WO2019203172A1 - マイクロ波加熱装置 - Google Patents
マイクロ波加熱装置 Download PDFInfo
- Publication number
- WO2019203172A1 WO2019203172A1 PCT/JP2019/016076 JP2019016076W WO2019203172A1 WO 2019203172 A1 WO2019203172 A1 WO 2019203172A1 JP 2019016076 W JP2019016076 W JP 2019016076W WO 2019203172 A1 WO2019203172 A1 WO 2019203172A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microwave
- waveguide
- tube
- standing wave
- wave
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
- H05B6/705—Feed lines using microwave tuning
Definitions
- the present disclosure relates to a microwave heating apparatus such as a microwave oven.
- a conventional microwave heating apparatus includes a heating chamber that accommodates an object to be heated, a microwave generation unit that generates a microwave, and a waveguide that propagates the microwave to the heating chamber.
- the waveguide is provided with a standing wave stabilizer for stabilizing the position of the standing wave generated in the waveguide.
- the conventional microwave heating apparatus by suppressing the disturbance of the position of the standing wave in the tube by the standing wave stabilizing unit, it is possible to continuously radiate microwaves having a desired phase into the heating chamber. As a result, the object to be heated in the heating chamber can be heated uniformly.
- Patent Document 2 and Patent Document 3 a directional coupler for detecting a reflected wave is provided in a waveguide in order to prevent the microwave generating part from being destroyed by a reflected wave returning from the heating chamber to the microwave generating part.
- a microwave heating apparatus is disclosed.
- the present disclosure aims to provide a microwave heating apparatus capable of improving the detection accuracy of reflected waves and more accurately detecting the state of an object to be heated.
- the microwave heating apparatus includes a heating chamber that accommodates an object to be heated, a microwave generation unit that generates a microwave, a waveguide, and a reflected wave detection unit.
- the waveguide transmits the microwave generated by the microwave generator to the heating chamber.
- the reflected wave detection unit is disposed in the vicinity of the antinode of the standing wave in the tube generated in the waveguide, and detects a part of the reflected wave that is a microwave returning from the heating chamber to the microwave generation unit.
- the detection accuracy of the reflected wave can be improved, and the state of the object to be heated can be detected more accurately.
- FIG. 1 is a schematic diagram of a microwave heating apparatus according to an embodiment of the present disclosure.
- Drawing 2 is a schematic diagram showing the 1st modification of a microwave heating device concerning an embodiment.
- Drawing 3 is a schematic diagram showing the 2nd modification of a microwave heating device concerning an embodiment.
- FIG. 4 is a schematic diagram illustrating a third modification of the microwave heating apparatus according to the embodiment.
- FIG. 5 is a perspective view of the directional coupler according to the embodiment.
- FIG. 6 is a perspective view of the directional coupler according to the embodiment with the printed board removed.
- FIG. 7 is a plan view of the waveguide according to the embodiment.
- FIG. 8 is a circuit configuration diagram of a printed circuit board provided in the directional coupler according to the embodiment.
- FIG. 9 is a diagram for explaining the principle that circularly polarized microwaves are radiated from the cross aperture.
- FIG. 10 is a diagram for explaining the direction and amount of the microwave that propagates through the microstrip line and changes with time.
- FIG. 11 is a diagram for explaining the direction and amount of the microwave propagating through the microstrip line and changing with time.
- FIG. 12 is a plan view showing a first modification of the microstrip line.
- FIG. 13 is a plan view showing a second modification of the microstrip line.
- FIG. 14 is a plan view showing a third modification of the microstrip line.
- FIG. 15 is a plan view showing a fourth modification of the microstrip line.
- FIG. 16 is a plan view showing a fifth modification of the microstrip line.
- FIG. 12 is a plan view showing a first modification of the microstrip line.
- FIG. 13 is a plan view showing a second modification of the microstrip line.
- FIG. 14 is a plan
- FIG. 17 is a plan view showing a sixth modification of the microstrip line.
- FIG. 18 is a graph showing the relationship between the incident wave and reflected wave that change as the temperature of the object to be heated increases, and the amount of microwave absorption by the object to be heated.
- FIG. 19 is a plan view showing an orthogonal waveguide for evaluating the detection accuracy of the reflected wave.
- FIG. 20 is a characteristic diagram in which the detection accuracy of the reflected wave is measured with the orthogonal waveguide for evaluation.
- FIG. 21 is a schematic diagram showing the positional relationship between the reflected wave detection unit and the standing wave in the waveguide.
- the microwave generated by the microwave generation unit propagates as an incident wave through the waveguide to the heating chamber.
- a part of the microwave propagated into the heating chamber is absorbed by the object to be heated, while the other part returns as a reflected wave from the heating chamber to the microwave generation unit through the waveguide.
- Microwaves are not easily absorbed by ice, but are easily absorbed by water. Specifically, water absorbs about 8000 times more microwaves (based on dielectric loss factor) than ice. Microwaves are less likely to be absorbed by water as the temperature of the water increases. For this reason, for example, when the object to be heated is a frozen food, the reflected wave and the amount of microwave absorption by the object to be heated have a relationship as shown in FIG.
- FIG. 18 is a graph showing the relationship between the incident wave, reflected wave, and amount of microwave absorption of the object to be heated, which change as the temperature of the object to be heated increases.
- the horizontal axis represents the temperature of the object to be heated
- the vertical axis represents the signal intensity of the incident wave and the reflected wave.
- the graphs indicated by the dotted line, the solid line, and the alternate long and short dash line indicate the amount of absorption of microwaves by the incident wave, the reflected wave, and the object to be heated, respectively.
- the amount of microwave absorption by the object to be heated is the difference between the incident wave and the reflected wave.
- the amount of microwave absorption of the object to be heated is small and the number of reflected waves is large.
- the amount of microwave absorption by the object to be heated increases rapidly and the reflected wave decreases rapidly.
- the amount of microwave absorption by the object to be heated is maximized, and the reflected wave is minimized.
- the end of thawing of frozen food can be detected by detecting a state in which the reflected wave is minimized.
- the present inventors have found that the above relationship holds regardless of the weight, shape, etc. of the object to be heated, and more accurately detect the state of the object to be heated based on the change in the amount of reflected wave during heating. I found what I can do.
- the microwave heating apparatus includes a heating chamber that accommodates an object to be heated, a microwave generation unit that generates a microwave, a waveguide, and a reflected wave detection unit.
- the waveguide transmits the microwave generated by the microwave generator to the heating chamber.
- the reflected wave detection unit is disposed in the vicinity of the antinode of the standing wave in the tube generated in the waveguide, and detects a part of the reflected wave that is a microwave returning from the heating chamber to the microwave generation unit.
- the reflected wave detection unit is disposed between two nodes of the in-tube standing wave, thereby Located near the belly.
- the reflected wave detection unit is arranged so as not to overlap the two nodes of the standing wave in the pipe, so that the standing in the pipe Located near the wave belly.
- the reflected wave detection unit includes an in-tube wavelength of the in-tube standing wave before and after the center position of the two nodes of the in-tube standing wave. Is arranged in the vicinity of the antinode of the standing wave in the tube.
- the reflected wave detection unit is a distance that is an odd multiple of 1/4 of the in-tube wavelength of the in-tube standing wave from the end of the waveguide. It is arrange
- the microwave heating apparatus further includes a standing wave stabilizing unit that stabilizes the position of the standing wave in the tube generated in the waveguide, in addition to the first aspect.
- the reflected wave detection unit is arranged in the vicinity of the antinode of the standing wave in the tube by being separated from the standing wave stabilizing unit by a distance that is an odd multiple of 1/4 of the in-tube wavelength of the standing wave in the tube.
- the standing wave stabilizing part is configured by a protrusion protruding into the waveguide.
- the waveguide has a bent portion bent in an L shape, and the standing wave stabilizing portion is configured by the bent portion. Is done.
- the reflected wave detection unit has a wavelength of 1 in the tube standing wave from the coupling position of the microwave generation unit and the waveguide. By being spaced apart by an integral multiple of / 2, it is placed in the vicinity of the antinode of the standing wave in the tube.
- the microwave heating apparatus further includes, in addition to the first aspect, a microwave radiating unit that radiates microwaves transmitted through the waveguide into the heating chamber.
- the reflected wave detection unit is arranged at a distance of an integral multiple of 1/2 of the in-tube wavelength of the in-tube standing wave from the coupling position of the microwave radiating unit and the waveguide. Located in the vicinity.
- the reflected wave detection unit in addition to the first aspect, includes an opening provided in the waveguide and a coupling line facing the opening. The opening is disposed in the vicinity of the antinode of the standing wave in the tube.
- the opening in addition to the eleventh aspect, includes a first long hole and a second long hole that intersect with each other, and the waveguide tube in a plan view
- the opening intersecting portion that is provided at a position that does not intersect the axis and intersects the first long hole and the second long hole is disposed in the vicinity of the antinode of the standing wave in the tube.
- FIG. 1 is a schematic diagram of a microwave heating apparatus 50 according to an embodiment of the present disclosure.
- the microwave heating device 50 includes a heating chamber 2 that accommodates an object to be heated 1, a magnetron 3, and a waveguide 10.
- the magnetron 3 is an example of a microwave generation unit that generates a microwave.
- the waveguide 10 transmits the microwave generated by the magnetron 3 to the heating chamber 2.
- the heated object 1 is, for example, frozen food.
- the heating chamber 2 is constituted by a rectangular parallelepiped housing, for example.
- the heating chamber 2 is provided with a mounting table 2a on which the object to be heated 1 is mounted.
- the mounting table 2a is made of a material that easily transmits microwaves, such as glass and ceramic.
- the waveguide 10 is a rectangular waveguide having a rectangular cross section.
- the antenna 4 is disposed below the mounting table 2a.
- the microwave propagating through the waveguide 10 is radiated into the heating chamber 2 by the antenna 4 which is an example of a microwave radiating unit.
- FIG. 1 schematically illustrates an in-tube standing wave generated inside the waveguide 10.
- the in-tube wavelength ⁇ g of the waveguide 10 is determined by the oscillation frequency of the magnetron 3 and the shape of the waveguide 10.
- the in-tube standing wave has an antinode and a node that repeats every 1 ⁇ 2 of the in-tube wavelength ⁇ g in the longitudinal direction of the waveguide 10.
- a node always occurs at the end of the waveguide 10 in the microwave transmission direction.
- An antinode is always generated in a portion where the magnetron 3 emits microwaves.
- the waveguide 10 is provided with a standing wave stabilizing unit 5 for stabilizing the position of the standing wave in the tube generated in the waveguide 10.
- the standing wave stabilizing portion 5 is a protrusion configured to locally narrow the waveguide 10 by protruding into the waveguide 10.
- the standing wave stabilizing unit 5 matches the impedance near the magnetron 3 in the waveguide 10 with the impedance near the heating chamber 2.
- the standing wave stabilizing unit 5 is disposed away from the end of the waveguide 10 in the microwave transmission direction by a distance that is an integral multiple of 1/2 of the guide wavelength ⁇ g. As a result, the standing wave stabilization unit 5 fixes the node of the in-tube standing wave near the standing wave stabilization unit 5.
- a directional coupler 6 having both functions of an incident wave detector and a reflected wave detector is provided on the wall surface (wide plane) of the waveguide 10.
- the incident wave detection unit detects a part of the incident wave that is a microwave propagating from the magnetron 3 to the heating chamber 2.
- the reflected wave detection unit detects a part of the reflected wave that is a microwave returning from the heating chamber 2 to the magnetron 3.
- the directional coupler 6 is disposed closer to the heating chamber 2 than the standing wave stabilizer 5. Specifically, the directional coupler 6 and the standing wave stabilizing unit 5 transmit microwaves by a distance that is an odd multiple of 1/4 of the in-tube wavelength ⁇ g of the in-tube standing wave (1 time in the present embodiment). They are arranged away from each other in the transmission direction (left-right direction in FIG. 1). The directional coupler 6 is disposed between the standing wave stabilizer 5 and the antenna 4.
- the directional coupler 6 detects the detection signal 6a and the detection signal 6b according to the incident wave and the reflected wave, respectively, and transmits the detection signal 6a and the detection signal 6b to the control unit 7. A specific configuration of the directional coupler 6 will be described in detail later.
- Control unit 7 receives signal 7a in addition to detection signals 6a and 6b.
- the signal 7a includes a heating condition set by an input unit (not shown) of the microwave heating device 50, a weight of the article 1 to be heated, and an amount of steam detected by a sensor (not shown).
- the control unit 7 controls the drive power supply 8 and the motor 9 based on the detection signals 6a and 6b and the signal 7a.
- the drive power supply 8 supplies power for generating a microwave to the magnetron 3.
- the motor 9 rotates the antenna 4. In this way, the microwave heating device 50 heats the object to be heated 1 accommodated in the heating chamber 2 by the microwave supplied to the heating chamber 2.
- the directional coupler 6 is disposed closer to the heating chamber 2 than the standing wave stabilizer 5. According to this structure, the influence which the directional coupler 6 receives from the standing wave stabilization part 5 can be reduced. Thereby, the state of the article 1 to be heated can be detected more accurately. As a result, for example, the thawing status of frozen food can be accurately grasped. It is also possible to shorten the thawing time by controlling the heating amount accordingly.
- the directional coupler 6 and the standing wave stabilizing unit 5 are arranged apart from each other in the microwave transmission direction by a distance that is an odd multiple of 1/4 of the guide wavelength ⁇ g of the guide wave in the guide. .
- the directional coupler 6 can be disposed in the vicinity of the antinode of the in-tube standing wave. For this reason, the amount of reflected waves received by the directional coupler 6 can be increased, and the detection accuracy of the reflected waves can be improved. As a result, the state of the object to be heated 1 can be detected more accurately.
- the positions of the directional coupler 6 and the standing wave stabilizer 5 in the width direction of the waveguide 10 are not particularly limited.
- the directional coupler 6 and the standing wave stabilizing unit 5 need only be spaced apart by a distance that is an odd multiple of 1/4 of the guide wavelength ⁇ g.
- the amount of reflected wave does not change much. For this reason, it may be difficult to determine the state in which the reflected wave is minimized.
- the directional coupler 6 has both functions of an incident wave detection unit and a reflected wave detection unit. According to this configuration, the amount of microwaves absorbed by the object to be heated 1 can be estimated more accurately based on the incident wave and the reflected wave detected by the directional coupler 6. For example, by detecting a change in reflectance obtained by dividing the amount of reflected wave by the amount of incident wave, it becomes easy to determine a state in which the reflected wave is minimized. As a result, the state of the object to be heated 1 can be detected more accurately.
- the directional coupler 6 has both functions of an incident wave detection unit and a reflected wave detection unit.
- the incident wave detection unit and the reflected wave detection unit may be provided separately.
- the incident wave detection unit may be disposed closer to the magnetron 3 than the standing wave stabilization unit 5.
- FIG. 2 is a schematic diagram illustrating a first modification of the microwave heating device 50.
- FIG. 2 also schematically shows the in-tube standing wave generated inside the waveguide 10 as in FIG.
- the microwave heating device 50 further includes a directional coupler 60 having the same configuration as the directional coupler 6 in addition to the directional coupler 6. That is, the directional coupler 60 includes a second reflected wave detection unit having the same configuration as the reflected wave detection unit provided in the directional coupler 6. The directional coupler 60 is disposed closer to the magnetron 3 than the standing wave stabilizer 5.
- the second reflected wave detection unit can also detect a part of the reflected wave that passes through the standing wave stabilizing unit 5 and returns to the magnetron 3. Thereby, for example, when the amount of reflected waves is very large, the magnetron 3 can be stopped to prevent the magnetron 3 from being broken.
- the standing wave stabilizing portion 5 is constituted by a protruding portion protruding into the waveguide 10.
- the standing wave stabilizing unit 5 is not limited to the present embodiment as long as the position of the standing wave in the tube is stabilized by locally narrowing the waveguide 10 and disturbing the propagation of the microwave.
- FIG. 3 is a schematic diagram showing a second modification of the microwave heating device 50.
- FIG. 3 also schematically shows the in-tube standing wave generated inside the waveguide 10 as in FIGS. 1 and 2.
- the waveguide 10 has a bent portion 10b bent in an L shape.
- the cross-sectional area of the bent portion 10b indicated by the dotted line in FIG. 3 is larger than the cross-sectional area of the other part of the waveguide 10. For this reason, the node of the in-tube standing wave is easily fixed at the center of the bent portion 10b (the center of the dotted line in FIG. 3).
- the bent portion 10 b constitutes the standing wave stabilizing portion 5.
- a waveguide 10 shown in FIG. 1 is a rectangular waveguide having a uniform cross-sectional area except for a portion where the standing wave stabilizing portion 5 is disposed.
- FIG. 4 is a schematic diagram illustrating a third modification of the microwave heating device 50.
- FIG. 4 also schematically shows the standing wave in the tube generated inside the waveguide 10, as in FIGS.
- the waveguide 10 is a rectangular waveguide whose sectional area gradually decreases from the magnetron 3 toward the heating chamber 2.
- the waveguide 10 of the third modified example has no locally narrow portion other than the standing wave stabilizing portion 5. For this reason, the waveguide 10 of a 3rd modification can acquire the effect similar to the waveguide 10 shown in FIG.
- the standing wave stabilizer 5 shown in FIG. 1 is composed of one element.
- the standing wave stabilizer 5 may be composed of a plurality of elements.
- the directional coupler 6 may be disposed closer to the heating chamber 2 than the components of the standing wave stabilizing unit 5 disposed closest to the heating chamber 2.
- the motor 9 rotates the antenna 4.
- the antenna 4 may be an opening formed so as to radiate microwaves propagating through the waveguide 10 into the heating chamber 2 as circularly polarized microwaves.
- FIG. 5 is a perspective view of the directional coupler 6.
- FIG. 6 is a perspective view of the directional coupler 6 with the printed circuit board 12 removed.
- FIG. 7 is a plan view of the waveguide 10.
- FIG. 8 is a circuit configuration diagram of the printed circuit board 12 provided in the directional coupler 6.
- FIG. 1 to 4 illustrate that the directional coupler 6 is provided on the bottom wall of the waveguide 10.
- FIG. 5 and FIG. 6 illustrate that the directional coupler 6 is provided on the upper wall of the waveguide 10 for easy understanding.
- the cross section orthogonal to the tube axis L1 of the waveguide 10 has a rectangular shape.
- the tube axis L1 is a central axis in the width direction of the waveguide 10.
- the directional coupler 6 includes a cross opening 11, a printed board 12, and a support portion 14.
- the cross opening 11 is an X-shaped opening disposed on the wide surface 10 a of the waveguide 10.
- the printed circuit board 12 is disposed outside the waveguide 10 so as to face the cross opening 11.
- the support unit 14 supports the printed circuit board 12 on the outer surface of the waveguide 10.
- the cross opening 11 is disposed at a position that does not intersect the tube axis L1 of the waveguide 10 in plan view.
- the opening center portion 11c of the cross opening 11 is disposed away from the tube axis L1 of the waveguide 10 by a dimension D1 in plan view.
- the dimension D1 is, for example, 1 ⁇ 4 of the width of the waveguide 10.
- the cross opening 11 radiates the microwave propagating through the waveguide 10 toward the printed circuit board 12 as a circularly polarized microwave.
- the opening shape of the cross opening 11 includes the width and height of the waveguide 10, the power level and frequency band of the microwave propagating through the waveguide 10, the power level of the circularly polarized microwave radiated from the cross opening 11, and the like. It is determined according to the conditions.
- the width of the waveguide 10 is 100 mm
- the height is 30 mm
- the thickness of the wall surface of the waveguide 10 is 0.6 mm
- the maximum power level of the microwave propagating through the waveguide 10 is 1000 W
- the frequency band is 2450 MHz.
- the maximum power level of the circularly polarized microwave radiated from the cross opening 11 is about 10 mW
- the length 11w and the width 11d of the cross opening 11 are determined to be 20 mm and 2 mm, respectively.
- the cross opening 11 includes a first long hole 11e and a second long hole 11f that intersect each other.
- the opening center part 11c of the cross opening 11 coincides with the opening intersection where the first long hole 11e and the second long hole 11f intersect.
- the cross opening 11 is formed symmetrically with respect to the perpendicular L2.
- the perpendicular L2 is orthogonal to the tube axis L1 and passes through the opening center portion 11c.
- first long hole 11e and the second long hole 11f intersect at an angle of 90 degrees.
- first long hole 11e and the second long hole 11f may intersect at an angle of 60 degrees or 120 degrees.
- the electric field reciprocates along the microwave transmission direction without rotating.
- the cross opening 11 radiates linearly polarized microwaves.
- the opening center portion 11c is slightly deviated from the tube axis L1, the electric field rotates. However, when the opening center portion 11c is close to the tube axis L1 (as the dimension D1 is close to 0 mm), an distorted electric field is generated. In this case, the cross opening 11 radiates elliptically polarized microwaves.
- the dimension D1 is set to about 1 ⁇ 4 of the width of the waveguide 10.
- a substantially circular electric field is generated.
- the cross opening 11 emits a substantially circularly polarized microwave.
- the rotation direction of the circularly polarized microwave becomes clearer.
- the incident wave and the reflected wave can be separated and detected with high accuracy.
- the printed circuit board 12 has a substrate back surface 12b facing the cross opening 11 and a substrate surface 12a opposite to the substrate back surface 12b.
- the substrate surface 12a has a copper foil (not shown) formed as an example of a microwave reflecting member so as to cover the entire substrate surface 12a. This copper foil prevents the circularly polarized microwave radiated from the cross opening 11 from passing through the printed circuit board 12.
- a microstrip line 13 which is an example of a coupled line is disposed on the back surface 12b of the substrate.
- the microstrip line 13 is constituted by a transmission line having a characteristic impedance of approximately 50 ⁇ , for example.
- the microstrip line 13 is arranged so as to surround the opening center portion 11 c of the cross opening 11.
- the effective length ⁇ re of the microstrip line 13 will be described.
- the width of the microstrip line 13 is w
- the thickness of the printed circuit board 12 is h
- the speed of light is c
- the frequency of electromagnetic waves is f
- the relative dielectric constant of the printed circuit board is ⁇ r
- the effective length ⁇ of the microstrip line 13 re is expressed by the following equation.
- the effective length ⁇ re is the wavelength of the electromagnetic wave propagating through the microstrip line 13.
- the microstrip line 13 includes a first transmission line 13a and a second transmission line 13b.
- the 1st transmission line 13a has the 1st straight part 13aa which is an example of the 1st crossing line part.
- the first straight portion 13aa intersects the first long hole 11e at a position farther from the tube axis L1 than the opening center portion 11c in plan view.
- the first straight portion 13aa extends away from the tube axis L1 as it approaches the vertical line L2.
- the second transmission line 13b has a second straight line portion 13ba which is an example of a second crossing line portion.
- the second straight portion 13ba intersects the second long hole 11f at a position farther from the tube axis L1 than the opening center portion 11c in plan view.
- the second straight portion 13ba extends away from the tube axis L1 as it approaches the vertical line L2.
- the first straight part 13aa and the second straight part 13ba are arranged symmetrically with respect to the perpendicular L2.
- the first transmission line 13a and the second transmission line 13b are connected to each other outside the rectangular area E1 in a plan view and at a position farther from the tube axis L1 than the rectangular area E1.
- the first straight portion 13aa intersects the first long hole 11e at a position closer to the opening tip portion 11ea than to the opening center portion 11c in plan view.
- the first straight portion 13aa is orthogonal to the first long hole 11e in plan view.
- the second straight portion 13ba intersects the second elongated hole 11f at a position closer to the opening tip portion 11fa than the opening center portion 11c in plan view.
- the second straight portion 13ba is orthogonal to the second long hole 11f in plan view.
- One end of the first transmission line 13a and one end of the second transmission line 13b are connected to each other outside a region overlapping the cross opening 11 in plan view.
- One end of the first straight portion 13aa is connected to one end of the second straight portion 13ba outside the rectangular region E1 circumscribing the cross opening 11.
- the first coupling point P1 is a point where the first straight portion 13aa and the first long hole 11e intersect each other in plan view.
- the second coupling point P2 is a point where the second straight portion 13ba and the second long hole 11f intersect each other in plan view.
- a straight line connecting the first coupling point P1 and the second coupling point P2 is defined as a virtual straight line L3.
- the total distance between the first transmission line 13a and the second transmission line 13b that are further away from the tube axis L1 than the virtual straight line L3 is set to 1 ⁇ 4 of the effective length ⁇ re .
- a line passing through the opening center 11c and parallel to the tube axis L1 in plan view is defined as a parallel line L4.
- the total distance between the first transmission line 13a and the second transmission line 13b that are further from the tube axis L1 than the parallel line L4 is set to 1 ⁇ 2 of the effective length ⁇ re .
- the first transmission line 13a includes a third straight part 13ab that connects the other end of the first straight part 13aa and the first output part 131.
- the first straight part 13aa and the third straight part 13ab are connected to form an obtuse angle (for example, 135 degrees).
- the second transmission line 13b includes a fourth straight line portion 13bb that connects the other end of the second straight line portion 13ba and the second output portion 132.
- the second straight portion 13ba and the fourth straight portion 13bb are connected to form an obtuse angle (for example, 135 degrees).
- the third straight portion 13ab and the fourth straight portion 13bb are disposed in parallel to the perpendicular line L2.
- the first output unit 131 and the second output unit 132 are disposed outside the support unit 14 (see FIGS. 5 and 6) in plan view.
- the first detection circuit 15 is connected to the first output unit 131.
- the first detection circuit 15 detects the level of the microwave signal and outputs the detected level of the microwave signal as a control signal.
- the second detection circuit 16 is connected to the second output unit 132.
- the second detection circuit 16 detects the level of the microwave signal and outputs the detected level of the microwave signal as a control signal.
- each of the first detection circuit 15 and the second detection circuit 16 includes a smoothing circuit (not shown) configured by a chip resistor and a Schottky diode.
- the first detection circuit 15 rectifies the microwave signal from the first output unit 131 and converts the rectified microwave signal into a DC voltage.
- the converted DC voltage is output to the first detection output unit 18.
- the first detection output unit 18 transmits a detection signal 6a corresponding to the incident wave to the control unit 7 (see FIG. 1).
- the second detection circuit 16 rectifies the microwave signal from the second output unit 132 and converts the rectified microwave signal into a DC voltage.
- the converted DC voltage is output to the second detection output unit 19.
- the second detection output unit 19 transmits a detection signal 6b corresponding to the reflected wave to the control unit 7 (see FIG. 1).
- the printed circuit board 12 has four holes (holes 20a, 20b, 20c, 20d) for attaching the printed circuit board 12 to the waveguide 10.
- a copper foil serving as a ground is formed around the holes 20a, 20b, 20c, and 20d on the substrate back surface 12b.
- the portion where the copper foil is formed has the same potential as the substrate surface 12a.
- the printed circuit board 12 is fixed to the waveguide 10 by being screwed to the support portion 14 with screws 201a, 201b, 201c, 201d (see FIG. 5) through holes 20a, 20b, 20c, 20d.
- the support part 14 has screw parts 202a, 202b, 202c, 202d for screwing screws 201a, 201b, 201c, 201d, respectively.
- the screw portions 202a, 202b, 202c, and 202d are formed on a flange portion provided on the support portion 14.
- the support portion 14 has conductivity and is disposed so as to surround the cross opening 11 in a plan view.
- the support portion 14 functions as a shield that prevents the circularly polarized microwave radiated from the cross opening 11 from leaking out of the support portion 14.
- the support portion 14 has a groove 141 and a groove 142 through which the third straight portion 13ab and the fourth straight portion 13bb of the microstrip line 13 pass.
- the grooves 141 and 142 function as an extraction unit for extracting the microwave signal propagating through the microstrip line 13 to the outside of the support unit 14.
- the grooves 141 and 142 can be formed by recessing the flange portion of the support portion 14 so as to be separated from the printed circuit board 12.
- FIG. 5 and 6 illustrate a connector 18a and a connector 19a respectively connected to the first detection output unit 18 and the second detection output unit 19 shown in FIG.
- the directional coupler 6 functions as both an incident wave detection unit and a reflected wave detection unit.
- the directional coupler 6 may be configured to have only one function of an incident wave detection unit and a reflected wave detection unit.
- the directional coupler 6 is configured by replacing one of the first detection circuit 15 and the second detection circuit 16 shown in FIG. 8 with a termination circuit (for example, a chip resistance of 50 ⁇ ).
- a magnetic field distribution 10d generated in the waveguide 10 is indicated by a dotted concentric ellipse.
- the direction of the magnetic field of the magnetic field distribution 10d is indicated by an arrow.
- the magnetic field distribution 10d moves in the waveguide 10 in the microwave transmission direction A1 with time.
- the magnetic field indicated by the broken-line arrow B1 excites the first long hole 11e of the cross opening 11.
- the magnetic field indicated by the broken line arrow B2 excites the second long hole 11f of the cross opening 11.
- microwave rotation direction 32 By repeating these states sequentially, circularly polarized microwaves rotating counterclockwise (microwave rotation direction 32) are radiated out of the waveguide 10 from the cross opening 11.
- the microwave propagating along the arrow 30 shown in FIG. 7 is an incident wave
- the microwave propagating along the arrow 31 is a reflected wave
- the incident wave is in the same direction as the transmission direction A1 shown in FIG. Propagate. Therefore, as described above, the circularly polarized microwave rotating counterclockwise is radiated out of the waveguide 10 from the cross opening 11.
- the reflected wave propagates in the opposite direction to the transmission direction A1 shown in FIG. Therefore, a circularly polarized microwave rotating clockwise is radiated out of the waveguide 10 from the cross opening 11.
- the circularly polarized microwave radiated out of the waveguide 10 is coupled to the microstrip line 13 facing the cross opening 11.
- the microstrip line 13 outputs most of the microwave radiated from the cross opening 11 by the incident wave propagating along the arrow 30 to the first output unit 131.
- the microstrip line 13 outputs most of the microwave radiated from the cross opening 11 to the second output unit 132 by the reflected wave propagating along the arrow 31.
- the incident wave and the reflected wave can be separated and detected with higher accuracy. This will be described in more detail with reference to FIG.
- FIG. 10 is a diagram for explaining the direction and amount of the microwave propagating through the microstrip line 13 and changing with time. There is a gap between the microstrip line 13 and the cross opening 11. Originally, the time required for the microwave to reach the microstrip line 13 is delayed by the time for the microwave to propagate through the gap. However, for the sake of convenience, it is assumed here that there is no time delay.
- the first coupling point P1 is substantially the center of the coupling region where the first long hole 11e and the microstrip line 13 intersect.
- the second coupling point P2 is substantially the center of the coupling region where the second long hole 11f and the microstrip line 13 intersect.
- the amount of microwave propagating through the microstrip line 13 (current flowing through the linkage of magnetic fields) is expressed by the thickness of the solid arrow line. That is, the line is thick when the amount of microwave propagating through the microstrip line 13 is large, and the line is thin when the amount of microwave propagating through the microstrip line 13 is small.
- the magnetic field indicated by the broken line arrow B1 excites the first long hole 11e of the cross opening 11, and the microwave indicated by the thick solid line arrow M1 is generated at the first coupling point P1. Arise. This microwave propagates through the microstrip line 13 toward the second coupling point P2.
- the effective propagation time of the microwaves by the microstrip line 13 between the first coupling point P1 and the second coupling point P2 is designed at time t1, it occurs at the first coupling point P1 at the time shown in FIG.
- the microwave propagates to the second coupling point P2 at the time shown in FIG. That is, at the time shown in FIG. 10B, the microwave indicated by the solid line arrow M1 and the microwave indicated by the solid line arrow M2 are generated at the second coupling point P2.
- the microstrip line 13 can be easily designed.
- the magnetic field indicated by the broken line arrow B3 excites the first long hole 11e of the cross opening 11, and the first coupling point P1 has a micro indicated by a thin solid line arrow M3.
- a wave is generated.
- the microwave propagates through the microstrip line 13 toward the first output unit 131, and is output to the first output unit 131 after a predetermined time has elapsed.
- the reason why the thickness of the solid line arrow M3 is thinner than the thickness of the solid line arrow M1 is as follows. As described above, circularly polarized microwaves rotating counterclockwise (microwave rotation direction 32) are radiated from the cross opening 11.
- the microwave indicated by the solid arrow M1 generated at the first coupling point P1 propagates in substantially the same direction as the rotation direction of the microwave radiated from the cross opening 11. For this reason, the energy of the microwave indicated by the solid line arrow M1 is not reduced.
- the microwave indicated by the solid arrow M3 generated at the first coupling point P1 propagates in a direction almost opposite to the rotation direction of the microwave radiated from the cross opening 11. For this reason, the energy of the coupled microwave is reduced. Therefore, the amount of microwave indicated by the solid line arrow M3 is smaller than the amount of microwave indicated by the solid line arrow M1.
- the magnetic field indicated by the broken line arrow B4 excites the second long hole 11f of the cross opening 11, and the second coupling point P2 has the micro indicated by the thin solid line arrow M4.
- a wave is generated. This microwave propagates toward the first coupling point P1.
- the reason for reducing the thickness of the solid line arrow M4 is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
- the microwave indicated by the thin solid line arrow M4 propagates in the opposite direction to the microwave indicated by the thick solid line arrow M1. For this reason, the microwave indicated by the solid line arrow M ⁇ b> 4 is canceled and disappears, and is not output to the first output unit 131.
- the amount of microwaves (M1 + M2 ⁇ M4) output to the second output unit 132 is much larger than the amount of microwaves (M3) output to the first output unit 131. Therefore, the microstrip line 13 outputs most of the microwaves radiated counterclockwise from the cross opening 11 by the reflected wave propagating along the arrow 31 to the second output unit 132. On the other hand, the microstrip line 13 outputs most of the microwave radiated clockwise from the cross opening 11 by the incident wave propagating along the arrow 30 to the first output unit 131.
- the amount of microwave radiated from the cross opening 11 with respect to the amount of microwave propagating through the waveguide 10 is determined by the shape and dimensions of the waveguide 10 and the cross opening 11. For example, when the shape and size are set as described above, the amount of microwave radiated from the cross opening 11 with respect to the amount of microwave propagating through the waveguide 10 is about 1/100000 (about ⁇ 50 dB).
- FIG. 11 is a diagram for explaining the direction and amount of the microwave propagating through the microstrip line 13 and changing with time.
- (A) to (d) of FIG. 11 are diagrams showing a state where time t1 / 2 has elapsed from (a) to (d) of FIG.
- the magnetic field distribution 10d moves in the waveguide 10 in the microwave transmission direction A1 with time. For this reason, as shown in FIGS. 11A to 11D, the magnetic fields indicated by broken arrows B12, B23, B34, and B41 excite the first long hole 11e and the second long hole 11f. As a result, the circularly polarized microwave radiated out of the waveguide 10 is coupled to the microstrip line 13.
- a region where the perpendicular line L2 and the parallel line L4 intersect with the microstrip line 13 in plan view is referred to as a coupling region.
- the third coupling point P3 is substantially the center of the coupling region where the perpendicular line L2 and the microstrip line 13 intersect.
- the fourth coupling point P4 is substantially the center of the coupling region where the parallel line L4 and the first transmission line 13a intersect.
- the fifth coupling point P5 is substantially the center of the coupling region where the parallel line L4 and the second transmission line 13b intersect.
- the magnetic field indicated by the dashed arrow B23 excites the cross opening 11.
- a microwave indicated by a thick solid arrow M12a is generated at the fifth coupling point P5
- a microwave indicated by a thin solid arrow M12b is generated at the fourth coupling point P4.
- the reason for reducing the thickness of the solid line arrow M12b is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
- the two microwaves are added and propagated through the microstrip line 13 toward the second output unit 132, and are output to the second output unit 132 after a predetermined time has elapsed.
- the distance of the first transmission line 13a that is further from the tube axis L1 than the parallel line L4 is set to 1 ⁇ 4 of the effective length ⁇ re. .
- the microwave indicated by the thin solid arrow M12b generated at the fourth coupling point P4 propagates through the microstrip line 13 toward the first output unit 131, and is output to the first output unit 131 after a predetermined time has elapsed.
- the magnetic field indicated by the broken arrow B34 excites the cross opening 11, and the microwave indicated by the thin solid arrow M13b is generated at the third coupling point P3.
- This microwave propagates along the microstrip line 13 toward the first output unit 131.
- the reason for reducing the thickness of the solid line arrow M13b is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
- the magnetic field indicated by the dashed arrow B41 excites the cross opening 11.
- a microwave indicated by a thin solid arrow M14b is generated at the fifth connection point P5
- a microwave indicated by a thick solid line arrow M14a is generated at the fourth connection point P4.
- the microwave indicated by the thin solid arrow M14b propagates through the microstrip line 13 toward the third coupling point P3.
- the reason for reducing the thickness of the solid line arrow M14b is the same as the reason for reducing the thickness of the solid line arrow M3 described above.
- the microwave indicated by the thick solid line arrow M14a propagates through the microstrip line 13 toward the third coupling point P3.
- the effective propagation time of the microwaves by the microstrip line 13 between the third coupling point P3 and the fourth coupling point P4 is designed at time t1, it occurs at the third coupling point P3 at the time shown in FIG.
- the microwave propagates to the fourth coupling point P4 at the time shown in FIG.
- the microwave indicated by the thin solid arrow M13b and the microwave indicated by the thick solid arrow M14a are generated at the fourth coupling point P4.
- the distance of the second transmission line 13b that is further away from the tube axis L1 than the parallel line L4 is set to 1 ⁇ 4 of the effective length ⁇ re. .
- the total distance between the first transmission line 13a and the second transmission line 13b that are further away from the tube axis L1 than the parallel line L4 is set to 1 ⁇ 2 of the effective length ⁇ re .
- the microwave indicated by the thin solid line arrow M13b propagates in the opposite direction to the microwave indicated by the thick solid line arrow M14a. For this reason, the microwave indicated by the thin solid arrow M13b is canceled and disappears, and is not output to the first output unit 131.
- the microwave indicated by the thin solid line arrow M14b propagates in the opposite direction to the microwave indicated by the thick solid line arrow M11 and the thick solid line arrow M14a. For this reason, the microwave indicated by the thin solid arrow M ⁇ b> 14 b is canceled and disappears, and is not output to the first output unit 131.
- the microstrip line 13 outputs most of the microwave radiated counterclockwise from the cross opening 11 to the second output unit 132 by the reflected wave propagating in the direction of the arrow 31.
- the microstrip line 13 outputs most of the microwaves radiated clockwise from the cross opening 11 by the incident wave propagating in the direction of the arrow 30 to the first output unit 131.
- the incident wave detection unit and the reflected wave detection unit share the microstrip line 13 that faces the cross opening 11 disposed on the wall surface of the waveguide 10.
- the incident wave detection unit extracts an incident wave from one end of the microstrip line 13.
- the reflected wave detection unit extracts the reflected wave from the other end of the microstrip line 13.
- the directional coupler 6 has a cross opening 11 that radiates circularly polarized microwaves that is disposed at a position that does not intersect the tube axis L1 of the waveguide 10 in a plan view.
- the rotation directions of the circularly polarized microwaves radiated from the cross opening 11 are opposite to each other between the incident wave and the reflected wave.
- the first transmission line 13a includes the first straight line portion 13aa
- the second transmission line 13b includes the second straight line portion 13ba.
- the first transmission line 13a and the second transmission line 13b are connected to each other at a position outside the rectangular region E1 and away from the tube axis L1 in plan view.
- the first straight line portion 13aa and the second straight line portion 13ba can be made longer, and the current flow through the microstrip line 13 can be suppressed from being hindered. As a result, incident waves and reflected waves can be separated and detected with higher accuracy.
- the first straight portion 13aa intersects the first long hole 11e at a position closer to the opening tip portion 11ea than the opening center portion 11c in plan view.
- the second straight portion 13ba intersects the second long hole 11f at a position closer to the opening tip portion 11fa than the opening center portion 11c in plan view.
- a stronger magnetic field is generated around the opening tip portions 11ea and 11fa than around the opening center portion 11c.
- a stronger magnetic field is coupled to the microstrip line 13. For this reason, more current flows through the microstrip line 13. As a result, incident waves and reflected waves can be separated and detected with higher accuracy.
- the first straight portion 13aa is orthogonal to the first long hole 11e in plan view.
- the transmission direction of the microwave indicated by the solid line arrow M1 generated at the first coupling point P1 is made the same as the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M1 can be further increased.
- the transmission direction of the microwave indicated by the solid arrow M3 generated at the first coupling point P1 is reversed to the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M3 can be further reduced. As a result, incident waves and reflected waves can be separated and detected with higher accuracy.
- the second straight portion 13ba is orthogonal to the second long hole 11f in plan view.
- the transmission direction of the microwave indicated by the solid arrow M ⁇ b> 2 generated at the second coupling point P ⁇ b> 2 is made the same as the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M2 can be further increased.
- the transmission direction of the microwave indicated by the solid arrow M4 generated at the second coupling point P2 is reversed to the rotation direction 32 of the microwave radiated from the cross opening 11. Thereby, the amount of microwaves indicated by the solid line arrow M4 can be further reduced. As a result, incident waves and reflected waves can be separated and detected with higher accuracy.
- the microstrip line 13 includes a first straight portion 13aa, a second straight portion 13ba, a third straight portion 13ab, and a fourth straight portion 13bb.
- the first straight line portion 13aa and the third straight line portion 13ab that are adjacent to each other are connected to form an obtuse angle.
- the second straight portion 13ba and the fourth straight portion 13bb adjacent to each other are connected so as to form an obtuse angle.
- This configuration can reduce the number of portions that are bent at right angles in the microstrip line 13. Thereby, it can suppress that the flow of the electric current in a coupling line is inhibited. As a result, incident waves and reflected waves can be separated and detected with higher accuracy.
- the total distance between the first transmission line 13a and the second transmission line 13b that are further away from the tube axis L1 than the virtual straight line L3 is 1 ⁇ 4 of the effective length ⁇ re . Is set. With this configuration, incident waves and reflected waves can be separated and detected with higher accuracy.
- the total distance if it is set to approximately 1/4 of the effective length lambda re, need not necessarily be set to 1/4 of the effective length lambda re.
- the total distance between the first transmission line 13a and the second transmission line 13b that are further from the tube axis L1 than the parallel line L4 is 1 ⁇ 2 of the effective length ⁇ re .
- the total distance is not necessarily set to 1 ⁇ 2 of the effective length ⁇ re as long as the total distance is set to approximately 1 ⁇ 2 of the effective length ⁇ re .
- one end of the first transmission line 13a and one end of the second transmission line 13b are connected to form a right angle.
- the present disclosure is not limited to this.
- One end of the first transmission line 13a only needs to be connected to one end of the second transmission line 13b at a position deviated from the region of the cross opening 11 in plan view. In this region, the influence of the magnetic field is large.
- FIG. 12 to 17 are plan views showing first to sixth modified examples of the microstrip line 13, respectively. As shown in FIG. 12, the first transmission line 13a and the second transmission line 13b are bent so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b is away from the opening center portion 11c. You may do it.
- the first transmission line 13a and the second transmission line 13b are bent so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b approaches the opening center portion 11c. You may do it.
- the first transmission line 13a and the second transmission line 13b are curved so that the connection point between one end of the first transmission line 13a and one end of the second transmission line 13b approaches the opening center portion 11c. You may do it.
- first straight line portion 13aa and the second straight line portion 13ba correspond to the first intersecting line portion and the second intersecting line portion, respectively.
- first intersecting line part and the second intersecting line part may be an arcuate part 13ac and an arcuate part 13bc, respectively.
- the third straight portion 13ab and the fourth straight portion 13bb are parallel to the perpendicular L2.
- the present disclosure is not limited to this. As shown in FIG. 16, the third straight portion 13ab and the fourth straight portion 13bb may be parallel to the parallel line L4.
- first transmission line 13a and the second transmission line 13b have a plurality of linear portions.
- present disclosure is not limited to this.
- each of the first transmission line 13a and the second transmission line 13b may be composed of one straight line portion.
- the cross opening 11 is formed symmetrically with respect to the perpendicular L2.
- the perpendicular line L2 is orthogonal to the tube axis L1 and passes through the opening center portion 11c.
- the cross opening 11 may not be formed symmetrically with respect to the perpendicular L2.
- the 1st long hole 11e and the 2nd long hole 11f may cross
- the length of the first long hole 11e and the length of the second long hole 11f may be different from each other.
- the opening intersection where the first elongated hole 11e and the second elongated hole 11f intersect is displaced from the opening center portion 11c.
- the cross opening 11 may be formed in line symmetry with respect to a straight line slightly inclined with respect to the perpendicular L2 in plan view.
- FIG. 19 is a plan view of the orthogonal waveguide 251 for examining the detection accuracy of the reflected wave according to the position of the reflected wave detection unit.
- the orthogonal waveguide 251 includes a main waveguide 252 and a sub waveguide 253.
- the sub waveguide 253 is orthogonal to the main waveguide 252 and is coupled to the main waveguide 252 through an X-shaped opening 254 and an opening 255.
- the end 256 of the main waveguide 252 is closed and short-circuited. Microwave 257 entering from port Q (not shown) of the network analyzer is completely reflected at termination 256.
- ⁇ Part of the reflected wave returns to port Q.
- the remaining reflected waves are transmitted to the sub-waveguide 253 through the openings 254 and 255, and are divided into a microwave 258 and a microwave 259 in the sub-waveguide 253.
- Microwave 258 is transmitted to port S (not shown) of the network analyzer, and microwave 259 is transmitted to port T (not shown) of the network analyzer.
- Both the main waveguide 252 and the sub waveguide 253 have a symmetrical shape.
- the openings 254 and 255 have the same shape.
- the openings 254 and 255 are arranged symmetrically with respect to both the main waveguide 252 and the sub-waveguide 253. For this reason, the amount of the microwave 258 and the amount of the microwave 259 are equivalent.
- the main waveguide 252 and the sub-waveguide 253 have a waveguide width (usually referred to as “a” dimension) of about 100 mm.
- the in-tube wavelength ⁇ g of the microwave in the main waveguide 252 and the sub-waveguide 253 is about 154 mm.
- the S parameter actually observed is a general observation value of the network analyzer. Specifically, the ratio S31 of the microwave 258 transmitted to the port S with respect to the microwave 257 incident from the port Q and the ratio S41 of the microwave 259 transmitted to the port T with respect to the microwave 257 incident from the port Q. Are observed with a network analyzer. Since the ratios S31 and S41 may be considerably smaller than 1, they are generally expressed in decibels.
- the ratios S31 and S41 are measured while changing the distance Lsf from the end 256 of the main waveguide 252 to the openings 254 and 255 using microwaves having a frequency of 2450 to 2500 MHz.
- FIG. 20 is a graph of the results.
- the horizontal axis represents the distance Lsf [mm]
- the vertical axis represents the ratios S31 and S41 [dB]. Consider this result.
- the first feature relates to sensitivity.
- the ratios S31 and S41 are ⁇ 12 to ⁇ 21 dB.
- the ratios S31 and S41 are ⁇ 4 to ⁇ 8 dB. Accordingly, the ratios S31 and S41 are larger when the opening is disposed at the antinode than when the opening is disposed at the node.
- the present inventors have found that when an opening is placed on the belly, the reflected wave detected from the opening becomes large and the sensitivity is improved. Comparing the average values of the six graphs shown in FIG. 20, the difference between the ratio when the opening is at the node (about ⁇ 16 dB) and the ratio when the opening is at the belly (about ⁇ 6 dB) is 10 dB. That is, when the opening is arranged at the antinode position, the sensitivity is 10 times higher than when the opening is arranged at the node position.
- the second feature relates to frequency stability.
- the ratios S31 and S41 observed according to the change in frequency are ⁇ 12 to ⁇ 21 dB.
- the ratios S31 and S41 observed according to the change in frequency are ⁇ 4 to ⁇ 8 dB.
- the fluctuation width (about 4 dB) of the ratios S31 and S41 when the opening is at the antinode position is smaller than the fluctuation width (about 9 dB) of the ratios S31 and S41 when the opening is at the node position. That is, the present inventors have found that when an opening is arranged on the belly, stability with respect to the frequency of the reflected wave detected from the opening is improved.
- sensitivity and frequency stability can be improved by detecting the reflected wave at the antinode of the standing wave in the tube. As a result, the state of the object to be heated 1 can be detected more accurately.
- the detection accuracy of the reflected wave can be improved.
- These positions are located at a distance of 1/8 or less of the guide wavelength ⁇ g from the front and rear of the precise antinode position of the guide wave (or the center position of the two nodes).
- the ratios S31 and S41 at these positions are in the range of approximately ⁇ 5 to ⁇ 9 dB.
- the average value of the six graphs shown in FIG. 20 is about ⁇ 16 dB when the opening is placed at the node position, about ⁇ 6 dB when the opening is placed at the belly position, When the opening is arranged at the position, it is ⁇ 7 dB.
- the ratios S31 and S41 when the opening is arranged at the middle position between the abdomen and the node are 9 dB better than when the opening is arranged at the node position, and the difference from the case where the opening is arranged at the abdominal position is 1 dB. Not too much.
- the fluctuation range of the six graphs shown in FIG. 20 is about 9 dB when the opening is arranged at the position of the node, about 2 dB when the opening is arranged at the position of the antinode, When the opening is arranged at an intermediate position, it is about 4 dB.
- the ratios S31 and S41 in the case where the opening is arranged at the middle position between the abdomen and the node are considerably better than the case where the opening is arranged at the node position. . Therefore, if the opening is arranged at a position separated by 1/8 or less of the guide wavelength ⁇ g before and after the antinode position (or the center position of the two nodes), the reflected wave detection accuracy can be improved.
- FIG. 21 is an enlarged view of the periphery of the waveguide 10 in FIG.
- the microwave heating apparatus includes a heating chamber 2 that accommodates an object to be heated, a magnetron 3 that generates microwaves, a waveguide 10, and a directional coupler 6. With.
- the waveguide 10 transmits the microwave generated by the magnetron 3 to the heating chamber.
- the directional coupler 6 is disposed in the vicinity of the antinode 302 of the in-tube standing wave 301 generated in the waveguide 10.
- the directional coupler 6 includes a reflected wave detection unit that detects a part of the reflected wave that is a microwave returning from the heating chamber 2 to the magnetron 3.
- the antinodes 302 and the nodes 303 of the in-tube standing wave 301 appear alternately at every quarter of the in-tube wavelength ⁇ g.
- the reflected wave can be detected in the vicinity of the antinode 302 of the in-tube standing wave 301. Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- the center portion of the rectangular region E1 circumscribing the cross opening 11 is disposed between the two nodes 303 of the in-tube standing wave 301, so that the reflected wave detection unit is The including directional coupler 6 is disposed in the vicinity of the antinode 302 of the in-tube standing wave 301.
- the reflected wave can be detected in the vicinity of the antinode 302 of the in-tube standing wave 301. Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- the directional coupler 6 can be easily positioned.
- the rectangular region E1 circumscribing the cross opening 11 is disposed so as not to overlap the two nodes 303 of the in-tube standing wave 301, thereby including the reflected wave detection unit.
- the directional coupler 6 is disposed in the vicinity of the antinode 302 of the in-tube standing wave 301.
- the reflected wave can be detected at a position closer to the belly 302 of the in-tube standing wave 301. Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- the directional coupler 6 including the reflected wave detection unit is 1/8 or less of the in-tube wavelength ⁇ g before and after the center position of the two nodes 303 of the in-tube standing wave 301. It is arrange
- the reflected wave can be detected with a certain degree of accuracy at a position separated from the antinode 302 by 1/8 or less of the in-tube wavelength ⁇ g. Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- the directional coupler 6 including the reflected wave detection unit is an odd multiple of 1/4 of the guide wavelength ⁇ g from the end 304 of the waveguide 10 (three times in FIG. 21). Is disposed in the vicinity of the antinode 302 of the in-pipe standing wave 301.
- the reflected wave can be detected in the vicinity of the antinode 302 of the in-tube standing wave 301. Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- the microwave heating apparatus further includes the standing wave stabilizing unit 5 for stabilizing the position of the in-tube standing wave 301 generated in the waveguide 10.
- the directional coupler 6 including the reflected wave detection unit is arranged away from the standing wave stabilization unit 5 by a distance that is an odd multiple of 1/4 of the guide wavelength ⁇ g (1 time in FIG. 21). It is arranged near the antinode 302 of the standing wave 301.
- the reflected wave can be detected in the vicinity of the antinode 302 of the in-tube standing wave 301. Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- the standing wave stabilizing portion 5 is configured by a protruding portion that protrudes into the waveguide 10.
- a node 303 of the in-tube standing wave 301 is generated at the position of the protrusion.
- the directional coupler 6 including the reflected wave detection unit is disposed away from the protrusion by a distance that is an odd multiple of 1/4 of the guide wavelength ⁇ g, and detects the reflected wave in the vicinity of the antinode 302 of the guide wave 301 in the guide. . Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- the waveguide 10 includes the bent portion 10b bent in an L shape (see FIG. 3), and the standing wave stabilizing portion is configured by the bent portion 10b. Good.
- the node 303 of the in-tube standing wave 301 is generated at the position of the bent portion 10b.
- the directional coupler 6 including the reflected wave detection unit is arranged away from the bent portion 10b by a distance that is an odd multiple of 1/4 of the guide wavelength ⁇ g, and detects the reflected wave at the position of the antinode 302 of the guide wave 301 in the guide. To do. Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- the directional coupler 6 including the reflected wave detection unit is an integral multiple of 1 ⁇ 2 of the guide wavelength ⁇ g from the coupling position 305 between the magnetron 3 and the waveguide 10 (see FIG. 21), it is arranged in the vicinity of the antinode 302 of the in-tube standing wave 301.
- an antinode 302 of the in-tube standing wave 301 is generated at the coupling position 305.
- the directional coupler 6 including the reflected wave detection unit is disposed away from the coupling position 305 by a distance that is an integral multiple of 1 ⁇ 2 of the guide wavelength ⁇ g, and detects the reflected wave in the vicinity of the antinode 302 of the guide wave 301 in the guide. To do. Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- the microwave heating apparatus includes the antenna 4 that radiates the microwave transmitted through the waveguide 10 to the heating chamber 2.
- the directional coupler 6 including the reflected wave detection unit is disposed away from the coupling position 306 between the antenna 4 and the waveguide 10 by a distance that is an integral multiple of 1/2 the guide wavelength ⁇ g (1 time in FIG. 21). By this, it is arranged in the vicinity of the antinode 302 of the in-tube standing wave 301.
- an antinode 302 of the in-tube standing wave 301 is generated at the coupling position 306.
- the directional coupler 6 including the reflected wave detection unit is disposed away from the coupling position 306 by a distance that is an integral multiple of 1/2 of the guide wavelength ⁇ g, and detects the reflected wave in the vicinity of the antinode 302 of the guide wave 301 in the guide. To do. Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- the directional coupler 6 including the reflected wave detection unit includes a cross opening 11 provided in the waveguide 10 and a coupled line facing the cross opening 11 (see FIG. 8). ).
- the cross opening 11 is disposed in the vicinity of the antinode 302 of the in-tube standing wave 301.
- the reflected wave can be detected at the position of the antinode 302 of the in-tube standing wave 301. Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- the cross opening 11 includes a first long hole 11e and a second long hole 11f that intersect each other (see FIGS. 7 and 8), and the waveguide 10 in a plan view. It is provided at a position that does not intersect the tube axis.
- An opening intersection (see FIGS. 7 and 8) where the first long hole 11 e and the second long hole 11 f intersect is disposed in the vicinity of the antinode 302 of the in-tube standing wave 301.
- the microwave transmitted through the waveguide 10 is radiated to the heating chamber 2 as a circularly polarized microwave whose electric field rotates around the opening intersection.
- the circularly polarized microwave the incident wave and the reflected wave have opposite rotation directions, so that the incident wave and the reflected wave can be easily separated.
- a reflected wave is detected in the vicinity of the antinode 302 of the in-tube standing wave. Thereby, the detection accuracy of a reflected wave can be improved and the state of the to-be-heated object 1 can be detected more correctly.
- This disclosure is applicable to consumer or commercial microwave heating devices.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
- Constitution Of High-Frequency Heating (AREA)
Abstract
マイクロ波加熱装置(50)は、被加熱物(1)を収容する加熱室(2)と、マイクロ波を発生させるマグネトロン(3)と、マイクロ波を加熱室2に伝送する導波管(10)と、反射波の一部を検出する反射波検出部を含む方向性結合器(6)とを備える。方向性結合器(6)は、導波管(10)内に生じた管内定在波(301)の腹(302)の位置に配置される。本構成によれば、反射波の検出精度を向上させることができ、被加熱物(1)の状態をより正確に検出することができる。
Description
本開示は、電子レンジなどのマイクロ波加熱装置に関する。
従来、この種のマイクロ波加熱装置として、例えば、特許文献1に開示された装置が知られている。従来のマイクロ波加熱装置は、被加熱物を収容する加熱室と、マイクロ波を発生させるマイクロ波発生部と、マイクロ波を加熱室に伝搬させる導波管とを備える。導波管には、導波管内に生じた管内定在波の位置を安定させるための定在波安定部が設けられる。従来のマイクロ波加熱装置によれば、定在波安定部により管内定在波の位置の乱れを抑制することで、加熱室内に所望の位相のマイクロ波を継続的に放射することができる。その結果、加熱室内の被加熱物を均一に加熱することができる。
特許文献2、特許文献3には、加熱室からマイクロ波発生部に戻る反射波によりマイクロ波発生部が破壊されるのを防ぐため、反射波を検出する方向性結合器を導波管に設けたマイクロ波加熱装置が開示される。
しかしながら、従来のマイクロ波加熱装置においては、加熱が進むにつれて変化する被加熱物の状態をより正確に検出するという観点において、未だ改善の余地がある。特に、反射波の検出精度と導波管内の管内定在波との関係に着目した研究例は無く、方向性結合器を導波管のどこに配置するのが良いかがわからなかった。
本開示は、反射波の検出精度を向上させるとともに、被加熱物の状態をより正確に検出することができるマイクロ波加熱装置を提供することを目的とする。
本開示の一態様のマイクロ波加熱装置は、被加熱物を収容する加熱室と、マイクロ波を発生させるマイクロ波発生部と、導波管と、反射波検出部とを備える。導波管は、マイクロ波発生部により発生されたマイクロ波を加熱室に伝送する。反射波検出部は、導波管内に生じた管内定在波の腹の近傍に配置され、加熱室からマイクロ波発生部に戻るマイクロ波である反射波の一部を検出する。
本態様によれば、反射波の検出精度を向上させることができ、被加熱物の状態をより正確に検出することができる。
(本開示の基礎となった知見)
本発明者らは、被加熱物の状態をより正確に検出するために鋭意検討した結果、以下の知見を得た。
本発明者らは、被加熱物の状態をより正確に検出するために鋭意検討した結果、以下の知見を得た。
マイクロ波発生部により発生されたマイクロ波は、入射波として導波管を通して加熱室に伝搬する。加熱室内に伝搬したマイクロ波の一部は被加熱物に吸収される一方、他部は反射波として導波管を通して加熱室からマイクロ波発生部に戻る。
マイクロ波は、氷には吸収されにくい一方、水には吸収され易い。具体的には、水は、氷よりも約8000倍(誘電損失係数に基づく)多くのマイクロ波を吸収する。マイクロ波は、水の温度が上昇するにつれて水に吸収されにくくなる。このため、例えば、被加熱物が冷凍食品である場合、反射波と被加熱物によるマイクロ波の吸収量とには、図18に示すような関係がある。
図18は、被加熱物の温度上昇に伴って変化する入射波と反射波と被加熱物のマイクロ波の吸収量との関係を示すグラフである。図18において、横軸は被加熱物の温度を示し、縦軸は入射波、反射波の信号強度を示す。点線、実線、一点鎖線で示すグラフはそれぞれ、入射波、反射波、被加熱物によるマイクロ波の吸収量を示す。被加熱物によるマイクロ波の吸収量とは、入射波と反射波との差である。
図18に示すように、加熱の初期段階では、被加熱物のマイクロ波の吸収量は小さく、反射波は多い。加熱が進んで氷が溶けるにつれて、被加熱物によるマイクロ波の吸収量が急激に増加し、反射波が急激に減少する。氷が完全に溶けた時点で、被加熱物によるマイクロ波の吸収量は最大となり、反射波は最小となる。
その後、水の温度が上昇するにつれて、被加熱物によるマイクロ波の吸収量は徐々に減少し、反射波は徐々に増加する。従って、例えば、反射波が最小となる状態を検出することで、冷凍食品の解凍の終了を検出することができる。
本発明者らは、被加熱物の重量、形状などに関わらず、上記関係が成り立つことを知見し、加熱時の反射波の量の変化に基づいて、被加熱物の状態をより正確に検出できることを見出した。
本開示の第1の態様のマイクロ波加熱装置は、被加熱物を収容する加熱室と、マイクロ波を発生させるマイクロ波発生部と、導波管と、反射波検出部とを備える。導波管は、マイクロ波発生部により発生されたマイクロ波を加熱室に伝送する。反射波検出部は、導波管内に生じた管内定在波の腹の近傍に配置され、加熱室からマイクロ波発生部に戻るマイクロ波である反射波の一部を検出する。
本開示の第2の態様のマイクロ波加熱装置では、第1の態様に加えて、反射波検出部が、管内定在波の二つの節の間に配置されることで、管内定在波の腹の近傍に配置される。
本開示の第3の態様のマイクロ波加熱装置では、第2の態様に加えて、反射波検出部が、管内定在波の二つの節に重ならないように配置されることで、管内定在波の腹の近傍に配置される。
本開示の第4の態様のマイクロ波加熱装置では、第3の態様に加えて、反射波検出部が、管内定在波の二つの節の中央の位置から前後に管内定在波の管内波長の1/8以下だけ離れて配置されることで、管内定在波の腹の近傍に配置される。
本開示の第5の態様のマイクロ波加熱装置では、第1の態様に加えて、反射波検出部が、導波管の終端から管内定在波の管内波長の1/4の奇数倍の距離だけ離れて配置されることで、管内定在波の腹の近傍に配置される。
本開示の第6の態様のマイクロ波加熱装置は、第1の態様に加えて、導波管内に生じた管内定在波の位置を安定させる定在波安定部をさらに有する。反射波検出部は、定在波安定部から管内定在波の管内波長の1/4の奇数倍の距離だけ離れて配置されることで、管内定在波の腹の近傍に配置される。
本開示の第7の態様のマイクロ波加熱装置では、第6の態様に加えて、定在波安定部が、導波管内に突出する突起部で構成される。
本開示の第8の態様のマイクロ波加熱装置では、第6の態様に加えて、導波管が、L字状に屈曲した屈曲部を有し、定在波安定部が、屈曲部で構成される。
本開示の第9の態様のマイクロ波加熱装置では、第1の態様に加えて、反射波検出部が、マイクロ波発生部と導波管との結合位置から管内定在波の管内波長の1/2の整数倍の距離だけ離れて配置されることで、管内定在波の腹の近傍に配置される。
本開示の第10の態様のマイクロ波加熱装置は、第1の態様に加えて、導波管により伝送されたマイクロ波を加熱室に放射するマイクロ波放射部をさらに有する。反射波検出部は、マイクロ波放射部と導波管との結合位置から管内定在波の管内波長の1/2の整数倍の距離離れて配置されることで、管内定在波の腹の近傍に配置される。
本開示の第11の態様のマイクロ波加熱装置では、第1の態様に加えて、反射波検出部が、導波管に設けられた開口部と、開口部に対向する結合線路とを有する。開口部が、管内定在波の腹の近傍に配置される。
本開示の第12の態様のマイクロ波加熱装置では、第11の態様に加えて、開口部が、互いに交差する第1長孔と第2長孔とを含み、平面視において導波管の管軸と交差しない位置に設けられ、第1長孔と第2長孔が交差する開口交差部は、管内定在波の腹の近傍に配置される。
以下、本開示の実施の形態に係るマイクロ波加熱装置について、図面を参照しながら説明する。
(実施の形態)
図1は、本開示の実施の形態に係るマイクロ波加熱装置50の概略図である。図1に示すように、マイクロ波加熱装置50は、被加熱物1を収容する加熱室2と、マグネトロン3と、導波管10とを備える。マグネトロン3は、マイクロ波を発生させるマイクロ波発生部の一例である。導波管10は、マグネトロン3により発生されたマイクロ波を加熱室2に伝送する。
図1は、本開示の実施の形態に係るマイクロ波加熱装置50の概略図である。図1に示すように、マイクロ波加熱装置50は、被加熱物1を収容する加熱室2と、マグネトロン3と、導波管10とを備える。マグネトロン3は、マイクロ波を発生させるマイクロ波発生部の一例である。導波管10は、マグネトロン3により発生されたマイクロ波を加熱室2に伝送する。
被加熱物1は、例えば冷凍食品である。加熱室2は、例えば直方体の筐体で構成される。加熱室2には、被加熱物1を載置する載置台2aが設けられる。載置台2aは、ガラス、セラミックなどのマイクロ波を透過しやすい材料で構成される。
導波管10は、長方形に形成された断面を有する方形導波管である。アンテナ4は、載置台2aの下方に配置される。導波管10を伝搬するマイクロ波は、マイクロ波放射部の一例であるアンテナ4によって加熱室2内に放射される。
このマイクロ波によって、導波管10内には、マグネトロン3からアンテナ4に向かうマイクロ波の伝送方向に、マイクロ波の管内定在波が生じる。図1は、導波管10の内部に生じた管内定在波を模式的に図示する。導波管10の管内波長λgは、マグネトロン3の発振周波数と導波管10の形状とによって決まる。
管内定在波は、導波管10の長手方向において管内波長λgの1/2の長さごとに繰り返す腹と節とを有する。マイクロ波の伝送方向における導波管10の終端には、必ず節が発生する。マグネトロン3がマイクロ波を放射する部分には、必ず腹が発生する。
導波管10には、導波管10内に生じた管内定在波の位置を安定させるための定在波安定部5が設けられる。本実施の形態において、定在波安定部5は、導波管10内に突出することで、導波管10を局所的に狭めるように構成された突起部である。
定在波安定部5は、導波管10内におけるマグネトロン3近傍のインピーダンスと加熱室2近傍のインピーダンスとを整合させる。定在波安定部5は、マイクロ波の伝送方向における導波管10の終端から管内波長λgの1/2の整数倍の距離だけ離れて配置される。これにより、定在波安定部5は、管内定在波の節を定在波安定部5の近傍に固定する。
導波管10の壁面(幅広面(Wide Plane))には、入射波検出部および反射波検出部の両方の機能を有する方向性結合器6が設けられる。入射波検出部は、マグネトロン3から加熱室2に伝搬するマイクロ波である入射波の一部を検出する。反射波検出部は、加熱室2からマグネトロン3に戻るマイクロ波である反射波の一部を検出する。
方向性結合器6は、定在波安定部5よりも加熱室2寄りに配置される。具体的には、方向性結合器6と定在波安定部5とは、管内定在波の管内波長λgの1/4の奇数倍(本実施の形態では1倍)の距離だけマイクロ波の伝送方向(図1における左右方向)に離れて配置される。方向性結合器6は、定在波安定部5とアンテナ4との間に配置される。
方向性結合器6は、入射波、反射波に応じて検出信号6a、検出信号6bをそれぞれ検出し、検出信号6a、検出信号6bを制御部7に送信する。方向性結合器6の具体的な構成については、後で詳しく説明する。
制御部7は、検出信号6a、6bに加えて信号7aを受信する。信号7aは、マイクロ波加熱装置50の入力部(図示せず)により設定された加熱条件と、センサ(図示せず)により検出された被加熱物1の重量、蒸気の量とを含む。
制御部7は、検出信号6a、6bと信号7aとに基づいて、駆動電源8とモータ9とを制御する。駆動電源8は、マイクロ波を発生させるための電力をマグネトロン3に供給する。モータ9はアンテナ4を回転させる。このようにして、マイクロ波加熱装置50は、加熱室2に供給されたマイクロ波により、加熱室2に収容された被加熱物1を加熱する。
本実施の形態では、方向性結合器6が、定在波安定部5よりも加熱室2寄りに配置される。この構成によれば、方向性結合器6が定在波安定部5から受ける影響を低減することができる。これにより、被加熱物1の状態をより正確に検出することができる。その結果、例えば、冷凍食品の解凍状況を正確に把握することができる。それに応じて加熱量を制御することで、解凍時間を短縮することも可能になる。
本実施の形態では、方向性結合器6と定在波安定部5とは、管内定在波の管内波長λgの1/4の奇数倍の距離だけマイクロ波の伝送方向に離れて配置される。この構成によれば、方向性結合器6を管内定在波の腹の近傍に配置することができる。このため、方向性結合器6が受ける反射波の量をより多くして、反射波の検出精度を向上させることができる。その結果、被加熱物1の状態をより正確に検出することができる。
導波管10の幅方向(図1における奥行き方向)における方向性結合器6および定在波安定部5の位置は特に限定されない。方向性結合器6と定在波安定部5とは、ほぼ管内波長λgの1/4の奇数倍の距離だけ離れて配置されていればよい。
加熱開始時に被加熱物1の温度が高い場合、または、被加熱物1の重量が重い場合、反射波の量はあまり変化しない。このため、反射波が最小となる状態を判別し難いことがある。
本実施の形態では、方向性結合器6が、入射波検出部および反射波検出部の両方の機能を有する。この構成によれば、方向性結合器6により検出された入射波と反射波とに基づいて、被加熱物1により吸収されたマイクロ波の量をより正確に推定することができる。例えば、反射波の量を入射波の量で除算した反射率の変化を検出することで、反射波が最小となる状態を判別し易くなる。その結果、被加熱物1の状態をより正確に検出することができる。
本実施の形態では、方向性結合器6が、入射波検出部および反射波検出部の両方の機能を有する。しかし、本開示はこれに限定されない。入射波検出部と反射波検出部とが別々に設けられてもよい。入射波検出部が、定在波安定部5よりもマグネトロン3寄りに配置されてもよい。
本実施の形態では、一つの方向性結合器6が、定在波安定部5よりも加熱室2寄りに設けられる。しかし、本開示はこれに限定されない。図2は、マイクロ波加熱装置50の第1変形例を示す概略図である。図2も図1と同様に、導波管10の内部に生じた管内定在波を模式的に図示する。
図2に示すように、第1変形例に係るマイクロ波加熱装置50は、方向性結合器6に加えて、方向性結合器6と同じ構成を有する方向性結合器60をさらに有する。すなわち、方向性結合器60は、方向性結合器6に設けられた反射波検出部と同じ構成を有する第2の反射波検出部を備える。方向性結合器60は、定在波安定部5よりもマグネトロン3寄りに配置される。
この構成によれば、第2の反射波検出部も、定在波安定部5を通過してマグネトロン3に戻る反射波の一部を検出することができる。これにより、例えば、反射波の量が非常に多い場合、マグネトロン3を停止させて、マグネトロン3の故障を防止することができる。
本実施の形態では、定在波安定部5が、導波管10内に突出する突起部で構成される。しかし、定在波安定部5は、導波管10を局所的に狭めてマイクロ波の伝搬を乱すことで、管内定在波の位置を安定させるのであれば、本実施の形態に限定されない。
図3は、マイクロ波加熱装置50の第2変形例を示す概略図である。図3も図1、図2と同様に、導波管10の内部に生じた管内定在波を模式的に図示する。図3に示すように、導波管10がL字状に屈曲した屈曲部10bを有する。
この場合、図3の点線で示す屈曲部10bの断面積は、導波管10の他の部分の断面積に比べて大きい。このため、屈曲部10bの中心(図3の点線の中心)に管内定在波の節が固定されやすくなる。第2変形例では、屈曲部10bが定在波安定部5を構成する。
図1に示す導波管10は、定在波安定部5が配置された部分を除いて、その断面積が一様な方形導波管である。しかし、本開示はこれに限定されない。図4は、マイクロ波加熱装置50の第3変形例を示す概略図である。図4も図1~図3と同様に、導波管10の内部に生じた管内定在波を模式的に図示する。
図4に示すように、第3変形例では、導波管10は、マグネトロン3から加熱室2に向かってその断面積が徐々に小さくなる方形導波管である。第3変形例の導波管10は、定在波安定部5以外に局所的に狭い部分を有しない。このため、第3変形例の導波管10は、図1に示す導波管10と同様の効果を得ることができる。
図1に示す定在波安定部5は一つの要素で構成される。しかし、定在波安定部5は複数の要素で構成されてもよい。この場合、方向性結合器6は、最も加熱室2寄りに配置される定在波安定部5の構成部品よりも加熱室2寄りに配置すればよい。
本実施の形態では、モータ9がアンテナ4を回転させる。しかし、本開示はこれに限定されない。例えば、アンテナ4が、導波管10を伝搬するマイクロ波を円偏波のマイクロ波として加熱室2内に放射するように形成された開口部であってもよい。
次に、方向性結合器6の構成について説明する。図5は、方向性結合器6の斜視図である。図6は、方向性結合器6の、プリント基板12を取り外した状態の斜視図である。図7は、導波管10の平面図である。図8は、方向性結合器6に設けられたプリント基板12の回路構成図である。
図1~図4は、方向性結合器6が導波管10の底壁に設けられるものとして図示する。しかし、図5、図6は、理解を容易にするために、方向性結合器6が導波管10の上壁に設けられるものとして図示する。本実施の形態において、導波管10の管軸L1と直交する断面は、長方形形状を有する。管軸L1は、導波管10の幅方向の中心軸である。
方向性結合器6は、クロス開口11とプリント基板12と支持部14とを備える。クロス開口11は、導波管10の幅広面10aに配置されたX形状の開口部である。プリント基板12は、クロス開口11と対向するように導波管10の外に配置される。支持部14は、導波管10の外面上でプリント基板12を支持する。
図7に示すように、クロス開口11は、平面視において導波管10の管軸L1と交差しない位置に配置される。クロス開口11の開口中央部11cは、平面視において導波管10の管軸L1から寸法D1だけ離れて配置される。寸法D1は、例えば、導波管10の幅の1/4である。クロス開口11は、導波管10を伝搬するマイクロ波を円偏波のマイクロ波としてプリント基板12に向けて放射する。
クロス開口11の開口形状は、導波管10の幅および高さ、導波管10を伝搬するマイクロ波の電力レベルおよび周波数帯域、クロス開口11から放射させる円偏波のマイクロ波の電力レベルなどの条件に応じて決定される。
例えば、導波管10の幅が100mm、高さが30mm、導波管10の壁面の厚さが0.6mm、導波管10を伝搬するマイクロ波の最大電力レベルが1000W、周波数帯域が2450MHz、クロス開口11から放射させる円偏波のマイクロ波の最大電力レベルが約10mWである場合、クロス開口11の長さ11wおよび幅11dは20mm、2mmにそれぞれ決定される。
図8に示すように、クロス開口11は、互いに交差する第1長孔11eと第2長孔11fとを含む。クロス開口11の開口中央部11cは、第1長孔11eと第2長孔11fとが交差する開口交差部と一致する。クロス開口11は、垂線L2に対して線対称に形成される。垂線L2は管軸L1と直交し、開口中央部11cを通る。
本実施の形態において、第1長孔11eと第2長孔11fとは90度の角度で交差する。しかし、本開示はこれに限定されるものではない。第1長孔11eと第2長孔11fとが60度または120度の角度で交差してもよい。
クロス開口11の開口中央部11cを平面視において管軸L1と重なる位置に配置した場合、電界は回転せずにマイクロ波の伝送方向に沿って往復する。この場合、クロス開口11は直線偏波のマイクロ波を放射する。
開口中央部11cが管軸L1から少しでもずれていれば、電界は回転する。しかし、開口中央部11cが管軸L1に近いと(寸法D1が0mmに近いほど)、いびつな回転の電界が発生する。この場合、クロス開口11は楕円偏波のマイクロ波を放射する。
本実施の形態おいて、寸法D1は導波管10の幅の約1/4に設定される。この場合、ほぼ真円状の回転の電界が発生する。クロス開口11はほぼ真円状の円偏波のマイクロ波を放射する。このため、円偏波のマイクロ波の回転方向がより明確になる。その結果、入射波と反射波とを精度よく分離して検出することができる。
プリント基板12は、クロス開口11に対向する基板裏面12bと、基板裏面12bとは反対側の基板表面12aとを有する。基板表面12aは、マイクロ波反射部材の一例として基板表面12a全体を覆うように形成された銅箔(図示せず)を有する。この銅箔が、クロス開口11から放射された円偏波のマイクロ波がプリント基板12を透過するのを防止する。
図8に示すように、基板裏面12bには、結合線路の一例であるマイクロストリップ線路13が配置される。マイクロストリップ線路13は、例えば、ほぼ50Ωの特性インピーダンスを有する伝送線路で構成される。マイクロストリップ線路13は、クロス開口11の開口中央部11cを取り囲むように配置される。
以下、マイクロストリップ線路13の実効長λreについて説明する。マイクロストリップ線路13の幅をw、プリント基板12の厚さをh、光の速度をc、電磁波の周波数をf、プリント基板の比誘電率をεrとすると、マイクロストリップ線路13の実効長λreは次式で表される。実効長λreとは、マイクロストリップ線路13を伝搬する電磁波の波長である。
具体的には、マイクロストリップ線路13は、第1伝送線路13aと第2伝送線路13bとを備える。第1伝送線路13aは、第1交差線部の一例である第1直線部13aaを有する。第1直線部13aaは、平面視において開口中央部11cよりも管軸L1から離れた位置で第1長孔11eと交差する。第1直線部13aaは、垂線L2に近づくにつれて管軸L1から離れるように延在する。
第2伝送線路13bは、第2交差線部の一例である第2直線部13baを有する。第2直線部13baは、平面視において開口中央部11cよりも管軸L1から離れた位置で第2長孔11fと交差する。第2直線部13baは、垂線L2に近づくにつれて管軸L1から離れるように延在する。第1直線部13aaと第2直線部13baとは、垂線L2に対して線対称に配置される。
第1伝送線路13aと第2伝送線路13bとは、平面視において矩形領域E1の外、かつ、矩形領域E1よりも管軸L1から離れた位置で互いに接続される。第1直線部13aaは、平面視において開口中央部11cよりも開口先端部11eaに近い位置で第1長孔11eと交差する。
第1直線部13aaは、平面視において第1長孔11eに直交する。第2直線部13baは、平面視において開口中央部11cよりも開口先端部11faに近い位置で第2長孔11fと交差する。第2直線部13baは、平面視において第2長孔11fに直交する。
第1伝送線路13aの一端と第2伝送線路13bの一端とは、平面視においてクロス開口11と重なる領域の外で互いに接続される。第1直線部13aaの一端は、クロス開口11に外接する矩形領域E1の外で第2直線部13baの一端に接続される。
第1結合点P1は、平面視において第1直線部13aaと第1長孔11eとが互いに交差する点である。第2結合点P2は、平面視において第2直線部13baと第2長孔11fとが互いに交差する点である。第1結合点P1と第2結合点P2とを結ぶ直線を仮想直線L3とする。本実施の形態では、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離は、実効長λreの1/4に設定される。
平面視において開口中央部11cを通り、かつ、管軸L1に平行な線を平行線L4とする。本実施の形態では、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。
第1伝送線路13aは、第1直線部13aaの他端と第1出力部131とを接続する第3直線部13abを備える。第1直線部13aaと第3直線部13abとは、鈍角(例えば135度)を成すように接続される。
第2伝送線路13bは、第2直線部13baの他端と第2出力部132とを接続する第4直線部13bbを備える。第2直線部13baと第4直線部13bbとは、鈍角(例えば135度)を成すように接続される。第3直線部13abと第4直線部13bbとは、垂線L2に平行に配置される。
第1出力部131および第2出力部132は、平面視において支持部14(図5、図6参照)の外に配置される。第1出力部131には第1検波回路15が接続される。第1検波回路15は、マイクロ波信号のレベルを検出し、検出したマイクロ波信号のレベルを制御信号として出力する。第2出力部132には第2検波回路16が接続される。第2検波回路16は、マイクロ波信号のレベルを検出し、検出したマイクロ波信号のレベルを制御信号として出力する。
本実施の形態において、第1検波回路15および第2検波回路16は、いずれもチップ抵抗およびショットキーダイオードにより構成された平滑回路(図示せず)を備える。第1検波回路15は、第1出力部131からのマイクロ波信号を整流し、整流されたマイクロ波信号を直流電圧に変換する。変換された直流電圧は第1検波出力部18に出力される。第1検波出力部18は、入射波に対応する検出信号6aを制御部7に送信する(図1参照)。
同様に、第2検波回路16は、第2出力部132からのマイクロ波信号を整流し、整流されたマイクロ波信号を直流電圧に変換する。変換された直流電圧は第2検波出力部19に出力される。第2検波出力部19は、反射波に対応する検出信号6bを制御部7に送信する(図1参照)。
プリント基板12は、プリント基板12を導波管10に取り付けるための四つの穴(穴20a、20b、20c、20d)を有する。基板裏面12bにおける穴20a、20b、20c、20dの周辺には、グランドとなる銅箔が形成される。この銅箔が形成された部分は、基板表面12aと同電位を有する。
プリント基板12は、穴20a、20b、20c、20dを通してネジ201a、201b、201c、201d(図5参照)で支持部14にねじ止めすることによって、導波管10に固定される。
図6に示すように、支持部14は、ネジ201a、201b、201c、201dをそれぞれねじ止めするためのネジ部202a、202b、202c、202dを有する。ネジ部202a、202b、202c、202dは、支持部14に設けられたフランジ部に形成される。
支持部14は、導電性を有し、平面視においてクロス開口11を取り囲むように配置される。支持部14は、クロス開口11から放射された円偏波のマイクロ波が支持部14の外に漏洩するのを防ぐシールドとして機能する。
支持部14は、マイクロストリップ線路13の第3直線部13abおよび第4直線部13bbが通る溝141、溝142を有する。この構成により、マイクロストリップ線路13の第1出力部131および第2出力部132を支持部14の外に配置することができる。溝141、142は、マイクロストリップ線路13を伝搬するマイクロ波信号を支持部14の外に取り出すための取出し部として機能する。溝141、142は、プリント基板12から離れるように支持部14のフランジ部を凹ませることにより形成することができる。
図5、図6は、図8に示す第1検波出力部18、第2検波出力部19にそれぞれ接続されたコネクタ18a、コネクタ19aを図示する。
本実施の形態では、方向性結合器6は、入射波検出部および反射波検出部の両方の機能を有する。しかし、本開示はこれに限定されない。方向性結合器6は、入射波検出部および反射波検出部のいずれか一方の機能のみを有するように構成されてもよい。この場合、方向性結合器6は、図8に示す第1検波回路15、第2検波回路16の一方を、終端回路(例えば50Ωのチップ抵抗)に置き換えることで構成される。
次に、方向性結合器6の動作および作用について説明する。
まず、図9を参照して、クロス開口11から円偏波のマイクロ波が放射される原理について説明する。図9において、導波管10内に生じる磁界分布10dを点線の同心楕円で示す。磁界分布10dの磁界の向きを矢印で示す。磁界分布10dは、導波管10内を時間の経過とともにマイクロ波の伝送方向A1に移動する。
図9の(a)に示す時刻t=t0において、磁界分布10dが形成される。このとき、破線矢印B1で示す磁界が、クロス開口11の第1長孔11eを励起する。図9の(b)に示す時刻t=t0+t1において、破線矢印B2で示す磁界が、クロス開口11の第2長孔11fを励起する。
図9の(c)に示す時刻t=t0+T/2(Tはマイクロ波の管内波長λgの周期)において、破線矢印B3で示す磁界が、クロス開口11の第1長孔11eを励起する。図9の(d)に示す時刻t=t0+T/2+t1において、破線矢印B4で示す磁界が、クロス開口11の第2長孔11fを励起する。時刻t=t0+Tにおいて、時刻t=t0と同様に、破線矢印B1で示す磁界が、クロス開口11の第1長孔11eを励起する。
これらの状態が順次繰り返されることで、反時計回り(マイクロ波の回転方向32)に回転する円偏波のマイクロ波が、クロス開口11から導波管10の外に放射される。
ここで、図7に示す矢印30に沿って伝搬するマイクロ波を入射波とし、矢印31に沿って伝搬するマイクロ波を反射波とすると、入射波は図9に示す伝送方向A1と同じ向きに伝搬する。このため、上述のように、反時計回りに回転する円偏波のマイクロ波が、クロス開口11から導波管10の外に放射される。一方、反射波は図9に示す伝送方向A1と逆向きに伝搬する。このため、時計回りに回転する円偏波のマイクロ波が、クロス開口11から導波管10の外に放射される。
導波管10の外に放射された円偏波のマイクロ波は、クロス開口11に対向するマイクロストリップ線路13に結合する。マイクロストリップ線路13は、矢印30に沿って伝搬する入射波によりクロス開口11から放射されるマイクロ波の大部分を、第1出力部131に出力する。
一方、マイクロストリップ線路13は、矢印31に沿って伝搬する反射波によりクロス開口11から放射されるマイクロ波の大部分を第2出力部132に出力する。これにより、入射波と反射波とをより精度よく分離して検出することができる。このことについて、図10を参照してより詳しく説明する。
図10は、マイクロストリップ線路13を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。マイクロストリップ線路13とクロス開口11との間には隙間がある。本来、マイクロ波がマイクロストリップ線路13に到達するのに要する時間は、マイクロ波がこの隙間を伝搬する時間だけ遅れる。しかし、便宜上、ここではこの時間遅れが無いものとする。
ここで、平面視においてクロス開口11とマイクロストリップ線路13とが交差する領域を結合領域という。第1結合点P1は、第1長孔11eとマイクロストリップ線路13とが交差する結合領域のほぼ中心である。第2結合点P2は、第2長孔11fとマイクロストリップ線路13とが交差する結合領域のほぼ中心である。
図10において、マイクロストリップ線路13を伝搬するマイクロ波の量(磁界の鎖交によって流れる電流)を実線矢印の線の太さで表現する。すなわち、マイクロストリップ線路13を伝搬するマイクロ波の量が多い場合には線が太く、マイクロストリップ線路13を伝搬するマイクロ波の量が少ない場合には線が細い。
図10の(a)に示す時刻t=t0において、破線矢印B1で示す磁界がクロス開口11の第1長孔11eを励起し、第1結合点P1には太い実線矢印M1で示すマイクロ波が生じる。このマイクロ波は、第2結合点P2に向かってマイクロストリップ線路13を伝搬する。
図10の(b)に示す時刻t=t0+t1において、破線矢印B2で示す磁界がクロス開口11の第2長孔11fを励起し、第2結合点P2には太い実線矢印M2で示すマイクロ波が生じる。
第1結合点P1と第2結合点P2との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設計すると、図10の(a)に示す時刻に第1結合点P1に生じたマイクロ波は、図10の(b)に示す時刻に第2結合点P2に伝搬する。すなわち、図10の(b)に示す時刻に、第2結合点P2には、実線矢印M1で示すマイクロ波と実線矢印M2で示すマイクロ波とが生じる。
このため、二つのマイクロ波が加算されてマイクロストリップ線路13を第2出力部132に向けて伝搬し、所定時間経過後、第2出力部132に出力される。本実施の形態では、上記実効伝搬時間を時間t1に設定するため、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/4に設定される。この構成により、マイクロストリップ線路13の設計を容易に行うことができる。
図10の(c)に示す時刻t=t0+T/2において、破線矢印B3で示す磁界がクロス開口11の第1長孔11eを励起し、第1結合点P1には細い実線矢印M3で示すマイクロ波が生じる。このマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬し、所定時間経過後、第1出力部131に出力される。
実線矢印M3の太さを実線矢印M1の太さに比べて細くした理由は、以下の通りである。クロス開口11から、上述したように反時計回り(マイクロ波の回転方向32)に回転する円偏波のマイクロ波が放射される。
図10の(a)に示す時刻に、第1結合点P1に生じる実線矢印M1で示すマイクロ波は、クロス開口11から放射されるマイクロ波の回転方向とほぼ同じ方向に伝搬する。このため、実線矢印M1で示すマイクロ波のエネルギは縮減されない。
一方、図10の(c)に示す時刻に、第1結合点P1に生じる実線矢印M3で示すマイクロ波は、クロス開口11から放射されるマイクロ波の回転方向とはほぼ逆方向に伝搬する。このため、結合したマイクロ波のエネルギは縮減される。従って、実線矢印M3で示すマイクロ波の量は、実線矢印M1で示すマイクロ波の量よりも少ない。
図10の(d)に示す時刻t=t0+T/2+t1において、破線矢印B4で示す磁界がクロス開口11の第2長孔11fを励起し、第2結合点P2には細い実線矢印M4で示すマイクロ波が生じる。このマイクロ波は第1結合点P1に向かって伝搬する。実線矢印M4の太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
時刻t=t0+Tにおいて、図10の(a)に示す時刻t=t0と同様に、破線矢印B1で示す磁界がクロス開口11の第1長孔11eを励起する。この場合、図10の(a)に示す時刻の場合には説明しなかった細い実線矢印M4で示すマイクロ波がマイクロストリップ線路13上に存在する。
細い実線矢印M4で示すマイクロ波は、時刻t=t0+T(すなわちt=t0)において、第1結合点P1に伝搬する。細い実線矢印M4で示すマイクロ波は、太い実線矢印M1で示すマイクロ波とは逆向きに伝搬する。このため、実線矢印M4で示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。
厳密には、時刻t=t0において第1結合点P1から伝搬するマイクロ波の量は、太い実線矢印M1で示すマイクロ波の量から細い実線矢印M4で示すマイクロ波の量を差分した量(M1-M4)となる。従って、第2出力部132に出力されるマイクロ波の量は、第2結合点P2から伝搬するマイクロ波の量に太い実線矢印M2で示すマイクロ波の量を加算した量(M1+M2-M4)となる。
このことを考慮しても、第2出力部132に出力されるマイクロ波の量(M1+M2-M4)は、第1出力部131に出力されるマイクロ波の量(M3)よりはるかに多い。従って、マイクロストリップ線路13は、矢印31に沿って伝搬する反射波によりクロス開口11から反時計回りに放射されるマイクロ波の大部分を第2出力部132に出力する。一方、マイクロストリップ線路13は、矢印30に沿って伝搬する入射波によりクロス開口11から時計回りに放射されるマイクロ波の大部分を第1出力部131に出力する。
導波管10を伝搬するマイクロ波の量に対するクロス開口11から放射されるマイクロ波の量は、導波管10およびクロス開口11の形状および寸法によって決まる。例えば、上述の形状および寸法に設定した場合、導波管10を伝搬するマイクロ波の量に対するクロス開口11から放射されるマイクロ波の量は、約1/100000(約-50dB)である。
次に、本実施の形態において、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離を、実効長λreの1/2に設定した理由について説明する。
図11は、マイクロストリップ線路13を伝搬し、時間経過とともに変化するマイクロ波の向きおよび量を説明するための図である。図11の(a)~(d)は、図10の(a)~(d)からそれぞれt1/2の時間が経過した状態を示す図である。
上記では説明を省略したが、磁界分布10dは、時間経過とともに導波管10内をマイクロ波の伝送方向A1に移動する。このため、図11の(a)~(d)に示すように、破線矢印B12、B23、B34、B41で示す磁界が、第1長孔11eおよび第2長孔11fを励起する。これにより、導波管10の外に放射された円偏波のマイクロ波は、マイクロストリップ線路13に結合する。
ここで、平面視において垂線L2および平行線L4とマイクロストリップ線路13とが交差する領域を結合領域という。第3結合点P3は、垂線L2とマイクロストリップ線路13とが交差する結合領域のほぼ中心である。第4結合点P4は、平行線L4と第1伝送線路13aとが交差する結合領域のほぼ中心である。第5結合点P5は、平行線L4と第2伝送線路13bとが交差する結合領域のほぼ中心である。
図11の(a)に示す時刻t=t0+t1/2において、破線矢印B12で示す磁界がクロス開口11を励起し、第3結合点P3には太い実線矢印M11で示すマイクロ波が生じる。このマイクロ波は、第5結合点P5に向かってマイクロストリップ線路13を伝搬する。
図11の(b)に示す時刻t=t0+t1+t1/2において、破線矢印B23で示す磁界がクロス開口11を励起する。第5結合点P5には太い実線矢印M12aで示すマイクロ波が生じ、第4結合点P4には細い実線矢印M12bで示すマイクロ波が生じる。実線矢印M12bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
第3結合点P3と第5結合点P5との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設計すると、図11の(a)に示す時刻に第3結合点P3に生じたマイクロ波は、図11の(b)に示す時刻に第5結合点P5に伝搬する。すなわち、図11の(b)に示す時刻に、第5結合点P5には、太い実線矢印M11で示すマイクロ波と太い実線矢印M12aで示すマイクロ波とが生じる。
このため、二つのマイクロ波は加算されてマイクロストリップ線路13を第2出力部132に向けて伝搬し、所定時間経過後、第2出力部132に出力される。上記実効伝搬時間を時間t1に設定するため、本実施の形態では、平行線L4よりも管軸L1から離れた第1伝送線路13aの距離が、実効長λreの1/4に設定される。第4結合点P4に生じた細い実線矢印M12bで示すマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬し、所定時間経過後、第1出力部131に出力される。
図11の(c)に示す時刻t=t0+T/2+t1/2において、破線矢印B34で示す磁界がクロス開口11を励起し、第3結合点P3には細い実線矢印M13bで示すマイクロ波が生じる。このマイクロ波は、マイクロストリップ線路13を第1出力部131に向けて伝搬する。実線矢印M13bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
図11の(d)に示す時刻t=t0+T/2+t1+t1/2において、破線矢印B41で示す磁界がクロス開口11を励起する。第5結合点P5には細い実線矢印M14bで示すマイクロ波が生じ、第4結合点P4には太い実線矢印M14aで示すマイクロ波が生じる。細い実線矢印M14bで示すマイクロ波は、第3結合点P3に向かってマイクロストリップ線路13を伝搬する。実線矢印M14bの太さを細くした理由は、上述した実線矢印M3の太さを細くした理由と同じである。
太い実線矢印M14aで示すマイクロ波は、第3結合点P3に向かってマイクロストリップ線路13を伝搬する。第3結合点P3と第4結合点P4との間のマイクロストリップ線路13によるマイクロ波の実効伝搬時間を時間t1に設計すると、図11の(c)に示す時刻に第3結合点P3に生じたマイクロ波は、図11の(d)に示す時刻に第4結合点P4に伝搬する。
すなわち、図11の(d)に示す時刻に、第4結合点P4には、細い実線矢印M13bで示すマイクロ波と太い実線矢印M14aで示すマイクロ波とが生じる。上記実効伝搬時間を時間t1に設定するため、本実施の形態では、平行線L4よりも管軸L1から離れた第2伝送線路13bの距離が、実効長λreの1/4に設定される。
すなわち、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。細い実線矢印M13bで示すマイクロ波は、太い実線矢印M14aで示すマイクロ波とは逆向きに伝搬する。このため、細い実線矢印M13bで示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。
時刻t=t0+T+t1/2において、図11の(a)に示す時刻t=t0+t1/2と同様に、破線矢印B12で示す磁界がクロス開口11を励起する。この場合、図11の(a)に示す時刻の場合には説明しなかった細い実線矢印M14bで示すマイクロ波がマイクロストリップ線路13上に存在する。
細い実線矢印M14bで示すマイクロ波は、時刻t=t0+T+t1/2において、第3結合点P3に伝搬する。細い実線矢印M14bで示すマイクロ波は、太い実線矢印M11および太い実線矢印M14aで示すマイクロ波とは逆向きに伝搬する。このため、細い実線矢印M14bで示すマイクロ波は打ち消されて消滅し、第1出力部131に出力されない。
厳密には、時刻t=t0+t1/2において第3結合点P3から伝搬するマイクロ波の量は、太い実線矢印M11、M14aで示すマイクロ波の量から細い実線矢印M14bで示すマイクロ波の量を差分した量(M11+M14a-M14b)となる。従って、第2出力部132に出力されるマイクロ波の量は、第3結合点P3から伝搬するマイクロ波の量に太い実線矢印M12aで示すマイクロ波の量を加算した量(M11+M12a+M14a-M14b)となる。
このことを考慮しても、第2出力部132に出力されるマイクロ波の量(M11+M12a+M14a-M14b)は、第1出力部131に出力されるマイクロ波の量(M12b)よりはるかに多い。従って、マイクロストリップ線路13は、矢印31の方向に伝搬する反射波によりクロス開口11から反時計回りに放射されるマイクロ波の大部分を第2出力部132に出力する。一方、マイクロストリップ線路13は、矢印30の方向に伝搬する入射波によりクロス開口11から時計回りに放射されるマイクロ波の大部分を第1出力部131に出力する。
本実施の形態では、入射波検出部と反射波検出部とが、導波管10の壁面に配置されたクロス開口11に対向するマイクロストリップ線路13を共有する。入射波検出部は、マイクロストリップ線路13の一端から入射波を取り出す。反射波検出部は、マイクロストリップ線路13の他端から反射波を取り出す。この構成により、入射波検出部および反射波検出部を小型化することができる。
本実施の形態では、方向性結合器6は、平面視において導波管10の管軸L1と交差しない位置に配置された、円偏波のマイクロ波を放射するクロス開口11を有する。この構成により、クロス開口11から放射される円偏波のマイクロ波の回転方向が入射波と反射波とで互いに逆になる。この円偏波のマイクロ波の回転方向の違いを利用して、入射波と反射波とを分離して検出することができる。
本実施の形態に係る方向性結合器6では、第1伝送線路13aが第1直線部13aaを備えるとともに、第2伝送線路13bが第2直線部13baを備える。この構成により、従来よりも、マイクロストリップ線路13が屈曲する箇所を少なくすることができる。マイクロストリップ線路13を直角に屈曲させる必要性を無くすことができる。マイクロストリップ線路13が屈曲する箇所をクロス開口11の鉛直方向の領域から離すことができる。その結果、入射波と反射波とをより精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、第1伝送線路13aと第2伝送線路13bとが、平面視において矩形領域E1の外で、かつ、管軸L1から離れた位置で互いに接続される。この構成により、マイクロストリップ線路13が屈曲する箇所をクロス開口11の鉛直方向の領域からより一層離すことができる。第1直線部13aaおよび第2直線部13baをより長くすることができ、マイクロストリップ線路13を流れる電流の流れが阻害されるのを抑制することができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、第1直線部13aaが、平面視において開口中央部11cよりも開口先端部11eaに近い位置で第1長孔11eに交差する。第2直線部13baが、平面視において開口中央部11cよりも開口先端部11faに近い位置で第2長孔11fに交差する。通常、開口中央部11cの周辺に比べて開口先端部11ea、11faの周辺には、より強い磁界が発生する。上記構成により、より強い磁界がマイクロストリップ線路13に結合する。このため、マイクロストリップ線路13を流れる電流がより多くなる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、第1直線部13aaが、平面視において第1長孔11eに直交する。この構成により、第1結合点P1に生じる実線矢印M1で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と同じにする。これにより、実線矢印M1で示すマイクロ波の量をより大きくすることができる。
第1結合点P1に生じる実線矢印M3で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と逆にする。これにより、実線矢印M3で示すマイクロ波の量をより小さくすることができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、第2直線部13baが、平面視において第2長孔11fに直交する。この構成により、第2結合点P2に生じる実線矢印M2で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と同じにする。これにより、実線矢印M2で示すマイクロ波の量をより大きくすることができる。
第2結合点P2に生じる実線矢印M4で示すマイクロ波の伝送方向を、クロス開口11から放射されるマイクロ波の回転方向32と逆にする。これにより、実線矢印M4で示すマイクロ波の量をより小さくすることができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、マイクロストリップ線路13が、第1直線部13aaと第2直線部13baと第3直線部13abと第4直線部13bbと有する。互いに隣接する第1直線部13aaと第3直線部13abとは、鈍角を成すように接続される。互いに隣接する第2直線部13baと第4直線部13bbは、鈍角を成すように接続される。
この構成により、マイクロストリップ線路13において直角に屈曲する箇所を少なくすることができる。これにより、結合線路内の電流の流れが阻害されるのを抑制することができる。その結果、入射波と反射波とをより一層精度よく分離して検出することができる。
本実施の形態に係る方向性結合器6では、仮想直線L3よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/4に設定される。この構成により、入射波と反射波とをより一層精度よく分離して検出することができる。上記合計距離は、実効長λreのほぼ1/4に設定されていれば、必ずしも実効長λreの1/4に設定される必要はない。
本実施の形態に係る方向性結合器6では、平行線L4よりも管軸L1から離れた第1伝送線路13aと第2伝送線路13bとの合計距離が、実効長λreの1/2に設定される。この構成により、入射波と反射波とをより一層精度よく分離して検出することができる。上記合計距離は、実効長λreのほぼ1/2に設定されていれば、必ずしも実効長λreの1/2に設定される必要はない。
図8に示すように、本実施の形態では、第1伝送線路13aの一端と第2伝送線路13bの一端とが、直角を成すように接続される。しかし、本開示はこれに限定されない。第1伝送線路13aの一端が、平面視でクロス開口11の領域から外れた位置で第2伝送線路13bの一端と接続されていればよい。この領域では、磁界による影響が大きい。
図12~図17はそれぞれ、マイクロストリップ線路13の第1変形例~第6変形例を示す平面図である。図12に示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が開口中央部11cから離れるように、第1伝送線路13aと第2伝送線路13bとが屈曲していてもよい。
図13に示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が開口中央部11cに近づくように、第1伝送線路13aと第2伝送線路13bとが屈曲していてもよい。図14に示すように、第1伝送線路13aの一端と第2伝送線路13bの一端との接続点が開口中央部11cに近づくように、第1伝送線路13aと第2伝送線路13bとが湾曲していてもよい。
本実施の形態では、第1直線部13aa、第2直線部13baがそれぞれ第1交差線部、第2交差線部に対応する。しかし、本開示はこれに限定されない。図15に示すように、第1交差線部、第2交差線部がそれぞれ、円弧状部13ac、円弧状部13bcであってもよい。
本実施の形態では、第3直線部13abおよび第4直線部13bbが垂線L2に平行である。しかし、本開示はこれに限定されない。図16に示すように、第3直線部13abおよび第4直線部13bbが平行線L4に平行であってもよい。
本実施の形態では、第1伝送線路13aおよび第2伝送線路13bが複数の直線部を有する。しかし、本開示はこれに限定されない。図17に示すように、第1伝送線路13aおよび第2伝送線路13bが、それぞれ一本の直線部で構成されてもよい。
本実施の形態では、クロス開口11は、垂線L2に対して線対称に形成される。垂線L2は、管軸L1と直交し、かつ、開口中央部11cを通る。しかし、本開示はこれに限定されない。クロス開口11は、垂線L2に対して線対称に形成されなくてもよい。例えば、第1長孔11eと第2長孔11fとが、それぞれの長手方向の中央部からずれた位置で交差してもよい。第1長孔11eの長さと第2長孔11fの長さとが互いに異なってもよい。
これらの場合、第1長孔11eと第2長孔11fとが交差する開口交差部は、開口中央部11cからずれる。クロス開口11は、平面視において垂線L2に対して僅かに傾斜する直線に対して線対称に形成されてもよい。
(管内定在波と反射波検出部の配置とに関する新たな発見)
図19は、反射波検出部の位置による反射波の検出精度を調べるための直交導波管251の平面図である。図19に示すように、直交導波管251は、主導波管252と副導波管253とを有する。副導波管253は、主導波管252に直交し、X形状の開口254、開口255を介して主導波管252に結合される。
図19は、反射波検出部の位置による反射波の検出精度を調べるための直交導波管251の平面図である。図19に示すように、直交導波管251は、主導波管252と副導波管253とを有する。副導波管253は、主導波管252に直交し、X形状の開口254、開口255を介して主導波管252に結合される。
ネットワークアナライザを用いて反射波を定量的に計測するために、主導波管252の終端256は閉止されて短絡される。ネットワークアナライザのポートQ(図示せず)から入射したマイクロ波257は、終端256で完全に反射される。
反射波の一部はポートQに戻る。残りの反射波は開口254、255を介して副導波管253に伝送され、副導波管253内でマイクロ波258とマイクロ波259とに分割される。マイクロ波258はネットワークアナライザのポートS(図示せず)に、マイクロ波259はネットワークアナライザのポートT(図示せず)に伝送される。
主導波管252、副導波管253はいずれも対称形状を有する。開口254、255は同一の形状を有する。開口254、255は、主導波管252、副導波管253の両方に対して対称に配置される。このため、マイクロ波258の量とマイクロ波259の量とは同等となる。
主導波管252、副導波管253は、約100mmの導波管幅(通常はa寸法と呼ばれる)を有する。主導波管252、副導波管253における、マイクロ波の管内波長λgは約154mmである。
実際に観測するSパラメータは、ネットワークアナライザの一般的な観測値である。具体的には、ポートQから入射したマイクロ波257に対する、ポートSに伝送されるマイクロ波258の比率S31と、ポートQから入射したマイクロ波257に対するポートTに伝送されるマイクロ波259の比率S41とを、ネットワークアナライザで観測する。比率S31、S41は、1よりかなり小さい場合があるので、一般的にデシベルで表記される。
2450~2500MHzの周波数のマイクロ波を用いて、主導波管252の終端256から開口254、255までの距離Lsfを変えながら、比率S31、S41を計測する。図20は、その結果をグラフにしたものである。横軸は距離Lsf[mm]を表し、縦軸は比率S31、S41[dB]を表す。この結果について考察する。
主導波管252において、閉止された終端256には管内定在波の節が発生し、終端256から管内波長λgの1/2(=77mm)ごとに節が生じる。従って、距離Lsfが154mmである場合、開口254、255は節の位置に配置される。
節からλg/4(=38.5mm)ずれた位置には腹が発生するので、距離Lsfが115.5mm(=λg×3/4)および192.5mm(=λg×5/4)の場合、開口254、255は腹の位置に配置される。本発明者らは、この特性図から下記のような二つの特徴を知見した。
一つ目の特徴は感度に関する。開口が節の位置(距離Lsf=154mm)にある場合、比率S31、S41は-12~―21dBである。開口が腹の位置(距離Lsf=115.5mm、192.5mm)にある場合、比率S31、S41は-4~―8dBである。従って、比率S31、S41は、開口が節の位置に配置される場合よりも、開口が腹の位置に配置される場合の方が大きい。
すなわち、本発明者らは、腹に開口を配置すると開口から検出される反射波は大きくなり、感度が良くなることを発見した。図20に示す六つのグラフの平均値で比較すると、開口が節にある場合の比率(約-16dB)と開口が腹にある場合の比率(約-6dB)との差は10dBとなる。すなわち、腹の位置に開口を配置すると、節の位置に開口を配置するよりも10倍感度が高い。
二つ目の特徴は周波数に対する安定性に関する。開口が節の位置(距離Lsf=154mm)にある場合、周波数の変化に応じて観測される比率S31、S41は-12~―21dBである。開口が腹の位置(距離Lsf=115.5mm、192.5mm)にある場合、周波数の変化に応じて観測される比率S31、S41は-4~―8dBである。
従って、開口が腹の位置にある場合の比率S31、S41の変動幅(約4dB)は、開口が節の位置にある場合の比率S31、S41の変動幅(約9dB)よりも小さい。すなわち、本発明者らは、腹に開口を配置すると開口から検出される反射波の周波数に対する安定性が良くなることを知見した。
以上のように、管内定在波の腹で反射波を検出することで、感度と周波数に対する安定性とを向上させることができる。その結果、被加熱物1の状態をより正確に検出することができる。
次に、腹の位置(距離Lsf=115.5mm、192.5mm)と節の位置(距離Lsf=154mm)との間の位置に開口が配置された場合について考察する。
図20に示すように、腹および節の中間位置(距離Lsf=134.75mm、173.25mm)に開口が配置された場合の比率S31、S41は、開口が節の位置(距離Lsf=154mm)に配置された場合ほど悪くない。この場合の比率S31、S41は、どちらかと言えば開口が腹の位置に配置された場合(距離Lsf=115.5mm、192.5mm)に近く、かなり良い。
すなわち、開口が節の位置(距離Lsf=154mm)の近傍に配置された場合だけ極端に計測結果が悪い。従って、節の位置に開口を配置しない限り、ある程度は反射波の検出精度を向上させることができる。
より安全には、腹および節の中間位置(距離Lsf=134.75mm、173.25mm)よりも腹に近い位置に開口を配置すると、反射波の検出精度を向上させることができる。これらの位置は、管内定在波の正確な腹の位置(または、二つの節の中央の位置)から前後に管内波長λgの1/8以下だけ離れた位置である。
具体的には、これらの位置における比率S31、S41は、おおよそ-5~-9dBの範囲にある。感度に関して、図20に示す六つのグラフの平均値は、節の位置に開口を配置した場合には約-16dB、腹の位置に開口を配置した場合には約-6dB、腹および節の中間位置に開口を配置した場合には-7dBである。
すなわち、腹および節の中間位置に開口を配置した場合の比率S31、S41は、節の位置に開口を配置した場合より9dBも良く、腹の位置に開口を配置した場合との差は1dBに過ぎない。
周波数に対する安定性に関して、図20に示す六つのグラフの変動幅は、節の位置に開口を配置した場合には約9dB、腹の位置に開口を配置した場合には約2dB、腹および節の中間位置に開口を配置した場合には約4dBである。
すなわち、腹および節の中間位置に開口を配置した場合の比率S31、S41は、節の位置に開口を配置した場合よりはかなり良く、どちらかと言えば腹の位置に開口を配置した場合に近い。従って、腹の位置(または、二つの節の中央の位置)から前後に管内波長λgの1/8以下だけ離れた位置に開口を配置すれば、反射波の検出精度を向上させることができる。
(本開示の各態様と作用効果)
図21を参照して、管内定在波と反射波検出部の配置との位置関係、および、本開示の各態様について説明する。図21は、図1における導波管10の周辺の拡大図である。
図21を参照して、管内定在波と反射波検出部の配置との位置関係、および、本開示の各態様について説明する。図21は、図1における導波管10の周辺の拡大図である。
図21に示すように、本開示の一態様のマイクロ波加熱装置は、被加熱物を収容する加熱室2と、マイクロ波を発生させるマグネトロン3と、導波管10と、方向性結合器6とを備える。
導波管10は、マグネトロン3により発生されたマイクロ波を加熱室に伝送する。方向性結合器6は、導波管10内に生じた管内定在波301の腹302の近傍に配置される。方向性結合器6は、加熱室2からマグネトロン3に戻るマイクロ波である反射波の一部を検出する反射波検出部を含む。
管内定在波301の腹302および節303は、管内波長λgの1/4ごとに交互に現れる。
本構成により、管内定在波301の腹302の近傍で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、クロス開口11に外接する矩形領域E1の中心部が、管内定在波301の二つの節303の間に配置されることで、反射波検出部を含む方向性結合器6が、管内定在波301の腹302の近傍に配置される。
本構成により、管内定在波301の腹302の近傍で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
見えない管内定在波301の腹302の位置を決めるのは難しい。隣り合う二つの節303の間の位置を目安にすれば、容易に方向性結合器6の位置決めをすることができる。
本開示の一態様のマイクロ波加熱装置では、クロス開口11に外接する矩形領域E1が、管内定在波301の二つの節303に重ならないように配置されることで、反射波検出部を含む方向性結合器6が、管内定在波301の腹302の近傍に配置される。
本構成により、管内定在波301のより腹302に近い位置で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、反射波検出部を含む方向性結合器6が、管内定在波301の二つの節303の中央の位置から前後に管内波長λgの1/8以下だけ離れて配置されることで、管内定在波301の腹302の近傍に配置される。
図20を参照して説明したように、腹302から前後に管内波長λgの1/8以下だけ離れた位置であれば、ある程度の精度で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、反射波検出部を含む方向性結合器6が、導波管10の終端304から管内波長λgの1/4の奇数倍(図21では3倍)の距離だけ離れて配置されることで、管内定在波301の腹302の近傍に配置される。
本構成により、管内定在波301の腹302の近傍で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置は、導波管10内に生じた管内定在波301の位置を安定させるための定在波安定部5をさらに有する。反射波検出部を含む方向性結合器6は、定在波安定部5から管内波長λgの1/4の奇数倍(図21では1倍)の距離だけ離れて配置されることで、管内定在波301の腹302の近傍に配置される。
本構成により、管内定在波301の腹302の近傍で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、定在波安定部5が、導波管10内に突出する突起部で構成される。
本構成では、突起部の位置に管内定在波301の節303が生じる。反射波検出部を含む方向性結合器6は、突起部から管内波長λgの1/4の奇数倍の距離だけ離れて配置され、管内定在波301の腹302の近傍で反射波を検出する。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、導波管10が、L字状に屈曲した屈曲部10bを有し(図3参照)、定在波安定部が屈曲部10bで構成されてもよい。
本構成では、屈曲部10bの位置に管内定在波301の節303が生じる。反射波検出部を含む方向性結合器6は、屈曲部10bから管内波長λgの1/4の奇数倍の距離だけ離れて配置され、管内定在波301の腹302の位置で反射波を検出する。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、反射波検出部を含む方向性結合器6は、マグネトロン3と導波管10との結合位置305から管内波長λgの1/2の整数倍(図21では2倍)の距離だけ離れて配置されることで、管内定在波301の腹302の近傍に配置される。
本構成では、結合位置305で、管内定在波301の腹302が生じる。反射波検出部を含む方向性結合器6は、結合位置305から管内波長λgの1/2の整数倍の距離だけ離れて配置され、管内定在波301の腹302の近傍で反射波を検出する。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置は、導波管10により伝送されたマイクロ波を加熱室2に放射するアンテナ4を有する。反射波検出部を含む方向性結合器6は、アンテナ4と導波管10との結合位置306から管内波長λgの1/2の整数倍(図21では1倍)の距離だけ離れて配置されることで、管内定在波301の腹302の近傍に配置される。
本構成では、結合位置306で、管内定在波301の腹302が生じる。反射波検出部を含む方向性結合器6は、結合位置306から管内波長λgの1/2の整数倍の距離だけ離れて配置され、管内定在波301の腹302の近傍で反射波を検出する。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、反射波検出部を含む方向性結合器6は、導波管10に設けられたクロス開口11と、クロス開口11に対向する結合線路(図8参照)とを有する。クロス開口11は、管内定在波301の腹302の近傍に配置される。
本構成により、管内定在波301の腹302の位置で反射波を検出することができる。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示の一態様のマイクロ波加熱装置では、クロス開口11が、互いに交差する第1長孔11eと第2長孔11fとを含み(図7、図8参照)、平面視において導波管10の管軸と交差しない位置に設けられる。第1長孔11eと第2長孔11fが交差する開口交差部(図7、図8参照)は、管内定在波301の腹302の近傍に配置される。
本構成により、導波管10により伝送されたマイクロ波は、開口交差部を中心として電界の向きが回転する円偏波のマイクロ波として加熱室2に放射される。円偏波のマイクロ波に関しては、入射波と反射波とで逆の回転方向を有するため、入射波と反射波とを容易に分離することができる。これに加えて、本構成では、管内定在波の腹302の近傍で反射波を検出する。これにより、反射波の検出精度を向上させることができ、被加熱物1の状態をより正確に検出することができる。
本開示は、民生用または業務用のマイクロ波加熱装置に適用可能である。
1 被加熱物
2 加熱室
2a 載置台
3 マグネトロン
4 アンテナ
5 定在波安定部
6、60 方向性結合器
7 制御部
7a 信号
8 駆動電源
9 モータ
10 導波管
10a 幅広面
10b 屈曲部
10d 磁界分布
11 クロス開口
11c 開口中央部
11d 幅
11e 第1長孔
11ea、11fa 開口先端部
11f 第2長孔
11w 長さ
12 プリント基板
12a 基板表面
12b 基板裏面
13 マイクロストリップ線路
13a 第1伝送線路
13aa 第1直線部
13ab 第3直線部
13ac、13bc 円弧状部
13b 第2伝送線路
13ba 第2直線部
13bb 第4直線部
14 支持部
15 第1検波回路
16 第2検波回路
18 第1検波出力部
18a、19a コネクタ
19 第2検波出力部
50 マイクロ波加熱装置
131 第1出力部
132 第2出力部
141、142 溝
251 直交導波管
252 主導波管
253 副導波管
254、255 開口
256、304 終端
257、258、259 マイクロ波
301 管内定在波
302 腹
303 節
305、306 結合位置
E1 矩形領域
L1 管軸
L2 垂線
L3 仮想直線
L4 平行線
P1 第1結合点
P2 第2結合点
P3 第3結合点
P4 第4結合点
P5 第5結合点
2 加熱室
2a 載置台
3 マグネトロン
4 アンテナ
5 定在波安定部
6、60 方向性結合器
7 制御部
7a 信号
8 駆動電源
9 モータ
10 導波管
10a 幅広面
10b 屈曲部
10d 磁界分布
11 クロス開口
11c 開口中央部
11d 幅
11e 第1長孔
11ea、11fa 開口先端部
11f 第2長孔
11w 長さ
12 プリント基板
12a 基板表面
12b 基板裏面
13 マイクロストリップ線路
13a 第1伝送線路
13aa 第1直線部
13ab 第3直線部
13ac、13bc 円弧状部
13b 第2伝送線路
13ba 第2直線部
13bb 第4直線部
14 支持部
15 第1検波回路
16 第2検波回路
18 第1検波出力部
18a、19a コネクタ
19 第2検波出力部
50 マイクロ波加熱装置
131 第1出力部
132 第2出力部
141、142 溝
251 直交導波管
252 主導波管
253 副導波管
254、255 開口
256、304 終端
257、258、259 マイクロ波
301 管内定在波
302 腹
303 節
305、306 結合位置
E1 矩形領域
L1 管軸
L2 垂線
L3 仮想直線
L4 平行線
P1 第1結合点
P2 第2結合点
P3 第3結合点
P4 第4結合点
P5 第5結合点
Claims (12)
- 被加熱物を収容するように構成された加熱室と、
マイクロ波を発生させるように構成されたマイクロ波発生部と、
前記マイクロ波発生部により発生された前記マイクロ波を前記加熱室に伝送するように構成された導波管と、
前記導波管内に生じた管内定在波の腹の近傍に配置され、前記加熱室から前記マイクロ波発生部に戻る前記マイクロ波である反射波の一部を検出するように構成された反射波検出部と、を備えた、マイクロ波加熱装置。 - 前記反射波検出部が、前記管内定在波の二つの節の間に配置されることで、前記管内定在波の前記腹の近傍に配置された、請求項1に記載のマイクロ波加熱装置。
- 前記反射波検出部が、前記管内定在波の前記二つの節に重ならないように配置されることで、前記管内定在波の前記腹の近傍に配置された、請求項2に記載のマイクロ波加熱装置。
- 前記反射波検出部が、前記管内定在波の前記二つの節の中央の位置から前後に前記管内定在波の管内波長の1/8以下だけ離れて配置されることで、前記管内定在波の前記腹の近傍に配置された、請求項3に記載のマイクロ波加熱装置。
- 前記反射波検出部が、前記導波管の終端から前記管内定在波の管内波長の1/4の奇数倍の距離だけ離れて配置されることで、前記管内定在波の前記腹の近傍に配置された、請求項1に記載のマイクロ波加熱装置。
- 前記管内定在波の位置を安定させるように構成された定在波安定部をさらに有し、前記反射波検出部は、前記定在波安定部から前記管内定在波の管内波長の1/4の奇数倍の距離だけ離れて配置されることで、前記管内定在波の前記腹の近傍に配置された、請求項1に記載のマイクロ波加熱装置。
- 前記定在波安定部が、前記導波管内に突出する突起部で構成された、請求項6に記載のマイクロ波加熱装置。
- 前記導波管が、L字状に屈曲した屈曲部を有し、前記定在波安定部が、前記屈曲部で構成された、請求項6に記載のマイクロ波加熱装置。
- 前記反射波検出部が、前記マイクロ波発生部と前記導波管との結合位置から前記管内定在波の管内波長の1/2の整数倍の距離だけ離れて配置されることで、前記管内定在波の前記腹の近傍に配置された、請求項1に記載のマイクロ波加熱装置。
- 前記導波管により伝送された前記マイクロ波を前記加熱室に放射するように構成されたマイクロ波放射部をさらに有し、前記反射波検出部は、前記マイクロ波放射部と前記導波管との結合位置から前記管内定在波の管内波長の1/2の整数倍の距離だけ離れて配置されることで、前記管内定在波の前記腹の近傍に配置された、請求項1に記載のマイクロ波加熱装置。
- 前記反射波検出部が、前記導波管に設けられた開口部と、前記開口部に対向する結合線路とを有し、前記開口部が、前記管内定在波の前記腹の近傍に配置された、請求項1に記載のマイクロ波加熱装置。
- 前記開口部が、互いに交差する第1長孔と第2長孔とを含み、平面視において前記導波管の管軸と交差しない位置に設けられ、前記第1長孔と前記第2長孔とが交差する開口交差部が、前記管内定在波の前記腹の近傍に配置された、請求項11に記載のマイクロ波加熱装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19788617.9A EP3784003B1 (en) | 2018-04-20 | 2019-04-15 | Microwave heating device |
JP2020514363A JP7316496B2 (ja) | 2018-04-20 | 2019-04-15 | マイクロ波加熱装置 |
CN201980003793.3A CN111052863B (zh) | 2018-04-20 | 2019-04-15 | 微波加热装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018081042 | 2018-04-20 | ||
JP2018-081042 | 2018-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203172A1 true WO2019203172A1 (ja) | 2019-10-24 |
Family
ID=68240446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/016076 WO2019203172A1 (ja) | 2018-04-20 | 2019-04-15 | マイクロ波加熱装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3784003B1 (ja) |
JP (1) | JP7316496B2 (ja) |
CN (1) | CN111052863B (ja) |
WO (1) | WO2019203172A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113243988B (zh) * | 2021-06-24 | 2022-11-18 | 北京东方略生物医药科技股份有限公司 | 微波消融装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5816820B2 (ja) | 1978-01-27 | 1983-04-02 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | 通信システム |
JP3331279B2 (ja) | 1995-08-08 | 2002-10-07 | 株式会社日立ホームテック | 高周波加熱装置 |
JP2014049178A (ja) * | 2012-08-29 | 2014-03-17 | Panasonic Corp | マイクロ波加熱装置 |
JP2014072117A (ja) * | 2012-10-01 | 2014-04-21 | Panasonic Corp | マイクロ波加熱装置 |
WO2014119333A1 (ja) * | 2013-01-31 | 2014-08-07 | パナソニック株式会社 | 方向性結合器及びそれを備えるマイクロ波加熱装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE651746A (ja) * | 1963-06-12 | |||
US4851630A (en) * | 1988-06-23 | 1989-07-25 | Applied Science & Technology, Inc. | Microwave reactive gas generator |
JP2003157963A (ja) * | 2001-11-22 | 2003-05-30 | Hitachi Hometec Ltd | 高周波加熱装置 |
EP1538879A1 (en) | 2003-12-02 | 2005-06-08 | Personal Chemistry i Uppsala AB | Microwave heating device |
US9398646B2 (en) * | 2009-07-10 | 2016-07-19 | Panasonic Intellectual Property Management Co., Ltd. | Microwave heating device and microwave heating control method |
JP6273598B2 (ja) | 2012-08-01 | 2018-02-07 | パナソニックIpマネジメント株式会社 | マイクロ波加熱装置 |
-
2019
- 2019-04-15 CN CN201980003793.3A patent/CN111052863B/zh active Active
- 2019-04-15 WO PCT/JP2019/016076 patent/WO2019203172A1/ja active Application Filing
- 2019-04-15 EP EP19788617.9A patent/EP3784003B1/en active Active
- 2019-04-15 JP JP2020514363A patent/JP7316496B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5816820B2 (ja) | 1978-01-27 | 1983-04-02 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | 通信システム |
JP3331279B2 (ja) | 1995-08-08 | 2002-10-07 | 株式会社日立ホームテック | 高周波加熱装置 |
JP2014049178A (ja) * | 2012-08-29 | 2014-03-17 | Panasonic Corp | マイクロ波加熱装置 |
JP2014072117A (ja) * | 2012-10-01 | 2014-04-21 | Panasonic Corp | マイクロ波加熱装置 |
WO2014119333A1 (ja) * | 2013-01-31 | 2014-08-07 | パナソニック株式会社 | 方向性結合器及びそれを備えるマイクロ波加熱装置 |
JP6176540B2 (ja) | 2013-01-31 | 2017-08-09 | パナソニックIpマネジメント株式会社 | 方向性結合器及びそれを備えるマイクロ波加熱装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3784003A4 |
Also Published As
Publication number | Publication date |
---|---|
JP7316496B2 (ja) | 2023-07-28 |
JPWO2019203172A1 (ja) | 2021-04-22 |
CN111052863A (zh) | 2020-04-21 |
CN111052863B (zh) | 2022-07-15 |
EP3784003A4 (en) | 2021-06-02 |
EP3784003B1 (en) | 2022-05-18 |
EP3784003A1 (en) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014171152A1 (ja) | マイクロ波加熱装置 | |
EP2953204B1 (en) | Directional coupler and microwave heater provided with the same | |
CN108781486B (zh) | 微波加热装置 | |
JP2014135123A (ja) | マイクロ波加熱装置 | |
JP6906143B2 (ja) | マイクロ波加熱装置 | |
WO2019203172A1 (ja) | マイクロ波加熱装置 | |
JP6273598B2 (ja) | マイクロ波加熱装置 | |
JP7386398B2 (ja) | マイクロ波加熱装置 | |
JP7454770B2 (ja) | 方向性結合器およびそれを備えたマイクロ波加熱装置 | |
WO2016103588A1 (ja) | マイクロ波加熱装置 | |
JP6671005B2 (ja) | マイクロ波加熱装置 | |
WO2016103586A1 (ja) | マイクロ波加熱装置 | |
WO2020170923A1 (ja) | マイクロ波加熱装置 | |
JP6715525B2 (ja) | マイクロ波加熱装置 | |
JP2018006049A (ja) | 加熱調理器 | |
JP2014120416A (ja) | マイクロ波加熱装置 | |
JP2020013760A (ja) | 電磁波加熱装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19788617 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020514363 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019788617 Country of ref document: EP |