JP7316496B2 - マイクロ波加熱装置 - Google Patents

マイクロ波加熱装置 Download PDF

Info

Publication number
JP7316496B2
JP7316496B2 JP2020514363A JP2020514363A JP7316496B2 JP 7316496 B2 JP7316496 B2 JP 7316496B2 JP 2020514363 A JP2020514363 A JP 2020514363A JP 2020514363 A JP2020514363 A JP 2020514363A JP 7316496 B2 JP7316496 B2 JP 7316496B2
Authority
JP
Japan
Prior art keywords
microwave
standing wave
waveguide
wave
antinode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020514363A
Other languages
English (en)
Other versions
JPWO2019203172A1 (ja
Inventor
浩二 吉野
昌之 久保
秀樹 中村
匡史 貞平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2019203172A1 publication Critical patent/JPWO2019203172A1/ja
Application granted granted Critical
Publication of JP7316496B2 publication Critical patent/JP7316496B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

本開示は、電子レンジなどのマイクロ波加熱装置に関する。
従来、この種のマイクロ波加熱装置として、例えば、特許文献1に開示された装置が知られている。従来のマイクロ波加熱装置は、被加熱物を収容する加熱室と、マイクロ波を発生させるマイクロ波発生部と、マイクロ波を加熱室に伝搬させる導波管とを備える。導波管には、導波管内に生じた管内定在波の位置を安定させるための定在波安定部が設けられる。従来のマイクロ波加熱装置によれば、定在波安定部により管内定在波の位置の乱れを抑制することで、加熱室内に所望の位相のマイクロ波を継続的に放射することができる。その結果、加熱室内の被加熱物を均一に加熱することができる。
特許文献2、特許文献3には、加熱室からマイクロ波発生部に戻る反射波によりマイクロ波発生部が破壊されるのを防ぐため、反射波を検出する方向性結合器を導波管に設けたマイクロ波加熱装置が開示される。
日本国特許第5816820号公報 日本国特許第6176540号公報 日本国特許第3331279号公報
しかしながら、従来のマイクロ波加熱装置においては、加熱が進むにつれて変化する被加熱物の状態をより正確に検出するという観点において、未だ改善の余地がある。特に、反射波の検出精度と導波管内の管内定在波との関係に着目した研究例は無く、方向性結合器を導波管のどこに配置するのが良いかがわからなかった。
本開示は、反射波の検出精度を向上させるとともに、被加熱物の状態をより正確に検出することができるマイクロ波加熱装置を提供することを目的とする。
本開示の一態様のマイクロ波加熱装置は、被加熱物を収容する加熱室と、マイクロ波を発生させるマイクロ波発生部と、導波管と、反射波検出部とを備える。導波管は、マイクロ波発生部により発生されたマイクロ波を加熱室に伝送する。反射波検出部は、導波管内に生じた管内定在波の腹の近傍に配置され、加熱室からマイクロ波発生部に戻るマイクロ波である反射波の一部を検出する。
本態様によれば、反射波の検出精度を向上させることができ、被加熱物の状態をより正確に検出することができる。
図1は、本開示の実施の形態に係るマイクロ波加熱装置の概略図である。 図2は、実施の形態に係るマイクロ波加熱装置の第1変形例を示す概略図である。 図3は、実施の形態に係るマイクロ波加熱装置の第2変形例を示す概略図である。 図4は、実施の形態に係るマイクロ波加熱装置の第3変形例を示す概略図である。 図5は、実施の形態に係る方向性結合器の斜視図である。 図6は、実施の形態に係る方向性結合器の、プリント基板を取り外した状態の斜視図である。 図7は、実施の形態に係る導波管の平面図である。 図8は、実施の形態に係る方向性結合器に設けられたプリント基板の回路構成図である。 図9は、クロス開口から円偏波のマイクロ波が放射される原理を説明するための図である。 図10は、マイクロストリップ線路を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。 図11は、マイクロストリップ線路を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。 図12は、マイクロストリップ線路の第1変形例を示す平面図である。 図13は、マイクロストリップ線路の第2変形例を示す平面図である。 図14は、マイクロストリップ線路の第3変形例を示す平面図である。 図15は、マイクロストリップ線路の第4変形例を示す平面図である。 図16は、マイクロストリップ線路の第5変形例を示す平面図である。 図17は、マイクロストリップ線路の第6変形例を示す平面図である。 図18は、被加熱物の温度上昇に伴って変化する入射波と反射波と被加熱物のマイクロ波の吸収量との関係を示すグラフである。 図19は、反射波の検出精度を評価するための直交導波管を示す平面図である。 図20は、評価用の直交導波管で反射波の検出精度を測定した特性図である。 図21は、反射波検出部と導波管内の管内定在波との位置関係を示す概略図である。
(本開示の基礎となった知見)
本発明者らは、被加熱物の状態をより正確に検出するために鋭意検討した結果、以下の知見を得た。
マイクロ波発生部により発生されたマイクロ波は、入射波として導波管を通して加熱室に伝搬する。加熱室内に伝搬したマイクロ波の一部は被加熱物に吸収される一方、他部は反射波として導波管を通して加熱室からマイクロ波発生部に戻る。
マイクロ波は、氷には吸収されにくい一方、水には吸収され易い。具体的には、水は、氷よりも約8000倍(誘電損失係数に基づく)多くのマイクロ波を吸収する。マイクロ波は、水の温度が上昇するにつれて水に吸収されにくくなる。このため、例えば、被加熱物が冷凍食品である場合、反射波と被加熱物によるマイクロ波の吸収量とには、図18に示すような関係がある。
図18は、被加熱物の温度上昇に伴って変化する入射波と反射波と被加熱物のマイクロ波の吸収量との関係を示すグラフである。図18において、横軸は被加熱物の温度を示し、縦軸は入射波、反射波の信号強度を示す。点線、実線、一点鎖線で示すグラフはそれぞれ、入射波、反射波、被加熱物によるマイクロ波の吸収量を示す。被加熱物によるマイクロ波の吸収量とは、入射波と反射波との差である。
図18に示すように、加熱の初期段階では、被加熱物のマイクロ波の吸収量は小さく、反射波は多い。加熱が進んで氷が溶けるにつれて、被加熱物によるマイクロ波の吸収量が急激に増加し、反射波が急激に減少する。氷が完全に溶けた時点で、被加熱物によるマイクロ波の吸収量は最大となり、反射波は最小となる。
その後、水の温度が上昇するにつれて、被加熱物によるマイクロ波の吸収量は徐々に減少し、反射波は徐々に増加する。従って、例えば、反射波が最小となる状態を検出することで、冷凍食品の解凍の終了を検出することができる。
本発明者らは、被加熱物の重量、形状などに関わらず、上記関係が成り立つことを知見し、加熱時の反射波の量の変化に基づいて、被加熱物の状態をより正確に検出できることを見出した。
本開示の第1の態様のマイクロ波加熱装置は、被加熱物を収容する加熱室と、マイクロ波を発生させるマイクロ波発生部と、導波管と、反射波検出部とを備える。導波管は、マイクロ波発生部により発生されたマイクロ波を加熱室に伝送する。反射波検出部は、導波管内に生じた管内定在波の腹の近傍に配置され、加熱室からマイクロ波発生部に戻るマイクロ波である反射波の一部を検出する。
本開示の第2の態様のマイクロ波加熱装置では、第1の態様に加えて、反射波検出部が、管内定在波の二つの節の間に配置されることで、管内定在波の腹の近傍に配置される。
本開示の第3の態様のマイクロ波加熱装置では、第2の態様に加えて、反射波検出部が、管内定在波の二つの節に重ならないように配置されることで、管内定在波の腹の近傍に配置される。
本開示の第4の態様のマイクロ波加熱装置では、第3の態様に加えて、反射波検出部が、管内定在波の二つの節の中央の位置から前後に管内定在波の管内波長の1/8以下だけ離れて配置されることで、管内定在波の腹の近傍に配置される。
本開示の第5の態様のマイクロ波加熱装置では、第1の態様に加えて、反射波検出部が、導波管の終端から管内定在波の管内波長の1/4の奇数倍の距離だけ離れて配置されることで、管内定在波の腹の近傍に配置される。
本開示の第6の態様のマイクロ波加熱装置は、第1の態様に加えて、導波管内に生じた管内定在波の位置を安定させる定在波安定部をさらに有する。反射波検出部は、定在波安定部から管内定在波の管内波長の1/4の奇数倍の距離だけ離れて配置されることで、管内定在波の腹の近傍に配置される。
本開示の第7の態様のマイクロ波加熱装置では、第6の態様に加えて、定在波安定部が、導波管内に突出する突起部で構成される。
本開示の第8の態様のマイクロ波加熱装置では、第6の態様に加えて、導波管が、L字状に屈曲した屈曲部を有し、定在波安定部が、屈曲部で構成される。
本開示の第9の態様のマイクロ波加熱装置では、第1の態様に加えて、反射波検出部が、マイクロ波発生部と導波管との結合位置から管内定在波の管内波長の1/2の整数倍の距離だけ離れて配置されることで、管内定在波の腹の近傍に配置される。
本開示の第10の態様のマイクロ波加熱装置は、第1の態様に加えて、導波管により伝送されたマイクロ波を加熱室に放射するマイクロ波放射部をさらに有する。反射波検出部は、マイクロ波放射部と導波管との結合位置から管内定在波の管内波長の1/2の整数倍の距離離れて配置されることで、管内定在波の腹の近傍に配置される。
本開示の第11の態様のマイクロ波加熱装置では、第1の態様に加えて、反射波検出部が、導波管に設けられた開口部と、開口部に対向する結合線路とを有する。開口部が、管内定在波の腹の近傍に配置される。
本開示の第12の態様のマイクロ波加熱装置では、第11の態様に加えて、開口部が、互いに交差する第1長孔と第2長孔とを含み、平面視において導波管の管軸と交差しない位置に設けられ、第1長孔と第2長孔が交差する開口交差部は、管内定在波の腹の近傍に配置される。
以下、本開示の実施の形態に係るマイクロ波加熱装置について、図面を参照しながら説明する。
(実施の形態)
図1は、本開示の実施の形態に係るマイクロ波加熱装置50の概略図である。図1に示すように、マイクロ波加熱装置50は、被加熱物1を収容する加熱室2と、マグネトロン3と、導波管10とを備える。マグネトロン3は、マイクロ波を発生させるマイクロ波発生部の一例である。導波管10は、マグネトロン3により発生されたマイクロ波を加熱室2に伝送する。
被加熱物1は、例えば冷凍食品である。加熱室2は、例えば直方体の筐体で構成される。加熱室2には、被加熱物1を載置する載置台2aが設けられる。載置台2aは、ガラス、セラミックなどのマイクロ波を透過しやすい材料で構成される。
導波管10は、長方形に形成された断面を有する方形導波管である。アンテナ4は、載置台2aの下方に配置される。導波管10を伝搬するマイクロ波は、マイクロ波放射部の一例であるアンテナ4によって加熱室2内に放射される。
このマイクロ波によって、導波管10内には、マグネトロン3からアンテナ4に向かうマイクロ波の伝送方向に、マイクロ波の管内定在波が生じる。図1は、導波管10の内部に生じた管内定在波を模式的に図示する。導波管10の管内波長λgは、マグネトロン3の発振周波数と導波管10の形状とによって決まる。
管内定在波は、導波管10の長手方向において管内波長λgの1/2の長さごとに繰り返す腹と節とを有する。マイクロ波の伝送方向における導波管10の終端には、必ず節が発生する。マグネトロン3がマイクロ波を放射する部分には、必ず腹が発生する。
導波管10には、導波管10内に生じた管内定在波の位置を安定させるための定在波安定部5が設けられる。本実施の形態において、定在波安定部5は、導波管10内に突出することで、導波管10を局所的に狭めるように構成された突起部である。
定在波安定部5は、導波管10内におけるマグネトロン3近傍のインピーダンスと加熱室2近傍のインピーダンスとを整合させる。定在波安定部5は、マイクロ波の伝送方向における導波管10の終端から管内波長λgの1/2の整数倍の距離だけ離れて配置される。これにより、定在波安定部5は、管内定在波の節を定在波安定部5の近傍に固定する。
導波管10の壁面(幅広面(Wide Plane))には、入射波検出部および反射波検出部の両方の機能を有する方向性結合器6が設けられる。入射波検出部は、マグネトロン3から加熱室2に伝搬するマイクロ波である入射波の一部を検出する。反射波検出部は、加熱室2からマグネトロン3に戻るマイクロ波である反射波の一部を検出する。
方向性結合器6は、定在波安定部5よりも加熱室2寄りに配置される。具体的には、方向性結合器6と定在波安定部5とは、管内定在波の管内波長λgの1/4の奇数倍(本実施の形態では1倍)の距離だけマイクロ波の伝送方向(図1における左右方向)に離れて配置される。方向性結合器6は、定在波安定部5とアンテナ4との間に配置される。
方向性結合器6は、入射波、反射波に応じて検出信号6a、検出信号6bをそれぞれ検出し、検出信号6a、検出信号6bを制御部7に送信する。方向性結合器6の具体的な構成については、後で詳しく説明する。
制御部7は、検出信号6a、6bに加えて信号7aを受信する。信号7aは、マイクロ波加熱装置50の入力部(図示せず)により設定された加熱条件と、センサ(図示せず)により検出された被加熱物1の重量、蒸気の量とを含む。
制御部7は、検出信号6a、6bと信号7aとに基づいて、駆動電源8とモータ9とを制御する。駆動電源8は、マイクロ波を発生させるための電力をマグネトロン3に供給する。モータ9はアンテナ4を回転させる。このようにして、マイクロ波加熱装置50は、加熱室2に供給されたマイクロ波により、加熱室2に収容された被加熱物1を加熱する。
本実施の形態では、方向性結合器6が、定在波安定部5よりも加熱室2寄りに配置される。この構成によれば、方向性結合器6が定在波安定部5から受ける影響を低減することができる。これにより、被加熱物1の状態をより正確に検出することができる。その結果、例えば、冷凍食品の解凍状況を正確に把握することができる。それに応じて加熱量を制御することで、解凍時間を短縮することも可能になる。
本実施の形態では、方向性結合器6と定在波安定部5とは、管内定在波の管内波長λgの1/4の奇数倍の距離だけマイクロ波の伝送方向に離れて配置される。この構成によれば、方向性結合器6を管内定在波の腹の近傍に配置することができる。このため、方向性結合器6が受ける反射波の量をより多くして、反射波の検出精度を向上させることができる。その結果、被加熱物1の状態をより正確に検出することができる。
導波管10の幅方向(図1における奥行き方向)における方向性結合器6および定在波安定部5の位置は特に限定されない。方向性結合器6と定在波安定部5とは、ほぼ管内波長λgの1/4の奇数倍の距離だけ離れて配置されていればよい。
加熱開始時に被加熱物1の温度が高い場合、または、被加熱物1の重量が重い場合、反射波の量はあまり変化しない。このため、反射波が最小となる状態を判別し難いことがある。
本実施の形態では、方向性結合器6が、入射波検出部および反射波検出部の両方の機能を有する。この構成によれば、方向性結合器6により検出された入射波と反射波とに基づいて、被加熱物1により吸収されたマイクロ波の量をより正確に推定することができる。例えば、反射波の量を入射波の量で除算した反射率の変化を検出することで、反射波が最小となる状態を判別し易くなる。その結果、被加熱物1の状態をより正確に検出することができる。
本実施の形態では、方向性結合器6が、入射波検出部および反射波検出部の両方の機能を有する。しかし、本開示はこれに限定されない。入射波検出部と反射波検出部とが別々に設けられてもよい。入射波検出部が、定在波安定部5よりもマグネトロン3寄りに配置されてもよい。
本実施の形態では、一つの方向性結合器6が、定在波安定部5よりも加熱室2寄りに設けられる。しかし、本開示はこれに限定されない。図2は、マイクロ波加熱装置50の第1変形例を示す概略図である。図2も図1と同様に、導波管10の内部に生じた管内定在波を模式的に図示する。
図2に示すように、第1変形例に係るマイクロ波加熱装置50は、方向性結合器6に加えて、方向性結合器6と同じ構成を有する方向性結合器60をさらに有する。すなわち、方向性結合器60は、方向性結合器6に設けられた反射波検出部と同じ構成を有する第2の反射波検出部を備える。方向性結合器60は、定在波安定部5よりもマグネトロン3寄りに配置される。
この構成によれば、第2の反射波検出部も、定在波安定部5を通過してマグネトロン3に戻る反射波の一部を検出することができる。これにより、例えば、反射波の量が非常に多い場合、マグネトロン3を停止させて、マグネトロン3の故障を防止することができる。
本実施の形態では、定在波安定部5が、導波管10内に突出する突起部で構成される。しかし、定在波安定部5は、導波管10を局所的に狭めてマイクロ波の伝搬を乱すことで、管内定在波の位置を安定させるのであれば、本実施の形態に限定されない。
図3は、マイクロ波加熱装置50の第2変形例を示す概略図である。図3も図1、図2と同様に、導波管10の内部に生じた管内定在波を模式的に図示する。図3に示すように、導波管10がL字状に屈曲した屈曲部10bを有する。
この場合、図3の点線で示す屈曲部10bの断面積は、導波管10の他の部分の断面積に比べて大きい。このため、屈曲部10bの中心(図3の点線の中心)に管内定在波の節が固定されやすくなる。第2変形例では、屈曲部10bが定在波安定部5を構成する。
図1に示す導波管10は、定在波安定部5が配置された部分を除いて、その断面積が一様な方形導波管である。しかし、本開示はこれに限定されない。図4は、マイクロ波加熱装置50の第3変形例を示す概略図である。図4も図1~図3と同様に、導波管10の内部に生じた管内定在波を模式的に図示する。
図4に示すように、第3変形例では、導波管10は、マグネトロン3から加熱室2に向かってその断面積が徐々に小さくなる方形導波管である。第3変形例の導波管10は、定在波安定部5以外に局所的に狭い部分を有しない。このため、第3変形例の導波管10は、図1に示す導波管10と同様の効果を得ることができる。
図1に示す定在波安定部5は一つの要素で構成される。しかし、定在波安定部5は複数の要素で構成されてもよい。この場合、方向性結合器6は、最も加熱室2寄りに配置される定在波安定部5の構成部品よりも加熱室2寄りに配置すればよい。
本実施の形態では、モータ9がアンテナ4を回転させる。しかし、本開示はこれに限定されない。例えば、アンテナ4が、導波管10を伝搬するマイクロ波を円偏波のマイクロ波として加熱室2内に放射するように形成された開口部であってもよい。
次に、方向性結合器6の構成について説明する。図5は、方向性結合器6の斜視図である。図6は、方向性結合器6の、プリント基板12を取り外した状態の斜視図である。図7は、導波管10の平面図である。図8は、方向性結合器6に設けられたプリント基板12の回路構成図である。
図1~図4は、方向性結合器6が導波管10の底壁に設けられるものとして図示する。しかし、図5、図6は、理解を容易にするために、方向性結合器6が導波管10の上壁に設けられるものとして図示する。本実施の形態において、導波管10の管軸L1と直交する断面は、長方形形状を有する。管軸L1は、導波管10の幅方向の中心軸である。
方向性結合器6は、クロス開口11とプリント基板12と支持部14とを備える。クロス開口11は、導波管10の幅広面10aに配置されたX形状の開口部である。プリント基板12は、クロス開口11と対向するように導波管10の外に配置される。支持部14は、導波管10の外面上でプリント基板12を支持する。
図7に示すように、クロス開口11は、平面視において導波管10の管軸L1と交差しない位置に配置される。クロス開口11の開口中央部11cは、平面視において導波管10の管軸L1から寸法D1だけ離れて配置される。寸法D1は、例えば、導波管10の幅の1/4である。クロス開口11は、導波管10を伝搬するマイクロ波を円偏波のマイクロ波としてプリント基板12に向けて放射する。
クロス開口11の開口形状は、導波管10の幅および高さ、導波管10を伝搬するマイクロ波の電力レベルおよび周波数帯域、クロス開口11から放射させる円偏波のマイクロ波の電力レベルなどの条件に応じて決定される。
例えば、導波管10の幅が100mm、高さが30mm、導波管10の壁面の厚さが0.6mm、導波管10を伝搬するマイクロ波の最大電力レベルが1000W、周波数帯域が2450MHz、クロス開口11から放射させる円偏波のマイクロ波の最大電力レベルが約10mWである場合、クロス開口11の長さ11wおよび幅11dは20mm、2mmにそれぞれ決定される。
図8に示すように、クロス開口11は、互いに交差する第1長孔11eと第2長孔11fとを含む。クロス開口11の開口中央部11cは、第1長孔11eと第2長孔11fとが交差する開口交差部と一致する。クロス開口11は、垂線L2に対して線対称に形成される。垂線L2は管軸L1と直交し、開口中央部11cを通る。
本実施の形態において、第1長孔11eと第2長孔11fとは90度の角度で交差する。しかし、本開示はこれに限定されるものではない。第1長孔11eと第2長孔11fとが60度または120度の角度で交差してもよい。
クロス開口11の開口中央部11cを平面視において管軸L1と重なる位置に配置した場合、電界は回転せずにマイクロ波の伝送方向に沿って往復する。この場合、クロス開口11は直線偏波のマイクロ波を放射する。
開口中央部11cが管軸L1から少しでもずれていれば、電界は回転する。しかし、開口中央部11cが管軸L1に近いと(寸法D1が0mmに近いほど)、いびつな回転の電界が発生する。この場合、クロス開口11は楕円偏波のマイクロ波を放射する。
本実施の形態おいて、寸法D1は導波管10の幅の約1/4に設定される。この場合、ほぼ真円状の回転の電界が発生する。クロス開口11はほぼ真円状の円偏波のマイクロ波を放射する。このため、円偏波のマイクロ波の回転方向がより明確になる。その結果、入射波と反射波とを精度よく分離して検出することができる。
プリント基板12は、クロス開口11に対向する基板裏面12bと、基板裏面12bとは反対側の基板表面12aとを有する。基板表面12aは、マイクロ波反射部材の一例として基板表面12a全体を覆うように形成された銅箔(図示せず)を有する。この銅箔が、クロス開口11から放射された円偏波のマイクロ波がプリント基板12を透過するのを防止する。
図8に示すように、基板裏面12bには、結合線路の一例であるマイクロストリップ線路13が配置される。マイクロストリップ線路13は、例えば、ほぼ50Ωの特性インピーダンスを有する伝送線路で構成される。マイクロストリップ線路13は、クロス開口11の開口中央部11cを取り囲むように配置される。
以下、マイクロストリップ線路13の実効長λreについて説明する。マイクロストリップ線路13の幅をw、プリント基板12の厚さをh、光の速度をc、電磁波の周波数をf、プリント基板の比誘電率をεとすると、マイクロストリップ線路13の実効長λreは次式で表される。実効長λreとは、マイクロストリップ線路13を伝搬する電磁波の波長である。
Figure 0007316496000001
具体的には、マイクロストリップ線路13は、第1伝送線路13aと第2伝送線路13bとを備える。第1伝送線路13aは、第1交差線部の一例である第1直線部13aaを有する。第1直線部13aaは、平面視において開口中央部11cよりも管軸L1から離れた位置で第1長孔11eと交差する。第1直線部13aaは、垂線L2に近づくにつれて管軸L1から離れるように延在する。
第2伝送線路13bは、第2交差線部の一例である第2直線部13baを有する。第2直線部13baは、平面視において開口中央部11cよりも管軸L1から離れた位置で第2長孔11fと交差する。第2直線部13baは、垂線L2に近づくにつれて管軸L1から離れるように延在する。第1直線部13aaと第2直線部13baとは、垂線L2に対して線対称に配置される。
第1伝送線路13aと第2伝送線路13bとは、平面視において矩形領域E1の外、かつ、矩形領域E1よりも管軸L1から離れた位置で互いに接続される。第1直線部13aaは、平面視において開口中央部11cよりも開口先端部11eaに近い位置で第1長孔11eと交差する。
第1直線部13aaは、平面視において第1長孔11eに直交する。第2直線部13baは、平面視において開口中央部11cよりも開口先端部11faに近い位置で第2長孔11fと交差する。第2直線部13baは、平面視において第2長孔11fに直交する。
第1伝送線路13aの一端と第2伝送線路13bの一端とは、平面視においてクロス開口11と重なる領域の外で互いに接続される。第1直線部13aaの一端は、クロス開口11に外接する矩形領域E1の外で第2直線部13baの一端に接続される。
第1結合点P1は、平面視において第1直線部13aaと第1長孔11eとが互いに交差する点である。第2結合点P2は、平面視において第2直線部13baと第2長孔11fとが互いに交差する点である。第1結合点P1と第2結合点P2とを結ぶ直線を仮想直線L3とする。本実施の形態では、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離は、実効長λreの1/4に設定される。
平面視において開口中央部11cを通り、かつ、管軸L1に平行な線を平行線L4とする。本実施の形態では、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。
第1伝送線路13aは、第1直線部13aaの他端と第1出力部131とを接続する第3直線部13abを備える。第1直線部13aaと第3直線部13abとは、鈍角(例えば135度)を成すように接続される。
第2伝送線路13bは、第2直線部13baの他端と第2出力部132とを接続する第4直線部13bbを備える。第2直線部13baと第4直線部13bbとは、鈍角(例えば135度)を成すように接続される。第3直線部13abと第4直線部13bbとは、垂線L2に平行に配置される。
第1出力部131および第2出力部132は、平面視において支持部14(図5、図6参照)の外に配置される。第1出力部131には第1検波回路15が接続される。第1検波回路15は、マイクロ波信号のレベルを検出し、検出したマイクロ波信号のレベルを制御信号として出力する。第2出力部132には第2検波回路16が接続される。第2検波回路16は、マイクロ波信号のレベルを検出し、検出したマイクロ波信号のレベルを制御信号として出力する。
本実施の形態において、第1検波回路15および第2検波回路16は、いずれもチップ抵抗およびショットキーダイオードにより構成された平滑回路(図示せず)を備える。第1検波回路15は、第1出力部131からのマイクロ波信号を整流し、整流されたマイクロ波信号を直流電圧に変換する。変換された直流電圧は第1検波出力部18に出力される。第1検波出力部18は、入射波に対応する検出信号6aを制御部7に送信する(図1参照)。
同様に、第2検波回路16は、第2出力部132からのマイクロ波信号を整流し、整流されたマイクロ波信号を直流電圧に変換する。変換された直流電圧は第2検波出力部19に出力される。第2検波出力部19は、反射波に対応する検出信号6bを制御部7に送信する(図1参照)。
プリント基板12は、プリント基板12を導波管10に取り付けるための四つの穴(穴20a、20b、20c、20d)を有する。基板裏面12bにおける穴20a、20b、20c、20dの周辺には、グランドとなる銅箔が形成される。この銅箔が形成された部分は、基板表面12aと同電位を有する。
プリント基板12は、穴20a、20b、20c、20dを通してネジ201a、201b、201c、201d(図5参照)で支持部14にねじ止めすることによって、導波管10に固定される。
図6に示すように、支持部14は、ネジ201a、201b、201c、201dをそれぞれねじ止めするためのネジ部202a、202b、202c、202dを有する。ネジ部202a、202b、202c、202dは、支持部14に設けられたフランジ部に形成される。
支持部14は、導電性を有し、平面視においてクロス開口11を取り囲むように配置される。支持部14は、クロス開口11から放射された円偏波のマイクロ波が支持部14の外に漏洩するのを防ぐシールドとして機能する。
支持部14は、マイクロストリップ線路13の第3直線部13abおよび第4直線部13bbが通る溝141、溝142を有する。この構成により、マイクロストリップ線路13の第1出力部131および第2出力部132を支持部14の外に配置することができる。溝141、142は、マイクロストリップ線路13を伝搬するマイクロ波信号を支持部14の外に取り出すための取出し部として機能する。溝141、142は、プリント基板12から離れるように支持部14のフランジ部を凹ませることにより形成することができる。
図5、図6は、図8に示す第1検波出力部18、第2検波出力部19にそれぞれ接続されたコネクタ18a、コネクタ19aを図示する。
本実施の形態では、方向性結合器6は、入射波検出部および反射波検出部の両方の機能を有する。しかし、本開示はこれに限定されない。方向性結合器6は、入射波検出部および反射波検出部のいずれか一方の機能のみを有するように構成されてもよい。この場合、方向性結合器6は、図8に示す第1検波回路15、第2検波回路16の一方を、終端回路(例えば50Ωのチップ抵抗)に置き換えることで構成される。
次に、方向性結合器6の動作および作用について説明する。
まず、図9を参照して、クロス開口11から円偏波のマイクロ波が放射される原理について説明する。図9において、導波管10内に生じる磁界分布10dを点線の同心楕円で示す。磁界分布10dの磁界の向きを矢印で示す。磁界分布10dは、導波管10内を時間の経過とともにマイクロ波の伝送方向A1に移動する。
図9の(a)に示す時刻t=t0において、磁界分布10dが形成される。このとき、破線矢印B1で示す磁界が、クロス開口11の第1長孔11eを励起する。図9の(b)に示す時刻t=t0+t1において、破線矢印B2で示す磁界が、クロス開口11の第2長孔11fを励起する。
図9の(c)に示す時刻t=t0+T/2(Tはマイクロ波の管内波長λgの周期)において、破線矢印B3で示す磁界が、クロス開口11の第1長孔11eを励起する。図9の(d)に示す時刻t=t0+T/2+t1において、破線矢印B4で示す磁界が、クロス開口11の第2長孔11fを励起する。時刻t=t0+Tにおいて、時刻t=t0と同様に、破線矢印B1で示す磁界が、クロス開口11の第1長孔11eを励起する。
これらの状態が順次繰り返されることで、反時計回り(マイクロ波の回転方向32)に回転する円偏波のマイクロ波が、クロス開口11から導波管10の外に放射される。
ここで、図7に示す矢印30に沿って伝搬するマイクロ波を入射波とし、矢印31に沿って伝搬するマイクロ波を反射波とすると、入射波は図9に示す伝送方向A1と同じ向きに伝搬する。このため、上述のように、反時計回りに回転する円偏波のマイクロ波が、クロス開口11から導波管10の外に放射される。一方、反射波は図9に示す伝送方向A1と逆向きに伝搬する。このため、時計回りに回転する円偏波のマイクロ波が、クロス開口11から導波管10の外に放射される。
導波管10の外に放射された円偏波のマイクロ波は、クロス開口11に対向するマイクロストリップ線路13に結合する。マイクロストリップ線路13は、矢印30に沿って伝搬する入射波によりクロス開口11から放射されるマイクロ波の大部分を、第1出力部131に出力する。
一方、マイクロストリップ線路13は、矢印31に沿って伝搬する反射波によりクロス開口11から放射されるマイクロ波の大部分を第2出力部132に出力する。これにより、入射波と反射波とをより精度よく分離して検出することができる。このことについて、図10を参照してより詳しく説明する。
図10は、マイクロストリップ線路13を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。マイクロストリップ線路13とクロス開口11との間には隙間がある。本来、マイクロ波がマイクロストリップ線路13に到達するのに要する時間は、マイクロ波がこの隙間を伝搬する時間だけ遅れる。しかし、便宜上、ここではこの時間遅れが無いものとする。
ここで、平面視においてクロス開口11とマイクロストリップ線路13とが交差する領域を結合領域という。第1結合点P1は、第1長孔11eとマイクロストリップ線路13とが交差する結合領域のほぼ中心である。第2結合点P2は、第2長孔11fとマイクロストリップ線路13とが交差する結合領域のほぼ中心である。
図10において、マイクロストリップ線路13を伝搬するマイクロ波の量(磁界の鎖交によって流れる電流)を実線矢印の線の太さで表現する。すなわち、マイクロストリップ線路13を伝搬するマイクロ波の量が多い場合には線が太く、マイクロストリップ線路13を伝搬するマイクロ波の量が少ない場合には線が細い。
図10の(a)に示す時刻t=t0において、破線矢印B1で示す磁界がクロス開口11の第1長孔11eを励起し、第1結合点P1には太い実線矢印M1で示すマイクロ波が生じる。このマイクロ波は、第2結合点P2に向かってマイクロストリップ線路13を伝搬する。
図10の(b)に示す時刻t=t0+t1において、破線矢印B2で示す磁界がクロス開口11の第2長孔11fを励起し、第2結合点P2には太い実線矢印M2で示すマイクロ波が生じる。
第1結合点P1と第2結合点P2との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設計すると、図10の(a)に示す時刻に第1結合点P1に生じたマイクロ波は、図10の(b)に示す時刻に第2結合点P2に伝搬する。すなわち、図10の(b)に示す時刻に、第2結合点P2には、実線矢印M1で示すマイクロ波と実線矢印M2で示すマイクロ波とが生じる。
このため、二つのマイクロ波が加算されてマイクロストリップ線路13を第2出力部132に向けて伝搬し、所定時間経過後、第2出力部132に出力される。本実施の形態では、上記実効伝搬時間を時間t1に設定するため、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/4に設定される。この構成により、マイクロストリップ線路13の設計を容易に行うことができる。
図10の(c)に示す時刻t=t0+T/2において、破線矢印B3で示す磁界がクロス開口11の第1長孔11eを励起し、第1結合点P1には細い実線矢印M3で示すマイクロ波が生じる。このマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬し、所定時間経過後、第1出力部131に出力される。
実線矢印M3の太さを実線矢印M1の太さに比べて細くした理由は、以下の通りである。クロス開口11から、上述したように反時計回り(マイクロ波の回転方向32)に回転する円偏波のマイクロ波が放射される。
図10の(a)に示す時刻に、第1結合点P1に生じる実線矢印M1で示すマイクロ波は、クロス開口11から放射されるマイクロ波の回転方向とほぼ同じ方向に伝搬する。このため、実線矢印M1で示すマイクロ波のエネルギは縮減されない。
一方、図10の(c)に示す時刻に、第1結合点P1に生じる実線矢印M3で示すマイクロ波は、クロス開口11から放射されるマイクロ波の回転方向とはほぼ逆方向に伝搬する。このため、結合したマイクロ波のエネルギは縮減される。従って、実線矢印M3で示すマイクロ波の量は、実線矢印M1で示すマイクロ波の量よりも少ない。
図10の(d)に示す時刻t=t0+T/2+t1において、破線矢印B4で示す磁界がクロス開口11の第2長孔11fを励起し、第2結合点P2には細い実線矢印M4で示すマイクロ波が生じる。このマイクロ波は第1結合点P1に向かって伝搬する。実線矢印M4の太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
時刻t=t0+Tにおいて、図10の(a)に示す時刻t=t0と同様に、破線矢印B1で示す磁界がクロス開口11の第1長孔11eを励起する。この場合、図10の(a)に示す時刻の場合には説明しなかった細い実線矢印M4で示すマイクロ波がマイクロストリップ線路13上に存在する。
細い実線矢印M4で示すマイクロ波は、時刻t=t0+T(すなわちt=t0)において、第1結合点P1に伝搬する。細い実線矢印M4で示すマイクロ波は、太い実線矢印M1で示すマイクロ波とは逆向きに伝搬する。このため、実線矢印M4で示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。
厳密には、時刻t=t0において第1結合点P1から伝搬するマイクロ波の量は、太い実線矢印M1で示すマイクロ波の量から細い実線矢印M4で示すマイクロ波の量を差分した量(M1-M4)となる。従って、第2出力部132に出力されるマイクロ波の量は、第2結合点P2から伝搬するマイクロ波の量に太い実線矢印M2で示すマイクロ波の量を加算した量(M1+M2-M4)となる。
このことを考慮しても、第2出力部132に出力されるマイクロ波の量(M1+M2-M4)は、第1出力部131に出力されるマイクロ波の量(M3)よりはるかに多い。従って、マイクロストリップ線路13は、矢印31に沿って伝搬する反射波によりクロス開口11から反時計回りに放射されるマイクロ波の大部分を第2出力部132に出力する。一方、マイクロストリップ線路13は、矢印30に沿って伝搬する入射波によりクロス開口11から時計回りに放射されるマイクロ波の大部分を第1出力部131に出力する。
導波管10を伝搬するマイクロ波の量に対するクロス開口11から放射されるマイクロ波の量は、導波管10およびクロス開口11の形状および寸法によって決まる。例えば、上述の形状および寸法に設定した場合、導波管10を伝搬するマイクロ波の量に対するクロス開口11から放射されるマイクロ波の量は、約1/100000(約-50dB)である。
次に、本実施の形態において、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離を、実効長λreの1/2に設定した理由について説明する。
図11は、マイクロストリップ線路13を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。図11の(a)~(d)は、図10の(a)~(d)からそれぞれt1/2の時間が経過した状態を示す図である。
上記では説明を省略したが、磁界分布10dは、時間経過とともに導波管10内をマイクロ波の伝送方向A1に移動する。このため、図11の(a)~(d)に示すように、破線矢印B12、B23、B34、B41で示す磁界が、第1長孔11eおよび第2長孔11fを励起する。これにより、導波管10の外に放射された円偏波のマイクロ波は、マイクロストリップ線路13に結合する。
ここで、平面視において垂線L2および平行線L4とマイクロストリップ線路13とが交差する領域を結合領域という。第3結合点P3は、垂線L2とマイクロストリップ線路13とが交差する結合領域のほぼ中心である。第4結合点P4は、平行線L4と第1伝送線路13aとが交差する結合領域のほぼ中心である。第5結合点P5は、平行線L4と第2伝送線路13bとが交差する結合領域のほぼ中心である。
図11の(a)に示す時刻t=t0+t1/2において、破線矢印B12で示す磁界がクロス開口11を励起し、第3結合点P3には太い実線矢印M11で示すマイクロ波が生じる。このマイクロ波は、第5結合点P5に向かってマイクロストリップ線路13を伝搬する。
図11の(b)に示す時刻t=t0+t1+t1/2において、破線矢印B23で示す磁界がクロス開口11を励起する。第5結合点P5には太い実線矢印M12aで示すマイクロ波が生じ、第4結合点P4には細い実線矢印M12bで示すマイクロ波が生じる。実線矢印M12bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
第3結合点P3と第5結合点P5との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設計すると、図11の(a)に示す時刻に第3結合点P3に生じたマイクロ波は、図11の(b)に示す時刻に第5結合点P5に伝搬する。すなわち、図11の(b)に示す時刻に、第5結合点P5には、太い実線矢印M11で示すマイクロ波と太い実線矢印M12aで示すマイクロ波とが生じる。
このため、二つのマイクロ波は加算されてマイクロストリップ線路13を第2出力部132に向けて伝搬し、所定時間経過後、第2出力部132に出力される。上記実効伝搬時間を時間t1に設定するため、本実施の形態では、平行線L4よりも管軸L1から離れた第1伝送線路13aの距離が、実効長λreの1/4に設定される。第4結合点P4に生じた細い実線矢印M12bで示すマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬し、所定時間経過後、第1出力部131に出力される。
図11の(c)に示す時刻t=t0+T/2+t1/2において、破線矢印B34で示す磁界がクロス開口11を励起し、第3結合点P3には細い実線矢印M13bで示すマイクロ波が生じる。このマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬する。実線矢印M13bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
図11の(d)に示す時刻t=t0+T/2+t1+t1/2において、破線矢印B41で示す磁界がクロス開口11を励起する。第5結合点P5には細い実線矢印M14bで示すマイクロ波が生じ、第4結合点P4には太い実線矢印M14aで示すマイクロ波が生じる。細い実線矢印M14bで示すマイクロ波は、第3結合点P3に向かってマイクロストリップ線路13を伝搬する。実線矢印M14bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
太い実線矢印M14aで示すマイクロ波は、第3結合点P3に向かってマイクロストリップ線路13を伝搬する。第3結合点P3と第4結合点P4との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設計すると、図11の(c)に示す時刻に第3結合点P3に生じたマイクロ波は、図11の(d)に示す時刻に第4結合点P4に伝搬する。
すなわち、図11の(d)に示す時刻に、第4結合点P4には、細い実線矢印M13bで示すマイクロ波と太い実線矢印M14aで示すマイクロ波とが生じる。上記実効伝搬時間を時間t1に設定するため、本実施の形態では、平行線L4よりも管軸L1から離れた第2伝送線路13bの距離が、実効長λreの1/4に設定される。
すなわち、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。細い実線矢印M13bで示すマイクロ波は、太い実線矢印M14aで示すマイクロ波とは逆向きに伝搬する。このため、細い実線矢印M13bで示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。
時刻t=t0+T+t1/2において、図11の(a)に示す時刻t=t0+t1/2と同様に、破線矢印B12で示す磁界がクロス開口11を励起する。この場合、図11の(a)に示す時刻の場合には説明しなかった細い実線矢印M14bで示すマイクロ波がマイクロストリップ線路13上に存在する。
細い実線矢印M14bで示すマイクロ波は、時刻t=t0+T+t1/2において、第3結合点P3に伝搬する。細い実線矢印M14bで示すマイクロ波は、太い実線矢印M11および太い実線矢印M14aで示すマイクロ波とは逆向きに伝搬する。このため、細い実線矢印M14bで示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。
厳密には、時刻t=t0+t1/2において第3結合点P3から伝搬するマイクロ波の量は、太い実線矢印M11、M14aで示すマイクロ波の量から細い実線矢印M14bで示すマイクロ波の量を差分した量(M11+M14a-M14b)となる。従って、第2出力部132に出力されるマイクロ波の量は、第3結合点P3から伝搬するマイクロ波の量に太い実線矢印M12aで示すマイクロ波の量を加算した量(M11+M12a+M14a-M14b)となる。
このことを考慮しても、第2出力部132に出力されるマイクロ波の量(M11+M12a+M14a-M14b)は、第1出力部131に出力されるマイクロ波の量(M12b)よりはるかに多い。従って、マイクロストリップ線路13は、矢印31の方向に伝搬する反射波によりクロス開口11から反時計回りに放射されるマイクロ波の大部分を第2出力部132に出力する。一方、マイクロストリップ線路13は、矢印30の方向に伝搬する入射波によりクロス開口11から時計回りに放射されるマイクロ波の大部分を第1出力部131に出力する。
本実施の形態では、入射波検出部と反射波検出部とが、導波管10の壁面に配置されたクロス開口11に対向するマイクロストリップ線路13を共有する。入射波検出部は、マイクロストリップ線路13の一端から入射波を取り出す。反射波検出部は、マイクロストリップ線路13の他端から反射波を取り出す。この構成により、入射波検出部および反射波検出部を小型化することができる。
本実施の形態では、方向性結合器6は、平面視において導波管10の管軸L1と交差しない位置に配置された、円偏波のマイクロ波を放射するクロス開口11を有する。この構成により、クロス開口11から放射される円偏波のマイクロ波の回転方向が入射波と反射波とで互いに逆になる。この円偏波のマイクロ波の回転方向の違いを利用して、入射波と反射波とを分離して検出することができる。
本実施の形態に係る方向性結合器6では、第1伝送線路13aが第1直線部13aaを備えるとともに、第2伝送線路13bが第2直線部13baを備える。この構成により、従来よりも、マイクロストリップ線路13が屈曲する箇所を少なくすることができる。マイクロストリップ線路13を直角に屈曲させる必要性を無くすことができる。マイクロストリップ線路13が屈曲する箇所をクロス開口11の鉛直方向の領域から離すことができる。その結果、入射波と反射波とをより精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、第1伝送線路13aと第2伝送線路13bとが、平面視において矩形領域E1の外で、かつ、管軸L1から離れた位置で互いに接続される。この構成により、マイクロストリップ線路13が屈曲する箇所をクロス開口11の鉛直方向の領域からより一層離すことができる。第1直線部13aaおよび第2直線部13baをより長くすることができ、マイクロストリップ線路13を流れる電流の流れが阻害されるのを抑制することができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、第1直線部13aaが、平面視において開口中央部11cよりも開口先端部11eaに近い位置で第1長孔11eに交差する。第2直線部13baが、平面視において開口中央部11cよりも開口先端部11faに近い位置で第2長孔11fに交差する。通常、開口中央部11cの周辺に比べて開口先端部11ea、11faの周辺には、より強い磁界が発生する。上記構成により、より強い磁界がマイクロストリップ線路13に結合する。このため、マイクロストリップ線路13を流れる電流がより多くなる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、第1直線部13aaが、平面視において第1長孔11eに直交する。この構成により、第1結合点P1に生じる実線矢印M1で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と同じにする。これにより、実線矢印M1で示すマイクロ波の量をより大きくすることができる。
第1結合点P1に生じる実線矢印M3で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と逆にする。これにより、実線矢印M3で示すマイクロ波の量をより小さくすることができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、第2直線部13baが、平面視において第2長孔11fに直交する。この構成により、第2結合点P2に生じる実線矢印M2で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と同じにする。これにより、実線矢印M2で示すマイクロ波の量をより大きくすることができる。
第2結合点P2に生じる実線矢印M4で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と逆にする。これにより、実線矢印M4で示すマイクロ波の量をより小さくすることができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、マイクロストリップ線路13が、第1直線部13aaと第2直線部13baと第3直線部13abと第4直線部13bbと有する。互いに隣接する第1直線部13aaと第3直線部13abとは、鈍角を成すように接続される。互いに隣接する第2直線部13baと第4直線部13bbは、鈍角を成すように接続される。
この構成により、マイクロストリップ線路13において直角に屈曲する箇所を少なくすることができる。これにより、結合線路内の電流の流れが阻害されるのを抑制することができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/4に設定される。この構成により、入射波と反射波とをより一層精度よく分離して検出することができる。上記合計距離は、実効長λreのほぼ1/4に設定されていれば、必ずしも実効長λreの1/4に設定される必要はない。
本実施の形態に係る方向性結合器6では、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。この構成により、入射波と反射波とをより一層精度よく分離して検出することができる。上記合計距離は、実効長λreのほぼ1/2に設定されていれば、必ずしも実効長λreの1/2に設定される必要はない。
図8に示すように、本実施の形態では、第1伝送線路13aの一端と第2伝送線路13bの一端とが、直角を成すように接続される。しかし、本開示はこれに限定されない。第1伝送線路13aの一端が、平面視でクロス開口11の領域から外れた位置で第2伝送線路13bの一端と接続されていればよい。この領域では、磁界による影響が大きい。
図12~図17はそれぞれ、マイクロストリップ線路13の第1変形例~第6変形例を示す平面図である。図12に示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が開口中央部11cから離れるように、第1伝送線路13aと第2伝送線路13bとが屈曲していてもよい。
図13に示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が開口中央部11cに近づくように、第1伝送線路13aと第2伝送線路13bとが屈曲していてもよい。図14に示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が開口中央部11cに近づくように、第1伝送線路13aと第2伝送線路13bとが湾曲していてもよい。
本実施の形態では、第1直線部13aa、第2直線部13baがそれぞれ第1交差線部、第2交差線部に対応する。しかし、本開示はこれに限定されない。図15に示すように、第1交差線部、第2交差線部がそれぞれ、円弧状部13ac、円弧状部13bcであってもよい。
本実施の形態では、第3直線部13abおよび第4直線部13bbが垂線L2に平行である。しかし、本開示はこれに限定されない。図16に示すように、第3直線部13abおよび第4直線部13bbが平行線L4に平行であってもよい。
本実施の形態では、第1伝送線路13aおよび第2伝送線路13bが複数の直線部を有する。しかし、本開示はこれに限定されない。図17に示すように、第1伝送線路13aおよび第2伝送線路13bが、それぞれ一本の直線部で構成されてもよい。
本実施の形態では、クロス開口11は、垂線L2に対して線対称に形成される。垂線L2は、管軸L1と直交し、かつ、開口中央部11cを通る。しかし、本開示はこれに限定されない。クロス開口11は、垂線L2に対して線対称に形成されなくてもよい。例えば、第1長孔11eと第2長孔11fとが、それぞれの長手方向の中央部からずれた位置で交差してもよい。第1長孔11eの長さと第2長孔11fの長さとが互いに異なってもよい。
これらの場合、第1長孔11eと第2長孔11fとが交差する開口交差部は、開口中央部11cからずれる。クロス開口11は、平面視において垂線L2に対して僅かに傾斜する直線に対して線対称に形成されてもよい。
(管内定在波と反射波検出部の配置とに関する新たな発見)
図19は、反射波検出部の位置による反射波の検出精度を調べるための直交導波管251の平面図である。図19に示すように、直交導波管251は、主導波管252と副導波管253とを有する。副導波管253は、主導波管252に直交し、X形状の開口254、開口255を介して主導波管252に結合される。
ネットワークアナライザを用いて反射波を定量的に計測するために、主導波管252の終端256は閉止されて短絡される。ネットワークアナライザのポートQ(図示せず)から入射したマイクロ波257は、終端256で完全に反射される。
反射波の一部はポートQに戻る。残りの反射波は開口254、255を介して副導波管253に伝送され、副導波管253内でマイクロ波258とマイクロ波259とに分割される。マイクロ波258はネットワークアナライザのポートS(図示せず)に、マイクロ波259はネットワークアナライザのポートT(図示せず)に伝送される。
主導波管252、副導波管253はいずれも対称形状を有する。開口254、255は同一の形状を有する。開口254、255は、主導波管252、副導波管253の両方に対して対称に配置される。このため、マイクロ波258の量とマイクロ波259の量とは同等となる。
主導波管252、副導波管253は、約100mmの導波管幅(通常はa寸法と呼ばれる)を有する。主導波管252、副導波管253における、マイクロ波の管内波長λgは約154mmである。
実際に観測するSパラメータは、ネットワークアナライザの一般的な観測値である。具体的には、ポートQから入射したマイクロ波257に対する、ポートSに伝送されるマイクロ波258の比率S31と、ポートQから入射したマイクロ波257に対するポートTに伝送されるマイクロ波259の比率S41とを、ネットワークアナライザで観測する。比率S31、S41は、1よりかなり小さい場合があるので、一般的にデシベルで表記される。
2450~2500MHzの周波数のマイクロ波を用いて、主導波管252の終端256から開口254、255までの距離Lsfを変えながら、比率S31、S41を計測する。図20は、その結果をグラフにしたものである。横軸は距離Lsf[mm]を表し、縦軸は比率S31、S41[dB]を表す。この結果について考察する。
主導波管252において、閉止された終端256には管内定在波の節が発生し、終端256から管内波長λgの1/2(=77mm)ごとに節が生じる。従って、距離Lsfが154mmである場合、開口254、255は節の位置に配置される。
節からλg/4(=38.5mm)ずれた位置には腹が発生するので、距離Lsfが115.5mm(=λg×3/4)および192.5mm(=λg×5/4)の場合、開口254、255は腹の位置に配置される。本発明者らは、この特性図から下記のような二つの特徴を知見した。
一つ目の特徴は感度に関する。開口が節の位置(距離Lsf=154mm)にある場合、比率S31、S41は-12~―21dBである。開口が腹の位置(距離Lsf=115.5mm、192.5mm)にある場合、比率S31、S41は-4~―8dBである。従って、比率S31、S41は、開口が節の位置に配置される場合よりも、開口が腹の位置に配置される場合の方が大きい。
すなわち、本発明者らは、腹に開口を配置すると開口から検出される反射波は大きくなり、感度が良くなることを発見した。図20に示す六つのグラフの平均値で比較すると、開口が節にある場合の比率(約-16dB)と開口が腹にある場合の比率(約-6dB)との差は10dBとなる。すなわち、腹の位置に開口を配置すると、節の位置に開口を配置するよりも10倍感度が高い。
二つ目の特徴は周波数に対する安定性に関する。開口が節の位置(距離Lsf=154mm)にある場合、周波数の変化に応じて観測される比率S31、S41は-12~―21dBである。開口が腹の位置(距離Lsf=115.5mm、192.5mm)にある場合、周波数の変化に応じて観測される比率S31、S41は-4~―8dBである。
従って、開口が腹の位置にある場合の比率S31、S41の変動幅(約4dB)は、開口が節の位置にある場合の比率S31、S41の変動幅(約9dB)よりも小さい。すなわち、本発明者らは、腹に開口を配置すると開口から検出される反射波の周波数に対する安定性が良くなることを知見した。
以上のように、管内定在波の腹で反射波を検出することで、感度と周波数に対する安定性とを向上させることができる。その結果、被加熱物1の状態をより正確に検出することができる。
次に、腹の位置(距離Lsf=115.5mm、192.5mm)と節の位置(距離Lsf=154mm)との間の位置に開口が配置された場合について考察する。
図20に示すように、腹および節の中間位置(距離Lsf=134.75mm、173.25mm)に開口が配置された場合の比率S31、S41は、開口が節の位置(距離Lsf=154mm)に配置された場合ほど悪くない。この場合の比率S31、S41は、どちらかと言えば開口が腹の位置に配置された場合(距離Lsf=115.5mm、192.5mm)に近く、かなり良い。
すなわち、開口が節の位置(距離Lsf=154mm)の近傍に配置された場合だけ極端に計測結果が悪い。従って、節の位置に開口を配置しない限り、ある程度は反射波の検出精度を向上させることができる。
より安全には、腹および節の中間位置(距離Lsf=134.75mm、173.25mm)よりも腹に近い位置に開口を配置すると、反射波の検出精度を向上させることができる。これらの位置は、管内定在波の正確な腹の位置(または、二つの節の中央の位置)から前後に管内波長λgの1/8以下だけ離れた位置である。
具体的には、これらの位置における比率S31、S41は、おおよそ-5~-9dBの範囲にある。感度に関して、図20に示す六つのグラフの平均値は、節の位置に開口を配置した場合には約-16dB、腹の位置に開口を配置した場合には約-6dB、腹および節の中間位置に開口を配置した場合には-7dBである。
すなわち、腹および節の中間位置に開口を配置した場合の比率S31、S41は、節の位置に開口を配置した場合より9dBも良く、腹の位置に開口を配置した場合との差は1dBに過ぎない。
周波数に対する安定性に関して、図20に示す六つのグラフの変動幅は、節の位置に開口を配置した場合には約9dB、腹の位置に開口を配置した場合には約2dB、腹および節の中間位置に開口を配置した場合には約4dBである。
すなわち、腹および節の中間位置に開口を配置した場合の比率S31、S41は、節の位置に開口を配置した場合よりはかなり良く、どちらかと言えば腹の位置に開口を配置した場合に近い。従って、腹の位置(または、二つの節の中央の位置)から前後に管内波長λgの1/8以下だけ離れた位置に開口を配置すれば、反射波の検出精度を向上させることができる。
(本開示の各態様と作用効果)
図21を参照して、管内定在波と反射波検出部の配置との位置関係、および、本開示の各態様について説明する。図21は、図1における導波管10の周辺の拡大図である。
図21に示すように、本開示の一態様のマイクロ波加熱装置は、被加熱物を収容する加熱室2と、マイクロ波を発生させるマグネトロン3と、導波管10と、方向性結合器6とを備える。
導波管10は、マグネトロン3により発生されたマイクロ波を加熱室に伝送する。方向性結合器6は、導波管10内に生じた管内定在波301の腹302の近傍に配置される。方向性結合器6は、加熱室2からマグネトロン3に戻るマイクロ波である反射波の一部を検出する反射波検出部を含む。
管内定在波301の腹302および節303は、管内波長λgの1/4ごとに交互に現れる。
本構成により、管内定在波301の腹302の近傍で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、クロス開口11に外接する矩形領域E1の中心部が、管内定在波301の二つの節303の間に配置されることで、反射波検出部を含む方向性結合器6が、管内定在波301の腹302の近傍に配置される。
本構成により、管内定在波301の腹302の近傍で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
見えない管内定在波301の腹302の位置を決めるのは難しい。隣り合う二つの節303の間の位置を目安にすれば、容易に方向性結合器6の位置決めをすることができる。
本開示の一態様のマイクロ波加熱装置では、クロス開口11に外接する矩形領域E1が、管内定在波301の二つの節303に重ならないように配置されることで、反射波検出部を含む方向性結合器6が、管内定在波301の腹302の近傍に配置される。
本構成により、管内定在波301のより腹302に近い位置で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、反射波検出部を含む方向性結合器6が、管内定在波301の二つの節303の中央の位置から前後に管内波長λgの1/8以下だけ離れて配置されることで、管内定在波301の腹302の近傍に配置される。
図20を参照して説明したように、腹302から前後に管内波長λgの1/8以下だけ離れた位置であれば、ある程度の精度で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、反射波検出部を含む方向性結合器6が、導波管10の終端304から管内波長λgの1/4の奇数倍(図21では3倍)の距離だけ離れて配置されることで、管内定在波301の腹302の近傍に配置される。
本構成により、管内定在波301の腹302の近傍で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置は、導波管10内に生じた管内定在波301の位置を安定させるための定在波安定部5をさらに有する。反射波検出部を含む方向性結合器6は、定在波安定部5から管内波長λgの1/4の奇数倍(図21では1倍)の距離だけ離れて配置されることで、管内定在波301の腹302の近傍に配置される。
本構成により、管内定在波301の腹302の近傍で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、定在波安定部5が、導波管10内に突出する突起部で構成される。
本構成では、突起部の位置に管内定在波301の節303が生じる。反射波検出部を含む方向性結合器6は、突起部から管内波長λgの1/4の奇数倍の距離だけ離れて配置され、管内定在波301の腹302の近傍で反射波を検出する。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、導波管10が、L字状に屈曲した屈曲部10bを有し(図3参照)、定在波安定部が屈曲部10bで構成されてもよい。
本構成では、屈曲部10bの位置に管内定在波301の節303が生じる。反射波検出部を含む方向性結合器6は、屈曲部10bから管内波長λgの1/4の奇数倍の距離だけ離れて配置され、管内定在波301の腹302の位置で反射波を検出する。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、反射波検出部を含む方向性結合器6は、マグネトロン3と導波管10との結合位置305から管内波長λgの1/2の整数倍(図21では2倍)の距離だけ離れて配置されることで、管内定在波301の腹302の近傍に配置される。
本構成では、結合位置305で、管内定在波301の腹302が生じる。反射波検出部を含む方向性結合器6は、結合位置305から管内波長λgの1/2の整数倍の距離だけ離れて配置され、管内定在波301の腹302の近傍で反射波を検出する。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置は、導波管10により伝送されたマイクロ波を加熱室2に放射するアンテナ4を有する。反射波検出部を含む方向性結合器6は、アンテナ4と導波管10との結合位置306から管内波長λgの1/2の整数倍(図21では1倍)の距離だけ離れて配置されることで、管内定在波301の腹302の近傍に配置される。
本構成では、結合位置306で、管内定在波301の腹302が生じる。反射波検出部を含む方向性結合器6は、結合位置306から管内波長λgの1/2の整数倍の距離だけ離れて配置され、管内定在波301の腹302の近傍で反射波を検出する。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、反射波検出部を含む方向性結合器6は、導波管10に設けられたクロス開口11と、クロス開口11に対向する結合線路(図8参照)とを有する。クロス開口11は、管内定在波301の腹302の近傍に配置される。
本構成により、管内定在波301の腹302の位置で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、クロス開口11が、互いに交差する第1長孔11eと第2長孔11fとを含み(図7、図8参照)、平面視において導波管10の管軸と交差しない位置に設けられる。第1長孔11eと第2長孔11fが交差する開口交差部(図7、図8参照)は、管内定在波301の腹302の近傍に配置される。
本構成により、導波管10により伝送されたマイクロ波は、開口交差部を中心として電界の向きが回転する円偏波のマイクロ波として加熱室2に放射される。円偏波のマイクロ波に関しては、入射波と反射波とで逆の回転方向を有するため、入射波と反射波とを容易に分離することができる。これに加えて、本構成では、管内定在波の腹302の近傍で反射波を検出する。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示は、民生用または業務用のマイクロ波加熱装置に適用可能である。
1 被加熱物
2 加熱室
2a 載置台
3 マグネトロン
4 アンテナ
5 定在波安定部
6、60 方向性結合器
7 制御部
7a 信号
8 駆動電源
9 モータ
10 導波管
10a 幅広面
10b 屈曲部
10d 磁界分布
11 クロス開口
11c 開口中央部
11d 幅
11e 第1長孔
11ea、11fa 開口先端部
11f 第2長孔
11w 長さ
12 プリント基板
12a 基板表面
12b 基板裏面
13 マイクロストリップ線路
13a 第1伝送線路
13aa 第1直線部
13ab 第3直線部
13ac、13bc 円弧状部
13b 第2伝送線路
13ba 第2直線部
13bb 第4直線部
14 支持部
15 第1検波回路
16 第2検波回路
18 第1検波出力部
18a、19a コネクタ
19 第2検波出力部
50 マイクロ波加熱装置
131 第1出力部
132 第2出力部
141、142 溝
251 直交導波管
252 主導波管
253 副導波管
254、255 開口
256、304 終端
257、258、259 マイクロ波
301 管内定在波
302 腹
303 節
305、306 結合位置
E1 矩形領域
L1 管軸
L2 垂線
L3 仮想直線
L4 平行線
P1 第1結合点
P2 第2結合点
P3 第3結合点
P4 第4結合点
P5 第5結合点

Claims (10)

  1. 被加熱物を収容するように構成された加熱室と、
    マイクロ波を発生させるように構成されたマイクロ波発生部と、
    前記マイクロ波発生部により発生された前記マイクロ波を前記加熱室に伝送するように構成された導波管と、
    前記導波管により伝送された前記マイクロ波を前記加熱室に放射するように構成されたマイクロ波放射部と、
    前記導波管内に生じた管内定在波の腹の近傍に配置され、前記加熱室から前記マイクロ波発生部に戻る前記マイクロ波である反射波の一部を検出するように構成された反射波検出部と、
    前記管内定在波の位置を安定させるように構成された定在波安定部と、を備え、
    前記マイクロ波放射部は、前記導波管に対し一つのアンテナであり、
    前記反射波検出部は、前記定在波安定部から前記管内定在波の管内波長の1/4の奇数倍の距離だけ離れて配置され、且つ、前記マイクロ波放射部と前記導波管との結合位置から前記管内定在波の管内波長の1/2の整数倍の距離だけ離れて配置されることで、前記管内定在波の前記腹の近傍に配置された、マイクロ波加熱装置。
  2. 前記反射波検出部が、前記管内定在波の二つの節の間に配置されることで、前記管内定在波の前記腹の近傍に配置された、請求項1に記載のマイクロ波加熱装置。
  3. 前記反射波検出部が、前記管内定在波の前記二つの節に重ならないように配置されることで、前記管内定在波の前記腹の近傍に配置された、請求項2に記載のマイクロ波加熱装置。
  4. 前記反射波検出部が、前記管内定在波の前記二つの節の中央の位置から前後に前記管内定在波の管内波長の1/8以下だけ離れて配置されることで、前記管内定在波の前記腹の近傍に配置された、請求項3に記載のマイクロ波加熱装置。
  5. 前記反射波検出部が、前記導波管の終端から前記管内定在波の管内波長の1/4の奇数倍の距離だけ離れて配置されることで、前記管内定在波の前記腹の近傍に配置された、請
    求項1に記載のマイクロ波加熱装置。
  6. 前記定在波安定部が、前記導波管内に突出する突起部で構成された、請求項1に記載のマイクロ波加熱装置。
  7. 前記導波管が、L字状に屈曲した屈曲部を有し、前記定在波安定部が、前記屈曲部で構成された、請求項1に記載のマイクロ波加熱装置。
  8. 前記反射波検出部が、前記マイクロ波発生部と前記導波管との結合位置から前記管内定在波の管内波長の1/2の整数倍の距離だけ離れて配置されることで、前記管内定在波の前記腹の近傍に配置された、請求項1に記載のマイクロ波加熱装置。
  9. 前記反射波検出部が、前記導波管に設けられた開口部と、前記開口部に対向する結合線路とを有し、前記開口部が、前記管内定在波の前記腹の近傍に配置された、請求項1に記載のマイクロ波加熱装置。
  10. 前記開口部が、互いに交差する第1長孔と第2長孔とを含み、平面視において前記導波管の管軸と交差しない位置に設けられ、前記第1長孔と前記第2長孔とが交差する開口交差部が、前記管内定在波の前記腹の近傍に配置された、請求項に記載のマイクロ波加熱装置。
JP2020514363A 2018-04-20 2019-04-15 マイクロ波加熱装置 Active JP7316496B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018081042 2018-04-20
JP2018081042 2018-04-20
PCT/JP2019/016076 WO2019203172A1 (ja) 2018-04-20 2019-04-15 マイクロ波加熱装置

Publications (2)

Publication Number Publication Date
JPWO2019203172A1 JPWO2019203172A1 (ja) 2021-04-22
JP7316496B2 true JP7316496B2 (ja) 2023-07-28

Family

ID=68240446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020514363A Active JP7316496B2 (ja) 2018-04-20 2019-04-15 マイクロ波加熱装置

Country Status (4)

Country Link
EP (1) EP3784003B1 (ja)
JP (1) JP7316496B2 (ja)
CN (1) CN111052863B (ja)
WO (1) WO2019203172A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113243988B (zh) * 2021-06-24 2022-11-18 北京东方略生物医药科技股份有限公司 微波消融装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538879A1 (en) 2003-12-02 2005-06-08 Personal Chemistry i Uppsala AB Microwave heating device
JP2014044944A (ja) 2012-08-01 2014-03-13 Panasonic Corp マイクロ波加熱装置
JP2014049178A (ja) 2012-08-29 2014-03-17 Panasonic Corp マイクロ波加熱装置
JP2014072117A (ja) 2012-10-01 2014-04-21 Panasonic Corp マイクロ波加熱装置
WO2014119333A1 (ja) 2013-01-31 2014-08-07 パナソニック株式会社 方向性結合器及びそれを備えるマイクロ波加熱装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE651746A (ja) * 1963-06-12
US4195351A (en) 1978-01-27 1980-03-25 International Business Machines Corporation Loop configured data transmission system
US4851630A (en) * 1988-06-23 1989-07-25 Applied Science & Technology, Inc. Microwave reactive gas generator
JP3331279B2 (ja) 1995-08-08 2002-10-07 株式会社日立ホームテック 高周波加熱装置
JP2003157963A (ja) * 2001-11-22 2003-05-30 Hitachi Hometec Ltd 高周波加熱装置
US9398646B2 (en) * 2009-07-10 2016-07-19 Panasonic Intellectual Property Management Co., Ltd. Microwave heating device and microwave heating control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538879A1 (en) 2003-12-02 2005-06-08 Personal Chemistry i Uppsala AB Microwave heating device
JP2014044944A (ja) 2012-08-01 2014-03-13 Panasonic Corp マイクロ波加熱装置
JP2014049178A (ja) 2012-08-29 2014-03-17 Panasonic Corp マイクロ波加熱装置
JP2014072117A (ja) 2012-10-01 2014-04-21 Panasonic Corp マイクロ波加熱装置
WO2014119333A1 (ja) 2013-01-31 2014-08-07 パナソニック株式会社 方向性結合器及びそれを備えるマイクロ波加熱装置

Also Published As

Publication number Publication date
CN111052863A (zh) 2020-04-21
WO2019203172A1 (ja) 2019-10-24
CN111052863B (zh) 2022-07-15
EP3784003B1 (en) 2022-05-18
EP3784003A1 (en) 2021-02-24
EP3784003A4 (en) 2021-06-02
JPWO2019203172A1 (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
RU2215380C2 (ru) Микроволновая печь и волновод для устройства, использующего высокую частоту излучения
EP2953204B1 (en) Directional coupler and microwave heater provided with the same
CN108781486B (zh) 微波加热装置
JP7316496B2 (ja) マイクロ波加熱装置
JP7386398B2 (ja) マイクロ波加熱装置
JP6906143B2 (ja) マイクロ波加熱装置
JP7454770B2 (ja) 方向性結合器およびそれを備えたマイクロ波加熱装置
JP2014044944A (ja) マイクロ波加熱装置
WO2020170923A1 (ja) マイクロ波加熱装置
WO2016103588A1 (ja) マイクロ波加熱装置
JP6671005B2 (ja) マイクロ波加熱装置
JP2020013759A (ja) 電磁波加熱装置、及び、アンテナ
JP6715525B2 (ja) マイクロ波加熱装置
JP2018006049A (ja) 加熱調理器
JP2020013760A (ja) 電磁波加熱装置
JP2020013761A (ja) 電磁波加熱装置
JP2005033423A (ja) 伝送路およびこれを備えるプラズマ処理装置

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20191205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220302

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R151 Written notification of patent or utility model registration

Ref document number: 7316496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151