WO2020170849A1 - 操業結果予測方法、学習モデルの学習方法、操業結果予測装置および学習モデルの学習装置 - Google Patents

操業結果予測方法、学習モデルの学習方法、操業結果予測装置および学習モデルの学習装置 Download PDF

Info

Publication number
WO2020170849A1
WO2020170849A1 PCT/JP2020/004738 JP2020004738W WO2020170849A1 WO 2020170849 A1 WO2020170849 A1 WO 2020170849A1 JP 2020004738 W JP2020004738 W JP 2020004738W WO 2020170849 A1 WO2020170849 A1 WO 2020170849A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
learning model
operation result
model
operating conditions
Prior art date
Application number
PCT/JP2020/004738
Other languages
English (en)
French (fr)
Inventor
鈴木 勝也
吉成 有介
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020217026129A priority Critical patent/KR102579633B1/ko
Priority to BR112021016447A priority patent/BR112021016447A2/pt
Priority to JP2020546514A priority patent/JP6954479B2/ja
Priority to EP20759314.6A priority patent/EP3929516A4/en
Priority to CN202080014961.1A priority patent/CN113454413B/zh
Publication of WO2020170849A1 publication Critical patent/WO2020170849A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0009Monitoring the pressure in an enclosure or kiln zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0096Arrangements of controlling devices involving simulation means, e.g. of the treating or charging step
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to an operation result prediction method, a learning model learning method, an operation result prediction device, and a learning model learning device.
  • Patent Documents 1 and 2 disclose a method for determining the amount of input electric power required for an arc furnace used for melting raw materials such as scrap, adjusting the components, and raising the temperature.
  • the required amount of input power is calculated from the component concentration of the molten steel, and in addition, when the temperature of the molten steel needs to be raised, the amount of power generated by the difference from the reference tapping temperature is calculated. It is moderate. However, there are cases where the target amount of temperature rise of molten steel is unknown in advance, and in that case, it is necessary to predict the amount of electric power from other variables.
  • the present invention has been made in view of the above, and an operation result prediction method, a learning model learning method, an operation result prediction device, and a learning model learning device capable of highly accurately predicting an operation result of an industrial process.
  • the purpose is to provide.
  • the operation result prediction method is an operation result prediction method for predicting the operation result of the industrial process from a plurality of operating conditions of the industrial process, Model selection for selecting a specific learning model from a plurality of learning models according to whether or not to use a specific key operating condition among the plurality of operating conditions as an explanatory variable when predicting an operating result And a prediction step of predicting an operation result based on the learning model selected in the model selection step.
  • the plurality of learning models include an operation condition that is the specific key, and is classified by an operation condition related to the operation condition that is the specific key.
  • a first learning model created from untrained first teacher data and a first learning model that does not include the specific key operating conditions and is classified by operating conditions related to the specific key operating conditions A second learning model for creating two teacher data, wherein the model selecting step selects the first learning model when the operating condition serving as the specific key is used as the explanatory variable, When the specific key operating condition is not used as an explanatory variable, the second learning model is selected.
  • the industrial process is an arc process in a steel mill
  • the operation result is the power used in batch operation of the arc process
  • the plurality of operations The conditions include at least the temperature increase target amount, the scheduled processing time, and the steel type information.
  • the industrial process is a converter process in a steel mill
  • the operation result is a gas generated in batch operation of the converter process
  • a learning model learning method is a learning model learning method used when predicting an operation result of an industrial process from a plurality of operating conditions of the industrial process.
  • a first teacher data that includes an operating condition that is a specific key among the plurality of operating conditions and that is not classified by an operating condition that is related to the operating condition that is the specific key is created.
  • Data creating step, and a second data creating step of creating second teacher data that is classified by operating conditions that do not include the specific key operating conditions and that are related to the specific key operating conditions
  • the industrial process is an arc process in a steel mill
  • the operation result is the power used in batch operation of the arc process
  • the plurality of The operating conditions include at least the temperature increase target amount, the scheduled processing time, and the steel type information.
  • the industrial process is a converter process in a steel mill
  • the operation result is a gas generated in batch operation of the converter process
  • the plurality of operating conditions include at least a planned blowing oxygen amount, a planned treatment time, and a blowing mode.
  • the operation result prediction device is an operation result prediction device that predicts the operation result of the industrial process from a plurality of operating conditions of the industrial process, Model selection for selecting a specific learning model from a plurality of learning models according to whether or not to use a specific key operating condition among the plurality of operating conditions as an explanatory variable when predicting an operating result And a predicting unit that predicts the operation result based on the learning model selected by the model selecting unit.
  • a learning model learning device is a learning model learning device used when predicting an operation result of an industrial process from a plurality of operating conditions of the industrial process.
  • a first teacher data that includes an operating condition that is a specific key among the plurality of operating conditions and that is not classified by an operating condition that is related to the operating condition that is the specific key is created.
  • Data creating means, and second data creating means for creating second teacher data that is classified by operating conditions that do not include the specific key operating conditions and that are related to the specific key operating conditions.
  • a first model creating means for creating a first learning model for predicting an operation result of the industrial process based on the first teacher data, and the industrial process based on the second teacher data.
  • Second model creating means for creating a second learning model for predicting the operation result of.
  • a learning model with high prediction accuracy is selected and predicted according to an operating condition that can be grasped in advance. It can be predicted with high accuracy.
  • FIG. 1 is a block diagram showing a schematic configuration of an operation result prediction device and a learning device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the flow of the learning method of the learning model according to the embodiment of the present invention.
  • FIG. 3 is a flowchart showing details of the data creation step in the learning method of the learning model according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing the flow of the operation result prediction method according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing details of the data creation step in the learning method of the learning model according to the second embodiment of the present invention.
  • FIG. 6 is a flowchart showing the flow of the operation result prediction method according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of an operation result prediction device and a learning device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the flow of the learning method of the learning model according
  • FIG. 7 is an example of the operation result prediction device and the learning device according to the first embodiment of the present invention, and is a graph showing the verification accuracy of the predicted power consumption.
  • FIG. 8 is an example of the operation result prediction device and the learning device according to the second embodiment of the present invention, and is a graph showing the verification accuracy of the predicted generated gas.
  • learning device An operation result prediction method, a learning model learning method, an operation result prediction device, and a learning model learning device (hereinafter, referred to as “learning device”) according to an embodiment of the present invention will be described with reference to the drawings.
  • the operation result prediction device is a device that predicts the operation result of the industrial process from a plurality of operating conditions of the industrial process.
  • an example will be described in which, in an arc process in a steel mill, the power consumption in batch operation of the arc process is predicted from a plurality of operating conditions.
  • the arc process is a process that is performed subsequent to the primary refining process of molten steel, and is a process of adjusting the components such as desulfurization by heating the molten steel by arc discharge.
  • the temperature is increased in consideration of the temperature variation of the molten steel received from the previous process, and the target component value differs depending on the steel type and the component adjustment differs, so the processing time required for these may differ.
  • This arc process is a process that consumes electric power particularly in the steel making process, and the electric power consumption varies depending on the temperature rising process and the component adjustment process. Therefore, it is required to accurately predict the used electric power.
  • a plurality of operating conditions when planning an arc process include, for example, a target temperature increase amount, a scheduled processing time, a processing waiting time, and steel grade information.
  • the temperature increase target amount of these operating conditions there are cases where there is data and cases where there is no data depending on the operating conditions. That is, when the pre-process (primary refining process) is appropriately performed, the arc process plan can be drafted based on the result of the pre-process, so that it is possible to grasp the target heating amount. is there.
  • the previous process is not properly performed, it is difficult to grasp the target temperature increase amount because the arc process cannot be planned based on the result of the previous process.
  • the operation result prediction device 1 is realized by a general-purpose information processing device such as a personal computer or a workstation, and includes an input unit 10, a database (DB) 20, a calculation unit 30, and a display unit 40. I have it.
  • DB database
  • the input unit 10 is an input means for the arithmetic unit 30, and is realized by an input device such as a keyboard, a mouse pointer, or a ten-key pad.
  • the database 20 stores past operation data (actual data) in the arc process.
  • the arithmetic unit 30 is realized by, for example, a processor including a CPU (Central Processing Unit) and the like, and a memory (main storage unit) including a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the arithmetic unit 30 realizes a function that matches a predetermined purpose by loading and executing a program in a work area of a main storage unit and controlling each component or the like through the execution of the program.
  • the arithmetic unit 30 functions as a data creation unit (data creation unit) 31, a model creation unit (model creation unit) 32, a model selection unit (model selection unit) 33, and a prediction unit (prediction unit) 34 through the execution of the program. Function.
  • the learning device according to the present embodiment is realized by the configuration of the operation result prediction device 1 excluding the model selection unit 33 and the prediction unit 34.
  • the data creation unit 31 creates teacher data used in the model creation in the model creation unit 32 based on the past operation data stored in the database 20.
  • the data creation unit 31 specifically creates two types of teacher data composed of first teacher data and second teacher data.
  • the teacher data used for learning be created from operation data whose equipment conditions are as close as possible. Therefore, it is desirable that the data creation unit 31 creates the teacher data based on the operation data within a limited period (for example, the past two months).
  • the first teaching data is teaching data that includes a particular key operating condition among a plurality of operating conditions of the arc process and is not classified by the operating condition related to the particular key operating condition. Is shown.
  • the above-mentioned "operating condition that is a specific key” refers to the target temperature increase amount in the arc process.
  • the first teacher data is, for example, as shown in Table 1 below, a plurality of operating conditions (a target temperature increase amount and a planned processing time), and electric power used when an arc process is performed under the plurality of operating conditions.
  • the data is a combination of
  • "steel number" in the same table indicates a processing number in the arc process.
  • the second teaching data is teaching data that does not include a specific key operating condition among the plurality of operating conditions of the arc process, and is classified by operating conditions related to the specific key operating condition. Is shown.
  • the above-mentioned "operating condition related to operating condition that is a specific key” indicates steel type information. Examples of the steel type of the steel type information include carbon steel, Al-killed steel, high-tensile steel, Si-killed steel, high-chrome steel, stainless steel and the like.
  • the model creating unit 32 creates a first learning model by learning the first teacher data (see Table 1) created by the data creating unit 31.
  • the model creating unit 32 also creates a second learning model by learning the second teacher data (see Table 2) created by the data creating unit 31.
  • the model creation unit 32 uses regression analysis as a learning method. Further, as a method of regression analysis, for example, a least squares method which is a kind of linear regression, a partial least squares method or linear regression with regularization, or a kind of regression tree, random forest, gradient boosting, or nonlinear Neural networks, support vector regression, etc., which are a type of regression, can be used.
  • a least squares method which is a kind of linear regression, a partial least squares method or linear regression with regularization, or a kind of regression tree, random forest, gradient boosting, or nonlinear Neural networks, support vector regression, etc., which are a type of regression, can be used.
  • the model selection unit 33 determines whether or not to use a specific key operating condition (a target temperature increase amount) among a plurality of operating conditions as an explanatory variable when predicting the operating result (power consumption) of the arc process. Then, a specific learning model is selected from a plurality of learning models. That is, the model selection unit 33 selects the first learning model when using a specific key operating condition as an explanatory variable, and selects the second learning model when not using a specific key operating condition as an explanatory variable. Select the learning model of.
  • a specific key operating condition a target temperature increase amount
  • the prediction unit 34 predicts the operation result (power consumption) of the arc process based on the learning model selected by the model selection unit 33. Specifically, the prediction unit 34 calculates the predicted value of the power consumption by inputting the scheduled value of the explanatory variable (for example, the target temperature increase amount or the scheduled processing time).
  • the scheduled value of the explanatory variable for example, the target temperature increase amount or the scheduled processing time.
  • the learning method of the learning model according to this embodiment will be described with reference to FIGS. 2 and 3.
  • the learning method of the learning model is implemented mainly by the data creation unit 31 and the model creation unit 32 of the calculation unit 30.
  • the data creation unit 31 reads the operation data necessary for creating teacher data from the database 20 (step S1, data reading step). Then, the data creation unit 31 creates teacher data based on the read operation data (step S2, data creation step). Subsequently, the model creating unit 32 creates a learning model by learning the teacher data (step S3, model creating step).
  • step S2 the above-described data creation step (step S2) is specifically carried out according to the flow shown in FIG.
  • the data creation unit 31 determines whether or not the operation temperature data read from the database 20 includes the target temperature increase amount (step S21). When it is determined that the target temperature increase amount is included (Yes in step S21), the data creation unit 31 selects the target temperature increase amount and the scheduled processing time as explanatory variables (step S22), and As shown, teacher data (first teacher data, see Table 1) that is not classified by steel type information is created (step S23).
  • the data creation unit 31 selects the scheduled processing time as the explanatory variable (step S24). ), teacher data (second teacher data, see Table 2) classified by the steel type information as shown in Table 2 is created (step S25). The presence/absence of the temperature increase target amount in step S21 is determined by a flag such as NaN.
  • the operation result prediction method according to this embodiment will be described with reference to FIG.
  • the operation result prediction method is implemented mainly by the model selection unit 33 and the prediction unit 34 of the calculation unit 30.
  • the model selection unit 33 determines whether or not the temperature increase target value is included in the explanatory variables when predicting the operation result (power consumption) of the arc process (step S41, determination step). When it is determined that the temperature increase target amount is included (Yes in step S41), the model selection unit 33 selects a learning model (first learning model) that is not classified by the steel type information (step S42, model). (Selection step), the power consumption is predicted by inputting the temperature increase target amount and the scheduled processing time into the learning model (step S43, prediction step).
  • step S41 when it is determined that the temperature increase target value is not included in the explanatory variables when predicting the operation result (power consumption) of the arc process (No in step S41), the model selection unit 33 is classified by the steel type information.
  • step S44 model selecting step
  • step S45 prediction step
  • the prediction accuracy is high in accordance with the operation conditions (explanatory variables) having a correlation that can be grasped in advance. Since the learning model is selected and the prediction is performed, the operation result of the industrial process can be predicted with high accuracy. For example, when the operation result prediction device and the operation result prediction method are applied to an arc process in a steel mill, if the temperature increase target amount, which is a key operation condition, cannot be used as an explanatory variable, teacher data classified by steel type information ( A learning model (second learning model) created based on the second teacher data) is selected, and the power consumption is predicted. As a result, it is possible to highly accurately predict the power used in the arc process.
  • a plurality of learning models are created according to operating conditions that can be grasped in advance.
  • the operation result of the industrial process can be predicted with high accuracy according to the operating condition that can be grasped in advance.
  • the configurations of the operation result prediction device and the learning device according to the second embodiment of the present invention are the same as those in FIG.
  • the operation result prediction device is a device that predicts the operation result of the industrial process from a plurality of operating conditions of the industrial process.
  • an example will be described in which a generated gas in a batch operation of a converter process is predicted from a plurality of operating conditions in a converter process in a steel mill.
  • the converter process is a primary refining process in which iron ore is melted in a blast furnace and hot metal that has been subjected to pretreatment such as desulfurization is transferred to molten steel. In this process, oxygen is blown to perform decarburization and dephosphorization refining. Even with the same treatment time, decarburization and dephosphorization produce larger amounts of gas during decarburization. Even with the same decarburization, the amount of gas generated differs because the treatment differs depending on the blowing mode.
  • the converter process is a process in which gas is generated particularly in the steelmaking process, and in order to efficiently generate power using this generated gas, it is required to accurately predict the generated gas. For that purpose, it is necessary to consider the processing contents as operating conditions.
  • a plurality of operating conditions when planning a converter process include, for example, a planned blowing oxygen amount, a planned treatment time, and a blowing form.
  • a planned blowing oxygen amount in these operating conditions, there are cases where there is data and cases where there is no data depending on the operating conditions. That is, the blowing oxygen amount is calculated and determined immediately before the converter blowing and during the converter blowing. They are called static controls and dynamic controls. Therefore, it is difficult to grasp the blowing oxygen amount of the next blowing until the previous blowing of the converter is completed.
  • the first teacher data used in the data creation unit 31 includes an operating condition that is a specific key among a plurality of operating conditions of the converter process, and is classified by an operating condition that is related to the operating condition that is the specific key. It indicates that the teacher data has not been created.
  • the above-mentioned "operating condition which is a specific key” indicates the planned blowing oxygen amount in the converter process.
  • the first teacher data is, for example, as shown in Table 3 below, a plurality of operating conditions (scheduled blowing oxygen amount and scheduled processing time), and gas generated when the converter process is carried out under the plurality of operating conditions.
  • the data is a combination of and.
  • "steel number" in the table indicates a processing number in the converter process.
  • the second teacher data used by the data creation unit 31 is a plurality of operating conditions of the converter process, does not include an operating condition that is a specific key, and is based on an operating condition that is related to the operating condition that is the specific key. This indicates the classified teacher data.
  • the above-mentioned “operating condition related to the operating condition that is a specific key” indicates the blowing mode in the present embodiment. This blowing mode is assigned according to the content of the hot metal pretreatment.
  • the second teacher data is, for example, as shown in Table 4 below, the combination of the operating condition (scheduled processing time) and the gas generated when the converter process is carried out under the operating condition for each blowing mode. It is classified data.
  • the model creating unit 32 creates a first learning model by learning the first teacher data (see Table 3) created by the data creating unit 31.
  • the model creating unit 32 also creates a second learning model by learning the second teacher data (see Table 4) created by the data creating unit 31.
  • the model creation unit 32 uses regression analysis as a learning method. Further, as a method of regression analysis, for example, a least squares method which is a kind of linear regression, a partial least squares method or linear regression with regularization, or a kind of regression tree, random forest, gradient boosting, or nonlinear Neural networks, support vector regression, etc., which are a type of regression, can be used.
  • a least squares method which is a kind of linear regression, a partial least squares method or linear regression with regularization, or a kind of regression tree, random forest, gradient boosting, or nonlinear Neural networks, support vector regression, etc., which are a type of regression, can be used.
  • a specific learning model is selected from a plurality of learning models. That is, the model selection unit 33 selects the first learning model when using a specific key operating condition as an explanatory variable, and selects the second learning model when not using a specific key operating condition as an explanatory variable. Select the learning model of.
  • the prediction unit 34 predicts the operation result (generated gas) of the converter process based on the learning model selected by the model selection unit 33. Specifically, the prediction unit 34 calculates the predicted value of the generated gas by inputting the scheduled value of the explanatory variable (for example, the scheduled blowing oxygen amount or the scheduled processing time).
  • the learning method of the learning model according to this embodiment will be described with reference to FIGS. 2 and 5.
  • the learning method of the learning model is implemented mainly by the data creation unit 31 and the model creation unit 32 of the calculation unit 30.
  • As a learning method of the learning model the processes of steps S1 to S3 of FIG. 2 are performed.
  • step S2 the above-described data creation step (step S2) is specifically carried out according to the flow shown in FIG.
  • the data creation unit 31 determines whether or not the planned blowing oxygen amount is included in the operation data read from the database 20 (step S51).
  • the data creation unit 31 selects the planned blowing oxygen amount and the planned processing time as explanatory variables (step S52), and the above table is displayed.
  • teacher data first teacher data, see Table 3 that is not classified in the blowing mode is created (step S53).
  • the data creation unit 31 selects the planned processing time as the explanatory variable (step S51).
  • the teacher data second teacher data, see Table 4 classified in the blowing mode is created as shown in Table 4 (step S55).
  • the presence/absence of the planned blowing oxygen amount in step S51 is determined by a flag such as NaN.
  • the operation result prediction method according to this embodiment will be described with reference to FIG.
  • the operation result prediction method is implemented mainly by the model selection unit 33 and the prediction unit 34 of the calculation unit 30.
  • the model selection unit 33 determines whether or not the expected blowing oxygen amount is included in the explanatory variables when predicting the operation result (generated gas) of the converter process (step S61, determination step). When it is determined that the planned blowing oxygen amount is included (Yes in step S61), the model selection unit 33 selects a learning model (first learning model) that is not classified in the blowing mode (step S62). , Model selection step), the planned blowing oxygen amount and the planned processing time are input to the learning model to predict the generated gas (step S63, prediction step).
  • the model selection unit 33 causes the blowing mode.
  • the generated gas is predicted by selecting the learning model (second learning model) classified in (step S64, model selecting step) and inputting the scheduled processing time into the learning model (step S65, predicting step). ..
  • the prediction accuracy is high in accordance with the operation conditions (explanatory variables) having a correlation that can be grasped in advance. Since the learning model is selected and the prediction is performed, the operation result of the industrial process can be predicted with high accuracy. For example, when the operation result prediction device and the operation result prediction method are applied to a converter process in a steel mill, if the planned blowing oxygen amount, which is a key operating condition, cannot be used as an explanatory variable, teachers classified by blowing form A learning model (second learning model) created based on the data (second teacher data) is selected, and the generated gas is predicted. Thereby, the gas generated in the converter process can be predicted with high accuracy.
  • the planned blowing oxygen amount which is a key operating condition
  • a plurality of learning models are created according to operating conditions that can be grasped in advance.
  • the operation result of the industrial process can be predicted with high accuracy according to the operating condition that can be grasped in advance.
  • a learning model in which teacher data that does not include the temperature increase target amount as an explanatory variable and is not classified by the steel type information is learned
  • each learning model was created based on the operation data for the past two months.
  • Lasso regression which is a type of linear regression with regularization
  • the target variable was the amount of electric power used for each steel number
  • the explanatory variable candidates were the temperature increase target amount for each steel number, the planned processing time, the processing waiting time, and the steel type information.
  • the steel type information is assigned from among carbon steel, Al killed steel, high strength steel, Si killed steel, high chromium steel, and stainless steel.
  • an ideal situation where the predicted value is 100% is assumed, and the actual value is used for each variable instead of the planned value.
  • Fig. 7 shows the comparison results of the errors obtained in the accuracy verification.
  • the error as the accuracy index was calculated by using RMSE (Root Mean Square Error) as 100 when only the planned processing time was used and the target heating amount and steel type information were not used.
  • RMSE Root Mean Square Error
  • the prediction result of the learning model C including the temperature raising target value in the explanatory variable is the best. Since it is clear that the temperature increase target value has a high correlation with the electric power used, this is a natural result. On the other hand, in the case where the temperature rise target value cannot be used, the prediction result of the learning model A that is not classified by steel type has a prediction error accuracy of about 30% worse than the prediction result of the learning model C. Has become. On the other hand, when the temperature raising target value cannot be used, the learning model B in which the data is classified by the steel type information that is considered to be closely related to the temperature raising target value and learning is performed without using the temperature raising target value. In the prediction result of, the accuracy of the prediction error is improved by 10% or more with respect to the prediction result of the learning model A.
  • the learning model in which the target temperature increase amount is simply omitted is used. If the prediction error with different learning models classified by explanatory variables (here, steel type information) that are assumed to be related to the target temperature rise is evaluated, and the prediction error is expected to improve for this, by using the learning model classified by the steel type information, the prediction error of the learning model can be improved.
  • explanatory variable here, the target temperature increase amount
  • steel type information the learning model classified by the steel type information
  • D A learning model in which teacher data that does not include the planned blowing oxygen amount as an explanatory variable and is not classified by the blowing form is learned
  • E Does not include the planned blowing oxygen amount as an explanatory variable and depends on the blowing form
  • F A learning model (first learning model) in which the teacher data (first teacher data) that includes the planned blowing oxygen amount as an explanatory variable and is not classified by the blowing mode is learned.
  • each learning model was created based on the operation data of the past 300 blowing.
  • Lasso regression which is a type of linear regression with regularization
  • the objective variable is the generated gas amount of one blowing
  • the candidates of the explanatory variables are the planned blowing oxygen amount of one blowing, the scheduled processing time, and the blowing mode.
  • the blowing form was assigned according to the content of the hot metal pretreatment. Further, in the accuracy verification of each learning model, an ideal situation where the predicted value is 100% is assumed, and the actual value is used for each variable instead of the planned value.
  • Fig. 8 shows the comparison results of the errors obtained in the accuracy verification.
  • the error used as the accuracy index was calculated by using only the planned treatment time and RMSE when the planned blowing oxygen amount and the blowing mode were not used as 100.
  • the prediction result of the learning model F including the planned blowing oxygen amount in the explanatory variable is the best. It is clear that the planned amount of blown oxygen has a high correlation with the generated gas, which is a natural result. On the other hand, in the case where the planned blowing oxygen amount cannot be used, the prediction result of the learning model D that is not classified by the blowing pattern has a prediction error accuracy of 19% with respect to the prediction result of the learning model F. It is a bad result. On the other hand, when the planned blowing oxygen amount cannot be used, the data is categorized by the blowing pattern that is considered to be closely related to the planned blowing oxygen amount, and the learning is performed without using the planned blowing oxygen amount. In the prediction result of the learning model E, the accuracy of the prediction error is improved by about 12% with respect to the prediction result of the learning model D.
  • the explanatory variable here, the planned blowing oxygen amount
  • the learning model in which the planned blowing oxygen amount is simply omitted is used. Evaluate the prediction error with different learning models classified by the explanatory variable (here, blowing pattern) that is assumed to be related to the planned blowing oxygen amount, rather than using it, and if the prediction error is improved If it is assumed, it is possible to improve the prediction error of the learning model by using the learning model classified in the blowing mode.
  • the operation result predicting method, the learning model learning method, the operation result predicting apparatus, and the learning model learning apparatus according to the present invention have been specifically described above with reference to modes and embodiments for carrying out the invention.
  • the gist is not limited to these descriptions, and should be broadly construed based on the claims. Further, it goes without saying that various changes and modifications based on these descriptions are also included in the gist of the present invention.
  • Operation result prediction device 10
  • Input unit 20
  • Database (DB) 30 arithmetic unit 31
  • data creation unit data creation means
  • model creation unit model creation means
  • model selection unit model selection means
  • Predictor Predictor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Mathematical Physics (AREA)
  • Operations Research (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Development Economics (AREA)
  • Artificial Intelligence (AREA)
  • Game Theory and Decision Science (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Evolutionary Computation (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Feedback Control In General (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

操業結果予測方法は、工業プロセスの複数の操業条件から工業プロセスの操業結果を予測する方法であり、操業結果を予測する際の説明変数として、複数の操業条件のうち特定のキーとなる操業条件を用いるか否かに応じて、複数の学習モデルの中から特定の学習モデルを選択するモデル選択ステップと、モデル選択ステップで選択した学習モデルに基づいて、操業結果を予測する予測ステップと、を含む。

Description

操業結果予測方法、学習モデルの学習方法、操業結果予測装置および学習モデルの学習装置
 本発明は、操業結果予測方法、学習モデルの学習方法、操業結果予測装置および学習モデルの学習装置に関する。
 鉄鋼業等の製造業において、工場の電力需給を把握することで電力価格に応じた運用によって買電を削減したり、工場における発電電力の余剰分を電力会社へ売電し、電力系統へ供給したりする等の管理が実施されている。
 このような電力の管理を正確に行うためには、各工場における将来の電力を事前に予測しておく必要がある。例えば特許文献1,2では、スクラップ等の原材料を溶解、成分調整および昇温するために使用されるアーク炉に必要な投入電力量を決定する方法が開示されている。
特開平6-307766号公報 特開2011-256407号公報
 特許文献1に記載された方法では、溶鋼の成分濃度から必要な投入電力量を算出し、加えて、溶鋼の昇温が必要な場合には、基準出鋼温度との差によって生じる電力量を加減している。しかしながら、溶鋼の昇温目標量が事前に分からない場合があり、その場合には他の変数から電力量を予測する必要がある。
 また、特許文献2に記載された方法では、熱収支および物質収支の計算に基づいて、溶鋼の成分調整や昇温に必要な熱量を正確に算出している。しかしながら、特許文献2に記載された方法では、溶鋼温度、排ガス温度、冷却水温度等の種々の温度を予め実測しているため、これらを事前に把握することは困難である。
 本発明は、上記に鑑みてなされたものであって、工業プロセスの操業結果を高精度に予測することができる操業結果予測方法、学習モデルの学習方法、操業結果予測装置および学習モデルの学習装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る操業結果予測方法は、工業プロセスの複数の操業条件から前記工業プロセスの操業結果を予測する操業結果予測方法であって、前記操業結果を予測する際の説明変数として、前記複数の操業条件のうち特定のキーとなる操業条件を用いるか否かに応じて、複数の学習モデルの中から特定の学習モデルを選択するモデル選択ステップと、前記モデル選択ステップで選択した学習モデルに基づいて、操業結果を予測する予測ステップと、を含む。
 また、本発明に係る操業結果予測方法は、上記発明において、前記複数の学習モデルは、前記特定のキーとなる操業条件を含み、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類されていない第一の教師データから作成された第一の学習モデルと、前記特定のキーとなる操業条件を含まず、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類された第二の教師データを作成する第二の学習モデルと、を含み、前記モデル選択ステップは、前記説明変数として前記特定のキーとなる操業条件を用いる場合は前記第一の学習モデルを選択し、前記説明変数として前記特定のキーとなる操業条件を用いない場合は前記第二の学習モデルを選択する。
 また、本発明に係る操業結果予測方法は、上記発明において、前記工業プロセスは、製鉄所内のアークプロセスであり、前記操業結果は、前記アークプロセスのバッチ操業における使用電力であり、前記複数の操業条件は、少なくとも昇温目標量、予定処理時間および鋼種情報を含む。
 また、本発明に係る操業結果予測方法は、上記発明において、前記工業プロセスは、製鉄所内の転炉プロセスであり、前記操業結果は、前記転炉プロセスのバッチ操業における発生ガスであり、前記複数の操業条件は、少なくとも予定吹錬酸素量、予定処理時間および吹錬形態を含む。
 上述した課題を解決し、目的を達成するために、本発明に係る学習モデルの学習方法は、工業プロセスの複数の操業条件から前記工業プロセスの操業結果を予測する際に用いる学習モデルの学習方法であって、前記複数の操業条件のうち特定のキーとなる操業条件を含み、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類されていない第一の教師データを作成する第一のデータ作成ステップと、前記特定のキーとなる操業条件を含まず、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類された第二の教師データを作成する第二のデータ作成ステップと、前記第一の教師データに基づいて、前記工業プロセスの操業結果を予測する第一の学習モデルを作成する第一のモデル作成ステップと、前記第二の教師データに基づいて、前記工業プロセスの操業結果を予測する第二の学習モデルを作成する第二のモデル作成ステップと、を含む。
 また、本発明に係る学習モデルの学習方法は、上記発明において、前記工業プロセスは、製鉄所内のアークプロセスであり、前記操業結果は、前記アークプロセスのバッチ操業における使用電力であり、前記複数の操業条件は、少なくとも昇温目標量、予定処理時間および鋼種情報を含む。
 また、本発明に係る学習モデルの学習方法は、上記発明において、前記工業プロセスは、製鉄所内の転炉プロセスであり、前記操業結果は、前記転炉プロセスのバッチ操業における発生ガスであり、前記複数の操業条件は、少なくとも予定吹錬酸素量、予定処理時間および吹錬形態を含む。
 上述した課題を解決し、目的を達成するために、本発明に係る操業結果予測装置は、工業プロセスの複数の操業条件から前記工業プロセスの操業結果を予測する操業結果予測装置であって、前記操業結果を予測する際の説明変数として、前記複数の操業条件のうち特定のキーとなる操業条件を用いるか否かに応じて、複数の学習モデルの中から特定の学習モデルを選択するモデル選択手段と、前記モデル選択手段で選択した学習モデルに基づいて、操業結果を予測する予測手段と、を備える。
 上述した課題を解決し、目的を達成するために、本発明に係る学習モデルの学習装置は、工業プロセスの複数の操業条件から前記工業プロセスの操業結果を予測する際に用いる学習モデルの学習装置であって、前記複数の操業条件のうち特定のキーとなる操業条件を含み、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類されていない第一の教師データを作成する第一のデータ作成手段と、前記特定のキーとなる操業条件を含まず、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類された第二の教師データを作成する第二のデータ作成手段と、前記第一の教師データに基づいて、前記工業プロセスの操業結果を予測する第一の学習モデルを作成する第一のモデル作成手段と、前記第二の教師データに基づいて、前記工業プロセスの操業結果を予測する第二の学習モデルを作成する第二のモデル作成手段と、を備える。
 本発明によれば、相関関係がある操業条件(説明変数)のうち、事前に把握可能な操業条件に応じて予測精度の高い学習モデルを選択して予測を行うため、工業プロセスの操業結果を高精度に予測することができる。
図1は、本発明の実施形態に係る操業結果予測装置および学習装置の概略的な構成を示すブロック図である。 図2は、本発明の実施形態に係る学習モデルの学習方法の流れを示すフローチャートである。 図3は、本発明の実施形態1に係る学習モデルの学習方法におけるデータ作成ステップの詳細を示すフローチャートである。 図4は、本発明の実施形態1に係る操業結果予測方法の流れを示すフローチャートである。 図5は、本発明の実施形態2に係る学習モデルの学習方法におけるデータ作成ステップの詳細を示すフローチャートである。 図6は、本発明の実施形態2に係る操業結果予測方法の流れを示すフローチャートである。 図7は、本発明の実施形態1に係る操業結果予測装置および学習装置の実施例であり、予測した使用電力の検証精度を示すグラフである。 図8は、本発明の実施形態2に係る操業結果予測装置および学習装置の実施例であり、予測した発生ガスの検証精度を示すグラフである。
 本発明の実施形態に係る操業結果予測方法、学習モデルの学習方法、操業結果予測装置および学習モデルの学習装置(以下、「学習装置」という)について、図面を参照しながら説明する。
[実施形態1]
(操業結果予測装置)
 本発明の実施形態1に係る操業結果予測装置および学習装置の構成について、図1を参照しながら説明する。操業結果予測装置は、工業プロセスの複数の操業条件から当該工業プロセスの操業結果を予測する装置である。本実施形態では、製鉄所内のアークプロセスにおいて、複数の操業条件から、アークプロセスのバッチ操業における使用電力を予測する場合の例について説明する。
 なお、アークプロセスとは、溶鋼の一次精錬工程に引き続いて行われる工程であり、溶鋼をアーク放電によって加熱して脱硫等の成分調整を行う工程である。アークプロセスでは、前工程から受け取った溶鋼の温度ばらつきを考慮して昇温し、また、鋼種によって目標成分値が異なり成分調整が異なるため、これらに要する処理時間も異なる場合がある。このアークプロセスは、製鋼工程の中でも特に電力を消費する工程であり、昇温や成分調整の処理によって電力消費が変動するため、使用電力を精度良く予測することが求められている。
 アークプロセスを計画する際の複数の操業条件としては、例えば昇温目標量、予定処理時間、処理待ち時間および鋼種情報が挙げられる。これらの操業条件のうちの昇温目標量については、操業の状況によってデータがある場合と無い場合とがある。すなわち、前工程(一次精錬工程)が適切に行われている場合、当該前工程の結果に基づいてアークプロセスの計画を立案することができるため、昇温目標量についても把握することが可能である。一方、前工程が適切に行われていない場合、当該前工程の結果に基づいてアークプロセスの計画を立案することができないため、昇温目標量の把握も困難となる。
 操業結果予測装置1は、パーソナルコンピュータやワークステーション等の汎用の情報処理装置によって実現されるものであり、入力部10と、データベース(DB)20と、演算部30と、表示部40と、を備えている。
 入力部10は、演算部30に対する入力手段であり、例えばキーボード、マウスポインタ、テンキー等の入力装置によって実現される。データベース20には、アークプロセスにおける過去の操業データ(実績データ)が保存されている。
 演算部30は、例えばCPU(Central Processing Unit)等からなるプロセッサと、RAM(Random Access Memory)やROM(Read Only Memory)等からなるメモリ(主記憶部)と、によって実現される。演算部30は、プログラムを主記憶部の作業領域にロードして実行し、プログラムの実行を通じて各構成部等を制御することにより、所定の目的に合致した機能を実現する。
 また、演算部30は、プログラムの実行を通じて、データ作成部(データ作成手段)31、モデル作成部(モデル作成手段)32、モデル選択部(モデル選択手段)33および予測部(予測手段)34として機能する。なお、本実施形態に係る学習装置は、操業結果予測装置1の構成のうち、モデル選択部33および予測部34を除いた構成により実現される。
 データ作成部31は、データベース20に保存された過去の操業データに基づいて、モデル作成部32におけるモデルの作成で用いる教師データを作成する。データ作成部31は、具体的には第一の教師データと第二の教師データとからなる二種類の教師データを作成する。なお、学習に用いる教師データは、なるべく設備条件が近い操業データから作成することが望ましい。そのため、データ作成部31は、ある程度限定された期間内(例えば過去二ヶ月分等)の操業データに基づいて教師データを作成することが望ましい。
 第一の教師データは、アークプロセスの複数の操業条件のうち、特定のキーとなる操業条件を含み、かつ当該特定のキーとなる操業条件に関連した操業条件によって分類されていない教師データのことを示している。前記した「特定のキーとなる操業条件」とは、本実施形態では、アークプロセスにおける昇温目標量のことを示している。第一の教師データは、例えば下記の表1に示すように、複数の操業条件(昇温目標量および予定処理時間)と、当該複数の操業条件でアークプロセスを実施した際の使用電力と、の組み合わせからなるデータである。なお、同表における「鋼番」は、アークプロセスにおける処理番号を示している。
Figure JPOXMLDOC01-appb-T000001
 第二の教師データは、アークプロセスの複数の操業条件のうち、特定のキーとなる操業条件を含まず、かつ当該特定のキーとなる操業条件に関連した操業条件によって分類された教師データのことを示している。前記した「特定のキーとなる操業条件に関連した操業条件」とは、本実施形態では鋼種情報のことを示している。この鋼種情報の鋼種としては、炭素鋼、Alキルド鋼、高張力鋼、Siキルド鋼、高クロム鋼およびステンレス鋼等が挙げられる。
 第二の教師データは、例えば下記の表2に示すように、操業条件(予定処理時間)と、当該操業条件でアークプロセスを実施した際の使用電力と、の組み合わせが鋼種ごとに分類されたデータである。
Figure JPOXMLDOC01-appb-T000002
 モデル作成部32は、データ作成部31によって作成された第一の教師データ(表1参照)を学習することにより、第一の学習モデルを作成する。また、モデル作成部32は、データ作成部31によって作成された第二の教師データ(表2参照)を学習することにより、第二の学習モデルを作成する。
 モデル作成部32は、学習の手法として回帰分析を用いる。また、回帰分析の手法としては、例えば線形回帰の一種である最小二乗法、部分的最小二乗法または正則化つき線形回帰、あるいは、回帰木の一種であるランダムフォレスト、勾配ブースティング、あるいは、非線形回帰の一種であるニューラルネットワーク、サポートベクター回帰、等を用いることができる。
 モデル選択部33は、アークプロセスの操業結果(使用電力)を予測する際の説明変数として、複数の操業条件のうち特定のキーとなる操業条件(昇温目標量)を用いるか否かに応じて、複数の学習モデルの中から特定の学習モデルを選択する。すなわち、モデル選択部33は、説明変数として特定のキーとなる操業条件を用いる場合は、第一の学習モデルを選択し、説明変数として特定のキーとなる操業条件を用いない場合は、第二の学習モデルを選択する。
 予測部34は、モデル選択部33によって選択された学習モデルに基づいて、アークプロセスの操業結果(使用電力)を予測する。予測部34は、具体的には、説明変数の予定値(例えば昇温目標量や予定処理時間)を入力することにより、使用電力の予測値を算出する。
(学習モデルの学習方法)
 本実施形態に係る学習モデルの学習方法について、図2および図3を参照しながら説明する。なお、学習モデルの学習方法は、演算部30のデータ作成部31およびモデル作成部32が主体となって実施される。
 まず、データ作成部31は、教師データの作成に必要な操業データをデータベース20から読み込む(ステップS1、データ読込ステップ)。続いて、データ作成部31は、読み込んだ操業データに基づいて、教師データを作成する(ステップS2、データ作成ステップ)。続いて、モデル作成部32は、教師データを学習することにより、学習モデルを作成する(ステップS3、モデル作成ステップ)。
 ここで、前記したデータ作成ステップ(ステップS2)は、具体的には図3に示したフローに沿って実施される。まず、データ作成部31は、データベース20から読み込んだ操業データの中に昇温目標量が含まれているか否かを判定する(ステップS21)。昇温目標量が含まれていると判定した場合(ステップS21でYes)、データ作成部31は、説明変数として昇温目標量および予定処理時間を選択し(ステップS22)、前記した表1に示すような、鋼種情報で分類されていない教師データ(第一の教師データ、表1参照)を作成する(ステップS23)。
 一方、データベース20から読み込んだ操業データの中に昇温目標量が含まれていないと判定した場合(ステップS21でNo)、データ作成部31は、説明変数として予定処理時間を選択し(ステップS24)、前記した表2に示すような、鋼種情報で分類された教師データ(第二の教師データ、表2参照)を作成する(ステップS25)。なお、ステップS21における昇温目標量の有無の判定は、例えばNaN等のフラグによって判定する。
(操業結果予測方法)
 本実施形態に係る操業結果予測方法について、図4を参照しながら説明する。なお、操業結果予測方法は、演算部30のモデル選択部33および予測部34が主体となって実施される。
 まず、モデル選択部33は、アークプロセスの操業結果(使用電力)を予測する際の説明変数に昇温目標値が含まれているか否かを判定する(ステップS41、判定ステップ)。昇温目標量が含まれていると判定した場合(ステップS41でYes)、モデル選択部33は、鋼種情報で分類されていない学習モデル(第一の学習モデル)を選択し(ステップS42、モデル選択ステップ)、昇温目標量および予定処理時間を当該学習モデルに入力することにより、使用電力を予測する(ステップS43、予測ステップ)。
 一方、アークプロセスの操業結果(使用電力)を予測する際の説明変数に昇温目標値が含まれていないと判定した場合(ステップS41でNo)、モデル選択部33は、鋼種情報で分類された学習モデル(第二の学習モデル)を選択し(ステップS44、モデル選択ステップ)、予定処理時間を当該学習モデルに入力することにより、使用電力を予測する(ステップS45、予測ステップ)。
 以上説明したような本実施形態に係る操業結果予測装置および操業結果予測方法によれば、相関関係がある操業条件(説明変数)のうち、事前に把握可能な操業条件に応じて予測精度の高い学習モデルを選択して予測を行うため、工業プロセスの操業結果を高精度に予測することができる。例えば操業結果予測装置および操業結果予測方法を製鉄所内のアークプロセスに適用した場合、キーとなる操業条件である昇温目標量を説明変数として利用できない場合、鋼種情報で分類された教師データ(第二の教師データ)に基づいて作成された学習モデル(第二の学習モデル)を選択し、使用電力を予測する。これにより、アークプロセスにおける使用電力を高精度に予測することができる。
 また、本実施形態に係る学習モデルの学習装置および学習方法によれば、相関関係がある操業条件(説明変数)のうち、事前に把握可能な操業条件に応じて複数の学習モデルを作成するため、事前に把握可能な操業条件に応じて、工業プロセスの操業結果を高精度に予測することができる。
[実施形態2]
(操業結果予測装置)
 本発明の実施形態2に係る操業結果予測装置および学習装置の構成は、図1と同様である。操業結果予測装置は、工業プロセスの複数の操業条件から当該工業プロセスの操業結果を予測する装置である。本実施形態では、製鉄所内の転炉プロセスにおいて、複数の操業条件から、転炉プロセスのバッチ操業における発生ガスを予測する場合の例について説明する。
 なお、転炉プロセスとは、鉄鉱石を高炉で溶解させ、脱硫等の予備処理を与えた溶銑を溶鋼へ転じる一次精錬工程であり、溶銑をスクラップ等とともに装入し、目標成分値を満たすよう、酸素を吹き付けて脱炭や脱りん精錬等を行う工程である。同じ処理時間であっても、脱炭と脱りんとでは、脱炭のほうがガス発生量は大きくなる。また、同じ脱炭であっても、吹錬形態によって処理が異なるためガス発生量が異なる。転炉プロセスは、製鋼工程の中でも特にガスが発生する工程であり、この発生ガスを使って効率的に発電するためには、発生ガスを精度良く予測することが求められている。そのためには処理内容を操業条件として踏まえる必要がある。
 転炉プロセスを計画する際の複数の操業条件としては、例えば予定吹錬酸素量、予定処理時間、および吹錬形態が挙げられる。これらの操業条件のうちの予定吹錬酸素量については、操業の状況によってデータがある場合と無い場合とがある。すなわち、吹錬酸素量は、転炉吹錬直前および転炉吹錬中に計算されて決定される。それらは、スタティックコントロールおよびダイナミックコントロールと呼ばれる。従って、一つ前の転炉吹錬が終了するまで、次吹錬の吹錬酸素量の把握は困難となる。
 データ作成部31で用いる第一の教師データは、転炉プロセスの複数の操業条件のうち、特定のキーとなる操業条件を含み、かつ当該特定のキーとなる操業条件に関連した操業条件によって分類されていない教師データのことを示している。前記した「特定のキーとなる操業条件」とは、本実施形態では、転炉プロセスにおける予定吹錬酸素量のことを示している。第一の教師データは、例えば下記の表3に示すように、複数の操業条件(予定吹錬酸素量および予定処理時間)と、当該複数の操業条件で転炉プロセスを実施した際の発生ガスと、の組み合わせからなるデータである。なお、同表における「鋼番」は、転炉プロセスにおける処理番号を示している。
Figure JPOXMLDOC01-appb-T000003
 データ作成部31で用いる第二の教師データは、転炉プロセスの複数の操業条件のうち、特定のキーとなる操業条件を含まず、かつ当該特定のキーとなる操業条件に関連した操業条件によって分類された教師データのことを示している。前記した「特定のキーとなる操業条件に関連した操業条件」とは、本実施形態では吹錬形態のことを示している。この吹錬形態は、溶銑予備処理の内容に応じて割り振られる。
 第二の教師データは、例えば下記の表4に示すように、操業条件(予定処理時間)と、当該操業条件で転炉プロセスを実施した際の発生ガスと、の組み合わせが吹錬形態ごとに分類されたデータである。
Figure JPOXMLDOC01-appb-T000004
 モデル作成部32は、データ作成部31によって作成された第一の教師データ(表3参照)を学習することにより、第一の学習モデルを作成する。また、モデル作成部32は、データ作成部31によって作成された第二の教師データ(表4参照)を学習することにより、第二の学習モデルを作成する。
 モデル作成部32は、学習の手法として回帰分析を用いる。また、回帰分析の手法としては、例えば線形回帰の一種である最小二乗法、部分的最小二乗法または正則化つき線形回帰、あるいは、回帰木の一種であるランダムフォレスト、勾配ブースティング、あるいは、非線形回帰の一種であるニューラルネットワーク、サポートベクター回帰、等を用いることができる。
 モデル選択部33は、転炉プロセスの操業結果(発生ガス)を予測する際の説明変数として、複数の操業条件のうち特定のキーとなる操業条件(予定吹錬酸素量)を用いるか否かに応じて、複数の学習モデルの中から特定の学習モデルを選択する。すなわち、モデル選択部33は、説明変数として特定のキーとなる操業条件を用いる場合は、第一の学習モデルを選択し、説明変数として特定のキーとなる操業条件を用いない場合は、第二の学習モデルを選択する。
 予測部34は、モデル選択部33によって選択された学習モデルに基づいて、転炉プロセスの操業結果(発生ガス)を予測する。予測部34は、具体的には、説明変数の予定値(例えば予定吹錬酸素量や予定処理時間)を入力することにより、発生ガスの予測値を算出する。
(学習モデルの学習方法)
 本実施形態に係る学習モデルの学習方法について、図2および図5を参照しながら説明する。なお、学習モデルの学習方法は、演算部30のデータ作成部31およびモデル作成部32が主体となって実施される。学習モデルの学習方法は、図2のステップS1~S3の処理を行う。
 ここで、前記したデータ作成ステップ(ステップS2)は、具体的には図5に示したフローに沿って実施される。まず、データ作成部31は、データベース20から読み込んだ操業データの中に予定吹錬酸素量が含まれているか否かを判定する(ステップS51)。予定吹錬酸素量が含まれていると判定した場合(ステップS51でYes)、データ作成部31は、説明変数として予定吹錬酸素量および予定処理時間を選択し(ステップS52)、前記した表3に示すような、吹錬形態で分類されていない教師データ(第一の教師データ、表3参照)を作成する(ステップS53)。
 一方、データベース20から読み込んだ操業データの中に予定吹錬酸素量が含まれていないと判定した場合(ステップS51でNo)、データ作成部31は、説明変数として予定処理時間を選択し(ステップS54)、前記した表4に示すような、吹錬形態で分類された教師データ(第二の教師データ、表4参照)を作成する(ステップS55)。なお、ステップS51における予定吹錬酸素量の有無の判定は、例えばNaN等のフラグによって判定する。
(操業結果予測方法)
 本実施形態に係る操業結果予測方法について、図6を参照しながら説明する。なお、操業結果予測方法は、演算部30のモデル選択部33および予測部34が主体となって実施される。
 まず、モデル選択部33は、転炉プロセスの操業結果(発生ガス)を予測する際の説明変数に予定吹錬酸素量が含まれているか否かを判定する(ステップS61、判定ステップ)。予定吹錬酸素量が含まれていると判定した場合(ステップS61でYes)、モデル選択部33は、吹錬形態で分類されていない学習モデル(第一の学習モデル)を選択し(ステップS62、モデル選択ステップ)、予定吹錬酸素量および予定処理時間を当該学習モデルに入力することにより、発生ガスを予測する(ステップS63、予測ステップ)。
 一方、転炉プロセスの操業結果(発生ガス)を予測する際の説明変数に予定吹錬酸素量が含まれていないと判定した場合(ステップS61でNo)、モデル選択部33は、吹錬形態で分類された学習モデル(第二の学習モデル)を選択し(ステップS64、モデル選択ステップ)、予定処理時間を当該学習モデルに入力することにより、発生ガスを予測する(ステップS65、予測ステップ)。
 以上説明したような本実施形態に係る操業結果予測装置および操業結果予測方法によれば、相関関係がある操業条件(説明変数)のうち、事前に把握可能な操業条件に応じて予測精度の高い学習モデルを選択して予測を行うため、工業プロセスの操業結果を高精度に予測することができる。例えば操業結果予測装置および操業結果予測方法を製鉄所内の転炉プロセスに適用した場合、キーとなる操業条件である予定吹錬酸素量を説明変数として利用できない場合、吹錬形態で分類された教師データ(第二の教師データ)に基づいて作成された学習モデル(第二の学習モデル)を選択し、発生ガスを予測する。これにより、転炉プロセスにおける発生ガスを高精度に予測することができる。
 また、本実施形態に係る学習モデルの学習装置および学習方法によれば、相関関係がある操業条件(説明変数)のうち、事前に把握可能な操業条件に応じて複数の学習モデルを作成するため、事前に把握可能な操業条件に応じて、工業プロセスの操業結果を高精度に予測することができる。
 実施形態1に係る操業結果予測方法の実施例について、図7を参照しながら説明する。本実施例では、以下のA~Cの学習モデルを作成し、各学習モデルの精度検証を行った。なお、以下のB,Cは本発明例に相当し、以下のAは比較例に相当する。
A:昇温目標量を説明変数として含まず、かつ鋼種情報によって分類されていない教師データを学習させた学習モデル
B:昇温目標量を説明変数として含まず、かつ鋼種情報によって分類された教師データ(第二の教師データ)を学習させた学習モデル(第二の学習モデル)
C:昇温目標量を説明変数として含み、かつ鋼種情報によって分類されていない教師データ(第一の教師データ)を学習させた学習モデル(第一の学習モデル)
 本実施例では、過去二ヶ月間の操業データに基づいて各学習モデルを作成した。また、各学習モデルを作成する際に、正則化付き線形回帰の一種であるLasso回帰を用いた。また、目的変数は、鋼番ごとの使用電力量とし、説明変数の候補は、鋼番ごとの昇温目標量、予定処理時間、処理待ち時間および鋼種情報とした。更に、鋼種情報は、炭素鋼、Alキルド鋼、高張力鋼、Siキルド鋼、高クロム鋼、ステンレス鋼の中から割り振りを行った。また、各学習モデルの精度検証では、予測値が100%当たる理想的な状況を想定し、各変数とも予定値ではなく実績値を用いた。
 精度検証で得られた誤差の比較結果を図7に示す。精度指標とした誤差は、予定処理時間のみを用い、昇温目標量および鋼種情報を用いない場合のRMSE(Root Mean Square Error:二乗平均平方根誤差)を100として算出した。
 図7に示すように、説明変数に昇温目標値を含む学習モデルCの予測結果が最も良い。昇温目標値は、使用電力との相関が高いことが明らかであるため、当然の結果と言える。これに対して、昇温目標値が使用できないケースで、鋼種による分類をしていない学習モデルAの予測結果は、学習モデルCの予測結果に対して、予測誤差の精度が30%程度悪い結果となっている。またこれに対して、昇温目標値が使用できない場合に、昇温目標値と関連が深いと考えられる鋼種情報でデータを分類して、昇温目標値を使わずに学習させた学習モデルBの予測結果は、学習モデルAの予測結果に対して、予測誤差の精度が10%以上改善している。
 以上のように、複数の操業条件のうちのキーとなる操業条件である説明変数(ここでは昇温目標量)が使用可能でない場合には、単に昇温目標量を省いた学習モデルを使用するのではなく、昇温目標量と関連があると想定される説明変数(ここでは鋼種情報)で分類した、異なる学習モデルとの予測誤差を評価し、予測誤差が改善されると想定される場合には、当該鋼種情報で分類した学習モデルを使用することにより、学習モデルの予測誤差を改善させることができる。
 実施形態2に係る操業結果予測方法の実施例について、図8を参照しながら説明する。本実施例では、以下のD~Fの学習モデルを作成し、各学習モデルの精度検証を行った。なお、以下のE,Fは本発明例に相当し、以下のDは比較例に相当する。
D:予定吹錬酸素量を説明変数として含まず、かつ吹錬形態によって分類されていない教師データを学習させた学習モデル
E:予定吹錬酸素量を説明変数として含まず、かつ吹錬形態によって分類された教師データ(第二の教師データ)を学習させた学習モデル(第二の学習モデル)
F:予定吹錬酸素量を説明変数として含み、かつ吹錬形態によって分類されていない教師データ(第一の教師データ)を学習させた学習モデル(第一の学習モデル)
 本実施例では、過去300吹錬の操業データに基づいて各学習モデルを作成した。また、各学習モデルを作成する際に、正則化付き線形回帰の一種であるLasso回帰を用いた。また、目的変数は、1吹錬積算の発生ガス量とし、説明変数の候補は、1吹錬積算の予定吹錬酸素量、予定処理時間、吹錬形態とした。更に、吹錬形態は、溶銑予備処理の内容に応じて割り振った。また、各学習モデルの精度検証では、予測値が100%当たる理想的な状況を想定し、各変数とも予定値ではなく実績値を用いた。
 精度検証で得られた誤差の比較結果を図8に示す。精度指標とした誤差は、予定処理時間のみを用い、予定吹錬酸素量および吹錬形態を用いない場合のRMSEを100として算出した。
 図8に示すように、説明変数に予定吹錬酸素量を含む学習モデルFの予測結果が最も良い。予定吹錬酸素量は、発生ガスとの相関が高いことが明らかであるため、当然の結果と言える。これに対して、予定吹錬酸素量が使用できないケースで、吹錬形態による分類をしていない学習モデルDの予測結果は、学習モデルFの予測結果に対して、予測誤差の精度が19%程度悪い結果となっている。またこれに対して、予定吹錬酸素量が使用できない場合に、予定吹錬酸素量と関連が深いと考えられる吹錬形態でデータを分類して、予定吹錬酸素量を使わずに学習させた学習モデルEの予測結果は、学習モデルDの予測結果に対して、予測誤差の精度が12%程度改善している。
 以上のように、複数の操業条件のうちのキーとなる操業条件である説明変数(ここでは予定吹錬酸素量)が使用可能でない場合には、単に予定吹錬酸素量を省いた学習モデルを使用するのではなく、予定吹錬酸素量と関連があると想定される説明変数(ここでは吹錬形態)で分類した、異なる学習モデルとの予測誤差を評価し、予測誤差が改善されると想定される場合には、当該吹錬形態で分類した学習モデルを使用することにより、学習モデルの予測誤差を改善させることができる。
 以上、本発明に係る操業結果予測方法、学習モデルの学習方法、操業結果予測装置および学習モデルの学習装置について、発明を実施するための形態および実施例により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。
 1 操業結果予測装置
 10 入力部
 20 データベース(DB)
 30 演算部
 31 データ作成部(データ作成手段)
 32 モデル作成部(モデル作成手段)
 33 モデル選択部(モデル選択手段)
 34 予測部(予測手段)
 40 表示部

Claims (9)

  1.  工業プロセスの複数の操業条件から前記工業プロセスの操業結果を予測する操業結果予測方法であって、
     前記操業結果を予測する際の説明変数として、前記複数の操業条件のうち特定のキーとなる操業条件を用いるか否かに応じて、複数の学習モデルの中から特定の学習モデルを選択するモデル選択ステップと、
     前記モデル選択ステップで選択した学習モデルに基づいて、操業結果を予測する予測ステップと、
     を含む操業結果予測方法。
  2.  前記複数の学習モデルは、
     前記特定のキーとなる操業条件を含み、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類されていない第一の教師データから作成された第一の学習モデルと、
     前記特定のキーとなる操業条件を含まず、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類された第二の教師データを作成する第二の学習モデルと、
     を含み、
     前記モデル選択ステップは、
     前記説明変数として前記特定のキーとなる操業条件を用いる場合は前記第一の学習モデルを選択し、
     前記説明変数として前記特定のキーとなる操業条件を用いない場合は前記第二の学習モデルを選択する、
     請求項1に記載の操業結果予測方法。
  3.  前記工業プロセスは、製鉄所内のアークプロセスであり、
     前記操業結果は、前記アークプロセスのバッチ操業における使用電力であり、
     前記複数の操業条件は、少なくとも昇温目標量、予定処理時間および鋼種情報を含む、
     請求項1または請求項2に記載の操業結果予測方法。
  4.  前記工業プロセスは、製鉄所内の転炉プロセスであり、
     前記操業結果は、前記転炉プロセスのバッチ操業における発生ガスであり、
     前記複数の操業条件は、少なくとも予定吹錬酸素量、予定処理時間および吹錬形態を含む、
     請求項1または請求項2に記載の操業結果予測方法。
  5.  工業プロセスの複数の操業条件から前記工業プロセスの操業結果を予測する際に用いる学習モデルの学習方法であって、
     前記複数の操業条件のうち特定のキーとなる操業条件を含み、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類されていない第一の教師データを作成する第一のデータ作成ステップと、
     前記特定のキーとなる操業条件を含まず、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類された第二の教師データを作成する第二のデータ作成ステップと、
     前記第一の教師データに基づいて、前記工業プロセスの操業結果を予測する第一の学習モデルを作成する第一のモデル作成ステップと、
     前記第二の教師データに基づいて、前記工業プロセスの操業結果を予測する第二の学習モデルを作成する第二のモデル作成ステップと、
     を含む学習モデルの学習方法。
  6.  前記工業プロセスは、製鉄所内のアークプロセスであり、
     前記操業結果は、前記アークプロセスのバッチ操業における使用電力であり、
     前記複数の操業条件は、少なくとも昇温目標量、予定処理時間および鋼種情報を含む、
     請求項5に記載の学習モデルの学習方法。
  7.  前記工業プロセスは、製鉄所内の転炉プロセスであり、
     前記操業結果は、前記転炉プロセスのバッチ操業における発生ガスであり、
     前記複数の操業条件は、少なくとも予定吹錬酸素量、予定処理時間および吹錬形態を含む、
     請求項5に記載の学習モデルの学習方法。
  8.  工業プロセスの複数の操業条件から前記工業プロセスの操業結果を予測する操業結果予測装置であって、
     前記操業結果を予測する際の説明変数として、前記複数の操業条件のうち特定のキーとなる操業条件を用いるか否かに応じて、複数の学習モデルの中から特定の学習モデルを選択するモデル選択手段と、
     前記モデル選択手段で選択した学習モデルに基づいて、操業結果を予測する予測手段と、
     を備える操業結果予測装置。
  9.  工業プロセスの複数の操業条件から前記工業プロセスの操業結果を予測する際に用いる学習モデルの学習装置であって、
     前記複数の操業条件のうち特定のキーとなる操業条件を含み、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類されていない第一の教師データを作成する第一のデータ作成手段と、
     前記特定のキーとなる操業条件を含まず、かつ前記特定のキーとなる操業条件に関連した操業条件によって分類された第二の教師データを作成する第二のデータ作成手段と、
     前記第一の教師データに基づいて、前記工業プロセスの操業結果を予測する第一の学習モデルを作成する第一のモデル作成手段と、
     前記第二の教師データに基づいて、前記工業プロセスの操業結果を予測する第二の学習モデルを作成する第二のモデル作成手段と、
     を備える学習モデルの学習装置。
PCT/JP2020/004738 2019-02-19 2020-02-07 操業結果予測方法、学習モデルの学習方法、操業結果予測装置および学習モデルの学習装置 WO2020170849A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217026129A KR102579633B1 (ko) 2019-02-19 2020-02-07 조업 결과 예측 방법, 학습 모델의 학습 방법, 조업 결과 예측 장치 및 학습 모델의 학습 장치
BR112021016447A BR112021016447A2 (pt) 2019-02-19 2020-02-07 Método de previsão de resultado de operação, método de treinamento de modelo de aprendizagem, dispositivo de previsão de resultado de operação e dispositivo de treinamento para modelo de aprendizagem
JP2020546514A JP6954479B2 (ja) 2019-02-19 2020-02-07 操業結果予測方法、学習モデルの学習方法、操業結果予測装置および学習モデルの学習装置
EP20759314.6A EP3929516A4 (en) 2019-02-19 2020-02-07 METHOD FOR PREDICTING OPERATING RESULTS, METHOD FOR LEARNING A LEARNING MODEL, DEVICE FOR PREDICTING OPERATING RESULTS, AND DEVICE FOR LEARNING A LEARNING MODEL
CN202080014961.1A CN113454413B (zh) 2019-02-19 2020-02-07 操作结果预测方法、学习模型的学习方法、操作结果预测装置及学习模型的学习装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-027509 2019-02-19
JP2019027509 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020170849A1 true WO2020170849A1 (ja) 2020-08-27

Family

ID=72143889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004738 WO2020170849A1 (ja) 2019-02-19 2020-02-07 操業結果予測方法、学習モデルの学習方法、操業結果予測装置および学習モデルの学習装置

Country Status (6)

Country Link
EP (1) EP3929516A4 (ja)
JP (1) JP6954479B2 (ja)
KR (1) KR102579633B1 (ja)
CN (1) CN113454413B (ja)
BR (1) BR112021016447A2 (ja)
WO (1) WO2020170849A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059753A1 (ja) * 2020-09-18 2022-03-24 株式会社Uacj 溶解炉のエネルギー効率を予測する学習済み予測モデルを生成する方法、溶解炉のエネルギー効率を予測する方法、およびコンピュータプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307766A (ja) 1993-04-21 1994-11-01 Nippon Steel Corp 製鋼用アーク炉の電力投入制御方法
JP2011256407A (ja) 2010-06-04 2011-12-22 Nippon Steel Engineering Co Ltd 製鋼用アーク炉の電力投入制御方法
JP2012004181A (ja) * 2010-06-14 2012-01-05 Sharp Corp 特性予測装置、特性予測方法、特性予測プログラムおよびプログラム記録媒体
JP2018045559A (ja) * 2016-09-16 2018-03-22 富士通株式会社 情報処理装置、情報処理方法およびプログラム
JP2018147280A (ja) * 2017-03-07 2018-09-20 株式会社日立ソリューションズ データ分析装置及びデータ分析方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161408A (en) * 1974-11-26 1976-05-28 Nippon Kokan Kk Seikoyoaakurono yorakuhanteiho
JPS637766A (ja) * 1986-06-26 1988-01-13 Toyohiko Nishimura 焼きそば等の麺類寿司及びその製造方法
JP3645306B2 (ja) * 1995-03-31 2005-05-11 日新製鋼株式会社 電気炉設備
CN102373310B (zh) * 2011-10-19 2013-06-12 北京科技大学 一种指导转炉补吹过程操作的方法
DE102012224184A1 (de) * 2012-12-21 2014-06-26 Sms Siemag Ag Verfahren zur Vorhersage, Steuerung und/oder Regelung von Stahlwerksprozessen
CN103882176B (zh) * 2014-03-25 2015-09-30 东北大学 一种基于数据驱动的转炉炼钢过程在线动态控制方法
US20180181875A1 (en) * 2014-03-28 2018-06-28 Nec Corporation Model selection system, model selection method, and storage medium on which program is stored
JP6856023B2 (ja) * 2015-09-30 2021-04-07 日本電気株式会社 最適化システム、最適化方法および最適化プログラム
CN105807741B (zh) * 2016-03-09 2018-08-07 北京科技大学 一种工业生产流程预测方法
CN105714014A (zh) * 2016-03-30 2016-06-29 本钢板材股份有限公司 转炉氧枪/加料/温度制度综合简化模型系统及操作方法
JP6573035B2 (ja) * 2016-07-14 2019-09-11 日本製鉄株式会社 溶鋼中りん濃度推定方法及び転炉吹錬制御装置
JP6897260B2 (ja) * 2017-04-14 2021-06-30 日本製鉄株式会社 溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307766A (ja) 1993-04-21 1994-11-01 Nippon Steel Corp 製鋼用アーク炉の電力投入制御方法
JP2011256407A (ja) 2010-06-04 2011-12-22 Nippon Steel Engineering Co Ltd 製鋼用アーク炉の電力投入制御方法
JP2012004181A (ja) * 2010-06-14 2012-01-05 Sharp Corp 特性予測装置、特性予測方法、特性予測プログラムおよびプログラム記録媒体
JP2018045559A (ja) * 2016-09-16 2018-03-22 富士通株式会社 情報処理装置、情報処理方法およびプログラム
JP2018147280A (ja) * 2017-03-07 2018-09-20 株式会社日立ソリューションズ データ分析装置及びデータ分析方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059753A1 (ja) * 2020-09-18 2022-03-24 株式会社Uacj 溶解炉のエネルギー効率を予測する学習済み予測モデルを生成する方法、溶解炉のエネルギー効率を予測する方法、およびコンピュータプログラム
JP7519453B2 (ja) 2020-09-18 2024-07-19 株式会社Uacj 溶解炉のエネルギー効率を予測する学習済み予測モデルを生成する方法、溶解炉のエネルギー効率を予測する方法、およびコンピュータプログラム

Also Published As

Publication number Publication date
BR112021016447A2 (pt) 2021-11-09
CN113454413A (zh) 2021-09-28
JPWO2020170849A1 (ja) 2021-03-11
EP3929516A4 (en) 2022-04-20
CN113454413B (zh) 2023-06-27
KR102579633B1 (ko) 2023-09-15
JP6954479B2 (ja) 2021-10-27
KR20210116578A (ko) 2021-09-27
EP3929516A1 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
Liu et al. A dynamic analytics method based on multistage modeling for a BOF steelmaking process
CN109447346B (zh) 基于灰色预测与神经网络组合模型转炉氧耗量预测方法
Matino et al. Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management
WO2020152750A1 (ja) 金属材料の設計支援方法、予測モデルの生成方法、金属材料の製造方法、及び設計支援装置
Feng et al. End temperature prediction of molten steel in LF based on CBR–BBN
Matino et al. Quantification of energy and environmental impacts in uncommon electric steelmaking scenarios to improve process sustainability
CN109754137B (zh) 确定钢铁材料产品的质量和/或等级的方法及设备
JP4093934B2 (ja) モデルパラメータ決定方法及びそのプログラム,モデル予測方法及びそのプログラム
WO2020170849A1 (ja) 操業結果予測方法、学習モデルの学習方法、操業結果予測装置および学習モデルの学習装置
CN111020118B (zh) 一种基于粒子群优化案例推理的rh终点温度预测方法
Liu et al. A novel dynamic operation optimization method based on multiobjective deep reinforcement learning for steelmaking process
Zhang Optimal control problem of converter steelmaking production process based on operation optimization method
Spirin et al. Complex of model systems for supporting decisions made in managing blast-furnace smelting technology
Ruuska et al. Mass-balance based multivariate modelling of basic oxygen furnace used in steel industry
Howard et al. Identifying Best Practice Melting Patterns in Induction Furnaces: A Data-Driven Approach Using Time Series K-Means Clustering and Multi-Criteria Decision Making
Singh et al. Correlation and Prediction of Molten Steel Temperature in Steel Melting Shop Using Reliable Machine Learning (RML) Approach
Sorsa et al. Data-driven multivariate analysis of basic oxygen furnace used in steel industry
JP2012167365A (ja) 生石灰濃度予測装置及び吹錬制御方法
JP2008007828A (ja) 脱燐制御方法および装置
JP2004059954A (ja) 転炉吹錬制御方法
Tsai et al. The exponential grey forecasting model for CO2 emissions in Taiwan
JP7485241B1 (ja) エネルギー運用支援システム、情報処理装置およびエネルギー運用支援方法
JP2004059955A (ja) 転炉吹錬制御方法
Bigeev et al. Adapting a mathematical model of the end of the blow of a converter heat to existing conditions in the oxygen-converter shop at the Magnitogorsk Metallurgical Combine
Saxena Energy Management and Monitoring Systems

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020546514

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217026129

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021016447

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020759314

Country of ref document: EP

Effective date: 20210920

ENP Entry into the national phase

Ref document number: 112021016447

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210819