WO2020170923A1 - マイクロ波加熱装置 - Google Patents
マイクロ波加熱装置 Download PDFInfo
- Publication number
- WO2020170923A1 WO2020170923A1 PCT/JP2020/005511 JP2020005511W WO2020170923A1 WO 2020170923 A1 WO2020170923 A1 WO 2020170923A1 JP 2020005511 W JP2020005511 W JP 2020005511W WO 2020170923 A1 WO2020170923 A1 WO 2020170923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microwave
- opening
- line
- waveguide
- reflected wave
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 49
- 238000001514 detection method Methods 0.000 claims abstract description 91
- 230000001902 propagating effect Effects 0.000 claims abstract description 38
- 230000005540 biological transmission Effects 0.000 claims description 80
- 230000008878 coupling Effects 0.000 claims description 58
- 238000010168 coupling process Methods 0.000 claims description 58
- 238000005859 coupling reaction Methods 0.000 claims description 58
- 238000013459 approach Methods 0.000 claims description 7
- 239000000284 extract Substances 0.000 abstract description 3
- 239000007787 solid Substances 0.000 description 57
- 238000010586 diagram Methods 0.000 description 12
- 230000005684 electric field Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
- H05B6/705—Feed lines using microwave tuning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
- H01P5/107—Hollow-waveguide/strip-line transitions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
- H05B6/707—Feed lines using waveguides
Definitions
- the present disclosure relates to a microwave heating device that detects a power level of microwave propagating in a waveguide.
- a directional coupler is known as a device that detects the power level of microwaves propagating in a waveguide.
- the directional coupler separates an incident wave and a reflected wave propagating through the waveguide and detects each of them.
- the directional coupler described in Patent Document 1 includes an opening arranged on the wall surface of the waveguide and a coupling line arranged outside the waveguide.
- the opening is arranged at a position that does not intersect the tube axis of the waveguide in plan view and is formed so as to radiate a circularly polarized microwave.
- the coupling line includes a first transmission line and a second transmission line that cross the opening in a plan view.
- the first transmission line and the second transmission line are arranged so as to face each other with the central portion of the opening therebetween, and are connected to each other at a position outside the region vertically above the opening.
- the rotation directions of the circularly polarized microwaves radiated from the opening are opposite to each other for the incident wave and the reflected wave.
- the incident wave and the reflected wave can be separately detected.
- a microwave heating apparatus includes a heating chamber that accommodates an object to be heated, a microwave generation unit, a waveguide, an opening, and a reflected wave detection unit.
- the microwave generator generates microwaves.
- the waveguide transmits the microwave generated by the microwave generator to the heating chamber.
- the opening is provided on the wall surface of the waveguide, and a part of the microwave is extracted from the waveguide.
- the reflected wave detection unit detects a part of the reflected wave that is a microwave that is extracted from the opening and propagates from the heating chamber toward the microwave generation unit.
- the reflected wave detection unit is arranged within a distance of 1 ⁇ 2 of the maximum opening length of the opening from the opening.
- FIG. 1 is a schematic diagram showing a configuration of a microwave heating device according to an embodiment of the present disclosure.
- FIG. 2 is a perspective view of the microwave detection unit according to the embodiment.
- FIG. 3 is a perspective view of the microwave detection unit according to the embodiment with the printed circuit board removed.
- FIG. 4 is a plan view of the waveguide according to the embodiment.
- FIG. 5 is a circuit configuration diagram of a printed circuit board provided in the microwave detection unit according to the embodiment.
- FIG. 6 is a diagram for explaining the principle of radiating circularly polarized microwaves from the cross aperture.
- FIG. 7 is a diagram for explaining the direction and amount of microwaves that propagate through the microstrip line and change with time.
- FIG. 1 is a schematic diagram showing a configuration of a microwave heating device according to an embodiment of the present disclosure.
- FIG. 2 is a perspective view of the microwave detection unit according to the embodiment.
- FIG. 3 is a perspective view of the microwave detection unit according to the embodiment with the printed circuit board removed
- FIG. 8 is a diagram for explaining the direction and amount of microwaves propagating through the microstrip line and changing with time.
- FIG. 9A is a plan view showing a first modified example of the coupled line.
- FIG. 9B is a plan view showing a second modification of the coupled line.
- FIG. 9C is a plan view showing a third modified example of the coupled line.
- FIG. 9D is a plan view showing a fourth modified example of the coupled line.
- FIG. 9E is a plan view showing a fifth modified example of the coupled line.
- FIG. 9F is a plan view showing a sixth modified example of the coupled line.
- FIG. 10 is a diagram schematically showing the positional relationship between the microwave detection unit and the opening.
- FIG. 11 is a graph showing the relationship between the detection accuracy and the distance between the microwave detection unit and the opening.
- the present inventors have made the following findings as a result of diligent studies to detect the incident wave and the reflected wave propagating in the waveguide by separating them more accurately.
- the microwave generated by the microwave generator is transmitted as an incident wave to the heating chamber via the waveguide. Part of the microwave transmitted to the heating chamber is absorbed by the object to be heated, and the rest returns from the heating chamber as a reflected wave via the waveguide.
- An opening is provided on the wall surface of the waveguide to take out the reflected wave propagating through the waveguide.
- the reflected wave detection unit detects the reflected wave extracted from the opening.
- the present inventors have found that the distance between the opening and the reflected wave detector facing the opening greatly affects the detection accuracy of the reflected wave.
- the present inventors have further found that the distance between the aperture and the reflected wave detector, which enables accurate detection, is related to the maximum aperture length of the aperture.
- the microwave heating device includes a heating chamber that houses an object to be heated, a microwave generation unit, a waveguide, an opening, and a reflected wave detection unit.
- the microwave generator generates microwaves.
- the waveguide transmits the microwave generated by the microwave generator to the heating chamber.
- the opening is provided on the wall surface of the waveguide, and a part of the microwave is extracted from the waveguide.
- the reflected wave detection unit detects a part of the reflected wave that is a microwave that is extracted from the opening and propagates from the heating chamber toward the microwave generation unit.
- the reflected wave detection unit is arranged within a distance of 1 ⁇ 2 of the maximum opening length of the opening from the opening.
- the reflected wave detection unit is arranged so as not to contact the opening while being based on the first aspect.
- the microwave heating apparatus is based on the first aspect, and further includes an incident wave detection unit that detects a part of the incident wave that is the microwave propagating from the microwave generation unit to the heating chamber.
- the incident wave detecting unit and the reflected wave detecting unit share the coupling line facing the opening, based on the first aspect.
- the incident wave detector extracts an incident wave from one end of the coupled line.
- the reflected wave detector extracts the reflected wave from the other end of the coupled line.
- the opening portions are arranged at positions that do not intersect the tube axis of the waveguide in plan view, while being based on the first aspect. It has a hole and a second elongated hole.
- the coupling line includes a first transmission line and a second transmission line.
- the first transmission line has a first intersection line portion.
- the first intersection line portion extends from one end of the tube axis through an opening intersection portion where the first elongated hole and the second elongated hole intersect in a plan view, and separates from the tube axis as it approaches a perpendicular line orthogonal to the tube axis. And intersects the first elongated hole at a position farther from the pipe axis than the opening intersecting portion.
- the second transmission line has a second intersection line portion.
- the second intersecting line portion extends away from the tube axis as it approaches the perpendicular from the other end of the tube axis in a plan view, and intersects the second elongated hole at a position farther from the tube axis than the opening intersecting portion.
- One end of the first transmission line is connected to one end of the second transmission line at a position outside the area of the opening in plan view.
- FIG. 1 is a schematic diagram showing a configuration of a microwave heating device 10 according to an embodiment of the present disclosure.
- FIG. 2 is a perspective view of the microwave detection unit 5 according to this embodiment.
- FIG. 3 is a perspective view of the microwave detector 5 with the printed circuit board 12 removed.
- FIG. 4 is a plan view of the waveguide 3.
- FIG. 5 is a circuit configuration diagram of the printed circuit board 12 provided in the microwave detection unit 5 of FIG.
- the microwave heating device 10 includes a heating chamber 1, a microwave generation unit 2, a waveguide 3, a microwave radiation unit 4, a microwave detection unit 5, and a control unit 6. , A driving power supply 7 and a motor 9.
- the heating chamber 1 accommodates an object to be heated.
- the microwave generator 2 generates a microwave.
- the waveguide 3 propagates the microwave generated by the microwave generator 2.
- the microwave radiating unit 4 is arranged below the bottom surface 1 a of the heating chamber 1, and radiates the microwave propagating in the waveguide 3 to the heating chamber 1.
- the microwave detection unit 5 is a directional coupler arranged so as to cover the cross opening 11 provided in the waveguide 3. A part of the microwave propagating in the waveguide 3 is extracted from the cross opening 11.
- the microwave detecting unit 5 propagates through the waveguide 3 from the microwave generating unit 2 toward the microwave radiating unit 4, and detects the detection signal 5 a according to the incident wave extracted from the cross opening 11.
- the microwave detection unit 5 propagates through the waveguide 3 from the microwave radiation unit 4 toward the microwave generation unit 2, and detects the detection signal 5b according to the reflected wave extracted from the cross opening 11. Details of the waveguide 3, the microwave detector 5, and the cross opening 11 will be described later.
- the control unit 6 receives the signal 8 in addition to the detection signals 5a and 5b.
- the signal 8 includes the heating condition set by the input unit (not shown) of the microwave heating device 10, the weight of the object to be heated detected by the sensor (not shown), and the amount of steam.
- the control unit 6 controls the drive power supply 7 and the motor 9 based on the detection signals 5a and 5b and the signal 8.
- the drive power supply 7 supplies electric power for generating microwaves to the microwave generator 2.
- the motor 9 rotates the microwave radiating section 4. In this way, the microwave heating device 10 heats the object to be heated housed in the heating chamber 1 with the microwave supplied to the heating chamber 1.
- the microwave detector 5 is arranged on the wall surface of the waveguide 3 that transmits microwaves.
- the waveguide 3 is a rectangular waveguide.
- the cross section of the waveguide 3 orthogonal to the tube axis L1 has a rectangular shape.
- the tube axis L1 is the central axis of the waveguide 3 in the width direction.
- the microwave detection unit 5 includes a cross opening 11, a printed circuit board 12, and a support unit 14.
- the cross opening 11 is an X-shaped opening arranged on the wide plane 3 a of the waveguide 3.
- the printed circuit board 12 is arranged outside the waveguide 3 so as to face the cross opening 11.
- the support portion 14 supports the printed circuit board 12 on the outer surface of the waveguide 3.
- the cross opening 11 is arranged at a position that does not intersect with the tube axis L1 of the waveguide 3 in a plan view.
- the opening center portion 11c of the cross opening 11 is arranged apart from the tube axis L1 of the waveguide 3 by a dimension D1 in a plan view.
- the dimension D1 is, for example, 1/4 of the width of the waveguide 3.
- the cross opening 11 radiates the microwave propagating in the waveguide 3 toward the printed board 12 as a circularly polarized microwave.
- the opening shape of the cross opening 11 is the width and height of the waveguide 3, the power level and frequency band of the microwave propagating in the waveguide 3, and the power level of the circularly polarized microwave radiated from the cross opening 11. It is decided according to the
- the width of the waveguide 3 is 100 mm
- the height is 30 mm
- the wall thickness of the waveguide 3 is 0.6 mm
- the maximum power level of the microwave propagating in the waveguide 3 is 1000 W
- the frequency band is 2450 MHz.
- the maximum power level of the circularly polarized microwave radiated from the cross opening 11 is about 10 mW
- the length 11w and the width 11d of the cross opening 11 are set to 20 mm and 2 mm, respectively.
- the cross opening 11 includes a first elongated hole 11e and a second elongated hole 11f that intersect each other.
- the opening center portion 11c of the cross opening 11 coincides with the opening intersection portion where the first elongated hole 11e and the second elongated hole 11f intersect.
- the cross opening 11 is formed line-symmetrically with respect to the perpendicular L2.
- the perpendicular line L2 is orthogonal to the tube axis L1 and passes through the opening center portion 11c.
- first elongated hole 11e and the second elongated hole 11f intersect at an angle of 90 degrees.
- the first elongated hole 11e and the second elongated hole 11f may intersect at an angle of 60 degrees or 120 degrees.
- the electric field reciprocates along the microwave transmission direction without rotating.
- the cross aperture 11 radiates a linearly polarized microwave.
- the electric field rotates if the opening center part 11c is slightly displaced from the tube axis L1. However, when the opening center portion 11c is closer to the tube axis L1 (the closer the dimension D1 is to 0 mm), a distorted rotating electric field is generated. In this case, the cross aperture 11 radiates an elliptically polarized microwave.
- the dimension D1 is set to about 1/4 of the width of the waveguide 3. In this case, an almost circular rotating electric field is generated.
- the cross aperture 11 radiates a circularly polarized microwave having a substantially perfect circular shape. Therefore, the direction of rotation of the circularly polarized microwave becomes clearer. As a result, the incident wave and the reflected wave can be accurately separated and detected.
- the printed board 12 has a board back surface 12b facing the cross opening 11 and a board surface 12a opposite to the board back surface 12b.
- the substrate surface 12a has a copper foil (not shown) formed so as to cover the entire substrate surface 12a as an example of the microwave reflecting member.
- the copper foil prevents the circularly polarized microwave radiated from the cross opening 11 from passing through the printed board 12.
- a microstrip line 13 which is an example of a coupled line, is arranged on the back surface 12b of the substrate.
- the microstrip line 13 is composed of, for example, a transmission line having a characteristic impedance of approximately 50 ⁇ .
- the microstrip line 13 is arranged so as to surround the opening center portion 11c of the cross opening 11.
- the effective length ⁇ re of the microstrip line 13 will be described.
- the width of the microstrip line 13 is w
- the thickness of the printed circuit board 12 is h
- the speed of light is c
- the frequency of electromagnetic waves is f
- the relative permittivity of the printed circuit board is ⁇ r
- the effective length ⁇ of the microstrip line 13 is re is expressed by the following equation.
- the effective length ⁇ re is the wavelength of the electromagnetic wave propagating through the microstrip line 13.
- the microstrip line 13 includes a first transmission line 13a and a second transmission line 13b.
- the first transmission line 13a has a first straight line portion 13aa which is an example of a first intersecting line portion.
- the first straight portion 13aa intersects with the first elongated hole 11e at a position farther from the tube axis L1 than the opening center portion 11c in plan view.
- the first straight portion 13aa extends away from the tube axis L1 as it approaches the perpendicular L2.
- the second transmission line 13b has a second straight line portion 13ba which is an example of a second intersecting line portion.
- the second straight portion 13ba intersects with the second elongated hole 11f at a position farther from the tube axis L1 than the opening center portion 11c in plan view.
- the second straight portion 13ba extends away from the tube axis L1 as it approaches the perpendicular L2.
- the first straight line portion 13aa and the second straight line portion 13ba are arranged in line symmetry with respect to the perpendicular L2.
- the first transmission line 13a and the second transmission line 13b are connected to each other outside the rectangular region E1 in plan view and at a position farther from the tube axis L1 than the rectangular region E1.
- the first straight portion 13aa intersects with the first elongated hole 11e at a position closer to the opening tip portion 11ea than the opening center portion 11c in a plan view.
- the first straight portion 13aa is orthogonal to the first elongated hole 11e in a plan view.
- the second straight portion 13ba intersects with the second elongated hole 11f at a position closer to the opening tip portion 11fa than the opening center portion 11c in plan view.
- the second straight portion 13ba is orthogonal to the second elongated hole 11f in a plan view.
- the one end of the first transmission line 13a and the one end of the second transmission line 13b are connected to each other outside a region overlapping the cross opening 11 in plan view.
- One end of the first straight line portion 13aa is connected to one end of the second straight line portion 13ba outside the rectangular region E1 circumscribing the cross opening 11.
- the first coupling point P1 is a point where the first straight line portion 13aa and the first elongated hole 11e intersect with each other in a plan view.
- the second coupling point P2 is a point where the second straight line portion 13ba and the second elongated hole 11f intersect each other in a plan view.
- a straight line connecting the first connecting point P1 and the second connecting point P2 is defined as a virtual straight line L3.
- the total distance between the first transmission line 13a and the second transmission line 13b farther from the tube axis L1 than the virtual straight line L3 is set to 1/4 of the effective length ⁇ re .
- a line that passes through the opening center portion 11c and is parallel to the tube axis L1 in a plan view is defined as a parallel line L4.
- the total distance between the first transmission line 13a and the second transmission line 13b farther from the tube axis L1 than the parallel line L4 is set to 1/2 of the effective length ⁇ re .
- the first transmission line 13a includes a third straight line portion 13ab that connects the other end of the first straight line portion 13aa and the first output portion 131.
- the first straight line portion 13aa and the third straight line portion 13ab are connected so as to form an obtuse angle (for example, 135 degrees).
- the second transmission line 13b includes a fourth straight line portion 13bb that connects the other end of the second straight line portion 13ba and the second output portion 132.
- the second straight line portion 13ba and the fourth straight line portion 13bb are connected so as to form an obtuse angle (for example, 135 degrees).
- the third straight line portion 13ab and the fourth straight line portion 13bb are arranged parallel to the perpendicular line L2.
- the first output unit 131 and the second output unit 132 are arranged outside the support unit 14 (see FIGS. 2 and 3) in plan view.
- the first detection circuit 15 is connected to the first output unit 131.
- the first detection circuit 15 detects the level of the microwave signal and outputs the detected level of the microwave signal as a control signal.
- the second detection circuit 16 is connected to the second output unit 132.
- the second detection circuit 16 outputs the level of the detected microwave signal as a control signal.
- the first detection circuit 15 and the second detection circuit 16 each include a smoothing circuit (not shown) composed of a chip resistor and a Schottky diode.
- the first detection circuit 15 rectifies the microwave signal from the first output unit 131 and converts the rectified microwave signal into a DC voltage.
- the converted DC voltage is output to the first detection output unit 18.
- the second detection circuit 16 rectifies the microwave signal from the second output unit 132 and converts the rectified microwave signal into a DC voltage.
- the converted DC voltage is output to the second detection output unit 19.
- the printed circuit board 12 has four holes (holes 20a, 20b, 20c, 20d) for attaching the printed circuit board 12 to the waveguide 3.
- a copper foil serving as a ground is formed around the holes 20a, 20b, 20c, 20d on the back surface 12b of the substrate.
- the portion where the copper foil is formed has the same potential as the substrate surface 12a.
- the printed circuit board 12 is fixed to the waveguide 3 by being screwed to the support portion 14 with screws 201a, 201b, 201c, 201d (see FIG. 2) through the holes 20a, 20b, 20c, 20d.
- the support portion 14 has screw portions 202a, 202b, 202c, 202d for screwing the screws 201a, 201b, 201c, 201d, respectively.
- the screw portions 202a, 202b, 202c, 202d are formed on the flange portion provided on the support portion 14.
- the support portion 14 has conductivity and is arranged so as to surround the cross opening 11 in a plan view.
- the support portion 14 functions as a shield that prevents the circularly polarized microwave radiated from the cross opening 11 from leaking out of the support portion 14.
- the support portion 14 has a groove 141 and a groove 142 through which the third straight line portion 13ab and the fourth straight line portion 13bb of the microstrip line 13 pass.
- the grooves 141 and 142 function as extraction units for extracting the microwave signal propagating through the microstrip line 13 to the outside of the support unit 14.
- the grooves 141 and 142 can be formed by recessing the flange portion of the support portion 14 away from the printed circuit board 12.
- FIG. 2 and 3 illustrate the connector 18a and the connector 19a respectively connected to the first detection output unit 18 and the second detection output unit 19 shown in FIG.
- the magnetic field distribution 3d generated in the waveguide 3 is shown by a dotted concentric ellipse.
- the direction of the magnetic field of the magnetic field distribution 3d is indicated by an arrow.
- the magnetic field distribution 3d moves in the waveguide 3 in the microwave transmission direction A1 with the passage of time.
- the magnetic field indicated by the broken line arrow B1 excites the first elongated hole 11e of the cross opening 11.
- the magnetic field indicated by the broken line arrow B2 excites the second elongated hole 11f of the cross opening 11.
- the magnetic field indicated by the broken line arrow B3 excites the first elongated hole 11e of the cross opening 11.
- the magnetic field indicated by the broken line arrow B4 excites the second elongated hole 11f of the cross opening 11.
- the microwave propagating along the arrow 30 shown in FIG. 4 is an incident wave and the microwave propagating along the arrow 31 is a reflected wave
- the incident wave is in the same direction as the transmission direction A1 shown in FIG. Propagate. Therefore, as described above, the circularly polarized microwave that rotates counterclockwise is radiated from the cross opening 11 to the outside of the waveguide 3.
- the reflected wave propagates in the direction opposite to the transmission direction A1 shown in FIG. Therefore, circularly polarized microwaves that rotate clockwise are radiated from the cross opening 11 to the outside of the waveguide 3.
- the circularly polarized microwave radiated to the outside of the waveguide 3 is coupled to the microstrip line 13 facing the cross opening 11.
- the microstrip line 13 outputs most of the microwave radiated from the cross aperture 11 by the incident wave propagating along the arrow 30 to the first output unit 131.
- the microstrip line 13 outputs most of the microwave radiated from the cross opening 11 to the second output unit 132 by the reflected wave propagating along the arrow 31.
- the microwave detection unit 5 shares the microstrip line 13 that is a coupling line facing the cross opening 11 and functions as an incident wave detection unit that detects an incident wave and a reflected wave detection unit that detects a reflected wave. ..
- the microwave detection unit 5 can separate and detect the incident wave and the reflected wave more accurately. This will be described in detail with reference to FIG.
- FIG. 7 is a diagram for explaining the direction and amount of microwaves propagating through the microstrip line 13 and changing with time. There is a gap between the microstrip line 13 and the cross opening 11. Originally, the time required for the microwave to reach the microstrip line 13 is delayed by the time required for the microwave to propagate through this gap. However, for convenience, it is assumed that there is no time delay here.
- the coupling area is approximately the center of the coupling region where the first elongated hole 11e and the microstrip line 13 intersect.
- the second coupling point P2 is substantially the center of the coupling region where the second elongated hole 11f and the microstrip line 13 intersect.
- the amount of microwaves propagating through the microstrip line 13 (current flowing due to interlinkage of magnetic fields) is represented by the thickness of the solid arrow. That is, when the amount of microwaves propagating through the microstrip line 13 is large, the line is thick, and when the amount of microwaves propagating through the microstrip line 13 is small, the line is thin.
- the effective propagation time of microwaves by the microstrip line 13 between the first coupling point P1 and the second coupling point P2 is set to the time t1, it occurs at the first coupling point P1 at the time shown in (a) of FIG.
- the microwave propagates to the second coupling point P2 at the time shown in FIG. 7B. That is, at the time shown in FIG. 7B, the microwave indicated by the solid arrow M1 and the microwave indicated by the solid arrow M2 are generated at the second coupling point P2.
- the two microwaves are added, propagated through the microstrip line 13 toward the second output unit 132, and are output to the second output unit 132 after a predetermined time has elapsed.
- the effective propagation time is set to the time t1
- the total distance between the first transmission line 13a and the second transmission line 13b farther from the tube axis L1 than the virtual straight line L3 is the effective length ⁇ re. Is set to 1/4. With this configuration, the microstrip line 13 can be easily designed.
- the magnetic field indicated by the broken line arrow B3 excites the first elongated hole 11e of the cross opening 11, and the first coupling point P1 is indicated by a thin solid line arrow M3. Waves occur. This microwave propagates through the microstrip line 13 toward the first output unit 131, and is output to the first output unit 131 after a predetermined time has elapsed.
- the reason why the thickness of the solid arrow M3 is smaller than that of the solid arrow M1 is as follows. Circularly polarized microwaves that rotate counterclockwise (the microwave rotation direction 32) are radiated from the cross opening 11 as described above.
- the microwave indicated by the solid arrow M1 at the first coupling point P1 propagates in substantially the same direction as the rotation direction of the microwave radiated from the cross opening 11. Therefore, the energy of the microwave indicated by the solid arrow M1 is not reduced.
- the microwave indicated by the solid arrow M3 at the first coupling point P1 propagates in a direction substantially opposite to the rotation direction of the microwave radiated from the cross opening 11. Therefore, the energy of the coupled microwaves is reduced. Therefore, the amount of microwaves indicated by the solid arrow M3 is smaller than the amount of microwaves indicated by the solid arrow M1.
- the magnetic field indicated by the broken line arrow B4 excites the second elongated hole 11f of the cross opening 11, and the second coupling point P2 is indicated by a thin solid line arrow M4. Waves occur. This microwave propagates toward the first coupling point P1.
- the reason why the thickness of the solid arrow M4 is reduced is the same as the reason that the thickness of the solid arrow M3 is reduced.
- a microwave indicated by a thin solid arrow M4 which has not been described at the time shown in FIG. 7A, exists on the microstrip line 13.
- the microwave indicated by the thin solid arrow M4 propagates in the opposite direction to the microwave indicated by the thick solid arrow M1. Therefore, the microwave indicated by the solid arrow M4 is canceled and disappears, and is not output to the first output unit 131.
- the microstrip line 13 outputs most of the microwave radiated counterclockwise from the cross opening 11 to the second output unit 132 by the reflected wave propagating along the arrow 31.
- the microstrip line 13 outputs most of the microwave radiated clockwise from the cross opening 11 to the first output unit 131 by the incident wave propagating along the arrow 30.
- the amount of microwaves radiated from the cross opening 11 with respect to the amount of microwaves propagating in the waveguide 3 is determined by the shapes and dimensions of the waveguide 3 and the cross opening 11. For example, when the above-described shape and size are set, the amount of microwaves radiated from the cross opening 11 with respect to the amount of microwaves propagating in the waveguide 3 is about 1/100000 (about -50 dB).
- FIG. 8 is a diagram for explaining the direction and amount of the microwave propagating through the microstrip line 13 and changing with time.
- 8A to 8D are diagrams showing a state in which the time t1/2 has elapsed from each of FIGS. 7A to 7D.
- the magnetic field distribution 3d moves in the waveguide 3 in the microwave transmission direction A1 over time. Therefore, as shown in FIGS. 8A to 8D, the magnetic fields indicated by broken line arrows B12, B23, B34, and B41 excite the first elongated hole 11e and the second elongated hole 11f. Thereby, the circularly polarized microwave radiated to the outside of the waveguide 3 is coupled to the microstrip line 13.
- the third coupling point P3 is approximately the center of the coupling region where the perpendicular L2 and the microstrip line 13 intersect.
- the fourth coupling point P4 is approximately the center of the coupling region where the parallel line L4 and the first transmission line 13a intersect.
- the fifth coupling point P5 is substantially the center of the coupling region where the parallel line L4 and the second transmission line 13b intersect.
- the magnetic field shown by the broken line arrow B23 excites the cross aperture 11.
- a microwave indicated by a thick solid arrow M12a is generated at the fifth connection point P5
- a microwave indicated by a thin solid arrow M12b is generated at the fourth connection point P4.
- the reason why the thickness of the solid arrow M12b is reduced is the same as the reason that the thickness of the solid arrow M3 is reduced.
- the effective propagation time of the microwaves by the microstrip line 13 between the third coupling point P3 and the fifth coupling point P5 is set to the time t1, it occurs at the third coupling point P3 at the time shown in (a) of FIG.
- the microwave propagates to the fifth connection point P5 at the time shown in FIG. That is, at the time shown in FIG. 8B, the microwave indicated by the thick solid arrow M11 and the microwave indicated by the thick solid arrow M12a are generated at the fifth coupling point P5.
- the two microwaves are added, propagated through the microstrip line 13 toward the second output unit 132, and are output to the second output unit 132 after a predetermined time has elapsed. Since the effective propagation time is set to the time t1, in the present embodiment, the distance of the first transmission line 13a farther from the tube axis L1 than the parallel line L4 is set to 1 ⁇ 4 of the effective length ⁇ re. .. The microwave indicated by the thin solid arrow M12b generated at the fourth coupling point P4 propagates through the microstrip line 13 toward the first output unit 131, and is output to the first output unit 131 after a predetermined time has elapsed.
- the magnetic field shown by the broken line arrow B34 excites the cross aperture 11, and the microwave shown by the thin solid line arrow M13b is generated at the third coupling point P3.
- the microwave propagates through the microstrip line 13 toward the first output unit 131.
- the reason why the thickness of the solid arrow M13b is reduced is the same as the reason that the thickness of the solid arrow M3 is reduced.
- the magnetic field shown by the broken line arrow B41 excites the cross aperture 11.
- a microwave indicated by a thin solid arrow M14b is generated at the fifth connecting point P5
- a microwave indicated by a thick solid arrow M14a is generated at the fourth connecting point P4.
- the microwave indicated by the thin solid arrow M14b propagates through the microstrip line 13 toward the third coupling point P3.
- the reason why the thickness of the solid arrow M14b is reduced is the same as the reason that the thickness of the solid arrow M3 is reduced.
- the microwave indicated by the thick solid arrow M14a propagates through the microstrip line 13 toward the third coupling point P3.
- the effective propagation time of microwaves by the microstrip line 13 between the third coupling point P3 and the fourth coupling point P4 is set to the time t1, it occurs at the third coupling point P3 at the time shown in (c) of FIG.
- the microwave propagates to the fourth coupling point P4 at the time shown in FIG.
- the microwave indicated by the thin solid arrow M13b and the microwave indicated by the thick solid arrow M14a are generated at the fourth coupling point P4. Since the effective propagation time is set to the time t1, in the present embodiment, the distance of the second transmission line 13b farther from the tube axis L1 than the parallel line L4 is set to 1 ⁇ 4 of the effective length ⁇ re. ..
- the total distance between the first transmission line 13a and the second transmission line 13b that is farther from the tube axis L1 than the parallel line L4 is set to 1/2 of the effective length ⁇ re .
- the microwave indicated by the thin solid arrow M13b propagates in the opposite direction to the microwave indicated by the thick solid arrow M14a. Therefore, the microwave indicated by the thin solid arrow M13b is canceled and disappears, and is not output to the first output unit 131.
- the microwave indicated by the thin solid arrow M14b which is not described at the time shown in FIG. 8A, exists on the microstrip line 13.
- the microwave indicated by the thin solid arrow M14b propagates in the opposite direction to the microwave indicated by the thick solid arrow M11 and the thick solid arrow M14a. Therefore, the microwave indicated by the thin solid arrow M14b is canceled and disappears, and is not output to the first output unit 131.
- the amount becomes (M11+M14a ⁇ M14b). Therefore, the amount of microwaves output to the second output unit 132 is equal to the amount of microwaves propagating from the third coupling point P3 plus the amount of microwaves indicated by the thick solid arrow M12a (M11+M12a+M14a-M14b). Become.
- the microstrip line 13 outputs most of the microwave radiated counterclockwise from the cross opening 11 to the second output unit 132 by the reflected wave propagating in the direction of the arrow 31.
- the microstrip line 13 outputs most of the microwave radiated clockwise from the cross aperture 11 to the first output unit 131 by the incident wave propagating in the direction of the arrow 30.
- the microwave detection unit 5 has a cross opening 11 that is arranged at a position that does not intersect the tube axis L1 of the waveguide 3 in plan view and that radiates a circularly polarized microwave.
- the rotation directions of the circularly polarized microwaves radiated from the cross aperture 11 are opposite to each other between the incident wave and the reflected wave.
- the first transmission line 13a includes the first straight line portion 13aa and the second transmission line 13b includes the second straight line portion 13ba.
- the first transmission line 13a and the second transmission line 13b are connected to each other outside the rectangular region E1 in plan view and apart from the tube axis L1.
- the bent portion of the microstrip line 13 can be further separated from the region of the cross opening 11 in the vertical direction.
- the lengths of the first straight line portion 13aa and the second straight line portion 13ba can be made longer, and it is possible to suppress the obstruction of the current flow in the microstrip line 13. As a result, the incident wave and the reflected wave can be more accurately separated and detected.
- the first linear portion 13aa intersects the first elongated hole 11e at a position closer to the opening tip 11ea than the opening center 11c in plan view.
- the second straight portion 13ba intersects the second elongated hole 11f at a position closer to the opening tip portion 11fa than the opening center portion 11c in plan view.
- a stronger magnetic field is generated around the opening tip portions 11ea and 11fa than around the opening central portion 11c.
- a stronger magnetic field is coupled to the microstrip line 13. Therefore, the current flowing through the microstrip line 13 becomes larger. As a result, the incident wave and the reflected wave can be more accurately separated and detected.
- the first straight line portion 13aa is orthogonal to the first elongated hole 11e in plan view.
- the transmission direction of the microwave generated by the solid arrow M1 at the first coupling point P1 is made the same as the rotation direction 32 of the microwave radiated from the cross opening 11. This makes it possible to increase the amount of microwaves indicated by the solid arrow M1.
- the transmission direction of the microwave indicated by the solid arrow M3 generated at the first coupling point P1 is made opposite to the rotation direction 32 of the microwave radiated from the cross opening 11. This makes it possible to further reduce the amount of microwaves indicated by the solid arrow M3. As a result, the incident wave and the reflected wave can be more accurately separated and detected.
- the second linear portion 13ba is orthogonal to the second long hole 11f in plan view.
- the transmission direction of the microwave generated by the solid arrow M2 at the second coupling point P2 is made the same as the rotation direction 32 of the microwave radiated from the cross opening 11. This makes it possible to further increase the amount of microwaves indicated by the solid arrow M2.
- the transmission direction of the microwave indicated by the solid arrow M4 generated at the second coupling point P2 is made opposite to the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid arrow M4 can be further reduced. As a result, the incident wave and the reflected wave can be more accurately separated and detected.
- the microstrip line 13 has a first straight line portion 13aa, a second straight line portion 13ba, a third straight line portion 13ab, and a fourth straight line portion 13bb.
- the first straight line portion 13aa and the third straight line portion 13ab that are adjacent to each other are connected to form an obtuse angle.
- the second straight line portion 13ba and the fourth straight line portion 13bb that are adjacent to each other are connected so as to form an obtuse angle.
- the total distance between the first transmission line 13a and the second transmission line 13b farther from the tube axis L1 than the virtual straight line L3 is set to 1 ⁇ 4 of the effective length ⁇ re .
- the total distance if it is set to approximately 1/4 of the effective length lambda re, need not necessarily be set to 1/4 of the effective length lambda re.
- the total distance between the first transmission line 13a and the second transmission line 13b farther from the tube axis L1 than the parallel line L4 is set to 1/2 of the effective length ⁇ re .
- the total distance if it is set to approximately 1/2 of the effective length lambda re, need not necessarily be set to 1/2 of the effective length lambda re.
- one end of the first transmission line 13a and one end of the second transmission line 13b are connected so as to form a right angle.
- the present disclosure is not limited to this. It suffices that one end of the first transmission line 13a is connected to one end of the second transmission line 13b at a position outside the area of the cross opening 11 in plan view. In this region, the influence of the magnetic field is large.
- FIG. 9A to 9D are plan views showing first to sixth modifications of the microstrip line 13, respectively.
- the first transmission line 13a and the second transmission line 13b are arranged so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b is separated from the opening center portion 11c. It may be bent.
- the first transmission line 13a and the second transmission line 13b are bent so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b approaches the opening center portion 11c. You may have.
- the first transmission line 13a and the second transmission line 13b are curved so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b approaches the opening central portion 11c. You may have.
- first straight line portion 13aa and the second straight line portion 13ba correspond to the first intersecting line portion and the second intersecting line portion, respectively.
- first intersecting line portion and the second intersecting line portion may be the arcuate portion 13ac and the arcuate portion 13bc, respectively.
- the third straight line portion 13ab and the fourth straight line portion 13bb are parallel to the perpendicular line L2.
- the present disclosure is not limited to this.
- the third straight line portion 13ab and the fourth straight line portion 13bb may be parallel to the parallel line L4.
- the first transmission line 13a and the second transmission line 13b have a plurality of straight line portions.
- the present disclosure is not limited to this.
- both the first transmission line 13a and the second transmission line 13b may be configured by one straight line portion.
- the cross opening 11 is formed line-symmetrically with respect to the perpendicular L2.
- the vertical line L2 is orthogonal to the tube axis L1 and passes through the opening central portion 11c.
- the cross opening 11 may not be formed in line symmetry with respect to the perpendicular L2.
- the first elongated hole 11e and the second elongated hole 11f may intersect at a position deviated from the central portion in the longitudinal direction.
- the length of the first elongated hole 11e and the length of the second elongated hole 11f may be different from each other.
- the opening intersection where the first elongated hole 11e and the second elongated hole 11f intersect is displaced from the opening central portion 11c.
- the cross opening 11 may be formed in line symmetry with respect to a straight line slightly inclined with respect to the perpendicular L2 in a plan view.
- FIG. 10 is a diagram schematically showing the positional relationship between the microwave detection unit 5 and the opening 33 in the present embodiment.
- the opening 33 corresponds to the cross opening 11 shown in FIG.
- the maximum opening length D2 of the opening 33 corresponds to the length 11w of the cross opening 11 shown in FIG.
- the microwave extracted from the opening 33 radiates from the opening 33 in a substantially spherical shape.
- the intensity of the microwave radiated from the opening 33 is high.
- the microwave detection unit 5 is arranged such that the distance D3 between the microwave detection unit 5 and the opening 33 is 1/2 or less of the maximum opening length D2. With this configuration, the microwave detection unit 5 can efficiently detect the microwave. As a result, the incident wave and the reflected wave can be more accurately separated and detected.
- the microwave detection unit 5 is arranged so that the distance D3 becomes larger than 0, that is, the microwave detection unit 5 is not brought into contact with the waveguide 3.
- the microwave detector 5 can stably detect microwaves without causing sparks due to electric field concentration.
- the incident wave and the reflected wave can be more accurately separated and detected.
- the electronic components used in the detection circuit of the microwave detection unit 5 and the connectors 18a and 19a are arranged on the surface facing the opening 33.
- the distance D3 is preferably 1 mm or more.
- FIG. 11 shows the relationship between the distance D3 and the detection accuracy when the maximum opening length D2 is 24 mm, which is obtained by using the electromagnetic field simulator.
- -Detection accuracy means the directionality that represents the degree of signal separation between the incident wave and the reflected wave in a directional coupler that is a general microwave detection unit.
- the detection accuracy indicates that the detection signal includes an error component corresponding to the directional value. Therefore, the smaller the detection accuracy, the smaller the error component, which means that the directional coupler has higher performance.
- the detection accuracy is highest when the distance D3 is about 6 mm, that is, 1/4 of the maximum opening length D2.
- the error component has a value smaller than the detection signal when the detection signal becomes the minimum.
- the minimum value of the detection signal is the reflected wave when the reflection becomes the smallest.
- the minimum value of the reflected wave is about -13 dB (5% of the input value). Therefore, in consideration of the safety factor, the detection accuracy can be detected without any problem up to an error component of -16 dB (2.5% of input value) which is 1/2 of -13 dB.
- the detection accuracy be -16 dB or less.
- the distance D3 may be in the range of approximately 3 mm to 12 mm, that is, in the range of 1/8 to 1/2 of the maximum opening length D2. In this way, the incident wave and the reflected wave can be accurately separated and detected.
- the microwave detection unit according to the present disclosure can be applied to consumer and commercial microwave heating devices (for example, microwave ovens).
- heating chamber 1a bottom surface 2 microwave generation part 3 waveguide 3a wide surface 3d magnetic field distribution 4 microwave emission part 5 microwave detection part 5a, 5b detection signal 6 control part 7 drive power supply 8 signal 9 motor 10 microwave heating device 11 Cross Opening 11c Opening Center 11d Width 11e First Long Hole 11ea, 11fa Opening Tip 11f Second Long Hole 11w Length 12 Printed Circuit Board 12a Board Front Surface 12b Board Back Surface 13 Microstrip Line 13a First Transmission Line 13aa First Straight Line Section 13ab third straight section 13ac arcuate section 13b second transmission line 13ba second straight section 13bb fourth straight section 13bc arcuate section 14 support section 15 first detection circuit 16 second detection circuit 18 first detection output section 18a, 19a Connector 19 2nd detection output part 20a Hole 30, 31 Arrow 32 Rotation direction 33 Opening part 131 1st output part 132 2nd output part 141, 142 Groove
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本開示に係るマイクロ波加熱装置は、被加熱物を収容する加熱室と、マイクロ波発生部と、導波管と、開口部と、反射波検出部と、を備える。マイクロ波発生部は、マイクロ波を発生させる。導波管は、マイクロ波発生部により発生されたマイクロ波を加熱室に伝送する。開口部は、導波管の壁面に設けられ、導波管からマイクロ波の一部を取り出す。反射波検出部は、開口部から取り出され、加熱室からマイクロ波発生部に向けて伝搬するマイクロ波である反射波の一部を検出する。反射波検出部は、開口部から、開口部の最大開口長の1/2の距離内に配置される。
Description
本開示は、導波管を伝搬するマイクロ波の電力レベルを検出するマイクロ波加熱装置に関する。
導波管を伝搬するマイクロ波の電力レベルを検出する装置として、方向性結合器が知られている。方向性結合器は、導波管を伝搬する入射波と反射波とを分離して、それぞれを検出する。
従来、例えば、特許文献1に記載の方向性結合器が知られている。特許文献1の方向性結合器は、導波管の壁面に配置された開口部と、導波管の外側に配置された結合線路とを備える。開口部は、平面視において導波管の管軸と交差しない位置に配置され、円偏波のマイクロ波を放射するように形成される。結合線路は、平面視において開口部を横切る第1伝送線路および第2伝送線路を備える。第1伝送線路と第2伝送線路とは、開口部の中央部を挟んで対向するように配置され、開口部の鉛直上方の領域から外れた位置で互いに接続される。
特許文献1の方向性結合器によれば、開口部から放射される円偏波のマイクロ波の回転方向は、入射波と反射波とで互いに逆になる。このような円偏波のマイクロ波の回転方向の違いを利用して、入射波と反射波とを分離して検出することができる。
しかしながら、上記従来のマイクロ波検出部では、入射波と反射波とをより精度よく分離して検出するという観点において、未だ改善の余地がある。
従って、本開示は、導波管を伝搬する入射波と反射波とをより精度よく分離して検出することができるマイクロ波加熱装置を提供することを目的とする。
本開示の一態様のマイクロ波加熱装置は、被加熱物を収容する加熱室と、マイクロ波発生部と、導波管と、開口部と、反射波検出部と、を備える。マイクロ波発生部は、マイクロ波を発生させる。導波管は、マイクロ波発生部により発生されたマイクロ波を加熱室に伝送する。開口部は、導波管の壁面に設けられ、導波管からマイクロ波の一部を取り出す。反射波検出部は、開口部から取り出され、加熱室からマイクロ波発生部に向けて伝搬するマイクロ波である反射波の一部を検出する。反射波検出部は、開口部から、開口部の最大開口長の1/2の距離内に配置される。
本態様によれば、導波管を伝搬する入射波と反射波とをより精度よく分離して検出することができる。
本開示者らは、導波管を伝搬する入射波と反射波とをより精度よく分離して検出するために鋭意検討した結果、以下の知見を得た。
マイクロ波発生部により発生されたマイクロ波は、入射波として導波管を介して加熱室に伝送される。加熱室に伝送されたマイクロ波の一部は被加熱物に吸収され、残りは反射波として導波管を介して加熱室から戻る。
導波管を伝搬する反射波を取り出すために、導波管の壁面に開口部が設けられる。反射波検出部は、開口部から取り出された反射波を検出する。
本発明者らは、その際に、開口部と、開口部に対向する反射波検出部との間の距離が、反射波の検出精度に大きく影響することを知見した。本発明者らはさらに、正確な検出が可能な開口部と反射波検出部との間の距離が、開口部の最大開口長と関連があることを知見した。
これらの新規な知見に基づき、本開示者らは以下の発明を見出した。
本開示の第1の態様のマイクロ波加熱装置は、被加熱物を収容する加熱室と、マイクロ波発生部と、導波管と、開口部と、反射波検出部と、を備える。
マイクロ波発生部は、マイクロ波を発生させる。導波管は、マイクロ波発生部により発生されたマイクロ波を加熱室に伝送する。開口部は、導波管の壁面に設けられ、導波管からマイクロ波の一部を取り出す。反射波検出部は、開口部から取り出され、加熱室からマイクロ波発生部に向けて伝搬するマイクロ波である反射波の一部を検出する。反射波検出部は、開口部から、開口部の最大開口長の1/2の距離内に配置される。
本開示の第2の態様のマイクロ波加熱装置では、第1の態様に基づきながら、反射波検出部は、開口部に接触しないように配置される。
本開示の第3の態様のマイクロ波加熱装置は、第1の態様に基づきながら、マイクロ波発生部から加熱室に伝播するマイクロ波である入射波の一部を検出する入射波検出部をさらに備える。
本開示の第4の態様のマイクロ波加熱装置では、第1の態様に基づきながら、入射波検出部と反射波検出部とは、開口部に対向する結合線路を共有する。入射波検出部は、結合線路の一端から入射波を取り出す。反射波検出部は、結合線路の他端から反射波を取り出す。
本開示の第5の態様のマイクロ波加熱装置では、第1の態様に基づきながら、開口部は、平面視において導波管の管軸と交差しない位置に配置された、互いに交差する第1長孔と第2長孔とを有する。結合線路は、第1伝送線路と第2伝送線路とを備える。
第1伝送線路は第1交差線部を有する。第1交差線部は、平面視において管軸の一端から第1長孔と第2長孔とが交差する開口交差部を通り、管軸に直交する垂線に近づくにつれて管軸から離れるように延在し、開口交差部よりも管軸から離れた位置で第1長孔と交差する。
第2伝送線路は第2交差線部を有する。第2交差線部は、平面視において管軸の他端から垂線に近づくにつれて管軸から離れるように延在し、開口交差部よりも管軸から離れた位置で第2長孔と交差する。
第1伝送線路の一端は、平面視で開口部の領域から外れた位置で第2伝送線路の一端と接続される。
以下、本開示の実施の形態に係るマイクロ波加熱装置について、図面を参照しながら説明する。
図1は、本開示の実施の形態に係るマイクロ波加熱装置10の構成を示す概略図である。図2は、本実施の形態に係るマイクロ波検出部5の斜視図である。図3は、マイクロ波検出部5の、プリント基板12を取り外した状態の斜視図である。図4は、導波管3の平面図である。図5は、図1のマイクロ波検出部5に設けられたプリント基板12の回路構成図である。
図1に示すように、マイクロ波加熱装置10は、加熱室1と、マイクロ波発生部2と、導波管3と、マイクロ波放射部4と、マイクロ波検出部5と、制御部6と、駆動電源7と、モータ9とを備える。
加熱室1は、被加熱物を収容する。マイクロ波発生部2は、マイクロ波を発生させる。導波管3は、マイクロ波発生部2が発生させるマイクロ波を伝搬させる。マイクロ波放射部4は、加熱室1の底面1aの下方に配置され、導波管3内を伝搬するマイクロ波を加熱室1に放射する。
マイクロ波検出部5は、導波管3に設けられたクロス開口11を覆うように配置された方向性結合器である。クロス開口11から、導波管3内を伝搬するマイクロ波の一部が取り出される。
マイクロ波検出部5は、マイクロ波発生部2からマイクロ波放射部4に向かって導波管3内を伝搬し、クロス開口11から取り出された入射波に応じて検出信号5aを検出する。マイクロ波検出部5は、マイクロ波放射部4からマイクロ波発生部2に向かって導波管3内を伝搬し、クロス開口11から取り出された反射波に応じて検出信号5bを検出する。導波管3、マイクロ波検出部5、クロス開口11の詳細については後述する。
制御部6は、検出信号5a、5bに加えて信号8を受信する。信号8には、マイクロ波加熱装置10の入力部(図示せず)により設定された加熱条件、センサ(図示せず)により検出された被加熱物の重量、蒸気の量が含まれる。
制御部6は、検出信号5a、5bと信号8とに基づいて、駆動電源7とモータ9とを制御する。駆動電源7は、マイクロ波を発生させるための電力をマイクロ波発生部2に供給する。モータ9は、マイクロ波放射部4を回転させる。このようにして、マイクロ波加熱装置10は、加熱室1に供給されたマイクロ波により、加熱室1に収容された被加熱物を加熱する。
図2、図3に示すように、マイクロ波検出部5は、マイクロ波を伝送する導波管3の壁面に配置される。導波管3は方形導波管である。導波管3の管軸L1に直交する断面は長方形形状を有する。管軸L1は、幅方向の導波管3の中心軸である。
マイクロ波検出部5は、クロス開口11とプリント基板12と支持部14とを備える。クロス開口11は、導波管3の幅広面(Wide Plane)3aに配置されたX形状の開口部である。プリント基板12は、クロス開口11と対向するように導波管3の外側に配置される。支持部14は、導波管3の外面上でプリント基板12を支持する。
図4に示すように、クロス開口11は、平面視において導波管3の管軸L1と交差しない位置に配置される。クロス開口11の開口中央部11cは、平面視において導波管3の管軸L1から寸法D1だけ離れて配置される。寸法D1は、例えば、導波管3の幅の1/4である。クロス開口11は、導波管3内を伝搬するマイクロ波を円偏波のマイクロ波としてプリント基板12に向けて放射する。
クロス開口11の開口形状は、導波管3の幅および高さ、導波管3を伝搬するマイクロ波の電力レベルおよび周波数帯域、クロス開口11から放射される円偏波のマイクロ波の電力レベルなどに応じて決定される。
例えば、導波管3の幅が100mm、高さが30mm、導波管3の壁面の厚さが0.6mm、導波管3を伝搬するマイクロ波の最大電力レベルが1000W、周波数帯域が2450MHz、クロス開口11から放射される円偏波のマイクロ波の最大電力レベルが約10mWである場合、クロス開口11の長さ11wおよび幅11dは20mm、2mmにそれぞれ設定される。
図5に示すように、クロス開口11は、互いに交差する第1長孔11eと第2長孔11fとを含む。クロス開口11の開口中央部11cは、第1長孔11eと第2長孔11fとが交差する開口交差部と一致する。クロス開口11は、垂線L2に対して線対称に形成される。垂線L2は管軸L1に直交し、開口中央部11cを通る。
本実施の形態において、第1長孔11eと第2長孔11fとは90度の角度で交差する。しかし、本開示はこれに限定されるものではない。第1長孔11eと第2長孔11fとが60度または120度の角度で交差してもよい。
クロス開口11の開口中央部11cを平面視において管軸L1と重なる位置に配置した場合、電界は回転せずにマイクロ波の伝送方向に沿って往復する。この場合、クロス開口11は直線偏波のマイクロ波を放射する。
開口中央部11cが管軸L1から少しでもずれていれば、電界は回転する。しかし、開口中央部11cが管軸L1に近いと(寸法D1が0mmに近いほど)、いびつな回転の電界が発生する。この場合、クロス開口11は、楕円偏波のマイクロ波を放射する。
本実施の形態において、寸法D1は、導波管3の幅の約1/4に設定される。この場合、ほぼ真円状の回転の電界が発生する。クロス開口11は、ほぼ真円状の円偏波のマイクロ波を放射する。このため、円偏波のマイクロ波の回転方向がより明確になる。その結果、入射波と反射波とを精度よく分離して検出することができる。
プリント基板12は、クロス開口11に対向する基板裏面12bと、基板裏面12bとは反対側の基板表面12aとを有する。基板表面12aは、マイクロ波反射部材の一例として基板表面12a全体を覆うように形成された銅箔(図示せず)を有する。この銅箔が、クロス開口11から放射された円偏波のマイクロ波がプリント基板12を透過するのを防止する。
図5に示すように、基板裏面12bには、結合線路の一例であるマイクロストリップ線路13が配置される。マイクロストリップ線路13は、例えば、ほぼ50Ωの特性インピーダンスを有する伝送線路で構成される。マイクロストリップ線路13は、クロス開口11の開口中央部11cを取り囲むように配置される。
以下、マイクロストリップ線路13の実効長λreについて説明する。マイクロストリップ線路13の幅をw、プリント基板12の厚さをh、光の速度をc、電磁波の周波数をf、プリント基板の比誘電率をεrとすると、マイクロストリップ線路13の実効長λreは次式で表される。実効長λreとは、マイクロストリップ線路13を伝搬する電磁波の波長である。
具体的には、マイクロストリップ線路13は、第1伝送線路13aと第2伝送線路13bとを備える。第1伝送線路13aは、第1交差線部の一例である第1直線部13aaを有する。第1直線部13aaは、平面視において開口中央部11cよりも管軸L1から離れた位置で第1長孔11eと交差する。第1直線部13aaは、垂線L2に近づくにつれて管軸L1から離れるように延在する。
第2伝送線路13bは、第2交差線部の一例である第2直線部13baを有する。第2直線部13baは、平面視において開口中央部11cよりも管軸L1から離れた位置で第2長孔11fと交差する。第2直線部13baは、垂線L2に近づくにつれて管軸L1から離れるように延在する。第1直線部13aaと第2直線部13baとは、垂線L2に対して線対称に配置される。
第1伝送線路13aと第2伝送線路13bとは、平面視において矩形領域E1の外、かつ、矩形領域E1よりも管軸L1から離れた位置で互いに接続される。第1直線部13aaは、平面視において開口中央部11cよりも開口先端部11eaに近い位置で第1長孔11eと交差する。
第1直線部13aaは、平面視において第1長孔11eに直交する。第2直線部13baは、平面視において開口中央部11cよりも開口先端部11faに近い位置で第2長孔11fと交差する。第2直線部13baは、平面視において第2長孔11fに直交する。
第1伝送線路13aの一端と第2伝送線路13bの一端とは、平面視においてクロス開口11と重なる領域の外で互いに接続される。第1直線部13aaの一端は、クロス開口11に外接する矩形領域E1の外で第2直線部13baの一端に接続される。
第1結合点P1は、平面視において第1直線部13aaと第1長孔11eとが互いに交差する点である。第2結合点P2は、平面視において第2直線部13baと第2長孔11fとが互いに交差する点である。第1結合点P1と第2結合点P2とを結ぶ直線を仮想直線L3とする。本実施の形態では、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/4に設定される。
平面視において、開口中央部11cを通り、かつ、管軸L1に平行な線を平行線L4とする。本実施の形態では、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。
第1伝送線路13aは、第1直線部13aaの他端と第1出力部131とを接続する第3直線部13abを備える。第1直線部13aaと第3直線部13abとは、鈍角(例えば135度)を成すように接続される。
第2伝送線路13bは、第2直線部13baの他端と第2出力部132とを接続する第4直線部13bbを備える。第2直線部13baと第4直線部13bbとは、鈍角(例えば135度)を成すように接続される。第3直線部13abと第4直線部13bbとは、垂線L2に平行に配置される。
第1出力部131および第2出力部132は、平面視において支持部14(図2、図3参照)の外に配置される。第1出力部131には第1検波回路15が接続される。第1検波回路15は、マイクロ波信号のレベルを検出し、検出したマイクロ波信号のレベルを制御信号として出力する。第2出力部132には第2検波回路16が接続される。第2検波回路16は、検出したマイクロ波信号のレベルを制御信号として出力する。
本実施の形態において、第1検波回路15および第2検波回路16は、いずれもチップ抵抗およびショットキーダイオードにより構成された平滑回路(図示せず)を備える。第1検波回路15は、第1出力部131からのマイクロ波信号を整流し、整流されたマイクロ波信号を直流電圧に変換する。変換された直流電圧は、第1検波出力部18に出力される。
同様に、第2検波回路16は、第2出力部132からのマイクロ波信号を整流し、整流されたマイクロ波信号を直流電圧に変換する。変換された直流電圧は、第2検波出力部19に出力される。
プリント基板12は、プリント基板12を導波管3に取り付けるための四つの穴(穴20a、20b、20c、20d)を有する。基板裏面12bにおける穴20a、20b、20c、20dの周辺には、グランドとなる銅箔が形成される。この銅箔が形成された部分は、基板表面12aと同じ電位を有する。
プリント基板12は、穴20a、20b、20c、20dを通してネジ201a、201b、201c、201d(図2参照)で支持部14にねじ止めすることによって、導波管3に固定される。
図3に示すように、支持部14は、ネジ201a、201b、201c、201dをそれぞれねじ止めするためのネジ部202a、202b、202c、202dを有する。ネジ部202a、202b、202c、202dは、支持部14に設けられたフランジ部に形成される。
支持部14は、導電性を有し、平面視においてクロス開口11を取り囲むように配置される。支持部14は、クロス開口11から放射された円偏波のマイクロ波が支持部14の外に漏洩するのを防ぐシールドとして機能する。
支持部14は、マイクロストリップ線路13の第3直線部13abおよび第4直線部13bbが通る溝141、溝142を有する。この構成により、マイクロストリップ線路13の第1出力部131および第2出力部132を支持部14の外に配置することができる。溝141、142は、マイクロストリップ線路13を伝搬するマイクロ波信号を支持部14の外に取り出すための取出し部として機能する。溝141、142は、プリント基板12から離れるように支持部14のフランジ部を凹ませることにより形成することができる。
図2、図3は、図5に示す第1検波出力部18、第2検波出力部19にそれぞれ接続されたコネクタ18a、コネクタ19aを図示する。
次に、マイクロ波検出部5の動作および作用について説明する。
まず、図6を参照して、クロス開口11から円偏波のマイクロ波が放射される原理について説明する。図6において、導波管3内に生じる磁界分布3dを点線の同心楕円で示す。磁界分布3dの磁界の向きを矢印で示す。磁界分布3dは、導波管3内を時間の経過とともにマイクロ波の伝送方向A1に移動する。
図6の(a)に示す時刻t=t0において、磁界分布3dが形成される。このとき、破線矢印B1で示す磁界が、クロス開口11の第1長孔11eを励起する。図6の(b)に示す時刻t=t0+t1において、破線矢印B2で示す磁界が、クロス開口11の第2長孔11fを励起する。
図6の(a)に示す時刻t=t0+T/2(Tはマイクロ波の管内波長の周期)において、破線矢印B3で示す磁界が、クロス開口11の第1長孔11eを励起する。図6の(d)に示す時刻t=t0+T/2+t1において、破線矢印B4で示す磁界が、クロス開口11の第2長孔11fを励起する。時刻t=t0+Tにおいて、時刻t=t0と同様に、破線矢印B1で示す磁界が、クロス開口11の第1長孔11eを励起する。
これらの状態が順次繰り返されることで、反時計回り(マイクロ波の回転方向32)に回転する円偏波のマイクロ波が、クロス開口11から導波管3の外に放射される。
ここで、図4に示す矢印30に沿って伝搬するマイクロ波を入射波とし、矢印31に沿って伝搬するマイクロ波を反射波とすると、入射波は図6に示す伝送方向A1と同じ向きに伝搬する。このため、上述のように、反時計回りに回転する円偏波のマイクロ波が、クロス開口11から導波管3の外に放射される。
一方、反射波は図6に示す伝送方向A1と逆向きに伝搬する。このため、時計回りに回転する円偏波のマイクロ波が、クロス開口11から導波管3の外に放射される。
導波管3の外に放射された円偏波のマイクロ波は、クロス開口11に対向するマイクロストリップ線路13に結合する。マイクロストリップ線路13は、矢印30に沿って伝搬する入射波によりクロス開口11から放射されるマイクロ波の大部分を、第1出力部131に出力する。
一方、マイクロストリップ線路13は、矢印31に沿って伝搬する反射波によりクロス開口11から放射されるマイクロ波の大部分を、第2出力部132に出力する。
すなわち、マイクロ波検出部5は、クロス開口11に対向する結合線路であるマイクロストリップ線路13を共有し、入射波を検出する入射波検出部と、反射波を検出する反射波検出部として機能する。
この構成により、マイクロ波検出部5は、入射波と反射波とをより精度よく分離して検出することができる。このことについて、図7を参照して詳しく説明する。
図7は、マイクロストリップ線路13を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。マイクロストリップ線路13とクロス開口11との間には隙間がある。本来、マイクロ波がマイクロストリップ線路13に到達するのに要する時間は、マイクロ波がこの隙間を伝搬する時間だけ遅れる。しかし、便宜上、ここではこの時間遅れは無いものとする。
ここで、平面視においてクロス開口11とマイクロストリップ線路13とが交差する領域を結合領域という。第1結合点P1は、第1長孔11eとマイクロストリップ線路13とが交差する結合領域のほぼ中心である。第2結合点P2は、第2長孔11fとマイクロストリップ線路13とが交差する結合領域のほぼ中心である。
図7において、マイクロストリップ線路13を伝搬するマイクロ波の量(磁界の鎖交によって流れる電流)を実線矢印の線の太さで表現する。すなわち、マイクロストリップ線路13を伝搬するマイクロ波の量が多い場合には線が太く、マイクロストリップ線路13を伝搬するマイクロ波の量が少ない場合には線が細い。
図7の(a)に示す時刻t=t0において、破線矢印B1で示す磁界がクロス開口11の第1長孔11eを励起し、第1結合点P1には太い実線矢印M1で示すマイクロ波が生じる。このマイクロ波は、第2結合点P2に向かってマイクロストリップ線路13を伝搬する。
図7の(b)に示す時刻t=t0+t1において、破線矢印B2で示す磁界がクロス開口11の第2長孔11fを励起し、第2結合点P2には太い実線矢印M2で示すマイクロ波が生じる。
第1結合点P1と第2結合点P2との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設定すると、図7の(a)に示す時刻に第1結合点P1に生じたマイクロ波は、図7の(b)に示す時刻に第2結合点P2に伝搬する。すなわち、図7の(b)に示す時刻に、第2結合点P2には、実線矢印M1で示すマイクロ波と実線矢印M2で示すマイクロ波とが生じる。
このため、二つのマイクロ波は加算されてマイクロストリップ線路13を第2出力部132に向けて伝搬し、所定時間経過後、第2出力部132に出力される。本実施の形態では、上記実効伝搬時間を時間t1に設定するため、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/4に設定される。この構成により、マイクロストリップ線路13の設計を容易に行うことができる。
図7の(c)に示す時刻t=t0+T/2において、破線矢印B3で示す磁界がクロス開口11の第1長孔11eを励起し、第1結合点P1には細い実線矢印M3で示すマイクロ波が生じる。このマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬し、所定時間経過後、第1出力部131に出力される。
実線矢印M3の太さを実線矢印M1の太さに比べて細くした理由は、以下の通りである。クロス開口11から、上述したように反時計回り(マイクロ波の回転方向32)に回転する円偏波のマイクロ波が放射される。
図7の(a)に示す時刻に、第1結合点P1に生じる実線矢印M1で示すマイクロ波は、クロス開口11から放射されるマイクロ波の回転方向とほぼ同じ方向に伝搬する。このため、実線矢印M1で示すマイクロ波のエネルギは縮減されない。
一方、図7の(c)に示す時刻に、第1結合点P1に生じる実線矢印M3で示すマイクロ波は、クロス開口11から放射されるマイクロ波の回転方向とはほぼ逆方向に伝搬する。このため、結合したマイクロ波のエネルギは縮減される。従って、実線矢印M3で示すマイクロ波の量は、実線矢印M1で示すマイクロ波の量よりも少ない。
図7の(d)に示す時刻t=t0+T/2+t1において、破線矢印B4で示す磁界がクロス開口11の第2長孔11fを励起し、第2結合点P2には細い実線矢印M4で示すマイクロ波が生じる。このマイクロ波は第1結合点P1に向かって伝搬する。実線矢印M4の太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
時刻t=t0+Tにおいて、図7の(a)に示す時刻t=t0と同様に、破線矢印B1で示す磁界がクロス開口11の第1長孔11eを励起する。この場合、図7の(a)に示す時刻の場合には説明しなかった細い実線矢印M4で示すマイクロ波がマイクロストリップ線路13上に存在する。
細い実線矢印M4で示すマイクロ波は、時刻t=t0+T(すなわちt=t0)において、第1結合点P1に伝搬する。細い実線矢印M4で示すマイクロ波は、太い実線矢印M1で示すマイクロ波とは逆向きに伝搬する。このため、実線矢印M4で示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。
厳密には、時刻t=t0において第1結合点P1から伝搬するマイクロ波の量は、太い実線矢印M1で示すマイクロ波の量から細い実線矢印M4で示すマイクロ波の量を差分した量(M1-M4)となる。従って、第2出力部132に出力されるマイクロ波の量は、第2結合点P2から伝搬するマイクロ波の量に太い実線矢印M2で示すマイクロ波の量を加算した量(M1+M2-M4)となる。
このことを考慮しても、第2出力部132に出力されるマイクロ波の量(M1+M2-M4)は、第1出力部131に出力されるマイクロ波の量(M3)よりはるかに多い。従って、マイクロストリップ線路13は、矢印31に沿って伝搬する反射波によりクロス開口11から反時計回りに放射されるマイクロ波の大部分を第2出力部132に出力する。一方、マイクロストリップ線路13は、矢印30に沿って伝搬する入射波によりクロス開口11から時計回りに放射されるマイクロ波の大部分を第1出力部131に出力する。
導波管3を伝搬するマイクロ波の量に対するクロス開口11から放射されるマイクロ波の量は、導波管3およびクロス開口11の形状および寸法によって決まる。例えば、上述の形状および寸法に設定した場合、導波管3を伝播するマイクロ波の量に対するクロス開口11から放射されるマイクロ波の量は、約1/100000(約-50dB)である。
次に、本実施の形態において、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離を、実効長λreの1/2に設定した理由について説明する。
図8は、マイクロストリップ線路13を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。図8の(a)~(d)は、図7の(a)~(d)からそれぞれt1/2の時間が経過した状態を示す図である。
上記では説明を省略したが、磁界分布3dは、時間経過とともに導波管3内をマイクロ波の伝送方向A1に移動する。このため、図8の(a)~(d)に示すように、破線矢印B12、B23、B34、B41で示す磁界が、第1長孔11eおよび第2長孔11fを励起する。これにより、導波管3の外に放射された円偏波のマイクロ波は、マイクロストリップ線路13に結合する。
ここで、平面視において垂線L2および平行線L4とマイクロストリップ線路13とが交差する領域を結合領域という。第3結合点P3は、垂線L2とマイクロストリップ線路13とが交差する結合領域のほぼ中心である。第4結合点P4は、平行線L4と第1伝送線路13aとが交差する結合領域のほぼ中心である。第5結合点P5は、平行線L4と第2伝送線路13bとが交差する結合領域のほぼ中心である。
図8の(a)に示す時刻t=t0+t1/2において、破線矢印B12で示す磁界がクロス開口11を励起し、第3結合点P3には太い実線矢印M11で示すマイクロ波が生じる。このマイクロ波は、第5結合点P5に向かってマイクロストリップ線路13を伝搬する。
図8の(b)に示す時刻t=t0+t1+t1/2において、破線矢印B23で示す磁界がクロス開口11を励起する。第5結合点P5には太い実線矢印M12aで示すマイクロ波が生じ、第4結合点P4には細い実線矢印M12bで示すマイクロ波が生じる。実線矢印M12bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
第3結合点P3と第5結合点P5との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設定すると、図8の(a)に示す時刻に第3結合点P3に生じたマイクロ波は、図8の(b)に示す時刻に第5結合点P5に伝搬する。すなわち、図8の(b)に示す時刻に、第5結合点P5には、太い実線矢印M11で示すマイクロ波と太い実線矢印M12aで示すマイクロ波とが生じる。
このため、二つのマイクロ波が加算されてマイクロストリップ線路13を第2出力部132に向けて伝搬し、所定時間経過後、第2出力部132に出力される。上記実効伝搬時間を時間t1に設定するため、本実施の形態では、平行線L4よりも管軸L1から離れた第1伝送線路13aの距離が、実効長λreの1/4に設定される。第4結合点P4に生じた細い実線矢印M12bで示すマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬し、所定時間経過後、第1出力部131に出力される。
図8の(c)に示す時刻t=t0+T/2+t1/2において、破線矢印B34で示す磁界がクロス開口11を励起し、第3結合点P3には細い実線矢印M13bで示すマイクロ波が生じる。このマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬する。実線矢印M13bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
図8の(d)に示す時刻t=t0+T/2+t1+t1/2において、破線矢印B41で示す磁界がクロス開口11を励起する。第5結合点P5には細い実線矢印M14bで示すマイクロ波が生じ、第4結合点P4には太い実線矢印M14aで示すマイクロ波が生じる。細い実線矢印M14bで示すマイクロ波は、第3結合点P3に向かってマイクロストリップ線路13を伝搬する。実線矢印M14bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
太い実線矢印M14aで示すマイクロ波は、第3結合点P3に向かってマイクロストリップ線路13を伝搬する。第3結合点P3と第4結合点P4との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設定すると、図8の(c)に示す時刻に第3結合点P3に生じたマイクロ波は、図8の(d)に示す時刻に第4結合点P4に伝搬する。
すなわち、図8の(d)に示す時刻に、第4結合点P4には、細い実線矢印M13bで示すマイクロ波と太い実線矢印M14aで示すマイクロ波とが生じる。上記実効伝搬時間を時間t1に設定するため、本実施の形態では、平行線L4よりも管軸L1から離れた第2伝送線路13bの距離が、実効長λreの1/4に設定される。
すなわち、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。細い実線矢印M13bで示すマイクロ波は、太い実線矢印M14aで示すマイクロ波とは逆向きに伝搬する。このため、細い実線矢印M13bで示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。
時刻t=t0+T+t1/2において、図8の(a)に示す時刻t=t0+t1/2と同様に、破線矢印B12で示す磁界がクロス開口11を励起する。この場合、図8の(a)に示す時刻の場合には説明しなかった細い実線矢印M14bで示すマイクロ波がマイクロストリップ線路13上に存在する。
細い実線矢印M14bで示すマイクロ波は、時刻t=t0+T+t1/2において、第3結合点P3に伝搬する。細い実線矢印M14bで示すマイクロ波は、太い実線矢印M11および太い実線矢印M14aで示すマイクロ波とは逆向きに伝搬する。このため、細い実線矢印M14bで示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。
厳密には、時刻t=t0+t1/2において第3結合点P3から伝搬するマイクロ波の量は、太い実線矢印M11、M14aで示すマイクロ波の量から細い実線矢印M14bで示すマイクロ波の量を差分した量(M11+M14a-M14b)となる。従って、第2出力部132に出力されるマイクロ波の量は、第3結合点P3から伝搬するマイクロ波の量に太い実線矢印M12aで示すマイクロ波の量を加算した量(M11+M12a+M14a-M14b)となる。
このことを考慮しても、第2出力部132に出力されるマイクロ波の量(M11+M12a+M14a-M14b)は、第1出力部131に出力されるマイクロ波の量(M12b)よりはるかに多い。従って、マイクロストリップ線路13は、矢印31の方向に伝搬する反射波によりクロス開口11から反時計回りに放射されるマイクロ波の大部分を第2出力部132に出力する。一方、マイクロストリップ線路13は、矢印30の方向に伝搬する入射波によりクロス開口11から時計回りに放射されるマイクロ波の大部分を第1出力部131に出力する。
マイクロ波検出部5は、平面視において導波管3の管軸L1と交差しない位置に配置された、円偏波のマイクロ波を放射するクロス開口11を有する。この構成により、クロス開口11から放射される円偏波のマイクロ波の回転方向が入射波と反射波とで互いに逆になる。この円偏波のマイクロ波の回転方向の違いを利用して、入射波と反射波とを分離して検出することができる。
マイクロ波検出部5では、第1伝送線路13aが第1直線部13aaを備えるとともに、第2伝送線路13bが第2直線部13baを備える。この構成により、従来よりも、マイクロストリップ線路13が屈曲する箇所を少なくすることができる。マイクロストリップ線路13を直角に屈曲させる必要性を無くすことができる。マイクロストリップ線路13が屈曲する箇所をクロス開口11の鉛直方向の領域から離すことができる。その結果、入射波と反射波とをより精度よく分離して検出することができる。
マイクロ波検出部5では、第1伝送線路13aと第2伝送線路13bとが、平面視において矩形領域E1の外で、かつ、管軸L1から離れた位置で互いに接続される。この構成により、マイクロストリップ線路13が屈曲する箇所をクロス開口11の鉛直方向の領域からより一層離すことができる。第1直線部13aaおよび第2直線部13baの長さをより長くすることができ、マイクロストリップ線路13内の電流の流れが阻害されるのを抑制することができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
マイクロ波検出部5では、第1直線部13aaが、平面視において開口中央部11cよりも開口先端部11eaに近い位置で第1長孔11eと交差する。第2直線部13baが、平面視において開口中央部11cよりも開口先端部11faに近い位置で第2長孔11fに交差する。通常、開口中央部11cの周辺に比べて開口先端部11ea、11faの周辺は、より強い磁界が発生する。上記構成により、より強い磁界がマイクロストリップ線路13に結合する。このため、マイクロストリップ線路13を流れる電流がより多くなる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
マイクロ波検出部5では、第1直線部13aaが、平面視において第1長孔11eに直交する。この構成により、第1結合点P1に生じる実線矢印M1で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と同じにする。これにより、実線矢印M1で示すマイクロ波の量をより大きくすることができる。
第1結合点P1に生じる実線矢印M3で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と逆にする。これにより、実線矢印M3で示すマイクロ波の量をより小さくすることができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
マイクロ波検出部5では、第2直線部13baが、平面視において第2長孔11fに直交する。この構成により、第2結合点P2に生じる実線矢印M2で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と同じにする。これにより、実線矢印M2で示すマイクロ波の量をより大きくすることができる。
第2結合点P2に生じる実線矢印M4で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と逆にする。これにより、実線矢印M4で示すマイクロ波の量をより小さくすることができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
マイクロ波検出部5では、マイクロストリップ線路13が、第1直線部13aaと第2直線部13baと第3直線部13abと第4直線部13bbと有する。互いに隣接する第1直線部13aaと第3直線部13abとは、鈍角を成すように接続される。互いに隣接する第2直線部13baと第4直線部13bbは、鈍角を成すように接続される。
この構成により、マイクロストリップ線路13において直角に屈曲する箇所を少なくすることができる。これにより、結合線路内の電流の流れが阻害されるのを抑制することができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
マイクロ波検出部5では、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/4に設定される。この構成により、入射波と反射波とをより一層精度よく分離して検出することができる。上記合計距離は、実効長λreのほぼ1/4に設定されていれば、必ずしも実効長λreの1/4に設定される必要はない。
マイクロ波検出部5では、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。この構成により、入射波と反射波とをより一層精度よく分離して検出することができる。上記合計距離は、実効長λreのほぼ1/2に設定されていれば、必ずしも実効長λreの1/2に設定される必要はない。
図5に示すように、本実施の形態では、第1伝送線路13aの一端と第2伝送線路13bの一端とが、直角を成すように接続される。しかし、本開示はこれに限定されない。第1伝送線路13aの一端が、平面視でクロス開口11の領域から外れた位置で第2伝送線路13bの一端と接続されていればよい。この領域では、磁界による影響が大きい。
図9A~図9Dはそれぞれ、マイクロストリップ線路13の第1変形例~第6変形例を示す平面図である。図9Aに示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が、開口中央部11cから離れるように、第1伝送線路13aと第2伝送線路13bとが屈曲していてもよい。
図9Bに示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が開口中央部11cに近づくように、第1伝送線路13aと第2伝送線路13bとが屈曲していてもよい。図9Cに示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が開口中央部11cに近づくように、第1伝送線路13aと第2伝送線路13bとが湾曲していてもよい。
本実施の形態では、第1直線部13aa、第2直線部13baがそれぞれ第1交差線部、第2交差線部に対応する。しかし、本開示はこれに限定されない。図9Dに示すように、第1交差線部、第2交差線部がそれぞれ、円弧状部13ac、円弧状部13bcであってもよい。
本実施の形態では、第3直線部13abおよび第4直線部13bbが垂線L2に平行である。しかし、本開示はこれに限定されない。図9Eに示すように、第3直線部13abおよび第4直線部13bbが平行線L4に平行であってもよい。
本実施の形態では、第1伝送線路13aおよび第2伝送線路13bが複数の直線部を有する。しかし、本開示はこれに限定されない。図9Fに示すように、第1伝送線路13aおよび第2伝送線路13bが、いずれも一本の直線部で構成されてもよい。
本実施の形態では、クロス開口11は、垂線L2に対して線対称に形成される。垂線L2は、管軸L1に直交し、かつ、開口中央部11cを通る。しかし、本開示はこれに限定されない。クロス開口11は、垂線L2に対して線対称に形成されなくてもよい。例えば、第1長孔11eと第2長孔11fとが、それぞれの長手方向の中央部からずれた位置で交差してもよい。第1長孔11eの長さと第2長孔11fの長さとが互いに異なってもよい。
これらの場合、第1長孔11eと第2長孔11fとが交差する開口交差部は、開口中央部11cからずれる。クロス開口11は、平面視において垂線L2に対して僅かに傾斜する直線に対して線対称に形成されてもよい。
図10は、本実施の形態における、マイクロ波検出部5と開口部33との位置関係を模式的に示す図である。図10において、開口部33は、図4に示すクロス開口11に相当する。開口部33の最大開口長D2は、図4に示すクロス開口11の長さ11wに相当する。
図10に示すように、開口部33から取り出されるマイクロ波は、開口部33からほぼ球状に放射する。開口部33の中心から最大開口長D2の半分の距離までの範囲HRでは、開口部33から放射されるマイクロ波の強度が高い。
従って、マイクロ波検出部5は、マイクロ波検出部5と開口部33との距離D3が最大開口長D2の1/2以下となるように配置される。この構成により、マイクロ波検出部5は、効率よくマイクロ波を検出することができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態では、距離D3が0より大きくなる、すなわち、マイクロ波検出部5を導波管3に接触させないように、マイクロ波検出部5が配置される。これにより、電界集中によるスパークを起こすことなく、マイクロ波検出部5は、安定的にマイクロ波を検出することができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態では、マイクロ波検出部5の検波回路などに用いる電子部品、コネクタ18a、19a(図2、図3参照)が、開口部33と対向する面に配置される。この場合、距離D3が短いと、導波管3の壁面と検波回路の電子部品またはコネクタとが接触して、マイクロ波検出部5を配置させるのが困難となる。このため、距離D3は1mm以上であるのが望ましい。
図11は、電磁界シミュレータを用いて得られた、最大開口長D2が24mmである場合における距離D3と検出精度との関係を示す。
検出精度は、一般的なマイクロ波検出部である方向性結合器において、入射波と反射波との信号の分離度を表す方向性を意味する。検出精度は、検出信号に方向性の値分の誤差成分が含まれることを表す。そのため、検出精度は値が小さいほど誤差成分が小さく、方向性結合器がより高性能であることを意味する。
図11に示すように、距離D3がおよそ6mm、すなわち、最大開口長D2の1/4である場合に、最も検出精度が高くなる。入射波と反射波とを精度よく分離するためには、検出信号が最小になる際に、誤差成分が検出信号より小さい値であれば良い。
検出信号が最小値をとるのは、反射が最も小さくなる際の反射波である。一般的なマイクロ波加熱装置において、反射波の最小値は-13dB(入力値の5%)程度である。このため、安全率を加味し、検出精度としては、-13dBの1/2である-16dB(入力値の2.5%)の誤差成分までであれば、問題なく検出が可能である。
そのため、検出精度は-16dB以下であることが望ましい。図11に示すように、距離D3がおよそ3mm~12mmの範囲、すなわち、最大開口長D2の1/8~1/2の範囲であればよい。このようにして、入射波と反射波とを精度よく分離して検出することができる。
本開示に係るマイクロ波検出部は、民生用および業務用のマイクロ波加熱装置(例えば、電子レンジ)に適用可能である。
1 加熱室
1a 底面
2 マイクロ波発生部
3 導波管
3a 幅広面
3d 磁界分布
4 マイクロ波放射部
5 マイクロ波検出部
5a、5b 検出信号
6 制御部
7 駆動電源
8 信号
9 モータ
10 マイクロ波加熱装置
11 クロス開口
11c 開口中央部
11d 幅
11e 第1長孔
11ea、11fa 開口先端部
11f 第2長孔
11w 長さ
12 プリント基板
12a 基板表面
12b 基板裏面
13 マイクロストリップ線路
13a 第1伝送線路
13aa 第1直線部
13ab 第3直線部
13ac 円弧状部
13b 第2伝送線路
13ba 第2直線部
13bb 第4直線部
13bc 円弧状部
14 支持部
15 第1検波回路
16 第2検波回路
18 第1検波出力部
18a、19a コネクタ
19 第2検波出力部
20a 穴
30、31 矢印
32 回転方向
33 開口部
131 第1出力部
132 第2出力部
141、142 溝
1a 底面
2 マイクロ波発生部
3 導波管
3a 幅広面
3d 磁界分布
4 マイクロ波放射部
5 マイクロ波検出部
5a、5b 検出信号
6 制御部
7 駆動電源
8 信号
9 モータ
10 マイクロ波加熱装置
11 クロス開口
11c 開口中央部
11d 幅
11e 第1長孔
11ea、11fa 開口先端部
11f 第2長孔
11w 長さ
12 プリント基板
12a 基板表面
12b 基板裏面
13 マイクロストリップ線路
13a 第1伝送線路
13aa 第1直線部
13ab 第3直線部
13ac 円弧状部
13b 第2伝送線路
13ba 第2直線部
13bb 第4直線部
13bc 円弧状部
14 支持部
15 第1検波回路
16 第2検波回路
18 第1検波出力部
18a、19a コネクタ
19 第2検波出力部
20a 穴
30、31 矢印
32 回転方向
33 開口部
131 第1出力部
132 第2出力部
141、142 溝
Claims (5)
- 被加熱物を収容するように構成された加熱室と、
マイクロ波を発生させるように構成されたマイクロ波発生部と、
前記マイクロ波発生部により発生されたマイクロ波を前記加熱室に伝送する導波管と、
前記導波管の壁面に設けられ、前記導波管からマイクロ波の一部を取り出すように構成された開口部と、
前記開口部から取り出され、前記加熱室から前記マイクロ波発生部に向けて伝搬するマイクロ波である反射波の一部を検出するように構成された反射波検出部と、を備え、
前記反射波検出部は、前記開口部から、前記開口部の最大開口長の1/2の距離内に配置される、マイクロ波加熱装置。 - 前記反射波検出部が、前記開口部に接触しないように配置された、請求項1に記載のマイクロ波加熱装置。
- 前記マイクロ波発生部から前記加熱室に伝搬するマイクロ波である入射波の一部を検出する入射波検出部をさらに備えた、請求項1に記載のマイクロ波加熱装置。
- 前記入射波検出部と前記反射波検出部とが、前記開口部に対向する結合線路を共有し、
前記入射波検出部が、前記結合線路の一端から前記入射波を取り出すように構成され、
前記反射波検出部が、前記結合線路の他端から前記反射波を取り出すように構成された、請求項3に記載のマイクロ波加熱装置。 - 前記開口部が、平面視において前記導波管の管軸と交差しない位置に配置された、互いに交差する第1長孔と第2長孔とを有し、
前記結合線路が、第1伝送線路と第2伝送線路とを備え、
前記第1伝送線路が第1交差線部を有し、前記第1交差線部が、平面視において前記管軸の一端から前記第1長孔と前記第2長孔とが交差する開口交差部を通り、前記管軸に直交する垂線に近づくにつれて前記管軸から離れるように延在し、前記開口交差部よりも前記管軸から離れた位置で前記第1長孔と交差し、
前記第2伝送線路が第2交差線部を有し、前記第2交差線部が、平面視において前記管軸の他端から前記垂線に近づくにつれて前記管軸から離れるように延在し、前記開口交差部よりも前記管軸から離れた位置で前記第2長孔と交差し、
前記第1伝送線路の一端が、平面視で前記開口部の領域から外れた位置で前記第2伝送線路の一端と接続された、請求項1に記載のマイクロ波加熱装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20758802.1A EP3930095B1 (en) | 2019-02-22 | 2020-02-13 | Microwave heating device |
CN202080015546.8A CN113474942B (zh) | 2019-02-22 | 2020-02-13 | 微波加热装置 |
JP2021501902A JP7474930B2 (ja) | 2019-02-22 | 2020-02-13 | マイクロ波加熱装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019029955 | 2019-02-22 | ||
JP2019-029955 | 2019-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020170923A1 true WO2020170923A1 (ja) | 2020-08-27 |
Family
ID=72143947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005511 WO2020170923A1 (ja) | 2019-02-22 | 2020-02-13 | マイクロ波加熱装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3930095B1 (ja) |
JP (1) | JP7474930B2 (ja) |
CN (1) | CN113474942B (ja) |
WO (1) | WO2020170923A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08171985A (ja) * | 1994-12-19 | 1996-07-02 | Hitachi Ltd | マイクロ波加熱装置 |
US20040046620A1 (en) * | 2002-09-06 | 2004-03-11 | Wen-Liang Huang | Directional coupler for microwave cavities |
WO2014119333A1 (ja) * | 2013-01-31 | 2014-08-07 | パナソニック株式会社 | 方向性結合器及びそれを備えるマイクロ波加熱装置 |
WO2017164291A1 (ja) * | 2016-03-25 | 2017-09-28 | パナソニックIpマネジメント株式会社 | マイクロ波加熱装置 |
WO2019203170A1 (ja) * | 2018-04-20 | 2019-10-24 | パナソニックIpマネジメント株式会社 | 方向性結合器およびそれを備えたマイクロ波加熱装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2087638C (en) * | 1992-01-23 | 1997-02-25 | Masatugu Fukui | Microwave oven having a function for matching impedance |
JP2000215980A (ja) * | 1999-01-20 | 2000-08-04 | Matsushita Electric Ind Co Ltd | マイクロ波連続炉 |
JP4024163B2 (ja) * | 2003-02-18 | 2007-12-19 | 三洋電機株式会社 | 高周波加熱調理器 |
EP2988574B1 (en) * | 2013-04-19 | 2018-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Microwave heating device |
CN108781486B (zh) * | 2016-03-25 | 2021-08-10 | 松下知识产权经营株式会社 | 微波加热装置 |
-
2020
- 2020-02-13 EP EP20758802.1A patent/EP3930095B1/en active Active
- 2020-02-13 WO PCT/JP2020/005511 patent/WO2020170923A1/ja unknown
- 2020-02-13 CN CN202080015546.8A patent/CN113474942B/zh active Active
- 2020-02-13 JP JP2021501902A patent/JP7474930B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08171985A (ja) * | 1994-12-19 | 1996-07-02 | Hitachi Ltd | マイクロ波加熱装置 |
US20040046620A1 (en) * | 2002-09-06 | 2004-03-11 | Wen-Liang Huang | Directional coupler for microwave cavities |
WO2014119333A1 (ja) * | 2013-01-31 | 2014-08-07 | パナソニック株式会社 | 方向性結合器及びそれを備えるマイクロ波加熱装置 |
JP6176540B2 (ja) | 2013-01-31 | 2017-08-09 | パナソニックIpマネジメント株式会社 | 方向性結合器及びそれを備えるマイクロ波加熱装置 |
WO2017164291A1 (ja) * | 2016-03-25 | 2017-09-28 | パナソニックIpマネジメント株式会社 | マイクロ波加熱装置 |
WO2019203170A1 (ja) * | 2018-04-20 | 2019-10-24 | パナソニックIpマネジメント株式会社 | 方向性結合器およびそれを備えたマイクロ波加熱装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3930095A1 (en) | 2021-12-29 |
CN113474942B (zh) | 2022-07-15 |
EP3930095B1 (en) | 2023-09-06 |
CN113474942A (zh) | 2021-10-01 |
JPWO2020170923A1 (ja) | 2021-12-16 |
JP7474930B2 (ja) | 2024-04-26 |
EP3930095A4 (en) | 2022-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104852139B (zh) | 利用曲折型波导产生双极化信号的天线阵列系统 | |
EP2953204B1 (en) | Directional coupler and microwave heater provided with the same | |
US7576703B1 (en) | Parallel waveguide slot coupler with reactive buffering region | |
JP6392563B2 (ja) | 同軸の導波管を備えたアンテナフィードにおける抑制モード | |
JP7454770B2 (ja) | 方向性結合器およびそれを備えたマイクロ波加熱装置 | |
JP2015043562A5 (ja) | ||
US20200363498A1 (en) | Surface Mount Assembled Waveguide Transition | |
WO2020170923A1 (ja) | マイクロ波加熱装置 | |
JP7386398B2 (ja) | マイクロ波加熱装置 | |
JP7316496B2 (ja) | マイクロ波加熱装置 | |
JP2006101286A (ja) | マイクロストリップ線路結合器 | |
KR102146465B1 (ko) | 비대칭 구조로 설계되는 조정부를 구비한 이중편파 도파관 안테나 | |
JP2002033612A (ja) | ビーム走査アンテナ | |
US10403952B2 (en) | Surface wave launcher comprising a waveguide with a planar conducting layer having one or more slots disposed therein | |
JP2684902B2 (ja) | アンテナ装置および給電部 | |
JPS59226505A (ja) | 共振導波管開口マニホ−ルド | |
JPH0716129B2 (ja) | 偏波共用アンテナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20758802 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021501902 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020758802 Country of ref document: EP Effective date: 20210922 |