている反転多安定柔軟機構等は、LET柔軟性ヒンジだけでは、上記等価柔軟機構を構成することができない。
本発明の目的は、従来の平面構造の柔軟性ヒンジが1自由度で大きいストロークの低次対偶しか等価できないことや、従来のLEMs柔軟機構と等価な多自由度柔軟性ヒンジの全体的なストロークが小さいという問題点を克服し、構造が簡単で、加工が容易で、分析計算が容易で、大きなストロークの空間多自由度柔軟性と等価であるなどの利点を有する平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジを提案することである。
上記目的を実現するために、本発明は、以下の技術手段を提案する。平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジは、連結されている矩形状平面単位と叉状平面単位とを含み、面外ねじり機能を実現するための前記矩形状平面単位は、2本の可撓性の長直桁と2本の可撓性の短直桁で囲まれた矩形構造であり、そのうち一方の長直桁の中央部が固定セグメントであり、その両端がそれぞれ第1ねじりセグメントであり、他方の長直桁の中心部が第2ねじりセグメントであり、その両端がそれぞれ第3ねじりセグメントであり、面内回転機能を実現するための前記叉状平面単位は、2本の可撓性を有し交差する直桁薄板で構成された叉状構造であり、前記叉状構造の外側と第2ねじりセクションとは、叉状構造と矩形状構造とを連結してトルクを伝達するための、剛性が高く構造が安定する三角形構造を、外部結合の連結によって構成する。
更に、前記矩形状平面単位は、前記長直桁と短直桁のアスペクト比が大きい狭幅矩形構造とすることにより、長直桁のねじり剛性が低く、矩形状平面単位の面外の広範囲な曲げ変形が可能であり、且つ、長直桁の幅と柔軟性ヒンジ全体の厚さとの比が0.35以下であり、前記2本の直桁薄板で構成された叉状構造の長直桁への角度が30~90度であり、且つ、直桁薄板の幅が長直桁の幅に近く、柔軟性ヒンジ全体の厚さとの比が0.31以下とすることにより、矩形状平面単位のねじり柔軟性が叉状平面単位の回転柔軟性に相当する。
更に、前記第1ねじりセグメントの長さは、短直桁の長さよりも大きく、前記第1ねじりセグメントの幅は、短直桁の幅よりも小さく、第1ねじりセグメントの幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.35であり、前記直桁薄板の長さは、それぞれ、固定セグメントの長さ及び第2ねじりセグメントの長さと等しく、その変形長さは、固定セグメントの長さの1.414倍を超えず、前記直桁薄板の幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.25である。
更に、前記矩形状平面単位のねじり柔軟性と、叉状平面単位の曲げ柔軟性との比が0.2~1である。
平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジは、連結されている矩形状平面単位と連結桁付きの叉状平面単位とを含み、面外ねじり機能を実現するための前記矩形状平面単位は、2本の可撓性の長直桁と2本の可撓性の短直桁で囲まれた矩形構造であり、そのうち一方の長直桁の中央部が固定セグメントであり、その両端がそれぞれ第1ねじりセグメントであり、他方の長直桁の中心部が第2ねじりセグメントであり、その両端がそれぞれ第3ねじりセグメントであり、面内回転機能を実現するための連結桁付きの叉状平面単位は、2本の可撓性を有し交差する直桁薄板で構成された叉状構造であり、叉状構造の矩形状構造に近い側の両端部を連結する前記連結桁は、その中心部が第4ねじりセグメントであり、その両側が第5ねじれセグメントであり、前記叉状構造の内側は、すなわち、第4ねじれセグメントと第2ねじれセグメントとが、内嵌式に連結されて三角形構造を構成し、且つ叉状構造の外側は、いかなる構造にも連結されず、叉状構造と矩形状構造を連結してトルクを伝達するための前記三角形構造は、直桁薄板における部分の面内の曲げ変形が可能であり、矩形状構造に連結される部分の面外のねじり変形が可能である。
更に、前記矩形状平面単位は、前記長直桁と短直桁のアスペクト比が大きい狭幅矩形構造とすることにより、長直桁のねじり剛性が低く、矩形状平面単位の面外の広範囲な曲げ変形が可能であり、且つ、長直桁の幅と柔軟性ヒンジ全体の厚さとの比が0.35以下であり、前記2本の直桁薄板で構成された叉状構造の長直桁への角度が30~90度であり、且つ、直桁薄板の幅が長直桁の幅に近く、柔軟性ヒンジ全体の厚さとの比が0.31以下とすることにより、矩形状平面単位のねじり柔軟性が叉状平面単位の回転柔軟性に相当する。
更に、前記第1ねじりセグメントの長さは、短直桁の長さよりも大きく、前記第1ねじりセグメントの幅は、短直桁の幅よりも小さく、第1ねじりセグメントの幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.35であり、前記直桁薄板の長さは、それぞれ、固定セグメントの長さ及び第2ねじりセグメントの長さと等しく、その変形長さは、固定セグメントの長さの1.414倍を超えず、前記直桁薄板の幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.25である。
更に、前記矩形状平面単位のねじり柔軟性と、叉状平面単位の曲げ柔軟性との比が0.2~1である。
本発明は、従来技術と比較して、以下の利点及び効果を有する。
1.本発明は、2自由度の回転関節を等価的に実現でき、叉状平面単位の曲げにより面内の広範囲の回動を実現することができるとともに、矩形状平面単位のねじりにより面外の広範囲の回動を実現することもできる。
2.本発明の矩形状平面単位は、狭幅矩形構造であり、長直桁のねじり剛性が低く、矩形状平面単位の面外の広範囲の曲げ変形が可能である。
3.本発明の柔軟性機構によれば、面外の大きな変形及び運動を実現することができ、1以上の平面自由度を有する。
本発明の外部結合式の柔軟性ヒンジの斜視図である。 本発明の外部結合式の柔軟性ヒンジの平面図である。 本発明の内嵌式の柔軟性ヒンジの斜視図である。 本発明の内嵌式の柔軟性ヒンジの平面図である。 本発明を用いて設計された反転多安定柔軟機構の平面構造を示す図である。 上記反転多安定柔軟機構の4つの定常状態を示す図である。 本発明の等価設計を採用する柔軟性折り畳みdelta機構の平面図である。 上記柔軟性折り畳みdelta機構の展開動作を示す図その1である。 上記柔軟性折り畳みdelta機構の展開動作を示す図その2である。
以下、本発明を具体的な実施例に基づいて更に説明する。
図1、図2に示すように、本実施例に係る平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジは、連結されている矩形状平面単位1と叉状平面単位2とを含む。面外ねじり機能を実現するための前記矩形状平面単位1は、2本の可撓性の長直桁と2本の可撓性の短直桁102で囲まれた矩形構造であり、そのうち一方の長直桁の中央部が固定セグメント100であり、その両端がそれぞれ第1ねじりセグメント101であり、他方の長直桁の中心部が第2ねじりセグメント103であり、その両端がそれぞれ第3ねじりセグメント104である。面内回転機能を実現するための前記叉状平面単位2は、2本の可撓性を有し交差する直桁薄板201で構成された叉状構造である。前記叉状構造の外側と第2ねじりセクション103とは、叉状構造と矩形状構造とを連結してトルクを伝達するための、剛性が高く構造が安定する三角形構造を、外部結合の連結によって構成する。本発明の主な特徴は、2自由度の回転関節を等価的に実現でき、叉状平面単位2の曲げにより面内の広範囲の回動を実現することができるとともに、矩形状平面単位1のねじりにより面外の広範囲の回動を実現することもできる。面内の広範囲の回動とは、本発明の構造の初期状態が存在する平面上での広範囲の回転運動を指す。面外の広範囲の回動とは、本発明の構造が存在する初期平面外でかつ等価回動軸が平面法線ベクトルに対し垂直である広範囲の回動運動を指す。
外部結合式の柔軟性ヒンジは、変形過程全体において三角形構造の面内の曲げ変形が大きく、面外のねじり変形が小さく、矩形状平面単位1がY軸002及び叉状平面単位2がZ軸003回りにのみ回動変形可能である。この両変形により、本発明は、非連結空間の大きな変形可能性を有し、その主な変形部分は、矩形状平面単位1全体がY軸002回りにのみ回動可能となることを主たる機能とする長直桁の第1ねじりセグメント101である。従って、矩形状平面単位1のY軸002に沿った回動の柔軟性は、矩形状平面単位1のX軸001及びZ軸003に沿った回動の柔軟性よりも著しく大きい。叉状平面単位2が主にZ軸003に沿って回動するため、叉状平面単位2のZ軸003に沿った回動の柔軟性は、叉状平面単位2のX軸001及びY軸002に沿った回動の柔軟性よりも著しく大きい。
上記の性能を達成するためには、幾何学的寸法関係を次のように制約する必要がある。
1)矩形状平面単位1は、前記長直桁と短直桁102のアスペクト比が大きい狭幅矩形構造とすることにより、長直桁のねじり剛性が低く、矩形状平面単位1の面外の広範囲な曲げ変形が可能である。ここで、第1ねじりセグメント101の長さは、短直桁102の長さよりも大きく、第1ねじりセグメント101の幅は、短直桁102の幅よりも小さく、かつ第1ねじりセグメント101の幅がヒンジ全体の厚さよりも小さい。加工の複雑度を考慮し、第1ねじりセグメント101の幅と、ヒンジ全体の厚さとの比は、0.1~0.35である。
2)前記2本の直桁薄板201で構成された叉状構造の長直桁への角度204が30~90度であり、直桁薄板201の幅が長直桁の幅に近く、ヒンジ全体の厚さとの比が0.31以下とする。加工の難度を考慮し、その数値の比は、0.1~0.25である。それにより、矩形状平面単位1のねじり柔軟性が叉状平面単位2の回転柔軟性に相当する。前記直桁薄板201の長さは、それぞれ固定セグメント100の長さ及び第2ねじれセグメント103の長さに等しく、その変形長さは、固定セグメント100の長さの1.414倍以下である。
矩形状平面単位1は、直列に接続することによって柔軟性を増大させることができることを考慮すると、矩形状平面単位1のねじり柔軟性と叉状平面単位2の曲げ柔軟性の比は、0.2~1であるべきである。最後に、各寸法パラメータを条件制約によって最適化することにより、上記要件を満たす外部結合式連結の上記柔軟性ヒンジを得ることができる。
図3、図4に示すように、本実施例に係る別の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジは、連結されている矩形状平面単位1と連結桁付きの叉状平面単位2とを含む。面外ねじり機能を実現するための前記矩形状平面単位1は、2本の可撓性の長直桁と2本の可撓性の短直桁102で囲まれた矩形構造であり、そのうち一方の長直桁の中央部が固定セグメント100であり、その両端がそれぞれ第1ねじりセグメント101であり、他方の長直桁の中心部が第2ねじりセグメント103であり、その両端がそれぞれ第3ねじりセグメント104である。面内回転機能を実現するための連結桁付きの叉状平面単位2は、2本の可撓性を有し交差する直桁薄板201で構成された叉状構造である。叉状構造の矩形状構造に近い側の両端部を連結する前記連結桁は、その中心部が第4ねじりセグメント202であり、その両側が第5ねじれセグメント203である。前記叉状構造の内側は、すなわち、第4ねじれセグメント202と第2ねじれセグメント103とが、内嵌式に連結されて三角形構造を構成し、且つ叉状構造の外側は、いかなる構造にも連結されない。叉状構造と矩形状構造を連結してトルクを伝達するための前記三角形構造は、直桁薄板201における部分の面内の曲げ変形が可能であり、矩形状構造に連結される部分の面外のねじり変形が可能である。本発明の主な特徴は、2自由度の回転関節を等価的に実現でき、叉状平面単位2の曲げにより面内の広範囲の回動を実現することができるとともに、矩形状平面単位1のねじりにより面外の広範囲の回動を実現することもできる。面内の広範囲の回転とは、本発明の構造の初期状態が存在する平面上での広範囲の回動運動を指す。面外の広範囲の回転とは、本発明の構造が存在する初期平面外でかつ等価回転軸が平面法線ベクトルに対し垂直である広範囲の回動運動を指す。
内嵌式の柔軟性ヒンジは、変形の全体において主な変形部分が長直桁の第1ねじりセグメント101と、叉状平面単位2の内側の第5ねじりセグメント203であり、その主な機能は、矩形状平面単位1全体をY軸002の周りに回動させる能力のみを有することであり、矩形状平面単位1のY軸002に沿った回動の柔軟性は、X軸001及びZ軸003に沿った回動の柔軟性よりも大きい。前記叉状平面単位2は、主にZ軸003の周りに回動することを可能にする。従って、叉形平面単位2のZ軸003に沿った回動の柔軟性は、X軸001及びY軸002に沿った回動の柔軟性よりも大きい。
上記の性能を達成するためには、幾何学的寸法関係を次のように制約する必要がある。
1)矩形状平面単位1は、前記長直桁と短直桁102のアスペクト比が大きい狭幅矩形構造とすることにより、長直桁のねじり剛性が低く、矩形状平面単位1の面外の広範囲な曲げ変形が可能である。ここで、第1ねじりセグメント101の長さは、短直桁102の長さよりも大きく、第1ねじりセグメント101の幅は、短直桁102の幅よりも小さく、かつ第1ねじりセグメント101の幅がヒンジ全体の厚さよりも小さい。加工の複雑度を考慮し、第1ねじりセグメント101の幅と、ヒンジ全体の厚さとの比は、0.1~0.35である。
2)前記2本の直桁薄板201で構成された叉状構造の長直桁への角度204が30~90度であり、直桁薄板201の幅が長直桁の幅に近く、ヒンジ全体の厚さとの比が0.31以下とする。加工の難度を考慮し、その数値の比は、0.1~0.25である。これにより、矩形状平面単位1のねじり柔軟性が叉状平面単位2の回転柔軟性に相当する。前記直桁薄板201の長さは、それぞれ固定セグメント100の長さ及び第2ねじれセグメント103の長さに等しく、その変形長さは、固定セグメント100の長さの1.414倍以下である。
矩形状平面単位1は、直列に接続することによって柔軟性を増大させることができることを考慮すると、矩形状平面単位1のねじり柔軟性と叉状平面単位2の曲げ柔軟性の比は、0.2~1であるべきである。最後に、各寸法パラメータを条件制約によって最適化することにより、上記要件を満たす外部結合式連結の上記柔軟性ヒンジを得ることができる。
上記の2つの外部結合式又は内嵌式の平面構造の柔軟性ヒンジは、それぞれ、上記の特徴要件を満たした後、パラメータの微調整又は寸法最適化によって、実際の動作条件の要求に応じて構造体全体の特定の柔軟性の値を調整することもでき、最終的に、前記柔軟性ヒンジの最終構造パラメータ値を得る。
本発明の外部結合式又は内嵌式の柔軟性ヒンジ及び他の従来の平面ヒンジは、直列又は並列接続によって構成され、1つ又は複数の平面自由度を有して、平面外での大きな変形及び移動を可能にする。剛体置換法による考え方は、多安定反転機構、delta機構などの空間多自由度運動特性を有する大きなストロークの柔軟性折りたたみ機構と等価である。
本発明は、2自由度ヒンジと等価であり、2方向の回動の柔軟性が同等である。従って、中国特許出願第201810223057.6号に記載の反転多安定柔軟機構に用いられる。図5に示すように、501は、反転機構の変形単位群であり、すなわち本発明に係る平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジである。理論的な解析及び実験により、ABSエンジニアリングプラスチックを用いて製造した本発明の柔軟性ヒンジは、全ての方向に22.5度回動可能であることが実証される。従って、16個の本発明の柔軟性ヒンジを直列に接続するだけで、中国特許出願第201810223057.6号に記載される反転多安定柔軟機構を設計することができる。この柔軟機構は、4つの定常状態を有する。その定常状態は、図6に示される601、602、603、604のように、X軸001、Y軸002、及びZ軸003によって、全体構造体の変形の方向を図から区別することができる。
図7は、本発明の柔軟性ヒンジを用いて等価的に設計された柔軟性折り畳みdelta機構を平面状態に折り畳んだ状態の平面図であり、701は、本発明の柔軟性ヒンジを用いて設計されたdelta機構の末端リンクのチャフヒンジ部分であり、この平面構造は、delta機構の加工工程を大幅に簡略化していることが分かる。
図8、図9は、本発明の柔軟性ヒンジに等価的に設計された柔軟性折り畳みdelta機構の2つの展開状態を示す。この機構が展開されると、空間X、YとZ方向の3方向の移動が可能となり、移動変位が大きく、可動台の慣性質量が小さく、位置決め精度が高い等の利点がある。
以上説明した実施例は、本発明の好適な実施例に過ぎず、これによって本発明の実施範囲が制限されるものではなく、本発明の形状、原理に基づく変更は、本発明の保護範囲内に含まれるべきである。
(付記)
(付記1)
連結されている矩形状平面単位と叉状平面単位とを含み、
面外ねじり機能を実現するための前記矩形状平面単位は、2本の可撓性の長直桁と2本の可撓性の短直桁で囲まれた矩形構造であり、そのうち一方の長直桁の中央部が固定セグメントであり、その両端がそれぞれ第1ねじりセグメントであり、他方の長直桁の中心部が第2ねじりセグメントであり、その両端がそれぞれ第3ねじりセグメントであり、
面内回転機能を実現するための前記叉状平面単位は、2本の可撓性を有し交差する直桁薄板で構成された叉状構造であり、
前記叉状構造の外側と第2ねじりセクションとは、叉状構造と矩形状構造とを連結してトルクを伝達するための、剛性が高く構造が安定する三角形構造を、外部結合の連結によって構成することを特徴とする平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
(付記2)
前記矩形状平面単位は、前記長直桁と短直桁のアスペクト比が大きい狭幅矩形構造とすることにより、長直桁のねじり剛性が低く、矩形状平面単位の面外の広範囲な曲げ変形が可能であり、且つ、長直桁の幅と柔軟性ヒンジ全体の厚さとの比が0.35以下であり、
前記2本の直桁薄板で構成された叉状構造の長直桁への角度が30~90度であり、且つ、直桁薄板の幅が長直桁の幅に近く、柔軟性ヒンジ全体の厚さとの比が0.31以下とすることにより、矩形状平面単位のねじり柔軟性が叉状平面単位の回転柔軟性に相当することを特徴とする付記1に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
(付記3)
前記第1ねじりセグメントの長さは、短直桁の長さよりも大きく、前記第1ねじりセグメントの幅は、短直桁の幅よりも小さく、第1ねじりセグメントの幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.35であり、前記直桁薄板の長さは、それぞれ、固定セグメントの長さ及び第2ねじりセグメントの長さと等しく、その変形長さは、固定セグメントの長さの1.414倍を超えず、前記直桁薄板の幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.25であることを特徴とする付記2に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
(付記4)
前記矩形状平面単位のねじり柔軟性と、叉状平面単位の曲げ柔軟性との比が0.2~1であることを特徴とする付記1に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
(付記5)
連結されている矩形状平面単位と連結桁付きの叉状平面単位とを含み、
面外ねじり機能を実現するための前記矩形状平面単位は、2本の可撓性の長直桁と2本の可撓性の短直桁で囲まれた矩形構造であり、そのうち一方の長直桁の中央部が固定セグメントであり、その両端がそれぞれ第1ねじりセグメントであり、他方の長直桁の中心部が第2ねじりセグメントであり、その両端がそれぞれ第3ねじりセグメントであり、
面内回転機能を実現するための連結桁付きの叉状平面単位は、2本の可撓性を有し交差する直桁薄板で構成された叉状構造であり、
叉状構造の矩形状構造に近い側の両端部を連結する前記連結桁は、その中心部が第4ねじりセグメントであり、その両側が第5ねじれセグメントであり、
前記叉状構造の内側は、すなわち、第4ねじれセグメントと第2ねじれセグメントとが、内嵌式に連結されて三角形構造を構成し、且つ叉状構造の外側は、いかなる構造にも連結されず、
叉状構造と矩形状構造を連結してトルクを伝達するための前記三角形構造は、直桁薄板における部分の面内の曲げ変形が可能であり、矩形状構造に連結される部分の面外のねじり変形が可能であることを特徴とする平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
(付記6)
前記矩形状平面単位は、前記長直桁と短直桁のアスペクト比が大きい狭幅矩形構造とすることにより、長直桁のねじり剛性が低く、矩形状平面単位の面外の広範囲な曲げ変形が可能であり、且つ、長直桁の幅と柔軟性ヒンジ全体の厚さとの比が0.35以下であり、
前記2本の直桁薄板で構成された叉状構造の長直桁への角度が30~90度であり、且つ、直桁薄板の幅が長直桁の幅に近く、柔軟性ヒンジ全体の厚さとの比が0.31以下とすることにより、矩形状平面単位のねじり柔軟性が叉状平面単位の回転柔軟性に相当することを特徴とする付記5に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
(付記7)
前記第1ねじりセグメントの長さは、短直桁の長さよりも大きく、前記第1ねじりセグメントの幅は、短直桁の幅よりも小さく、第1ねじりセグメントの幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.35であり、前記直桁薄板の長さは、それぞれ、固定セグメントの長さ及び第2ねじりセグメントの長さと等しく、その変形長さは、固定セグメントの長さの1.414倍を超えず、前記直桁薄板の幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.25であることを特徴とする付記6に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
(付記8)
前記矩形状平面単位のねじり柔軟性と、叉状平面単位の曲げ柔軟性との比が0.2~1であることを特徴とする付記5に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。

Claims (8)

  1. 連結されている矩形状平面単位と叉状平面単位とを含み、
    面外ねじり機能を実現するための前記矩形状平面単位は、2本の可撓性の長直桁と2本の可撓性の短直桁で囲まれた矩形構造であり、そのうち一方の長直桁の中央部が固定セグメントであり、その両端がそれぞれ第1ねじりセグメントであり、他方の長直桁の中心部が第2ねじりセグメントであり、その両端がそれぞれ第3ねじりセグメントであり、
    面内回転機能を実現するための前記叉状平面単位は、2本の可撓性を有し交差する直桁薄板で構成された叉状構造であり、
    前記叉状構造の外側と第2ねじりセクションとは、叉状構造と矩形状構造とを連結してトルクを伝達するための、剛性が高く構造が安定する三角形構造を、外部結合の連結によって構成することを特徴とする平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
  2. 前記矩形状平面単位は、前記長直桁と短直桁のアスペクト比が大きい狭幅矩形構造とすることにより、長直桁のねじり剛性が低く、矩形状平面単位の面外の広範囲な曲げ変形が可能であり、且つ、長直桁の幅と柔軟性ヒンジ全体の厚さとの比が0.35以下であり、
    前記2本の直桁薄板で構成された叉状構造の長直桁への角度が30~90度であり、且つ、直桁薄板の幅が長直桁の幅に近く、柔軟性ヒンジ全体の厚さとの比が0.31以下とすることにより、矩形状平面単位のねじり柔軟性が叉状平面単位の回転柔軟性に相当することを特徴とする請求項1に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
  3. 前記第1ねじりセグメントの長さは、短直桁の長さよりも大きく、前記第1ねじりセグメントの幅は、短直桁の幅よりも小さく、第1ねじりセグメントの幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.35であり、前記直桁薄板の長さは、それぞれ、固定セグメントの長さ及び第2ねじりセグメントの長さと等しく、その変形長さは、固定セグメントの長さの1.414倍を超えず、前記直桁薄板の幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.25であることを特徴とする請求項2に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
  4. 前記矩形状平面単位のねじり柔軟性と、叉状平面単位の曲げ柔軟性との比が0.2~1であることを特徴とする請求項1に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
  5. 連結されている矩形状平面単位と連結桁付きの叉状平面単位とを含み、
    面外ねじり機能を実現するための前記矩形状平面単位は、2本の可撓性の長直桁と2本の可撓性の短直桁で囲まれた矩形構造であり、そのうち一方の長直桁の中央部が固定セグメントであり、その両端がそれぞれ第1ねじりセグメントであり、他方の長直桁の中心部が第2ねじりセグメントであり、その両端がそれぞれ第3ねじりセグメントであり、
    面内回転機能を実現するための連結桁付きの叉状平面単位は、2本の可撓性を有し交差する直桁薄板で構成された叉状構造であり、
    叉状構造の矩形状構造に近い側の両端部を連結する前記連結桁は、その中心部が第4ねじりセグメントであり、その両側が第5ねじれセグメントであり、
    前記叉状構造の内側は、すなわち、第4ねじれセグメントと第2ねじれセグメントとが、内嵌式に連結されて三角形構造を構成し、且つ叉状構造の外側は、いかなる構造にも連結されず、
    叉状構造と矩形状構造を連結してトルクを伝達するための前記三角形構造は、直桁薄板における部分の面内の曲げ変形が可能であり、矩形状構造に連結される部分の面外のねじり変形が可能であることを特徴とする平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
  6. 前記矩形状平面単位は、前記長直桁と短直桁のアスペクト比が大きい狭幅矩形構造とすることにより、長直桁のねじり剛性が低く、矩形状平面単位の面外の広範囲な曲げ変形が可能であり、且つ、長直桁の幅と柔軟性ヒンジ全体の厚さとの比が0.35以下であり、
    前記2本の直桁薄板で構成された叉状構造の長直桁への角度が30~90度であり、且つ、直桁薄板の幅が長直桁の幅に近く、柔軟性ヒンジ全体の厚さとの比が0.31以下とすることにより、矩形状平面単位のねじり柔軟性が叉状平面単位の回転柔軟性に相当することを特徴とする請求項5に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
  7. 前記第1ねじりセグメントの長さは、短直桁の長さよりも大きく、前記第1ねじりセグメントの幅は、短直桁の幅よりも小さく、第1ねじりセグメントの幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.35であり、前記直桁薄板の長さは、それぞれ、固定セグメントの長さ及び第2ねじりセグメントの長さと等しく、その変形長さは、固定セグメントの長さの1.414倍を超えず、前記直桁薄板の幅と、柔軟性ヒンジ全体の厚さとの比は、0.1~0.25であることを特徴とする請求項6に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
  8. 前記矩形状平面単位のねじり柔軟性と、叉状平面単位の曲げ柔軟性との比が0.2~1であることを特徴とする請求項5に記載の平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ。
JP2021509175A 2019-02-26 2019-10-10 平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ Active JP7039092B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910141050.4A CN109732584B (zh) 2019-02-26 2019-02-26 一种平面复合结构空间大行程的柔顺铰链
CN201910141050.4 2019-02-26
PCT/CN2019/110289 WO2020173096A1 (zh) 2019-02-26 2019-10-10 一种平面复合结构空间大行程的柔顺铰链

Publications (2)

Publication Number Publication Date
JP2021535328A JP2021535328A (ja) 2021-12-16
JP7039092B2 true JP7039092B2 (ja) 2022-03-22

Family

ID=66368420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021509175A Active JP7039092B2 (ja) 2019-02-26 2019-10-10 平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ

Country Status (4)

Country Link
US (1) US11745334B2 (ja)
JP (1) JP7039092B2 (ja)
CN (1) CN109732584B (ja)
WO (1) WO2020173096A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109732584B (zh) 2019-02-26 2024-04-16 华南理工大学 一种平面复合结构空间大行程的柔顺铰链
CN110281218B (zh) * 2019-07-08 2022-02-15 太原理工大学 一种柔性铰链冗余驱动并联结构刚度杆
JP7113587B1 (ja) * 2022-02-10 2022-08-05 NatureArchitects株式会社 シザース構造体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387315A (zh) 2008-10-27 2009-03-18 北京航空航天大学 交叉簧片转动型柔性铰链
CN109207343A (zh) 2018-08-24 2019-01-15 苏州大学 一种基于三角形柔性机构的细胞显微注射装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793028A (en) * 1954-09-10 1957-05-21 Hughes Aircraft Co Cross-spring flexure pivot
US3675588A (en) * 1970-05-05 1972-07-11 Paul E Gaynor Ski lift apparatus
US3653626A (en) * 1970-11-02 1972-04-04 Mattel Inc Adjustable trestle
DE2653427C3 (de) * 1976-11-24 1979-05-03 Anschuetz & Co Gmbh, 2300 Kiel Federgelenk zur schwenkbaren Verbindung zweier Körper miteinander u. Verfahren zur Herstellung des Gelenks
US4382709A (en) * 1981-03-30 1983-05-10 Rockwell International Corporation On-axis flex web gimbal
FR2503387B1 (fr) * 1981-04-03 1986-05-23 Reosc Dispositif de liaison entre une piece optique et un support situe a distance de cette piece
US4497465A (en) * 1983-03-31 1985-02-05 Storage Technology Partners Ii Pivotal mechanism upon which tracking mirrors and the like used in optical systems may be mounted
US4825713A (en) * 1987-09-30 1989-05-02 Honeywell, Inc. Monolithic suspension assembly using cross flexure pivots
FR2754577B1 (fr) * 1996-10-11 1998-12-11 Suisse Electronique Microtech Pivot flexible planaire a modules unitaires monolithiques
US20030235460A1 (en) 2002-05-09 2003-12-25 Yong-Mo Moon Displacement compliant joints
US7044459B2 (en) * 2002-11-22 2006-05-16 Scott Edward Watson Simplified flexural pivot
US7832880B2 (en) * 2006-08-08 2010-11-16 Selex Galileo Ltd Mirror mount having plural flexure elements
US8400721B2 (en) * 2007-03-08 2013-03-19 Redstone Aerospace Corporation Leaf-cartwheel flexure, and mounting systems and methods utilizing same
CN101504030B (zh) 2009-03-10 2010-09-08 北京航空航天大学 一种斜置簧片组合的一维柔性直线导引机构
US8402711B2 (en) * 2010-07-16 2013-03-26 University Of South Florida Multistable shape-shifting surfaces
JP6221391B2 (ja) * 2013-06-19 2017-11-01 日本精工株式会社 一方向クラッチ用ばね及び一方向クラッチ
CN104912915B (zh) * 2015-06-16 2018-09-21 江南大学 LEMs抗拉柔性铰链
CN105605090B (zh) * 2016-02-14 2018-05-11 西安电子科技大学 一种零轴漂大转角交叉簧片式柔性铰链
CN106128512B (zh) 2016-07-04 2020-06-09 北京航空航天大学 球面三自由度转动柔性机构
CN109323090B (zh) 2018-10-23 2021-03-26 安徽理工大学 一种柔顺恒力支撑台
CN209755206U (zh) * 2019-02-26 2019-12-10 华南理工大学 一种平面复合结构空间大行程的柔顺铰链
CN109732584B (zh) 2019-02-26 2024-04-16 华南理工大学 一种平面复合结构空间大行程的柔顺铰链

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387315A (zh) 2008-10-27 2009-03-18 北京航空航天大学 交叉簧片转动型柔性铰链
CN109207343A (zh) 2018-08-24 2019-01-15 苏州大学 一种基于三角形柔性机构的细胞显微注射装置

Also Published As

Publication number Publication date
CN109732584A (zh) 2019-05-10
JP2021535328A (ja) 2021-12-16
US20210162586A1 (en) 2021-06-03
US11745334B2 (en) 2023-09-05
WO2020173096A1 (zh) 2020-09-03
CN109732584B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
JP7039092B2 (ja) 平面複合構造で空間的に大きなストロークを有する柔軟性ヒンジ
US8245595B2 (en) Two-axis non-singular robotic wrist
JP6494967B2 (ja) 球面座標操縦装置
JP5403303B2 (ja) パラレル機構
US20120079908A1 (en) Parallel robot
CN1326671C (zh) 并联机器人连接分支结构及六自由度并联机器人机构
CN103144106B (zh) 具有两转一移三自由度的非对称并联机构
WO2013014720A1 (ja) パラレルリンクロボット
ITRM20090250A1 (it) Meccanismi rotazionali in catena chiusa con attuazione disaccoppiata ed omocinetica.
CN102626919B (zh) 无汇交轴线的对称两转动一移动并联机构
WO2012153698A1 (ja) 自在継手及び可変構造体
CN110159647A (zh) 多轴式转轴模块与电子装置
WO2018195762A1 (zh) 一种具有弧形移动副的三自由度并联机构
JP6982913B2 (ja) 多安定コンプライアント機構及び多安定コンプライアント機構の安定分析方法
CN111152194B (zh) 一种单自由度无限翻转机构
CN106128512B (zh) 球面三自由度转动柔性机构
CN209755206U (zh) 一种平面复合结构空间大行程的柔顺铰链
Tian et al. Structural synthesis of a class of two-loop generalized parallel mechanisms
US20230112650A1 (en) Axial auxetic structures
Liang et al. Design of a foldable origami mechanism with helical motion inspired by the Resch Triangular Tessellation
Kuo et al. A non-overconstrained variant of the Agile Eye with a special decoupled kinematics
US10072744B2 (en) Rotary actuation mechanism
WO2015188843A1 (en) A parallel kinematics robot with rotational degrees of freedom
CN110202551B (zh) 一种二自由度球面运动连杆机构
Jingjun et al. A new large-stroke compliant joint & micro/nano positioner design based on compliant building blocks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R150 Certificate of patent or registration of utility model

Ref document number: 7039092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150