WO2020171350A1 - 엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치 - Google Patents

엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치 Download PDF

Info

Publication number
WO2020171350A1
WO2020171350A1 PCT/KR2019/015769 KR2019015769W WO2020171350A1 WO 2020171350 A1 WO2020171350 A1 WO 2020171350A1 KR 2019015769 W KR2019015769 W KR 2019015769W WO 2020171350 A1 WO2020171350 A1 WO 2020171350A1
Authority
WO
WIPO (PCT)
Prior art keywords
end effector
light
measurement module
effector
measurement
Prior art date
Application number
PCT/KR2019/015769
Other languages
English (en)
French (fr)
Inventor
이규옥
임진희
Original Assignee
이규옥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이규옥 filed Critical 이규옥
Priority to CN201990001189.2U priority Critical patent/CN215183865U/zh
Publication of WO2020171350A1 publication Critical patent/WO2020171350A1/ko
Priority to US17/306,859 priority patent/US11772278B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/087Controls for manipulators by means of sensing devices, e.g. viewing or touching devices for sensing other physical parameters, e.g. electrical or chemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67772Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving removal of lid, door, cover

Definitions

  • the present invention relates to an end effector measuring module and an end effector monitoring device using the same, and more particularly, a wafer is installed at a supply port entering a semiconductor processing equipment from an EFEM to measure the moving path of the end effector,
  • the present invention relates to an end effector measuring module for monitoring the distortion of an end effector using the measured moving path, and an end effector monitoring device using the same.
  • wafer processing is performed in a clean clean room to improve yield and quality.
  • FIG. 1 is an exemplary diagram showing a semiconductor processing apparatus using a general wafer
  • FIG. 2 is another exemplary diagram showing a semiconductor processing apparatus using the wafer according to FIG. 1.
  • a wafer is stored in a sealed storage pod called FOUP (Front Opening Unified Pod: 11) and fixed on a load port (LoadPort: 10), and the FOUP (11)
  • FOUP Front Opening Unified Pod
  • LoadPort load port
  • EFEM Equipment Front End Module
  • the EFEM 20 includes a wafer transfer chamber equipped with a wafer transfer device, and a load port 10 coupled to the FOUP 11 is connected to one side of the wafer transfer chamber.
  • the semiconductor processing apparatus 30 is connected to the other side of the wafer transfer chamber of the EFEM 20 through a through hole 22, and the wafer stored in the FOUP 11 is the end effector 21a of the robot arm 21. Wafers that have been transferred to the semiconductor processing apparatus 30 or processed in the semiconductor processing apparatus 30 are transferred into the FOUP 11.
  • the semiconductor processing apparatus 30 transfers the wafer loaded to the stage 31 through the end effector 21a of the robot arm 21 to the processing equipment through the robot arm 32 so that processing can be performed. .
  • the end effector 21a puts a wafer on the stage 31 or when a collision occurs with the stage 31 or the inner wall during the process of taking the wafer out of the stage 31, the wafer may be damaged. There is a problem that particles are generated.
  • the robot arm 21 is configured to move several joints using a chain or a belt.
  • the robot arm 21 moves along a designed path, it moves an accurately determined path without distortion, but the tension of the belt There is a problem in that the path changes when it is released or the chain is stretched.
  • Korean Patent Application Publication No. 10-1613135 (name of the invention: a position detecting device and a position detecting method of a semiconductor substrate) accurately detects the coordinates of the center of the disk-shaped substrate from image data photographed by a camera
  • a position detection apparatus is disclosed that calculates the amount of positional shift on a support member of a disk-like substrate being conveyed during processing, and performs position correction so that it can be placed at an accurate mounting position.
  • the position detection apparatus has a problem that the configuration becomes complicated and the size of the apparatus increases by using a camera.
  • the present invention relates to an end effector measurement module and an end effector monitoring device using the same, and more particularly, a wafer is installed at a supply port entering the semiconductor processing equipment from the EFEM to control the movement path of the end effector. It is an object of the present invention to provide an end effector measuring module for monitoring distortion of an end effector using the measured and measured moving paths, and an end effector monitoring device using the same.
  • the end effector measurement module is installed in a through hole formed between an EFEM (Equipment Front End Module) having an end effector and a semiconductor processing device for processing a wafer, An electric signal is output in response to a moving path of the end effector passing through the through hole.
  • EFEM Equipment Front End Module
  • the end effector measurement module according to an embodiment of the present invention is installed orthogonal to the moving path of the end effector.
  • the end effector measurement module includes a light emitting unit for outputting light for measurement; And a light-receiving part for receiving light output from the light-emitting part.
  • the light emitting unit is disposed to irradiate light for measurement from the lower portion of the end effector upward.
  • the light-receiving unit is configured to output an electric signal in response to the amount of light received that varies according to the movement of the end effector.
  • the end effector measurement module further includes a measurement module body portion that supports the light emitting portion and the light receiving portion to be fixed to face each other.
  • a monitoring device using an end effector measurement module is installed in a through hole formed between an EFEM (Equipment Front End Module) having an end effector and a semiconductor processing device for processing a wafer, and the An end effector measurement module for outputting an electric signal corresponding to a moving path of the end effector passing through the through hole; And a controller that compares the electric signal output from the end effector measurement module with a preset reference value, and determines whether a moving path of the end effector has changed according to the comparison result.
  • EFEM Equipment Front End Module
  • controller is configured to determine whether a change in the electric signal occurs along a time axis.
  • the controller according to the embodiment of the present invention uses one of the electric signal being higher/lower than the reference value or the electric signal size increasing or decreasing according to the time axis, and the shift direction of the end effector and It is made to determine the inclination direction.
  • the end effect monitoring apparatus further includes a remote terminal connected to the controller through a network and receiving and outputting an electrical signal of the end effector measuring module transmitted from the controller.
  • controller is configured to transmit a repair request signal of an end effector to the remote terminal when the electric signal is equal to or greater than a preset threshold.
  • the wafer is installed at the supply port from the EFEM to the semiconductor processing equipment to measure the movement path of the end effector, and by monitoring the distortion of the end effector using the measured movement path, it automatically checks the occurrence of malfunction of the robot arm.
  • the present invention has the advantage that it is possible to automatically check the occurrence of a malfunction of the robot arm and provide it to an administrator or the like, so that maintenance and repair of the robot arm can be easily managed.
  • FIG. 1 is an exemplary view showing a semiconductor processing apparatus using a general wafer.
  • FIG. 2 is another exemplary view showing a semiconductor processing apparatus using the wafer according to FIG. 1.
  • FIG. 3 is a perspective view showing an end effector measurement module according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing an end effector monitoring device using an end effector measurement module according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing the configuration of an end effector monitoring device using the end effector measurement module according to FIG. 4.
  • FIG. 6 is an exemplary view illustrating an operation process of the end effector monitoring device using the end effector measurement module according to FIG. 4.
  • FIG. 7 is a graph showing a voltage distribution according to the operation of the end effector monitoring device using the end effector measuring module according to FIG. 4.
  • measurement module body 120 light emitting portion
  • controller 300 remote terminal
  • FIG. 3 is a perspective view showing an end effector measurement module according to an embodiment of the present invention.
  • the end effector measurement module 100 is installed in a through hole formed between an EFEM (Equipment Front End Module) equipped with an end effector and a semiconductor processing device for processing wafers.
  • EFEM Equipment Front End Module
  • the measurement module body portion 110, the light emitting portion 120 and the light receiving portion 130 As a configuration for outputting a corresponding electrical signal according to the moving path of the end effector passing through the through hole, the measurement module body portion 110, the light emitting portion 120 and the light receiving portion 130.
  • the end effector measurement module is preferably installed at a position orthogonal to the movement path through which the end effector (21a) passes through the through holes (22, 22').
  • the measurement module body 110 is configured to support the light-emitting part 120 and the light-receiving part 130 to face each other and to be fixed, and preferably, the light-emitting part 120 is disposed at the bottom, and the light-receiving part 130 ) Are arranged on the top so that they can be installed in opposite positions.
  • the measurement module body 110 may be configured by separating the upper and lower portions, and the cross-sectional shape may be configured in a'C' shape or a' ⁇ ' shape connecting the upper and lower parts. May be.
  • the measurement module body portion 110 may be fixed around the through holes 22 and 22 ′ through the bracket 140.
  • the light-emitting unit 120 is configured to output light for measurement in a certain wavelength range, and may be formed of a light-emitting device such as an LED.
  • the light-emitting unit 120 may be disposed under the measurement module body portion 110 so that light for measurement is irradiated from the bottom of the end effector 21a to the top.
  • the light output from the light-emitting unit 120 may damage the pattern formed on the upper surface of the wafer 12, thereby preventing this.
  • the measurement light can be irradiated from the bottom of the wafer 12 to the top.
  • the rear surface of the wafer 12 may be irradiated with light for measurement to a place where a pattern is not formed.
  • the light-receiving unit 130 is configured to receive the measurement light output from the light-emitting unit 120 and output an output value varied according to the amount of received light as an electric signal, and an optical signal such as a photodiode or a PDS is When input, it consists of a light-receiving element that converts and outputs an electric signal.
  • the light receiving unit 130 outputs an electric signal corresponding to the received amount of light for measurement that is covered by the movement of the end effector 21a.
  • FIG. 4 is a perspective view illustrating an end effector monitoring device using an end effector measuring module according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing the configuration of an end effector monitoring device using the end effector measuring module according to FIG. 4.
  • the monitoring device using the end effector measuring module processes the EFEM (Equipment Front End Module: 20) and the wafer 12 with the end effector (21a). It is installed in the through holes 22 and 22 ′ formed between the semiconductor processing apparatus 30 to be processed, and the position along the movement path of the end effector 21a passing through the through holes 22 and 22 ′ is measured to generate electricity. It is configured to include an end effector measurement module (100, 100') outputting as a signal and a controller (200).
  • the end effector measurement module 100 includes a measurement module body portion 110, a light emitting portion 120 and a light receiving portion 130, and the end effector measurement module 100 is measured through a bracket 140 By fixing the module body portion 110, it is fixedly installed around the through holes 22 and 22'.
  • the light-emitting unit 120 is configured to output light for measurement in a certain wavelength range, and is disposed under the measurement module body 110 so that the light for measurement is irradiated from the bottom of the end effector 21a to the top. .
  • the light-receiving unit 130 is installed to face the upper portion of the light-emitting unit 120, receives the measurement light output from the light-emitting unit 120, and outputs an electric signal corresponding to the amount of received light.
  • the controller 200 compares the electrical signal output from the end effector measurement modules 100 and 100' with a preset reference value, and determines whether the moving path of the end effector 21a has changed according to the comparison result. .
  • the controller 200 checks whether a change occurs in the electric signal output from the end effector measurement module 100, 100' along the time axis, and changes (or twists) the moving path of the end effector 21a. It is determined whether or not this has occurred.
  • FIG. 6(a) shows that the end effector 21a moves along a normal movement path, and the end effector 21a moves in a direction orthogonal to the light receiving unit 130, and at this time, a certain area of the light receiving unit 130, For example, the 50% area of the light receiving unit 130 is moved in a closed state.
  • the state in which the 50% area of the light receiving unit 130 is covered is a criterion for determining whether the end effector 21a moves along a normal path, and in which direction the end effector 21a is shifted or in which direction Make sure that it is tilted.
  • the light receiving unit 130 outputs a voltage value that matches the reference value as shown in FIG. 7B.
  • FIG. 6(b) and 6(c) show that the movement path of the end effector 21a is shifted and shifted, and FIG. 6(b) shows that the end effector 21a is more to the left of the light receiving unit 130 in the drawing. 6(c) shows that the end effector 21a is shifted more to the right of the light receiving unit 130 and moves in the drawing.
  • FIGS. 6(d) and 6(e) show that the end effector 21a is tilted in a certain direction
  • FIG. 6(d) shows the end effector 21a tilted in the right direction
  • Fig. 6(e) shows that the end effector 21a is tilted to the left in the drawing.
  • the end effector 21a when the end effector 21a is tilted to the right as shown in FIG. 6(d), the end effector 21a initially covers a lot of the light receiving unit 130, and then the end effector 21a passes through it. As it moves, the light-receiving part 130 becomes smaller, and as a result, the voltage output from the light-receiving part 130 forms a graph in which the voltage value moves from a high value to a low value as time passes as shown in FIG. 7(e). do.
  • the end effector 21a when the end effector 21a is tilted to the left, the end effector 21a initially covers the light-receiving part 130 less, and then the end effector 21a passes through it. As it moves, the light-receiving unit 130 becomes more obscured, and as a result, the voltage output from the light-receiving unit 130 forms a graph in which the voltage value moves from a low value to a high value over time as shown in Fig. 7(f). do.
  • the controller 200 uses a voltage value output from the light receiving unit 130 higher/lower than a reference value or an increase or decrease in the voltage value according to the time axis so that the end effector 21a is left or It is possible to determine whether the shift is in any one of the right directions and the inclination direction of the end effector 21a.
  • the controller 200 connects to the remote terminal 300 through a network and transmits whether the end effector 21a is shifted or tilted. Configurable.
  • the controller 200 transmits the measured values measured by the end effector measurement modules 100 and 100' to the remote terminal 300, and the remote terminal 300 stores the measured values transmitted from the controller 200. It may be configured to analyze and determine whether a shift or inclination of the end effector 21a occurs.
  • the controller 200 compares it with a preset threshold value, and transmits a repair request signal of the end effector 21a according to the comparison result. ), so that the administrator can easily check it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치를 개시한다. 본 발명은 웨이퍼가 EFEM에서 반도체 공정장비로 들어가는 공급구에 설치되어 엔드 이펙터의 이동 경로를 측정하고, 측정된 이동 경로를 이용하여 엔드 이펙터의 틀어짐을 모니터링함으로써, 로봇암의 오동작 발생을 자동으로 확인할 수 있으며, 로봇암의 유지 및 보수를 쉽게 관리할 수 있다.

Description

엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치
본 발명은 엔드 이펙터(end effector) 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치에 관한 발명으로서, 더욱 상세하게는 웨이퍼가 EFEM에서 반도체 공정장비로 들어가는 공급구에 설치되어 엔드 이펙터의 이동 경로를 측정하고, 측정된 이동 경로를 이용하여 엔드 이펙터의 틀어짐을 모니터링하는 엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치에 관한 것이다.
일반적인 반도체의 제조 공정에 있어서, 수율이나 품질의 향상을 위해 청정한 클린룸 내에서의 웨이퍼 처리가 이루어지고 있다.
그리고 소자의 고집접화나 회로의 미세화, 웨이퍼의 대형화가 진행됨에 따라 클린품 내부 전체를 청정한 상태로 유지하는 것은 기술적으로나 비용적으로 매우 불리한 조건이다.
최근에는 웨이퍼 주위 공간에 대해서만 청정도를 관리하게 되었는데, 도 1은 일반적인 웨이퍼를 이용한 반도체 공정장치를 나타낸 예시도이고, 도 2는 도 1에 따른 웨이퍼를 이용한 반도체 공정장치를 나타낸 다른 예시도이다.
도 1 및 도 2에 도시된 바와 같이, 풉(FOUP, Front Opening Unified Pod: 11)이라 불리는 밀폐식 저장 포드 내부에 웨이퍼를 저장하여 로드 포트(LoadPort: 10)위에 고정 시키고, 상기 풉(11)과 웨이퍼의 가공을 수행하는 반도체 공정장치(30) 사이에서 웨이퍼의 전달을 수행하는 웨이퍼 이송장치로서, EFEM(Equipment Front End Module: 20)을 이용하게 되었다.
상기 EFEM(20)은 웨이퍼 반송 장치가 구비된 웨이퍼 이송실을 구비하고, 상기 웨이퍼 이송실의 일측에는 풉(11)과 결합하는 로드 포트(10)가 접속된다.
또한, EFEM(20)의 웨이퍼 이송실의 타측에는 관통구(22)를 통해 반도체 공정장치(30)가 접속되고, 풉(11) 내부에 저장된 웨이퍼는 로봇암(21)의 엔드 이펙터(21a)를 이용하여 반도체 공정장치(30)로 이송되거나 또는 상기 반도체 공정장치(30)에서 가공 처리를 마친 웨이퍼는 풉(11) 내부로 이송된다.
상기 반도체 공정장치(30)는 로봇암(21)의 엔드 이펙터(21a)를 통해 스테이지(31)로 로딩된 웨이퍼를 로봇암(32)을 통해 공정장비로 이송하여 가공처리가 수행될 수 있도록 한다.
그러나 엔드 이펙터(21a)가 스테이지(31)에 웨이퍼를 올리거나 또는 스테이지(31)에서 웨이퍼를 꺼내오는 과정에 스테이지(31) 또는 내부 벽과 충돌이 발생하는 경우 웨이퍼의 파손이 발생하는 문제점과 함께 파티클이 발생하는 문제점이 있다.
또한, 로봇암(21)은 여러 개의 관절을 체인이나, 벨트를 이용하여 움직이도록 구성되는데, 로봇암(21)이 설계된 경로를 따라 이동하면, 틀어짐 없이 정확하게 정해진 경로를 이동하지만, 벨트의 장력이 풀리거나 또는 체인이 늘어나는 경우 경로가 바뀌는 문제점이 있다.
또한, 한국 등록특허공보 등록번호 제10-1613135호(발명의 명칭: 반도체 기판의 위치 검출 장치 및 위치 검출 방법)에는 카메라에 의해 촬영된 화상 데이터로부터 원반상 기판의 중심 위치 좌표를 정확하게 검출하고, 처리 도중에 반송되고 있는 원반상 기판의 지지부재 상에서의 위치 어긋남량을 산출하고, 정확한 재치 위치에 재치할 수 있도록 위치 보정을 수행하는 위치 검출 장치가 개시되어 있다.
그러나 종래 기술에 따른 위치 검출장치는 카메라를 이용함으로써, 구성이 복잡해지고, 장치의 크기가 증가하는 문제점이 있다.
또한, 화상 데이터로부터 추출한 데이터를 이용하여 기판의 중심 위치 좌표를 산출함으로써, 데이터 연산과정이 복잡해지는 문제점이 있다.
이러한 문제점을 해결하기 위하여, 본 발명은 엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치에 관한 발명으로서, 더욱 상세하게는 웨이퍼가 EFEM에서 반도체 공정장비로 들어가는 공급구에 설치되어 엔드 이펙터의 이동 경로를 측정하고, 측정된 이동 경로를 이용하여 엔드 이펙터의 틀어짐을 모니터링하는 엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 일실시예에 따른 엔드 이펙터 측정모듈은 엔드 이펙터를 구비한 EFEM(Equipment Front End Module)과 웨이퍼를 가공 처리하는 반도체 공정장치 사이에 형성된 관통구에 설치되고, 상기 관통구를 통과하는 상기 엔드 이펙터의 이동 경로에 대응하여 전기신호를 출력한다.
또한, 본 발명의 실시예에 따른 상기 엔드 이펙터 측정모듈은 상기 엔드 이펙터의 이동 경로에 직교하여 설치된다.
또한, 본 발명의 실시예에 따른 상기 엔드 이펙터 측정모듈은 측정용 빛을 출력하는 발광부; 및 상기 발광부에서 출력된 빛을 수광하는 수광부를 포함하여 구성된다.
또한, 본 발명의 실시예에 따른 상기 발광부는 상기 엔드 이펙터의 하부에서 상부방향으로 측정용 빛이 조사되도록 배치된다.
또한, 본 발명의 실시예에 따른 상기 수광부는 엔드 이펙터의 이동에 따라 변동되는 수광량에 대응하여 전기신호를 출력하도록 구성된다.
또한, 본 발명의 실시예에 따른 상기 엔드 이펙터 측정모듈은 상기 발광부와 수광부가 서로 대향하여 고정되도록 지지하는 측정모듈 몸체부를 더 포함하여 구성된다.
또한, 본 발명의 일 실시예에 따른 엔드 이펙터 측정모듈을 이용한 모니터링 장치는 엔드 이펙터를 구비한 EFEM(Equipment Front End Module)과 웨이퍼를 가공 처리하는 반도체 공정장치 사이에 형성된 관통구에 설치되고, 상기 관통구를 통과하는 엔드 이펙터의 이동 경로에 대응하여 전기신호를 출력하는 엔드 이펙터 측정모듈; 및 상기 엔드 이펙터 측정모듈로부터 출력되는 전기신호를 미리 설정된 기준값과 비교하고, 상기 비교 결과에 따라 상기 엔드 이펙터의 이동 경로가 변동되었는지 여부를 판단하는 콘트롤러를 포함한다.
또한, 본 발명의 실시예에 따른 상기 콘트롤러는 시간축에 따라 상기 전기신호의 변화가 발생하는지 여부를 판단하도록 이루어진다.
또한, 본 발명의 실시예에 따른 상기 콘트롤러는 상기 전기신호가 기준 값보다 높음/낮음 또는 시간축에 따라 전기신호의 크기가 커지거나 또는 작아지는 것 중 어느 하나를 이용하여 상기 엔드 이펙터의 쉬프트 방향과 기울어짐 방향을 판단하도록 이루어진다.
또한, 본 발명의 실시예에 따는 엔드 이펙트 모니터링 장치는 상기 콘트롤러와 네트워크를 통해 접속되고, 상기 콘트롤러로부터 전송되는 상기 엔드 이펙터 측정모듈의 전기신호를 수신하여 출력하는 원격 단말기를 더 포함하여 구성된다.
또한, 본 발명의 실시예에 따른 상기 콘트롤러는 상기 전기신호가 미리 설정된 임계값 이상이면 상기 원격 단말기로 엔드 이펙터의 수리요청 신호를 전송하도록 이루어진다.
본 발명은 웨이퍼가 EFEM에서 반도체 공정장비로 들어가는 공급구에 설치되어 엔드 이펙터의 이동 경로를 측정하고, 측정된 이동 경로를 이용하여 엔드 이펙터의 틀어짐을 모니터링함으로써, 로봇암의 오동작 발생을 자동으로 확인할 수 있는 장점이 있다.
또한, 본 발명은 로봇암의 오동작 발생을 자동으로 확인하여 관리자 등에게 제공하는 것이 가능하여 로봇암의 유지 및 보수를 쉽게 관리할 수 있는 장점이 있다.
도 1은 일반적인 웨이퍼를 이용한 반도체 공정장치를 나타낸 예시도.
도 2는 도 1에 따른 웨이퍼를 이용한 반도체 공정장치를 나타낸 다른 예시도.
도 3은 본 발명의 실시예에 따른 엔드 이펙터 측정모듈을 나타낸 사시도.
도 4는 본 발명의 실시예에 따른 엔드 이펙터 측정모듈을 이용한 엔드 이펙터 모니터링 장치를 나타낸 사시도.
도 5는 도 4에 따른 엔드 이펙터 측정모듈을 이용한 엔드 이펙터 모니터링 장치의 구성을 나타낸 블록도.
도 6은 도 4에 따른 엔드 이펙터 측정모듈을 이용한 엔드 이펙터 모니터링 장치의 동작과정을 설명하기 위해 나타낸 예시도.
도 7은 도 4에 따른 엔드 이펙터 측정모듈을 이용한 엔드 이펙터 모니터링 장치의 동작에 따른 전압분포를 나타낸 그래프.
- 도면 부호의 설명 -
10 : 로드 포트 11 : 풉(Foup)
12 : 웨이퍼 20 : EFEM
21 : 로봇암 21a : 엔드 이펙터
22, 22' : 관통구 30 : 반도체 공정장치
31 : 스테이지 100, 100' : 엔드 이펙터 측정모듈
110 : 측정모듈 몸체부 120 : 발광부
130 : 수광부 140 : 브래킷
200 : 콘트롤러 300 : 원격 단말기
이하에서는 본 발명의 바람직한 실시예 및 첨부하는 도면을 참조하여 본 발명을 상세히 설명하되, 도면의 동일한 참조부호는 동일한 구성요소를 지칭함을 전제하여 설명하기로 한다.
발명의 상세한 설명 또는 특허청구범위에서 어느 하나의 구성요소가 다른 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 당해 구성요소만으로 이루어지는 것으로 한정되어 해석되지 아니하며, 다른 구성요소들을 더 포함할 수 있는 것으로 이해되어야 한다.
이하에서는 본 발명에 따른 엔드 이펙터 측정모듈을 이용한 엔드 이펙터 모니터링 장치가 구현된 일 예를 특정한 실시예를 통해 설명하기로 한다.
(측정모듈)
도 3은 본 발명의 실시예에 따른 엔드 이펙터 측정모듈을 나타낸 사시도이다.
도 3에 나타낸 바와 같이, 본 발명의 실시예에 따른 엔드 이펙터 측정모듈(100)은 엔드 이펙터를 구비한 EFEM(Equipment Front End Module)과 웨이퍼를 가공 처리하는 반도체 공정장치 사이에 형성된 관통구에 설치되어 상기 관통구를 통과하는 상기 엔드 이펙터의 이동 경로에 따라 대응하는 전기신호를 출력하는 구성으로서, 측정모듈 몸체부(110)와, 발광부(120)와 수광부(130)를 포함하여 구성된다.
또한, 상기 엔드 이펙터 측정모듈은 상기 엔드 이펙터(21a)가 관통구(22, 22')를 통과하는 이동 경로에 직교하는 위치에 설치되는 것이 바람직하다.
상기 측정모듈 몸체부(110)는 상기 발광부(120)와 수광부(130)가 서로 대향하여 고정되도록 지지하는 구성으로서, 바람직하게는 상기 발광부(120)는 하부에 배치되고, 상기 수광부(130)는 상부에 배치되어 서로 대향된 위치에 설치될 수 있도록 한다.
이를 위해 상기 측정모듈 몸체부(110)는 상부와 하부를 분리하여 구성할 수도 있고, 단면의 형상이 예를 들면, 상부와 하부를 연결한 'ㄷ'자 형상 또는 'ㅁ'자 형상으로 구성할 수도 있다.
또한, 상기 측정모듈 몸체부(110)는 브래킷(140)을 통해 관통구(22, 22') 주변에 고정될 수 있다.
상기 발광부(120)는 일정 파장범위의 측정용 빛을 출력하는 구성으로서, LED 등의 발광소자로 이루어질 수 있다.
또한, 상기 발광부(120)는 상기 엔드 이펙터(21a)의 하부에서 상부방향으로 측정용 빛이 조사되도록 측정모듈 몸체부(110)의 하부에 배치될 수 있다.
상기 발광부(120)를 측정모듈 몸체부(110)의 하부에 배치한 구성은 상기 발광부(120)로부터 출력된 빛이 웨이퍼(12)의 상면에 형성된 패턴을 손상시킬 수 있어서, 이를 방지하기 위해 웨이퍼(12)의 하부에서 상부 방향으로 측정용 빛이 조사될 수 있도록 한다.
한편, 상기 웨이퍼(12)의 배면은 패턴이 형성되지 않은 곳으로 측정용 빛이 조사되어도 무방하다.
상기 수광부(130)는 상기 발광부(120)에서 출력된 측정용 빛을 수광하고, 수광된 빛의 광량에 따라 가변된 출력 값을 전기신호로 출력하는 구성으로서, 포토 다이오드, PDS 등의 광신호가 입력되면 전기신호로 변환하여 출력하는 수광소자로 이루어진다.
즉, 상기 수광부(130)는 엔드 이펙터(21a)의 이동으로 인해 가려지는 측정용 빛의 수광량에 따라 대응하는 전기신호를 출력한다.
(모니터링 장치)
도 4는 본 발명의 실시예에 따른 엔드 이펙터 측정모듈를 이용한 엔드 이펙터 모니터링 장치를 나타낸 사시도이고, 도 5는 도 4에 따른 엔드 이펙터 측정모듈을 이용한 엔드 이펙터 모니터링 장치의 구성을 나타낸 블록도이다.
도 3 내지 도 5에 나타낸 바와 같이, 본 발명의 실시예에 따른 엔드 이펙터 측정모듈을 이용한 모니터링 장치는 엔드 이펙터(21a)를 구비한 EFEM(Equipment Front End Module: 20)과 웨이퍼(12)를 가공 처리하는 반도체 공정장치(30) 사이에 형성된 관통구(22, 22')에 설치되고, 상기 관통구(22, 22')를 통과하는 엔드 이펙터(21a)의 이동 경로에 따른 위치를 측정하여 전기신호로 출력하는 엔드 이펙터 측정모듈(100, 100')과, 콘트롤러(200를 포함하여 구성된다.
상기 엔드 이펙터 측정모듈(100)은 측정모듈 몸체부(110)와, 발광부(120)와 수광부(130)를 포함하여 구성되고, 상기 엔드 이펙터 측정모듈(100)은 브래킷(140)을 통해 측정모듈 몸체부(110)를 고정함으로써, 상기 관통구(22, 22') 주변에 고정 설치되도록 한다.
상기 발광부(120)는 일정 파장범위의 측정용 빛을 출력하는 구성으로서, 상기 엔드 이펙터(21a)의 하부에서 상부방향으로 측정용 빛이 조사되도록 측정모듈 몸체부(110)의 하부에 배치된다.
상기 수광부(130)는 상기 발광부(120)의 상부에 대향하여 설치되고, 상기 발광부(120)에서 출력된 측정용 빛을 수광하여 수광된 빛의 광량에 대응하는 전기신호를 출력한다.
상기 콘트롤러(200)는 엔드 이펙터 측정모듈(100, 100')로부터 출력되는 전기신호를 미리 설정된 기준값과 비교하고, 상기 비교 결과에 따라 상기 엔드 이펙터(21a)의 이동 경로가 변동되었는지 여부를 판단한다.
또한, 상기 콘트롤러(200)는 상기 엔드 이펙터 측정모듈(100, 100')로부터 출력되는 전기신호를 시간축에 따라 변화가 발생하는 여부를 확인하여 엔드 이펙터(21a)의 이동 경로에 변동(또는 틀어짐)이 발생하였는지 여부를 판단한다.
도 6은 엔드 이펙터(21a)가 수광부(130)를 통과하는 다양한 이동 경로를 나타낸 것으로서, 도 6(a) 내지 도 6(e)와 같이, 다양하게 나타날 수 있다.
도 6(a)는 엔드 이펙터(21a)가 정상적인 이동 경로를 따라 이동하는 것으로서, 상기 엔드 이펙터(21a)는 수광부(130)와 직교하는 방향으로 이동하고, 이때 상기 수광부(130)의 일정 영역, 예를 들면, 수광부(130)의 50% 영역이 가려진 상태로 이동한다.
상기 수광부(130)의 50% 영역이 가려진 상태는 상기 엔드 이펙터(21a)가 정상적인 경로를 따라 이동하는지 여부를 판단하기 위한 기준으로써, 상기 엔드 이펙터(21a)가 어느 방향으로 틀어져 쉬프트 했는지 또는 어느 방향으로 기울어졌는지 확인할 수 있도록 한다.
즉, 상기 엔드 이펙터(21a)가 수광부(130)의 50% 영역을 가리면, 상기 수광부(130)는 절반이 가려지고, 그 상태에서 상기 수광부(130)의 출력값(전압)은 도 7(a)와 같이 기준값으로 설정할 수 있다.
또한, 상기 엔드 이펙터(21a)가 정상적으로 이동할 경우 수광부(130)는 도 7(b)와 같이 기준값과 일치하는 전압값을 출력하게 된다.
도 6(b) 및 도 6(c)는 엔드 이펙터(21a)의 이동 경로가 틀어져 쉬프트된 것으로서, 도 6(b)는 도면상에서 상기 엔드 이펙터(21a)가 수광부(130)의 왼쪽으로 더 많이 쉬프트되어 이동하는 것을 나타낸 것이고, 도 6(c)는 도면상에서 상기 엔드 이펙터(21a)가 수광부(130)의 오른쪽으로 더 많이 쉬프트되어 이동하는 것을 나타낸 것이다.
즉, 도 6(b)와 같이 엔드 이펙터(21a)가 수광부(130)의 왼쪽으로 쉬프트되면, 수광부(130)는 더욱 많이 가려지게 되어 상기 수광부(130)에서 출력되는 전압은 도 7(c)와 같이 낮아지게 된다.
또한, 도 6(c)와 같이 엔드 이펙터(21a)가 수광부(130)의 오른쪽으로 쉬프트되면, 수광부(130)는 더욱 작게 가려지게 되어 상기 수광부(130)에서 출력되는 전압은 도 7(d)와 같이 높아지게 된다.
이러한 수광부(130)의 전압값(또는 출력값) 변동은 엔드 이펙터(21a)의 이동 경로 자체는 정상이지만, 정상위치보다 왼쪽 또는 오른쪽으로 쉬프트되어 이동하는 것을 알 수 있게 된다.
또한, 도 6(d) 및 도 6(e)는 엔드 이펙터(21a)가 일정 방향으로 기울어져 이동하는 것으로서, 도 6(d)는 도면상에서 상기 엔드 이펙터(21a)가 오른측방향으로 기울어져 이동하는 것을 나타낸 것이고, 도 6(e)는 도면상에서 상기 엔드 이펙터(21a)가 왼쪽으로 기울어져 이동하는 것을 나타낸 것이다.
즉, 도 6(d)와 같이 엔드 이펙터(21a)가 오른쪽으로 기울어져 이동하면, 처음에는 상기 엔드 이펙터(21a)가 수광부(130)를 많이 가리게 되고, 이후 상기 엔드 이펙터(21a)가 통과하여 이동할수록 상기 수광부(130)는 작게 가려지게 되어 결과적으로 상기 수광부(130)에서 출력되는 전압은 도 7(e)와 같이 시간의 흐름에 따라 전압값이 높은 값에서 낮은 값으로 이동하는 그래프를 형성한다.
또한, 도 6(e)와 같이 엔드 이펙터(21a)가 왼쪽으로 기울어져 이동하면, 처음에는 상기 엔드 이펙터(21a)가 수광부(130)를 적게 가리게 되고, 이후 상기 엔드 이펙터(21a)가 통과하여 이동할수록 상기 수광부(130)는 많이 가려지게 되어 결과적으로 상기 수광부(130)에서 출력되는 전압은 도 7(f)와 같이 시간의 흐름에 따라 전압값이 낮은 값에서 높은 값으로 이동하는 그래프를 형성한다.
따라서, 상기 콘트롤러(200)는 수광부(130)에서 출력되는 전압값이 기준 값보다 높거나/낮음 또는 시간축에 따라 전압값의 크기가 커지거나 또는 작아지는 것을 이용하여 엔드 이펙터(21a)가 왼쪽 또는 오른쪽 중 어느 하나의 방향으로 쉬프트되었는지 여부와, 상기 엔드 이펙터(21a)의 기울어짐 방향을 판단할 수 있다.
한편, 상기 콘트롤러(200)는 엔드 이펙터(21a)의 쉬프트 또는 기울어짐이 발생하면, 네트워크를 통해 원격 단말기(300)와 접속하여 상기 엔드 이펙터(21a)의 쉬프트 발생, 기울어짐 발생 여부를 전송하도록 구성할 수 있다.
또한, 상기 콘트롤러(200)는 엔드 이펙터 측정모듈(100, 100')에서 측정된 측정값을 원격 단말기(300)로 전송하고, 상기 원격 단말기(300)는 콘트롤러(200)로부터 전송받은 측정값을 분석하여 엔드 이펙터(21a)의 쉬프트 발생, 기울어짐 발생 여부를 판단하도록 구성할 수도 있다.
또한, 상기 콘트롤러(200)는 엔드 이펙터(21a)의 쉬프트 또는 기울어짐이 발생하면 미리 설정된 임계값과 비교하고, 상기 비교 결과에 따라 상기 엔드 이펙터(21a)의 수리요청 신호를 상기 원격 단말기(300)로 전송하여 관리자가 쉽게 확인할 수 있도록 구성할 수 있다.
즉, 로봇암의 체인이나 벨트 등의 노후화로 인한 수리요청 신호를 자동으로 생성하여 알람 신호 등을 통해 전송함으로써, 로봇암의 유지 및 보수가 쉽게 이루어질 수 있도록 한다.
따라서, 엔드 이펙터의 이동 경로를 측정하고, 측정된 이동 경로를 이용하여 엔드 이펙터의 틀어짐을 모니터링함으로써, 로봇암의 오동작 발생을 자동으로 확인할 수 있게 된다.
또한, 로봇암의 오동작 발생을 자동으로 확인하여 관리자에게 제공함으로써, 로봇암의 유지 및 보수를 쉽게 관리할 수 있게 된다.
*이상 몇 가지의 실시예를 통해 본 발명의 기술적 사상을 살펴보았다.
본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기재사항으로부터 상기 살펴본 실시예를 다양하게 변형하거나 변경할 수 있음은 자명하다. 또한, 비록 명시적으로 도시되거나 설명되지 아니하였다 하여도 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기재사항으로부터 본 발명에 의한 기술적 사상을 포함하는 다양한 형태의 변형을 할 수 있음은 자명하며, 이는 여전히 본 발명의 권리범위에 속한다. 첨부하는 도면을 참조하여 설명된 상기의 실시예들은 본 발명을 설명하기 위한 목적으로 기술된 것이며 본 발명의 권리범위는 이러한 실시예에 국한되지 아니한다.

Claims (5)

  1. 엔드 이펙터(21a)를 구비한 EFEM(Equipment Front End Module: 20)과 웨이퍼(12)를 가공 처리하는 반도체 공정장치(30) 사이에 형성된 관통구(22, 22')에 설치되고, 상기 관통구(22, 22')를 통과하는 대상의 이동 경로를 측정하되,
    상기 측정의 대상은 상기 엔드 이펙터(21a)이며,
    상기 엔드 이펙터(21a)의 이동 경로에 대한 측정은 상기 엔드 이펙터(21a)의 쉬프트 여부와 틀어짐 여부이며,
    상기 엔드 이펙터(21a)의 쉬프트 여부와 틀어짐 여부는 상기 엔드 이펙터(21a)의 이동 경로에 직교하게 설치되는 발광부(120) 및 수광부(130)로 이루어진 하나의 감지부를 통해 이루어지며,
    상기 수광부(130)에서는 상기 엔드 이펙터(21a)의 쉬프트에 대응하여 기준 값보다 높거나 낮은 전기신호를 출력하거나, 상기 엔드 이펙터(21a)의 틀어짐에 대응하여 시간축에 따라 커지거나 또는 작아지는 전기신호를 출력하는 엔드 이펙터 측정모듈.
  2. 제 1 항에 있어서,
    상기 발광부(120)는 상기 엔드 이펙터(21a)의 하부에서 상부방향으로 측정용 빛이 조사되도록 배치되며,
    상기 수광부(130)는 엔드 이펙터(21a)의 위치 이동에 따라 변동되는 수광량에 대응하여 전기신호를 출력하는 엔드 이펙터 측정모듈.
  3. 제 2 항에 있어서,
    상기 엔드 이펙터 측정모듈은 상기 발광부(120)와 수광부(130)가 서로 대향하여 고정되도록 지지하는 측정모듈 몸체부(110)를 더 포함하여 구성된 엔드이펙터 측정모듈.
  4. 청구항 1의 엔드 이펙터 측정모듈(100); 및
    상기 엔드 이펙터 측정모듈(100)로부터 출력되는 전기신호를 미리 설정된 기준값과 비교하고, 상기 비교 결과에 따라 상기 엔드 이펙터(21a)의 이동 경로가 변동되었는지 여부를 판단하는 콘트롤러(200)를 포함하는 엔드 이펙터 측정모듈을 이용한 엔드 이펙터 모니터링 장치.
  5. 제 4 항에 있어서,
    상기 콘트롤러(200)는 시간축에 따라 상기 전기신호의 변화가 발생하는지 여부를 판단하되,
    상기 전기신호가 기준 값보다 높음/낮음을 이용하여 상기 엔드 이펙터(21a)의 쉬프트 방향을 판단하도록 이루어지며, 상기 전기신호가 시간축에 따라 전기신호의 크기가 커지거나 또는 작아지는 것을 이용하여 상기 엔드 이펙터(21a)의 틀어짐 방향을 판단하도록 이루어진 엔드 이펙터 측정모듈을 이용한 엔드 이펙터 모니터링 장치.
PCT/KR2019/015769 2019-02-22 2019-11-18 엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치 WO2020171350A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201990001189.2U CN215183865U (zh) 2019-02-22 2019-11-18 末端执行器测定模块及利用该模块的末端执行器监控装置
US17/306,859 US11772278B2 (en) 2019-02-22 2021-05-03 End effector measuring module and end effector monitoring apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190021277A KR102020533B1 (ko) 2019-02-22 2019-02-22 엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치
KR10-2019-0021277 2019-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/306,859 Continuation-In-Part US11772278B2 (en) 2019-02-22 2021-05-03 End effector measuring module and end effector monitoring apparatus using the same

Publications (1)

Publication Number Publication Date
WO2020171350A1 true WO2020171350A1 (ko) 2020-08-27

Family

ID=67951026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015769 WO2020171350A1 (ko) 2019-02-22 2019-11-18 엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치

Country Status (5)

Country Link
US (1) US11772278B2 (ko)
KR (1) KR102020533B1 (ko)
CN (1) CN215183865U (ko)
SG (1) SG10201912468VA (ko)
WO (1) WO2020171350A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102020533B1 (ko) * 2019-02-22 2019-09-10 임진희 엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치
KR102669767B1 (ko) * 2022-04-01 2024-05-28 주식회사 유진테크 기판 이송장치 및 기판 이송장치의 이상 판단방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135276A (ja) * 2007-11-30 2009-06-18 Panasonic Corp 基板搬送装置
JP2009253286A (ja) * 2008-04-03 2009-10-29 Asm Japan Kk ウエハ位置合わせ装置を有する半導体処理装置及び方法
KR20140042190A (ko) * 2012-09-28 2014-04-07 주식회사 에스에프에이 자동보정 및 티칭로딩이 가능한 자동반송시스템 및 제어방법
KR101620545B1 (ko) * 2015-02-11 2016-05-13 국제엘렉트릭코리아 주식회사 기판 정렬 장치 및 게이트 밸브 그리고 그것을 갖는 클러스터 설비
KR20160063090A (ko) * 2014-11-26 2016-06-03 주식회사 원익아이피에스 기판 이송 장치 및 기판 이송 방법
KR102020533B1 (ko) * 2019-02-22 2019-09-10 임진희 엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8041450B2 (en) * 2007-10-04 2011-10-18 Asm Japan K.K. Position sensor system for substrate transfer robot
WO2014069291A1 (ja) 2012-10-29 2014-05-08 ローツェ株式会社 半導体基板の位置検出装置及び位置検出方法
US10228303B2 (en) * 2014-03-31 2019-03-12 Automation Controls & Engineering, LLC Flexible automation cell for performing secondary operations in concert with a machining center and roll check operations
JP6528525B2 (ja) * 2015-04-27 2019-06-12 セイコーエプソン株式会社 ロボットおよびロボットシステム
DE102015012961B4 (de) * 2015-10-08 2022-05-05 Kastanienbaum GmbH Robotersystem
US10796940B2 (en) * 2018-11-05 2020-10-06 Lam Research Corporation Enhanced automatic wafer centering system and techniques for same
US11148289B1 (en) * 2019-01-08 2021-10-19 Amazon Technologies, Inc. Entanglement end effector for autonomous object retrieval

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135276A (ja) * 2007-11-30 2009-06-18 Panasonic Corp 基板搬送装置
JP2009253286A (ja) * 2008-04-03 2009-10-29 Asm Japan Kk ウエハ位置合わせ装置を有する半導体処理装置及び方法
KR20140042190A (ko) * 2012-09-28 2014-04-07 주식회사 에스에프에이 자동보정 및 티칭로딩이 가능한 자동반송시스템 및 제어방법
KR20160063090A (ko) * 2014-11-26 2016-06-03 주식회사 원익아이피에스 기판 이송 장치 및 기판 이송 방법
KR101620545B1 (ko) * 2015-02-11 2016-05-13 국제엘렉트릭코리아 주식회사 기판 정렬 장치 및 게이트 밸브 그리고 그것을 갖는 클러스터 설비
KR102020533B1 (ko) * 2019-02-22 2019-09-10 임진희 엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치

Also Published As

Publication number Publication date
US11772278B2 (en) 2023-10-03
US20210252717A1 (en) 2021-08-19
CN215183865U (zh) 2021-12-14
KR102020533B1 (ko) 2019-09-10
SG10201912468VA (en) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2020171350A1 (ko) 엔드 이펙터 측정모듈 및 이를 이용한 엔드 이펙터 모니터링 장치
KR102128995B1 (ko) 웨이퍼 핸들링을 모니터하는 시스템 및 방법과 웨이퍼 핸들링 기계
WO2013036065A2 (ko) 비접촉식 온도 감시 장치
US8215890B2 (en) Semiconductor wafer robot alignment system and method
WO2018143506A1 (ko) 반도체 또는 디스플레이 시스템 분야에서 사용되는 이송 위치 측정용 테스트 더미 및 상기 반도체 또는 디스플레이 시스템 분야에서 사용되는 이송 위치 측정용 테스트 더미를 이용한 정밀 이송 측정 방법
TW201913864A (zh) 檢測晶圓載具的設備、方法及系統
WO2020171327A1 (ko) 진공차단기용 동작 감지 장치 및 이를 포함하는 진공차단기
WO2012134146A1 (ko) 스테레오 비전과 격자 무늬를 이용한 비전검사장치
WO2016085206A1 (en) Test handler
WO2020213873A1 (ko) 플라잉 스캔 기능을 갖는 전자부품 테스트 핸들러
TWI645162B (zh) 環境監測系統
CN213936147U (zh) 机械手臂
WO2010071277A1 (en) Probe station
WO2023120899A1 (ko) 엔드이펙터 감지센서를 갖는 풉 및 이를 이용한 데이터 통합 관리시스템
WO2023058817A1 (ko) 웨이퍼의 비아홀 검사 방법
WO2013039280A1 (ko) 반도체 장비 진단용 측정장치
WO2022191547A1 (ko) 이송툴 및 그를 포함하는 소자핸들러
WO2022005025A1 (ko) 수직 배열 구조를 갖는 기판 처리 시스템
CN114664692A (zh) 基片搬运装置、基片处理系统和基片处理方法
CN207938584U (zh) 气锁及晶圆传送装置
WO2012043995A2 (ko) 웨이퍼 정렬-배면 검사장치
WO2019216493A1 (ko) 플라즈마 공정 측정 센서 및 그 제조 방법
WO2018044043A1 (ko) 플립소자 핸들러
WO2018199601A1 (ko) 센서 탑재 웨이퍼
WO2016085064A1 (ko) Pcb 위치 감지 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916052

Country of ref document: EP

Kind code of ref document: A1