WO2020170399A1 - 発光素子及び表示装置 - Google Patents

発光素子及び表示装置 Download PDF

Info

Publication number
WO2020170399A1
WO2020170399A1 PCT/JP2019/006644 JP2019006644W WO2020170399A1 WO 2020170399 A1 WO2020170399 A1 WO 2020170399A1 JP 2019006644 W JP2019006644 W JP 2019006644W WO 2020170399 A1 WO2020170399 A1 WO 2020170399A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light emitting
transport layer
area
charge transport
Prior art date
Application number
PCT/JP2019/006644
Other languages
English (en)
French (fr)
Inventor
井上 尚人
智恵 鳥殿
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201980089667.4A priority Critical patent/CN113439348B/zh
Priority to PCT/JP2019/006644 priority patent/WO2020170399A1/ja
Priority to US17/423,826 priority patent/US20220115618A1/en
Publication of WO2020170399A1 publication Critical patent/WO2020170399A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/207Display of intermediate tones by domain size control
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level

Definitions

  • the present invention relates to a light emitting element and a display device including the light emitting element.
  • a display device equipped with a light emitting element has been developed, and in particular, a display device equipped with an OLED (Organic Light Emitting Diode), an inorganic light emitting diode or a QLED (Quantum dot Light Emitting Diode):
  • OLED Organic Light Emitting Diode
  • QLED Quadantum dot Light Emitting Diode
  • a display device including a dot light emitting diode has been attracting a great deal of attention because it can achieve low power consumption, thinning, and high image quality.
  • OLEDs and QLEDs have the problem of poor reproducibility of low gradations.
  • Japanese Patent Publication "JP-A-2015-43021” (Published March 5, 2015) Japanese Patent Laid-Open Publication "JP-A-2015-43009” (Published March 5, 2015) Japanese Patent Laid-Open Publication "JP 2006-276097” (Published October 12, 2006) Japanese Patent Laid-Open Publication "JP-A-4-308687” (Published October 30, 1992) Japanese Patent Laid-Open Publication "JP 2007-5072” (Published January 11, 2007)
  • FIGS. 17A and 17B are diagrams showing the degree of brightness variation in the display surface at each gray level of the conventional time-division drive type (PWM drive in the time-division direction) QLED display device. .. 17A and 17B show the results of measuring the luminance variation characteristics in the display surface for a certain input gray level for two display devices of the same model.
  • the brightness variation in the display surface is clearly on the low gradation (32 gradation) side as compared with the high gradation side. It can be seen that is extremely increased. Further, comparing the measurement results of the two display devices, it can be seen that the variation in luminance in the display surface between the display devices is larger on the low gradation (32 gradation) side than on the high gradation side.
  • a stable linear voltage and luminance characteristic cannot be obtained when each light emitting diode has a low gradation, so that one pixel is formed.
  • a voltage and brightness characteristics of one light emitting element are unstable, but also the voltage and brightness characteristics of a plurality of light emitting elements forming the display surface of the display device vary, which causes brightness variation in the display surface. In addition, brightness variation in the display surface between different display devices also occurs.
  • the present invention has been made in view of the above problems, and a light emitting element and a display surface that can obtain stable linear voltage and luminance characteristics on the low gradation side without performing time division driving. It is an object of the present invention to provide a display device in which variations in internal luminance are suppressed.
  • a light emitting element comprising a light emitting layer, an upper electrode provided on one side of the light emitting layer, and a lower electrode provided on the other side opposite to the one side of the light emitting layer
  • the lower electrode includes a first electrode having a first gap therebetween and a second electrode having a larger area than the first electrode
  • the upper electrode includes a third electrode having a second gap therebetween, the third electrode facing the first electrode and the second electrode, and the fourth electrode facing the second electrode and having an area smaller than that of the third electrode.
  • a first charge transport layer and a second charge transport layer are provided between the lower electrode and the light emitting layer, A third charge transport layer facing the first charge transport layer and a fourth charge transport layer facing the second charge transport layer are provided between the upper electrode and the light emitting layer,
  • the first region in which the first electrode and the third electrode overlap includes the first charge transport layer, the light emitting layer, and the third charge transport layer
  • a fourth region in which the second electrode and the fourth electrode overlap includes the second charge transport layer, the light emitting layer, and the fourth charge transport layer
  • the first charge transport layer and the fourth charge transport layer are transport layers of first carriers,
  • the second charge transport layer and the third charge transport layer are characterized by being
  • the display device of the present invention in order to solve the above problems, A light emitting element array in which the light emitting element is provided on an active matrix substrate; A circuit for outputting a signal for switching each of the first electrode, the second electrode, the third electrode, and the fourth electrode to a cathode or an anode based on the gradation of an input image signal. ..
  • FIG. 1 is a diagram showing a schematic configuration of a display device according to a first exemplary embodiment.
  • A is a figure which shows schematic structure of the light emitting element array with which the display apparatus of Embodiment 1 was equipped
  • (b) is a figure which shows the time when the light emitting element with which the light emitting element array was equipped was lighted.
  • .. (a) is a top view of the 1st electrode and 2nd electrode of the light emitting element with which the light emitting element array with which the display apparatus of Embodiment 1 was equipped was provided, (b) was equipped with the light emitting element array.
  • FIG. 5 is a diagram showing a pixel circuit when a plurality of switching elements are controlled as shown in FIG. 4.
  • (A)-(e) is a figure which shows the polarity of a 1st electrode, a 2nd electrode, a 3rd electrode, and a 4th electrode in each lighting mode 1-5, a lighting part, and a light extinction part.
  • FIG. 6A to 6E are polarities of the first electrode, the second electrode, the third electrode, and the fourth electrode in each of the lighting modes 1 to 5 illustrated in FIGS. 6A to 6E.
  • FIG. 4 is a diagram showing the directions of electric fields and lighting/extinguishing of light in the first to fourth regions.
  • FIG. 3 is a diagram showing a relationship between an element applied voltage and a light emitting layer current in a light emitting element included in the light emitting element array of the display device of Embodiment 1.
  • 3 is a diagram showing a schematic configuration of another light emitting element array that can be included in the display device of Embodiment 1.
  • FIG. 6 is a diagram showing a schematic configuration of still another light emitting element array that can be provided in the display device of Embodiment 1.
  • FIG. 5 is a diagram showing a schematic configuration of a light emitting element array provided in the display device of Embodiment 2.
  • FIG. (a) is a top view of a light emitting element array provided in the display device of Embodiment 2
  • (b) is a top view of the light emitting element array showing first to fourth regions.
  • (A)-(g) is a figure which shows the polarity of a 1st electrode, a 2nd electrode, a 3rd electrode, and a 4th electrode in each lighting mode 1-7, a lighting part, and a light extinction part. The polarities of the first electrode, the second electrode, the third electrode, and the fourth electrode in lighting modes 1 to 7 illustrated in (a) to (g) of FIG.
  • FIG. 6 is a diagram showing a relationship between an element applied voltage and a light emitting layer current in a light emitting element included in a light emitting element array of the display device of Embodiment 2.
  • (a) is a top view of the light emitting element array which showed the 1st area-4th area of the light emitting element array which is a modification which can be equipped with the display device of Embodiment 2
  • (b) is an embodiment. It is a figure which shows schematic structure of the light emitting element array which is a modification which can be equipped with the display apparatus of 2.
  • (a) And (b) is a figure which shows the grade of the brightness variation in a display surface in each gradation of the conventional time division drive type QLED display device.
  • FIG. 1 is a diagram showing a schematic configuration of the display device 1 of the first embodiment.
  • the display device 1 includes a light emitting element array 2 in which light emitting elements (not shown) are provided on an active matrix substrate (not shown), a Scan driver 3, a Data driver 4, and an image timing controller 5 (circuit). including.
  • the input image signal is input to the image timing controller 5, the image timing controller 5 outputs a lighting mode selection signal to the light emitting element array 2, and the image timing controller 5 outputs a Scan driver control signal to the Scan driver 3.
  • a data driver control signal is output from the image timing controller 5 to the data driver 4.
  • the Scan driver 3 switches the required voltage at the Hsync timing.
  • the Data driver 4 is for passing current after setting the current of each light emitting element (not shown).
  • the image timing controller 5 controls the first electrode, the second electrode, the third electrode, and the fourth electrode of each light emitting element (not shown) to be a cathode or an anode based on the gradation of the input image signal.
  • a lighting mode selection signal that is a signal for switching to is output.
  • FIG. 2A is a diagram showing a schematic configuration of the light emitting element array 2
  • FIG. 2B is a diagram showing a time when the light emitting elements provided in the light emitting element array 2 are turned on.
  • 2A and 2B show only one light emitting element provided on the active matrix substrate 19 which is a part of the light emitting element array 2 including a plurality of light emitting elements. ing.
  • FIG. 3A is a top view of the first electrode 6C and the second electrode 6D of the light emitting element included in the light emitting element array 2, and FIG. 3B is included in the light emitting element array 2. It is a top view of the 3rd electrode 6A and the 4th electrode 6B of a light emitting element, and FIG.3(c) is a top view of the light emitting element with which the light emitting element array 2 was equipped.
  • the light emitting element array 2 includes an active matrix substrate 19 and a light emitting element provided on the active matrix substrate 19.
  • the active matrix substrate 19 is a substrate including, for example, a thin film transistor element (TFT element) as an active element for driving the light emitting element.
  • TFT element thin film transistor element
  • the light emitting element provided on the active matrix substrate 19 includes a light emitting layer 16, an upper electrode provided on one side (upper side in the figure) of the light emitting layer 16, and a light emitting element.
  • the lower electrode provided on the other side (lower side in the drawing) opposite to the one side of the layer 16 is included.
  • the lower electrode includes a first electrode 6C having a first gap therebetween and a second electrode 6D having an area larger than that of the first electrode 6C, and the upper electrode has a second gap therebetween. It is composed of a third electrode 6A facing the first electrode 6C and the second electrode 6D, and a fourth electrode 6B facing the second electrode 6D and having an area smaller than that of the third electrode 6A.
  • An electron transport layer (ETL) 15 as a first charge transport layer and a hole transport layer (HTL) 17 as a second charge transport layer are provided between the lower electrode and the light emitting layer 16. Between the upper electrode and the light emitting layer 16, a hole transport layer (HTL) 14 as a third charge transport layer facing the electron transport layer (ETL) 15 and a hole transport layer (HTL) 17 facing each other. An electron transport layer (ETL) 18 as a fourth charge transport layer is provided.
  • the electron transport layer (ETL) 15 is the first charge transport layer
  • the hole transport layer (HTL) 17 is the second charge transport layer
  • the hole transport layer (HTL) is the third charge transport layer.
  • 14 is described as an example in which the electron transport layer (ETL) 18 is provided as the fourth charge transport layer, but the present invention is not limited to this, and for example, hole transport as the first charge transport layer is provided.
  • the layer (HTL) 17, the electron transport layer (ETL) 15 as the second charge transport layer, the electron transport layer (ETL) 18 as the third charge transport layer, and the hole transport layer (HTL) as the fourth charge transport layer. 14 may be provided.
  • the first region L1 where the first electrode 6C and the third electrode 6A overlap each other includes the electron transport layer (ETL) 15, the light emitting layer 16, and the hole transport layer (HTL) 14, and the second electrode 6D.
  • the second region L2, which is a part of the region where the third electrode 6A overlaps, includes the electron transport layer (ETL) 15, the light emitting layer 16, and the hole transport layer (HTL) 14, and the second electrode 6D.
  • the fourth region L4 in which the two electrodes 6D and the fourth electrode 6B overlap each other includes a hole transport layer (HTL) 17, a light emitting layer 16, and an electron transport layer (ETL) 18.
  • the electron transport layer (ETL) 15 and the electron transport layer (ETL) 18 are transport layers for the electrons 26 that are the first carriers illustrated in FIG. 2B, and include the hole transport layer (HTL) 14 and the holes.
  • the transport layer (HTL) 17 is a transport layer for the holes 25 that are the second carriers illustrated in FIG. 2B.
  • the second electrode 6D is formed so as to straddle the electron transport layer (ETL) 15 and the hole transport layer (HTL) 17, and at the same time, the hole transport layer (HTL). ) 14 and the electron transport layer (ETL) 18 as well.
  • the third electrode 6A is also formed so as to straddle the electron transport layer (ETL) 15 and the hole transport layer (HTL) 17, and also the hole transport layer (HTL) 14 and the electron transport layer (ETL) 18. It is also formed across.
  • the second electrode 6D is formed with the same area A as the third electrode 6A, and the first electrode 6C is formed into the first electrode 6C.
  • the case of forming the same area B as that of the fourth electrode 6B will be described as an example, but the present invention is not limited to this, and the area of the second electrode 6D and the third electrode 6A and the first electrode 6C and the fourth electrode are not limited thereto.
  • the area of 6B may be different.
  • the electron transport layer (ETL) 15 is formed in the same area as the hole transport layer (HTL) 17, and the hole transport layer (HTL) is formed.
  • 14 is formed in the same area as the electron transport layer (ETL) 18
  • the electron transport layer (ETL) 15 is formed in the same area as the hole transport layer (HTL) 14
  • the hole transport layer (HTL) 17 is formed in the electron transport layer.
  • the case where the area is the same as that of the (ETL) 18 will be described as an example, but the present invention is not limited to this.
  • the second electrode 6D and the third electrode 6A are formed across the electron transport layer (ETL) and the hole transport layer (HTL). Therefore, even though the lower electrode and the upper electrode are each divided into two, it is possible to have an area lighting mode of four or more steps.
  • FIG. 2B in the light emitting element included in the light emitting element array 2, the first electrode 6C is driven as a cathode supplying electrons 26, and the second electrode 6D is driven as an anode supplying holes 25.
  • FIG. 6 is a diagram showing a case where the third electrode 6A is driven as an anode supplying holes 25 and the fourth electrode 6B is driven as a cathode supplying electrons 26.
  • the second region L2 does not emit light because the holes 25 supplied from the second electrode 6D are blocked by the electron transport layer (ETL) 15.
  • the holes 25 supplied from the third electrode 6A are blocked by the electron transport layer (ETL) 18, the third region L3 does not emit light.
  • the first region L1 and the fourth region L4 emit light.
  • the potentials of the first electrode 6C and the third electrode 6A that are opposed to each other are higher in the third electrode 6A, so that the light emitting layer 16 has a higher potential.
  • the electric potential of the second electrode 6D is higher than the electric potential of the second electrode 6D facing each other in the fourth region L4. Electric field is generated, and the first region L1 and the fourth region L4 emit light.
  • the second region L2 since the opposing second electrode 6D and third electrode 6A have the same potential, the light emitting layer 16 does not generate an electric field and does not emit light.
  • the third region L3 since the potentials of the second electrode 6D and the third electrode 6A facing each other are the same, no electric field is generated in the light emitting layer 16 and no light is emitted.
  • the third charge transport layer provided between the third electrode 6A, which is the upper electrode, and the light emitting layer 16 is a transport layer of a second carrier different from the first carrier.
  • the first carrier is the electron 26
  • the second carrier is the hole 25, and it is provided between the light emitting layer 16 and the first electrode 6C and the second electrode 6D which are lower electrodes.
  • the first charge transport layer is the electron transport layer (ETL) 15
  • the second charge transport layer provided between the second electrode 6D which is the lower electrode and the light emitting layer 16 is the hole transport layer (HTL) 17.
  • the third charge transport layer provided between the third electrode 6A that is the upper electrode and the light emitting layer 16 is the hole transport layer (HTL) 14, and the third electrode 6A that is the upper electrode and the fourth electrode
  • the case where the fourth charge transport layer provided between the electrode 6B and the light emitting layer 16 is the electron transport layer (ETL) 18 will be described as an example, but the present invention is not limited thereto.
  • the hole transport layer (HTL) is the electron in the configuration illustrated in FIGS. 2A and 2B. It is replaced with a transport layer (ETL), and the electron transport layer (ETL) is replaced with a hole transport layer (HTL).
  • the first charge transport layer provided between the light emitting layer 16 and the first electrodes 6C and the second electrodes 6D which are lower electrodes serves as a hole transport layer (HTL).
  • the second charge transport layer provided between the second electrode 6D, which is the lower electrode, and the light emitting layer 16 serves as an electron transport layer (ETL), and the second charge transport layer is between the third electrode 6A, which is the upper electrode, and the light emitting layer 16.
  • the third charge-transporting layer provided in the above is an electron-transporting layer (ETL), and the fourth charge-transporting layer provided between the light-emitting layer 16 and the third electrode 6A and the fourth electrode 6B which are upper electrodes is a hole. It becomes a transport layer (HTL).
  • the insulator 22 is provided in the first gap formed between the first electrode 6C and the second electrode 6D.
  • an insulator 21 is formed in the third gap formed between the electron transport layer (ETL) 15 and the hole transport layer (HTL) 17, and the hole transport layer (HTL) 14 and the electron transport layer are formed.
  • the case where the insulator 20 is formed in the fourth gap formed between the layer (ETL) 18 will be described as an example, but the present invention is not limited to this as will be described later with reference to FIGS. 9 and 10. There is no such thing.
  • the area of the first region L1 and the area of the fourth region L4 are the same, and the area of the second region L2 is the same.
  • the area of the third region L3 is the same.
  • the area of the first region L1 or the area of the fourth region L4 is larger than the area of the second region L2 or the area of the third region L3.
  • the hole transport layer (HTL) 14, the light emitting layer 16, and the electron transport layer (ETL) 15 are overlapped with each other in the entire first region L1, and thus the first region L1. Is the area of the light emitting region. Since the hole transport layer (HTL) 14, the light emitting layer 16, and the electron transport layer (ETL) 15 are overlapped with each other in the entire second region L2, the area of the second region L2 is the area of the light emitting region. Becomes Since the hole transport layer (HTL) 17, the light emitting layer 16, and the electron transport layer (ETL) 18 are overlapped with each other in the entire third region L3, the area of the third region L3 is the area of the light emitting region.
  • the hole transport layer (HTL) 17 the light emitting layer 16, and the electron transport layer (ETL) 18 overlap each other in the entire fourth region L4, the area of the fourth region L4 is the area of the light emitting region.
  • the present invention is not limited to this, and the hole transport layer (HTL), the light emitting layer 16, and the electron transport layer (ETL) are provided only in a part of each of the first region L1 to the fourth region L4. You may overlap.
  • FIG. 4 is a diagram showing a circuit including a plurality of switching elements 7A to 10A and 7B to 10B which are controlled based on the lighting mode selection signal from the image timing controller 5 shown in FIG.
  • the switching elements 7A to 10A and 7B to 10B illustrated in FIG. 4 are controlled to be turned on and off based on a lighting mode selection signal from the image timing controller 5.
  • the switching elements 7A and 7B are switching elements that electrically connect the third electrode 6A and one of the ELVDD supply source 11 and the ELVSS supply source 12.
  • the switching elements 8A and 8B are switching elements that electrically connect the fourth electrode 6B and one of the ELVDD supply source 11 and the ELVSS supply source 12.
  • the switching elements 9A and 9B are switching elements that electrically connect the first electrode 6C and one of the ELVDD supply source 11 and the ELVSS supply source 12.
  • the switching elements 10A and 10B are switching elements that electrically connect the second electrode 6D and one of the ELVDD supply source 11 and the ELVSS supply source 12.
  • the first electrode 6C is driven as a cathode for supplying electrons 26, and the second electrode 6D is an anode for supplying holes 25.
  • the switching element 7A is on, the switching element 7B is off, ELVDD is supplied to the third electrode 6A from the ELVDD supply source 11, and the polarity of the third electrode 6A becomes +.
  • the switching element 8A is off, the switching element 8B is on, ELVSS is supplied to the fourth electrode 6B from the ELVSS supply source 12, and the polarity of the fourth electrode 6B becomes ⁇ .
  • the switching element 9A is off, the switching element 9B is on, ELVSS is supplied from the ELVSS supply source 12 to the first electrode 6C, and the polarity of the first electrode 6C becomes ⁇ .
  • the switching element 10A is on, the switching element 10B is off, ELVDD is supplied to the second electrode 6D from the ELVDD supply source 11, and the polarity of the second electrode 6D becomes +.
  • FIG. 5 is a diagram showing a pixel circuit when a plurality of switching elements 7A to 10A and 7B to 10B are controlled as shown in FIG.
  • a data line (Data), A scan line (Scan), a reset line (Reset), and an erase line (Erase) are provided in the pixel circuit of one pixel corresponding to the light emitting device including the first electrode 6C, the second electrode 6D, the third electrode 6A, and the fourth electrode 6B.
  • a scan signal is supplied from the Scan driver 3 shown in FIG. 1 to the scan line (Scan), and a data signal is supplied from the Data driver 4 shown in FIG. 1 to the data line (Data).
  • the pixel circuit of one pixel includes a drive transistor (TrD), a switching transistor (Tr2) connected between the drain (or source) and the gate of the drive transistor (TrD), and the drive transistor (TrD).
  • the ELVSS supply source 12 is connected to the series circuit of the switching transistor (Tr1) and the capacitive element (C) connected between the gate and the data line (Data) and the connection point of the switching transistor (Tr1) and the capacitive element (C). From ELVSS to the switching transistor (Tr3).
  • the gate of the switching transistor (Tr2) is connected to the reset line (Reset)
  • the gate of the switching transistor (Tr1) is connected to the scanning line (Scan)
  • the gate of the switching transistor (Tr3) is connected to the erase line. (Erase). Then, ELVDD is supplied from the ELVDD supply source 11 from the source (or drain) of the drive transistor (TrD).
  • ELVDD is applied to the second electrode 6D and the third electrode 6A by the pixel circuit illustrated in FIG.
  • ELVSS can be applied to the first electrode 6C and the fourth electrode 6B.
  • 6A to 6E are the polarities of the first electrode 6C, the second electrode 6D, the third electrode 6A, and the fourth electrode 6B in the lighting modes 1 to 5, and the lighting portion. It is a figure which shows a light extinction part.
  • the image timing controller 5 shown in FIG. 1 selects one of the lighting modes 1 to 5 shown in FIGS. 6A to 6E based on the gradation value of the input image signal.
  • a lighting mode selection signal is output. For example, when the gradation number of the input image signal is 8 bits, the image timing controller 5 determines that the gradation value of the input image signal is 160 to 256 gradations, and the lighting mode shown in FIG. When a lighting mode selection signal for selecting 1 (6/8 lighting) is output and the gradation value of the input image signal is 64 gradations to 159 gradations, the lighting mode 2 (shown in FIG.
  • the display of each gradation in each lighting mode is performed based on the data signal supplied via the data line (Data) illustrated in FIG.
  • the area of the first region L1 is the same as the area of the fourth region L4 and the area of the third region L3 is the same as the area of the second region L2, the area of the first region L1 and the area of the second region L2. It goes without saying that the area of, the area of the third region L3, and the area of the fourth region L4 can be appropriately adjusted.
  • the first electrode 6C during the second lighting period after the first lighting period, When a voltage having a polarity opposite to that of the first lighting period is applied to each of the second electrode 6D, the third electrode 6A, and the fourth electrode 6B, that is, when AC driving is performed, it is possible to prevent the life of the light emitting element from being shortened. Is possible.
  • the length of the first lighting period and the length of the second lighting period may be the same or different.
  • FIGS. 6(a) to 6(e) show the first electrode 6C, the second electrode 6D, and the second electrode 6D in the lighting modes 1 to 5 shown in FIGS. 6(a) to 6(e), respectively. It is a figure which shows the polarity of 3 electrode 6A and 4th electrode 6B, the direction of the electric field of 1st area
  • the direction of the electric field is nothing means that no electric field is generated in the light emitting layer 16. Further, turning ON/OFF is ON means that the corresponding area in the first area L1, the second area L2, the third area L3, and the fourth area L4 is ON, and turning ON/OFF is OFF. Means that the corresponding area in the first area L1, the second area L2, the third area L3, and the fourth area L4 is turned off.
  • FIG. 8 is a diagram showing the relationship between the element applied voltage and the light emitting layer current in the light emitting element provided in the light emitting element array 2 of the display device 1 of the first embodiment.
  • the display device 1 in the light emitting element, a stable linear characteristic of the element applied voltage and the light emitting layer current (luminance) can be obtained from low gradation to high gradation, so that the luminance variation in the display surface is suppressed.
  • the display device 1 can be realized.
  • the case where the number of divisions of the lighting mode is five of the lighting modes 1 to 5 has been described as an example, but the number of divisions of the lighting mode is not limited to this.
  • the case where the number of divisions of the lighting region is divided into four regions of the first region L1, the second region L2, the third region L3, and the fourth region L4 has been described as an example. , But is not limited to this.
  • the area of the first region L1 is the same as the area of the fourth region L4, and the area of the second region L2 is the same as the area of the third region L3.
  • the present invention is not limited to this.
  • the same data is used for the upper data line (Data) in the drawing and the lower data line (Data) in the drawing.
  • the case where a signal is supplied has been described as an example, but the present invention is not limited to this, and the upper data line (Data) in the figure and the lower data line (Data) in the figure may be provided. , Different data signals may be provided.
  • the lighting mode selection signal is output from the image timing controller 5 (circuit)
  • the present invention is not limited to this, and the lighting mode selection signal may be, for example, , Data driver 4 (circuit).
  • the constituent material of the hole transport layer (HTL) 14 and the hole transport layer (HTL) 17 is not particularly limited as long as it is a hole transporting material capable of stabilizing the transport of the holes 25 to the light emitting layer 16. It is not something that will be done. Above all, it is preferable that the hole transporting material has a high hole mobility. Furthermore, it is preferable that the hole transporting material is a material (electron blocking material) capable of preventing the penetration of electrons moving from the cathode. This is because the coupling efficiency of the holes 25 and the electrons 26 in the light emitting layer 16 can be improved.
  • Examples of materials used for such a hole transport layer include arylamine derivatives, anthracene derivatives, carbazole derivatives, thiophene derivatives, fluorene derivatives, distyrylbenzene derivatives, and spiro compounds.
  • the material used for such a hole transport layer is polyvinylcarbazole (PVK) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-). (N-(4-sec-butylphenyl))diphenylamine)](TFB) is more preferable. Since PVK and TFB improve the efficiency of light emission due to the recombination of the electrons 26 and the holes 25 in the light emitting layer 16, they have the effect of improving the light emitting characteristics of the electroluminescent device.
  • a hole injection layer may be formed on the third electrode 6A side of the hole transport layer (HTL) 14 and on the second electrode 6D side of the hole transport layer (HTL) 17.
  • the material used for the hole injecting layer is not particularly limited as long as it is a hole injecting material capable of stabilizing the injection of the holes 25 into the light emitting layer 16.
  • the hole injecting material include arylamine derivatives, porphyrin derivatives, phthalocyanine derivatives, carbazole derivatives, and conductive polymers such as polyaniline derivatives, polythiophene derivatives, and polyphenylene vinylene derivatives.
  • the material used for the hole injection layer is more preferably poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT-PSS). Since PEDOT-PSS improves the efficiency of light emission due to the recombination of the electrons 26 and the holes 25 in the light emitting layer 16, it has an effect of improving the light emitting characteristics of the electroluminescent device.
  • PEDOT-PSS poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid
  • Examples of the method for forming the hole transport layer (HTL) 14, the hole transport layer (HTL) 17, and the hole injection layer include vapor deposition method, printing method, inkjet method, spin coating method, casting method, dipping method, and bar. Coating method, blade coating method, roll coating method, gravure coating method, flexographic printing method, spray coating method, photolithography method, or self-assembly method (alternate adsorption method, self-assembly monolayer method), etc. Yes, but not limited to. Above all, it is preferable to use the vapor deposition method, the spin coating method, the inkjet method, or the photolithography method.
  • the material of the electron transport layer is an anode in order to enhance recombination efficiency of the holes 25 and the electrons 26 in the light emitting layer 16. It is preferable that the holes 25 that have moved from the hole can be prevented from penetrating, but when zinc oxide is used for the electron transport layer, the difference in ionization potential between the light emitting layer 16 and the electron transport layer, that is, Since the hole transport barrier from the light emitting layer 16 to the electron transport layer is relatively large, the recombination efficiency of the holes 25 and the electrons 26 in the light emitting layer 16 is increased, and the light emitting efficiency is also improved.
  • An electron injection layer may be formed on the first electrode 6C side of the electron transport layer (ETL) 15 or on the fourth electrode 6B side of the electron transport layer (ETL) 18.
  • the material used for the electron injection layer is not particularly limited as long as it is an electron injection material that can stabilize the injection of the electrons 26 into the light emitting layer 16.
  • Examples of the electron injecting material include aluminum, strontium, calcium, lithium, cesium, magnesium oxide, aluminum oxide, strontium oxide, lithium oxide, lithium fluoride, magnesium fluoride, strontium fluoride, calcium fluoride, barium fluoride.
  • Alkali metal or alkaline earth metal such as cesium fluoride, sodium polymethylmethacrylate polystyrene sulfonate etc., alkali metal or alkaline earth metal oxide, alkali metal or alkaline earth metal fluoride, alkali metal organic A complex etc. can be mentioned.
  • Examples of the method for forming the electron transport layer (ETL) 15, the electron transport layer (ETL) 18, and the electron injection layer include vapor deposition method, printing method, ink jet method, spin coating method, casting method, dipping method, bar coating method, and blade.
  • the coating method, the roll coating method, the gravure coating method, the flexographic printing method, the spray coating method, the photolithography method, or the self-assembly method (alternate adsorption method, self-assembly monolayer film method), etc. can be mentioned. Not limited to. Above all, it is preferable to use the vapor deposition method, the spin coating method, the inkjet method, or the photolithography method.
  • a quantum dot light emitting layer is used as the light emitting layer 16, but the light emitting layer 16 is not limited to this.
  • the quantum dot light emitting layer is a layer that emits light when recombination of the holes 25 and the electrons 26 occurs.
  • quantum dots semiconductor nanoparticles in which one or a plurality of layers are stacked are used as a light emitting material, quantum dots having a red light emission peak in a red pixel are used as a quantum dot light emitting layer, and quantum dots having a green light emission peak in a green pixel are used.
  • a blue dot is provided as a quantum dot light emitting layer having a blue light emission peak.
  • the material forming the quantum dot light emitting layer examples include Cd, S, Te, Se, Zn, In, N, P, As, Sb, Al, Ga, Pb, Si, Ge, Mg, and compounds thereof. It may include one or more semiconductor materials selected from the group including. Further, the quantum dot light emitting layer may be a two-component core type, a three-component core type, a four-component core type, a core-shell type or a core multi-shell type. In addition, the quantum dot light-emitting layer may include doped nanoparticles or may have a compositionally graded structure.
  • the thickness of the quantum dot light emitting layer is not particularly limited as long as it has a function of providing a field for recombination of electrons 26 and holes 25 to emit light, and is, for example, about 1 nm to 200 nm. be able to.
  • the method for forming the quantum dot light emitting layer as the light emitting layer 16 is not particularly limited as long as it is a method capable of forming a fine pattern required for an electroluminescent element.
  • the self-assembly method (alternate adsorption method, self-assembly monolayer method) and the like can be mentioned. Above all, it is preferable to use the vapor deposition method, the spin coating method, the inkjet method, or the photolithography method.
  • Examples of the vapor deposition method include a vacuum vapor deposition method, a sputtering method, an ion plating method, and the like.
  • Specific examples of the vacuum vapor deposition method include a resistance heating vapor deposition method, a flash vapor deposition method, an arc vapor deposition method, a laser vapor deposition method, and a high frequency wave.
  • Examples include a heating vapor deposition method and an electron beam vapor deposition method.
  • the solvent of the coating liquid is not particularly limited as long as each constituent material of the light emitting layer 16 can be dissolved or dispersed, Examples thereof include toluene, xylene, cyclohexanone, cyclohexanol, tetralin, mesitylene, methylene chloride, tetrahydrofuran, dichloroethane, chloroform and the like.
  • the first electrode 6C, the second electrode 6D, the third electrode 6A, and the fourth electrode 6B are required to be arranged in parallel in the lateral direction and to be electrically and membraneally separated.
  • the third electrode 6A and the fourth electrode 6B are preferably transparent, while the first electrode 6C and the second electrode 6D, which are electrodes on the side opposite to the light extraction surface, are transparent. You don't have to.
  • the resistance of these electrodes is preferably small, and a metal material which is a conductive material is generally used, but an organic compound or an inorganic compound may be used.
  • a metal such as Au, Ta, W, Pt, Ni, Pd, Cr, Cu, Mo, an alkali metal, an alkaline earth metal or the like, which facilitates injection of holes 25 and electrons 26; these metals Oxides; Al alloys such as AlLi, AlCa, AlMg, Mg alloys such as MgAg, Ni alloys, Cr alloys, alloys of alkali metals, alloys of alkaline earth metals; alloys of indium tin oxide (ITO), indium oxide Inorganic oxides such as zinc (IZO), zinc oxide (ZnO) and indium oxide; conductive polymers such as metal-doped polythiophene, polyaniline, polyacetylene, polyalkylthiophene derivatives, polysilane derivatives; ⁇ -Si, ⁇ -SiC And further, alloys of alkali metals and alkaline earth metals such as Li, Cs, Ba, Sr, and Ca.
  • Al alloys such as AlLi
  • Al or an Al alloy has high versatility as an electrode and is relatively inexpensive, it is possible to reduce the manufacturing cost.
  • These conductive materials may be used alone or in combination of two or more kinds. When two or more kinds are used, layers made of each material may be laminated. It is more preferable to use indium tin oxide (ITO). Indium tin oxide (ITO) has a track record of being used as a transparent electrode in many displays, and can be diverted to a manufacturing apparatus, so that the manufacturing cost can be suppressed.
  • ITO indium tin oxide
  • a general electrode forming method can be used as a film forming method for the first electrode 6C, the second electrode 6D, the third electrode 6A, and the fourth electrode 6B.
  • Method physical vapor deposition (PVD) method such as ion plating method, or chemical vapor deposition (CVD) method.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the patterning method of these electrodes is not particularly limited as long as it is a method capable of forming a desired pattern with high accuracy, and specific examples thereof include a photolithography method and an inkjet method. it can.
  • FIG. 9 is a diagram showing a schematic configuration of another light emitting element array 2a that can be provided in the display device of the first embodiment. Note that FIG. 9 shows only one light emitting element provided on the active matrix substrate 19 which is a part of the light emitting element array 2a including a plurality of light emitting elements.
  • the first gap formed between the first electrode 6C and the second electrode 6D is separately provided.
  • the insulator 22 is formed, and the insulator 21 is separately formed in the third gap formed between the electron transport layer (ETL) 15 and the hole transport layer (HTL) 17 to form the hole transport layer.
  • An insulator 20 was separately formed in the fourth gap formed between the (HTL) 14 and the electron transport layer (ETL) 18.
  • an electron transport layer (ETL) 15' is formed.
  • the first gap between the first electrode 6C and the second electrode 6D may be filled with the electron transport layer (ETL) 15'.
  • the electron transport layer (ETL) 15 ′ is formed into a desired shape, and then the hole transport layer (HTL) 17 is formed.
  • the light emitting layer 16a is formed, and at that time, even if the third gap formed between the electron transport layer (ETL) 15′ and the hole transport layer (HTL) 17 by the light emitting layer 16a is filled. Good.
  • the hole transport layer (HTL) 14 and the electron transport layer (ETL) 18 having the fourth gap therebetween are similarly formed in desired shapes on the light emitting layer 16a.
  • the third electrode 6A′ and the fourth electrode 6B are formed.
  • the hole transport layer (HTL) 14 and the electron transport layer (ETL) are formed by the third electrode 6A′.
  • the fourth gap formed with 18 may be filled.
  • FIG. 10 is a diagram showing a schematic configuration of another light emitting element array 2b that can be included in the display device of the first embodiment. Note that FIG. 10 shows only one light emitting element provided on the active matrix substrate 19 which is a part of the light emitting element array 2b including a plurality of light emitting elements.
  • electron transport is performed after the first electrode 6C and the second electrode 6D having the first gap therebetween are formed simultaneously or separately.
  • the layers (ETL) 15a and 15b are formed into a film.
  • the electron transport layer (ETL) 15a and the electron transport layer (ETL) 15b are separately formed so as to form a gap corresponding to the first gap, that is, a gap in contact with the first gap.
  • the insulator 23 is formed in a gap corresponding to the first gap, that is, a gap in contact with the first gap and the first gap.
  • the electron transport layer (ETL) 18a and the electrons are formed so as to form a gap corresponding to the second gap formed between the third electrode 6A and the fourth electrode 6B, that is, a gap in contact with the second gap.
  • the transport layer (ETL) 18b is formed separately.
  • an insulator 24 is formed in a gap corresponding to the second gap, that is, a gap in contact with the second gap and the second gap.
  • the insulator is used when the polarities of the first electrode 6C and the second electrode 6D are opposite to each other and the polarities of the third electrode 6A and the fourth electrode 6B are opposite to each other. Since 23 and 24 can block the electric field from the +polarity to the ⁇ polarity direction in the lateral direction, it is possible to suppress the boundary disturbance of the first region L1 to the fourth region L4 due to the disturbance of the lateral electric field. Then, it becomes possible to effectively use the light emitting state of each region to the limit.
  • FIGS. 11 to 16 a second embodiment of the present invention will be described based on FIGS. 11 to 16.
  • the light emitting elements provided in the light emitting element arrays 32 and 52 of the present embodiment are different from the first embodiment in that the area of the first region L1 and the area of the fourth region L4 are different, and the other portions are the same. This is as described in the first embodiment.
  • members having the same functions as those shown in the drawings of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 11 is a diagram showing a schematic configuration of the light emitting element array 32. Note that FIG. 11 shows only one light emitting element provided on the active matrix substrate 19 which is a part of the light emitting element array 32 including a plurality of light emitting elements.
  • FIG. 12A is a top view of the light emitting element array 32
  • FIG. 12B is a top view of the light emitting element array 32 showing the first region L1 to the fourth region L4.
  • the second electrode 36D is formed so as to straddle the electron transport layer (ETL) 15 and the hole transport layer (HTL) 17, and the hole transport layer (HTL) 14 and the electron. It is formed so as to straddle the transport layer (ETL) 18 as well.
  • the third electrode 36A is also formed so as to straddle the electron transport layer (ETL) 15 and the hole transport layer (HTL) 17, and also the hole transport layer (HTL) 14 and the electron transport layer (ETL) 18. It is also formed across.
  • the area of the second electrode 36D is larger than the area of the first electrode 36C
  • the area of the third electrode 36A is the fourth electrode. It is larger than the area of 36B.
  • the difference between the areas of the second electrode 36D and the first electrode 36C is smaller than the difference between the area of the third electrode 36A and the area of the fourth electrode 36B.
  • the electron transport layer (ETL) 15 has the same area as the hole transport layer (HTL) 17, as shown in FIGS. 11, 12A and 12B.
  • the hole transport layer (HTL) 14 is formed in the same area as the electron transport layer (ETL) 18, and the electron transport layer (ETL) 15 is formed in the same area as the hole transport layer (HTL) 14.
  • the case where the transport layer (HTL) 17 has the same area as the electron transport layer (ETL) 18 will be described as an example, but the transport layer (HTL) 17 is not limited to this.
  • the area of the first region L1 is larger than the area of the fourth region L4, the area of the fourth region L4 is larger than the area of the third region L3, and the third region is larger.
  • the area of L3 is larger than the area of the second region L2.
  • the insulator 29 is formed in the first gap formed between the first electrode 36C and the second electrode 36D, and the electron transport layer (ETL) 15 is formed.
  • An insulator 31 is formed in the third gap formed between the hole transport layer (HTL) 17 and the hole transport layer (HTL) 17, and is formed between the hole transport layer (HTL) 14 and the electron transport layer (ETL) 18.
  • the case where the insulator 30 is formed in the fourth gap will be described as an example, but the present invention is not limited to this as described above with reference to FIGS. 9 and 10.
  • 13A to 13G show polarities of the first electrode 36C, the second electrode 36D, the third electrode 36A, and the fourth electrode 36B in each of the lighting modes 1 to 7, and a lighting portion. It is a figure which shows a light extinction part.
  • the image timing controller 5 shown in FIG. 1 selects one of the lighting modes 1 to 7 shown in (a) to (g) of FIG. 13 based on the gradation value of the input image signal.
  • a lighting mode selection signal is output. For example, when the gradation number of the input image signal is 8 bits, the image timing controller 5 determines the lighting mode shown in FIG. 13A when the gradation value of the input image signal is 168 to 256 gradations. When a lighting mode selection signal for selecting 1 (13/16 lighting) is output and the gradation value of the input image signal is from 128 gradations to 167 gradations, the lighting mode 2 (shown in FIG.
  • the length of the first lighting period and the length of the second lighting period may be the same or different.
  • FIGS. 12(a) to 12(g) show the first electrode 36C, the second electrode 36D, and the second electrode 36D in the lighting modes 1 to 7 shown in FIGS. 12(a) to 12(g), respectively. It is a figure which shows the polarity of the 3rd electrode 36A and the 4th electrode 36B, the direction of the electric field of 1st area
  • the direction of the electric field is nothing means that no electric field is generated in the light emitting layer 16. Further, turning ON/OFF is ON means that the corresponding area in the first area L1, the second area L2, the third area L3, and the fourth area L4 is ON, and turning ON/OFF is OFF. Means that the corresponding area in the first area L1, the second area L2, the third area L3, and the fourth area L4 is turned off.
  • FIG. 15 is a diagram showing the relationship between the element applied voltage and the light emitting layer current in the light emitting elements provided in the light emitting element array 32.
  • a stable linear characteristic of the element applied voltage and the light emitting layer current (luminance) can be obtained from low gradation to high gradation, so that the luminance variation in the display surface is suppressed.
  • a display device can be realized.
  • the area of the first region L1, the area of the second region L2, the area of the third region L3, and the area of the fourth region L4 are The case where the areas of the first regions L1 are larger than the areas of the fourth regions L4, which are different from each other, has been described as an example, but the present invention is not limited to this, and the fourth regions L4 are described later. May be larger than the area of the first region L1.
  • FIG. 16A is a top view of the light emitting element array 52 illustrating first to fourth regions L1 to L4 of the light emitting element array 52 which is a modified example that can be included in the display device of Embodiment 2.
  • FIG. 16B is a diagram showing a schematic configuration of a light emitting element array 52 which is a modified example that can be included in the display device of the second embodiment. Note that FIG. 16B shows only one light emitting element provided on the active matrix substrate 19 which is a part of the light emitting element array 52 including a plurality of light emitting elements.
  • the area of the fourth region L4 is larger than the area of the first region L1
  • the area of the first region L1 is larger than the area of the third region L3
  • the area of the third region L3. Is larger than the area of the second region L2.
  • the second electrode 46D is formed across the electron transport layer (ETL) 15 and the hole transport layer (HTL) 17, and at the same time, is formed in the hole transport layer (HTL). ) 14 and the electron transport layer (ETL) 18 as well.
  • the third electrode 46A is also formed so as to straddle the electron transport layer (ETL) 15 and the hole transport layer (HTL) 17, and the hole transport layer (HTL) 14 and the electron transport layer (ETL) 18 are also formed. It is also formed across.
  • the area of the second electrode 46D is larger than the area of the first electrode 46C, and the area of the third electrode 46A is larger than the area of the fourth electrode 46B.
  • the difference in area between the second electrode 46D and the first electrode 46C is larger than the difference in area between the third electrode 46A and the fourth electrode 46B.
  • the electron transport layer (ETL) 15 is formed in the same area as the hole transport layer (HTL) 14, and the hole transport layer (HTL) is formed. 17 is formed in the same area as the electron transport layer (ETL) 18, the electron transport layer (ETL) 15 is formed in a smaller area than the hole transport layer (HTL) 17, and the hole transport layer (HTL) 14 is formed in the electron transport layer.
  • the case where the layer (ETL) 18 is formed to have an area smaller than that of the layer (ETL) 18 will be described as an example, but not limited to this.
  • the insulator 43 is formed in the first gap formed between the first electrode 46C and the second electrode 46D, and the electron transport layer is formed.
  • An insulator 42 is formed in the third gap formed between the (ETL) 15 and the hole transport layer (HTL) 17, and the hole transport layer (HTL) 14 and the electron transport layer (ETL) 18 are separated from each other.
  • An example is given in which the insulator 41 is formed in the fourth gap formed between them and the insulator 40 is formed in the second gap formed between the third electrode 46A and the fourth electrode 46B.
  • the present invention is not limited to this.
  • the first gap formed between the first electrode 46C and the second electrode 46D becomes the non-light emitting region S1, and is formed between the electron transport layer (ETL) 15 and the hole transport layer (HTL) 17.
  • the third gap and the fourth gap formed between the hole transport layer (HTL) 14 and the electron transport layer (ETL) 18 serve as a non-light emitting region S2, and the third electrode 46A and the fourth electrode 46B are connected to each other.
  • the second gap formed between the two becomes the non-light emitting region S3.
  • a light emitting element comprising a light emitting layer, an upper electrode provided on one side of the light emitting layer, and a lower electrode provided on the other side opposite to the one side of the light emitting layer,
  • the lower electrode includes a first electrode having a first gap therebetween and a second electrode having a larger area than the first electrode,
  • the upper electrode includes a third electrode having a second gap therebetween, the third electrode facing the first electrode and the second electrode, and the fourth electrode facing the second electrode and having an area smaller than that of the third electrode.
  • a first charge transport layer and a second charge transport layer are provided between the lower electrode and the light emitting layer, A third charge transport layer facing the first charge transport layer and a fourth charge transport layer facing the second charge transport layer are provided between the upper electrode and the light emitting layer,
  • the first region in which the first electrode and the third electrode overlap includes the first charge transport layer, the light emitting layer, and the third charge transport layer
  • a fourth region in which the second electrode and the fourth electrode overlap includes the second charge transport layer, the light emitting layer, and the fourth charge transport layer
  • the first charge transport layer and the fourth charge transport layer are transport layers of first carriers, The light emitting device, wherein the second charge transport layer and the third charge transport
  • the first carrier is a hole
  • the second carrier is an electron
  • the first charge transport layer and the fourth charge transport layer are hole transport layers
  • the first carrier is an electron
  • the second carrier is a hole
  • the first charge transport layer and the fourth charge transport layer are electron transport layers
  • the area of the light emitting area in the first area or the area of the light emitting area in the fourth area is larger than the area of the light emitting area in the second area or the area of the light emitting area in the third area.
  • the area where the first charge transport layer, the light emitting layer, and the third charge transport layer overlap to form a light emitting region is: 4.
  • the area where the first charge transport layer, the light emitting layer, and the third charge transport layer overlap to form a light emitting region is: 4.
  • a third gap is formed between the first charge transport layer and the second charge transport layer, 12.
  • a third gap is formed between the first charge transport layer and the second charge transport layer, 12.
  • a fourth gap is formed between the third charge transport layer and the fourth charge transport layer, 14.
  • a fourth gap is formed between the third charge transport layer and the fourth charge transport layer, 14.
  • a light emitting element array in which the light emitting element according to any one of aspects 1 to 17 is provided on an active matrix substrate, A circuit for outputting a signal for switching each of the first electrode, the second electrode, the third electrode, and the fourth electrode to a cathode or an anode based on the gradation of an input image signal.
  • the present invention can be used for a light emitting element and a display device.

Abstract

発光層(16)と、発光層(16)の一方側に備えられた上側電極と、発光層(16)の一方側とは反対側の他方側に備えられた下側電極と、を含む発光素子であって、前記下側電極は、その間に第1間隙を有する、第1電極(6C)と、第1電極(6C)より面積が大きい第2電極(6D)とで構成され、前記上側電極は、その間に第2間隙を有する、第1電極(6C)及び第2電極(6D)と対向する第3電極(6A)と、第2電極(6D)と対向し、かつ、第3電極(6A)より面積が小さい第4電極(6B)とで構成される。

Description

発光素子及び表示装置
 本発明は、発光素子と、前記発光素子を備えた表示装置とに関する。
 近年、発光素子を備えた様々な表示装置が開発されており、特に、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた表示装置や、無機発光ダイオードまたはQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えた表示装置は、低消費電力化、薄型化および高画質化などを実現できる点から、高い注目を浴びている。
 一方で、OLEDやQLEDは、低階調の再現性が乏しいという問題点を抱えている。
 特に、QLEDでは、電圧に対する輝度特性において急激な変化点がある為に、低階調側の輝度表現が難しく、時分割駆動を導入して改善する試みがなされている。
日本国公開特許公報「特開2015‐43021号」公報(2015年3月5日公開) 日本国公開特許公報「特開2015‐43009号」公報(2015年3月5日公開) 日本国公開特許公報「特開2006‐276097号」公報(2006年10月12日公開) 日本国公開特許公報「特開平4‐308687号」公報(1992年10月30日公開) 日本国公開特許公報「特開2007‐5072号」公報(2007年1月11日公開)
 図17の(a)及び図17の(b)は、従来の時分割駆動方式(時分割方向にPWM駆動)のQLED表示装置の各階調における表示面内の輝度ばらつきの程度を示す図である。図17の(a)と図17の(b)とは、同一モデルの2つの表示装置について、ある入力階調に対する表示面内の輝度ばらつき特性を測定した結果である。
 図17の(a)及び図17の(b)に図示するように、各表示装置において、高階調側と比較して低階調(32階調)側で、明らかに表示面内の輝度ばらつきが極端に増大していることがわかる。また、2つの表示装置の測定結果を比較して見ると、表示装置間の表示面内の輝度ばらつきも、高階調側と比較して低階調(32階調)側で大きいことがわかる。
 OLEDやQLEDといった発光素子(自発光素子)をもつ表示装置においては、個々の発光ダイオードが低階調では、安定したリニアな電圧と輝度の特性が得られない為に、1画素を構成する一つの発光素子の電圧と輝度の特性が不安定であるばかりではなく、表示装置の表示面を構成する複数の発光素子の電圧と輝度の特性がばらついて表示面内の輝度ばらつきが生じる。さらに、異なる表示装置間の表示面内の輝度ばらつきも生じる。
 OLEDやQLEDといった発光素子が低階調で、安定したリニアな電圧と輝度の特性が得られない原因は、発光素子そのものの特性バラツキよりも発光素子を定電流で駆動する半導体層(例えば、アモルファス半導体層や酸化物半導体層やポリシリコン半導体層など)の電流I-電圧Vの特性のバラツキが支配的である。したがって、上述した輝度ばらつきの問題は、電流を絞って点灯する時、すなわち低階調の表示を行なうときには、必ず発生する大きな課題である。上述した輝度ばらつきの程度は、OLEDよりもQLEDの方で大きい傾向にある。
 また、時分割駆動方式として、時分割方向にPWM駆動を行う場合、例えば、10倍の電流を流して10%のPWM駆動をするといった駆動方法となる為、発光素子の寿命劣化を加速するという問題も生じる。
 本発明は、前記の問題点に鑑みてなされたものであり、時分割駆動を行なわなくても、低階調側において、安定したリニアな電圧と輝度の特性が得られる発光素子と、表示面内の輝度ばらつきを抑制した表示装置とを提供することを目的とする。
 本発明の発光素子は、前記の課題を解決するために、
 発光層と、前記発光層の一方側に備えられた上側電極と、前記発光層の一方側とは反対側の他方側に備えられた下側電極と、を含む発光素子であって、
 前記下側電極は、その間に第1間隙を有する、第1電極と、前記第1電極より面積が大きい第2電極とで構成され、
 前記上側電極は、その間に第2間隙を有する、前記第1電極及び前記第2電極と対向する第3電極と、前記第2電極と対向し、かつ、前記第3電極より面積が小さい第4電極とで構成され、
 前記下側電極と前記発光層との間には、第1電荷輸送層と、第2電荷輸送層とが備えられ、
 前記上側電極と前記発光層との間には、前記第1電荷輸送層と対向する第3電荷輸送層と、前記第2電荷輸送層と対向する第4電荷輸送層とが備えられ、
 前記第1電極と前記第3電極とが重畳する第1領域は、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とを含み、
 前記第2電極と前記第3電極とが重畳する領域の一部である第2領域は、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とを含み、
 前記第2電極と前記第3電極とが重畳する領域の他の一部である第3領域は、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とを含み、
 前記第2電極と前記第4電極とが重畳する第4領域は、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とを含み、
 前記第1電荷輸送層及び前記第4電荷輸送層は、第1キャリアの輸送層であり、
 前記第2電荷輸送層及び前記第3電荷輸送層は、前記第1キャリアとは異なる第2キャリアの輸送層であることを特徴としている。
 本発明の表示装置は、前記の課題を解決するために、
 アクティブマトリクス基板に、前記発光素子が設けられた発光素子アレイと、
 入力画像信号の階調に基づいて、前記第1電極、前記第2電極、前記第3電極及び前記第4電極をそれぞれ陰極または陽極に切り替える信号を出力する回路と、を含むことを特徴としている。
 時分割駆動を行なわなくても、低階調側において、安定したリニアな電圧と輝度の特性が得られる発光素子と、表示面内の輝度ばらつきを抑制した表示装置とを提供できる。
実施形態1の表示装置の概略構成を示す図である。 (a)は、実施形態1の表示装置に備えられた発光素子アレイの概略構成を示す図であり、(b)は、発光素子アレイに備えられた発光素子を点灯した時を示す図である。 (a)は、実施形態1の表示装置に備えられた発光素子アレイに備えられた発光素子の第1電極及び第2電極の上面図であり、(b)は、発光素子アレイに備えられた発光素子の第3電極及び第4電極の上面図であり、(c)は、発光素子アレイに備えられた発光素子の上面図である。 画像タイミングコントローラからの点灯モード選択信号に基づいて制御される複数のスイッチング素子を含む回路を示す図である。 図4に図示するように、複数のスイッチング素子が制御された場合の画素回路を示す図である。 (a)~(e)は、点灯モード1から5のそれぞれにおける第1電極、第2電極、第3電極及び第4電極の極性と、点灯部分と、消灯部分とを示す図である。 (a)~(e)は、図6の(a)~図6の(e)に図示する点灯モード1から5のそれぞれにおける第1電極、第2電極、第3電極及び第4電極の極性と、第1領域から第4領域の電界の向き及び点灯/消灯とを示す図である。 実施形態1の表示装置の発光素子アレイに備えられた発光素子における素子印加電圧と発光層電流との関係を示す図である。 実施形態1の表示装置に備えることができる他の発光素子アレイの概略構成を示す図である。 実施形態1の表示装置に備えることができるさらに他の発光素子アレイの概略構成を示す図である。 実施形態2の表示装置に備えられた発光素子アレイの概略構成を示す図である。 (a)は、実施形態2の表示装置に備えられた発光素子アレイの上面図であり、(b)は、第1領域から第4領域を図示した発光素子アレイの上面図である。 (a)~(g)は、点灯モード1から7のそれぞれにおける第1電極、第2電極、第3電極及び第4電極の極性と、点灯部分と、消灯部分とを示す図である。 図13の(a)~図13の(g)に図示する点灯モード1から7のそれぞれにおける第1電極、第2電極、第3電極及び第4電極の極性と、第1領域から第4領域の電界の向き及び点灯/点灯とを示す図である。 実施形態2の表示装置の発光素子アレイに備えられた発光素子における素子印加電圧と発光層電流との関係を示す図である。 (a)は、実施形態2の表示装置に備えることができる変形例である発光素子アレイの第1領域から第4領域を図示した発光素子アレイの上面図であり、(b)は、実施形態2の表示装置に備えることができる変形例である発光素子アレイの概略構成を示す図である。 (a)及び(b)は、従来の時分割駆動方式のQLED表示装置の各階調における表示面内の輝度ばらつきの程度を示す図である。
 本発明の実施の形態について、図1から図16に基づいて説明すれば、次の通りである。以下、説明の便宜上、特定の実施形態にて説明した構成と同一の機能を有する構成については、同一の符号を付記し、その説明を省略する場合がある。
 〔実施形態1〕
 図1は、実施形態1の表示装置1の概略構成を示す図である。
 表示装置1は、アクティブマトリクス基板(図示せず)に、発光素子(図示せず)が設けられた発光素子アレイ2と、Scanドライバ3と、Dataドライバ4と、画像タイミングコントローラ5(回路)とを含む。
 入力画像信号は、画像タイミングコントローラ5に入力され、画像タイミングコントローラ5から発光素子アレイ2には、点灯モード選択信号が出力され、画像タイミングコントローラ5からScanドライバ3には、Scanドライバ制御信号が出力され、画像タイミングコントローラ5からDataドライバ4には、Dataドライバ制御信号が出力される。
 Scanドライバ3は、必要な電圧をHsyncタイミングで切り替えて行く。Dataドライバ4は、各発光素子(図示せず)の電流を設定後に、電流を流すための物である。画像タイミングコントローラ5は、前記入力画像信号の階調に基づいて、各発光素子(図示せず)の前記第1電極、前記第2電極、前記第3電極及び前記第4電極をそれぞれ陰極または陽極に切り替える信号である点灯モード選択信号を出力する。
 図2の(a)は、発光素子アレイ2の概略構成を示す図であり、図2の(b)は、発光素子アレイ2に備えられた発光素子を点灯した時を示す図である。なお、図2の(a)及び図2の(b)には、複数の発光素子を含む発光素子アレイ2の一部であるアクティブマトリクス基板19上に備えられた一つの発光素子のみを図示している。
 図3の(a)は、発光素子アレイ2に備えられた発光素子の第1電極6C及び第2電極6Dの上面図であり、図3の(b)は、発光素子アレイ2に備えられた発光素子の第3電極6A及び第4電極6Bの上面図であり、図3の(c)は、発光素子アレイ2に備えられた発光素子の上面図である。
 発光素子アレイ2は、アクティブマトリクス基板19と、アクティブマトリクス基板19上に設けられた発光素子とを含む。なお、図示していないが、アクティブマトリクス基板19は、前記発光素子を駆動するためのアクティブ素子として、例えば、薄膜トランジスタ素子(TFT素子)を含む基板である。
 図2の(a)に図示するように、アクティブマトリクス基板19上に設けられた発光素子は、発光層16と、発光層16の一方側(図中上側)に備えられた上側電極と、発光層16の一方側とは反対側の他方側(図中下側)に備えられた下側電極とを含む。
 前記下側電極は、その間に第1間隙を有する、第1電極6Cと、第1電極6Cより面積が大きい第2電極6Dとで構成され、前記上側電極は、その間に第2間隙を有する、第1電極6C及び前記第2電極6Dと対向する第3電極6Aと、第2電極6Dと対向し、かつ、第3電極6Aより面積が小さい第4電極6Bとで構成される。
 前記下側電極と発光層16との間には、第1電荷輸送層としての電子輸送層(ETL)15と、第2電荷輸送層としての正孔輸送層(HTL)17とが備えられ、前記上側電極と発光層16との間には、電子輸送層(ETL)15と対向する第3電荷輸送層としての正孔輸送層(HTL)14と、正孔輸送層(HTL)17と対向する第4電荷輸送層としての電子輸送層(ETL)18が備えられている。
 本実施形態においては、第1電荷輸送層として電子輸送層(ETL)15を、第2電荷輸送層として正孔輸送層(HTL)17を、第3電荷輸送層として正孔輸送層(HTL)14を、第4電荷輸送層として電子輸送層(ETL)18を備えている場合を一例に挙げて説明するが、これに限定されることはなく、例えば、第1電荷輸送層として正孔輸送層(HTL)17を、第2電荷輸送層として電子輸送層(ETL)15を、第3電荷輸送層として電子輸送層(ETL)18を、第4電荷輸送層として正孔輸送層(HTL)14を備えていてもよい。
 第1電極6Cと第3電極6Aとが重畳する第1領域L1は、電子輸送層(ETL)15と、発光層16と、正孔輸送層(HTL)14とを含み、第2電極6Dと第3電極6Aとが重畳する領域の一部である第2領域L2は、電子輸送層(ETL)15と、発光層16と、正孔輸送層(HTL)14とを含み、第2電極6Dと第3電極6Aとが重畳する領域の他の一部である第3領域L3は、正孔輸送層(HTL)17と、発光層16と、電子輸送層(ETL)18とを含み、第2電極6Dと第4電極6Bとが重畳する第4領域L4は、正孔輸送層(HTL)17と、発光層16と、電子輸送層(ETL)18とを含む。
 電子輸送層(ETL)15及び電子輸送層(ETL)18は、図2の(b)に図示する第1キャリアである電子26の輸送層であり、正孔輸送層(HTL)14及び正孔輸送層(HTL)17は、図2の(b)に図示する第2キャリアである正孔25の輸送層である。
 図2の(a)に図示するように、第2電極6Dは、電子輸送層(ETL)15と正孔輸送層(HTL)17とに跨って形成されているとともに、正孔輸送層(HTL)14と電子輸送層(ETL)18とにも跨って形成されている。また、第3電極6Aも、電子輸送層(ETL)15と正孔輸送層(HTL)17とに跨って形成されているとともに、正孔輸送層(HTL)14と電子輸送層(ETL)18とにも跨って形成されている。
 また、本実施形態においては、図3の(a)及び図3の(b)に図示するように、第2電極6Dは第3電極6Aと同じ面積Aで形成し、第1電極6Cは第4電極6Bと同じ面積Bで形成した場合を一例に挙げて説明するが、これに限定されることはなく、第2電極6Dと第3電極6Aとの面積や第1電極6Cと第4電極6Bとの面積は異なってもよい。
 また、本実施形態においては、図2の(a)に図示するように、電子輸送層(ETL)15は正孔輸送層(HTL)17と同じ面積で形成し、正孔輸送層(HTL)14は電子輸送層(ETL)18と同じ面積で形成し、電子輸送層(ETL)15は正孔輸送層(HTL)14と同じ面積であり、正孔輸送層(HTL)17は電子輸送層(ETL)18と同じ面積である場合を一例に挙げて説明するが、これに限定されることはない。
 以上のように、発光素子アレイ2に備えられた発光素子は、第2電極6D及び第3電極6Aは、電子輸送層(ETL)と正孔輸送層(HTL)とに跨って形成されているので、前記下側電極及び前記上側電極のそれぞれが2分割された2分割制御方式であるにもかかわらず、4段階以上の面積点灯モードを持つことが可能となる。
 図2の(b)は、発光素子アレイ2に備えられた発光素子における、第1電極6Cを電子26を供給する陰極として駆動し、第2電極6Dを正孔25を供給する陽極として駆動し、第3電極6Aを正孔25を供給する陽極として駆動し、第4電極6Bを電子26を供給する陰極として駆動した場合を示す図である。この場合、第2領域L2は、第2電極6Dから供給された正孔25が電子輸送層(ETL)15によってブロックされるので、発光しない。また、第3領域L3は、第3電極6Aから供給された正孔25が電子輸送層(ETL)18によってブロックされるので、発光しない。一方、第1領域L1及び第4領域L4は発光する。
 図2の(b)に図示するように、第1領域L1においては、対向する第1電極6Cと第3電極6Aとの電位は第3電極6Aの方が高いので、発光層16には図中下方向の電界が発生し、第4領域L4においては、対向する第2電極6Dと第4電極6Bとの電位は、第2電極6D方が高いので、発光層16には図中上方向の電界が発生し、第1領域L1及び第4領域L4は発光する。一方、第2領域L2においては、対向する第2電極6Dと第3電極6Aとの電位は同じであるので、発光層16には電界が発生せず、発光しない。同様に、第3領域L3においては、対向する第2電極6Dと第3電極6Aとの電位は同じであるので、発光層16には電界が発生せず、発光しない。
 下側電極である第1電極6C及び第2電極6Dと発光層16との間に備えられた第1電荷輸送層と、上側電極である第3電極6A及び第4電極6Bと発光層16との間に備えられた第4電荷輸送層とは、第1キャリアの輸送層であり、下側電極である第2電極6Dと発光層16との間に備えられた第2電荷輸送層と、上側電極である第3電極6Aと発光層16との間に備えられた第3電荷輸送層とは、前記第1キャリアとは異なる第2キャリアの輸送層である。本実施形態においては、第1キャリアが電子26であり、第2キャリアが正孔25であり、下側電極である第1電極6C及び第2電極6Dと発光層16との間に備えられた第1電荷輸送層が電子輸送層(ETL)15であり、下側電極である第2電極6Dと発光層16との間に備えられた第2電荷輸送層が正孔輸送層(HTL)17であり、上側電極である第3電極6Aと発光層16との間に備えられた第3電荷輸送層が正孔輸送層(HTL)14であり、上側電極である第3電極6A及び第4電極6Bと発光層16との間に備えられた第4電荷輸送層が電子輸送層(ETL)18である場合を一例に挙げて説明するが、これに限定されることはない。第1キャリアが正孔25であり、第2キャリアが電子26である場合には、図2の(a)及び図2の(b)に図示する構成において、正孔輸送層(HTL)は電子輸送層(ETL)に置き換えられ、電子輸送層(ETL)は正孔輸送層(HTL)に置き換えられる。図示は省略するが、具体的には、下側電極である第1電極6C及び第2電極6Dと発光層16との間に備えられた第1電荷輸送層が正孔輸送層(HTL)となり、下側電極である第2電極6Dと発光層16との間に備えられた第2電荷輸送層が電子輸送層(ETL)となり、上側電極である第3電極6Aと発光層16との間に備えられた第3電荷輸送層が電子輸送層(ETL)となり、上側電極である第3電極6A及び第4電極6Bと発光層16との間に備えられた第4電荷輸送層が正孔輸送層(HTL)となる。
 本実施形態においては、図2の(a)及び図2の(b)に図示するように、第1電極6Cと、第2電極6Dとの間に形成された第1間隙には絶縁体22を形成し、電子輸送層(ETL)15と正孔輸送層(HTL)17との間に形成された第3間隙には絶縁体21を形成し、正孔輸送層(HTL)14と電子輸送層(ETL)18との間に形成された第4間隙には絶縁体20を形成した場合を一例に挙げて説明するが、図9及び図10に基づいて後述するように、これに限定されることはない。
 図3の(c)に図示するように、発光素子アレイ2に備えられた発光素子においては、第1領域L1の面積と第4領域L4の面積は同じであり、第2領域L2の面積と第3領域L3の面積は同じである。また、第1領域L1の面積または第4領域L4の面積は、第2領域L2の面積または第3領域L3の面積より大きい。
 なお、本実施形態においては、第1領域L1の全体において、正孔輸送層(HTL)14と、発光層16と、電子輸送層(ETL)15とが重畳しているので、第1領域L1の面積は発光領域の面積となる。第2領域L2の全体においても、正孔輸送層(HTL)14と、発光層16と、電子輸送層(ETL)15とが重畳しているので、第2領域L2の面積は発光領域の面積となる。第3領域L3の全体においても、正孔輸送層(HTL)17と、発光層16と、電子輸送層(ETL)18とが重畳しているので、第3領域L3の面積は発光領域の面積となる。第4領域L4の全体においても、正孔輸送層(HTL)17と、発光層16と、電子輸送層(ETL)18とが重畳しているので、第4領域L4の面積は発光領域の面積となる。しかし、これに限定されることはなく、第1領域L1から第4領域L4の各々の一部のみにおいて、正孔輸送層(HTL)と、発光層16と、電子輸送層(ETL)とが重畳していてもよい。
 図4は、図1に図示する画像タイミングコントローラ5からの点灯モード選択信号に基づいて制御される複数のスイッチング素子7A~10A・7B~10Bを含む回路を示す図である。
 図4に図示する複数のスイッチング素子7A~10A・7B~10Bは、画像タイミングコントローラ5からの点灯モード選択信号に基づいて、オン・オフが制御される。スイッチング素子7A・7Bは、第3電極6Aと、ELVDD供給源11及びELVSS供給源12の何れか一方とを電気的に接続するスイッチング素子である。スイッチング素子8A・8Bは、第4電極6Bと、ELVDD供給源11及びELVSS供給源12の何れか一方とを電気的に接続するスイッチング素子である。スイッチング素子9A・9Bは、第1電極6Cと、ELVDD供給源11及びELVSS供給源12の何れか一方とを電気的に接続するスイッチング素子である。スイッチング素子10A・10Bは、第2電極6Dと、ELVDD供給源11及びELVSS供給源12の何れか一方とを電気的に接続するスイッチング素子である。
 図4に図示する複数のスイッチング素子7A~10A・7B~10Bのオン・オフ状態は、第1電極6Cを電子26を供給する陰極として駆動し、第2電極6Dを正孔25を供給する陽極として駆動し、第3電極6Aを正孔25を供給する陽極として駆動し、第4電極6Bを電子26を供給する陰極として駆動する、画像タイミングコントローラ5からの点灯モード選択信号に基づく。したがって、スイッチング素子7Aはオンで、スイッチング素子7Bはオフであり、第3電極6AにはELVDD供給源11からELVDDが供給され、第3電極6Aの極性が+になる。また、スイッチング素子8Aはオフで、スイッチング素子8Bはオンであり、第4電極6BにはELVSS供給源12からELVSSが供給され、第4電極6Bの極性が-になる。また、スイッチング素子9Aはオフで、スイッチング素子9Bはオンであり、第1電極6CにはELVSS供給源12からELVSSが供給され、第1電極6Cの極性が-になる。また、スイッチング素子10Aはオンで、スイッチング素子10Bはオフであり、第2電極6DにはELVDD供給源11からELVDDが供給され、第2電極6Dの極性が+になる。
 図5は、図4に図示するように、複数のスイッチング素子7A~10A・7B~10Bが制御された場合の画素回路を示す図である。
 図5に図示するように、第1電極6C、第2電極6D、第3電極6A及び第4電極6Bを備えた発光素子に対応する一画素の画素回路には、データ線(Data)と、走査線(Scan)と、リセット線(Reset)と、消去線(Erase)とが備えられている。なお、走査線(Scan)には、図1に図示するScanドライバ3から走査信号が供給され、データ線(Data)には、図1に図示するDataドライバ4からデータ信号が供給される。
 また、一画素の画素回路は、駆動トランジスタ(TrD)と、駆動トランジスタ(TrD)のドレイン(または、ソース)とゲートとの間に接続されるスイッチングトランジスタ(Tr2)と、駆動トランジスタ(TrD)のゲートとデータ線(Data)との間に接続されるスイッチングトランジスタ(Tr1)と容量素子(C)の直列回路と、スイッチングトランジスタ(Tr1)と容量素子(C)の接続点に、ELVSS供給源12からELVSSを入力するスイッチングトランジスタ(Tr3)とを有する。
 ここで、スイッチングトランジスタ(Tr2)のゲートは、リセット線(Reset)に接続され、スイッチングトランジスタ(Tr1)のゲートは、走査線(Scan)に接続され、スイッチングトランジスタ(Tr3)のゲートは、消去線(Erase)に接続される。そして、駆動トランジスタ(TrD)のソース(または、ドレイン)からは、ELVDD供給源11からELVDDが供給される。
 第1電極6C、第2電極6D、第3電極6A及び第4電極6Bを備えた発光素子においては、図5に図示する画素回路によって、第2電極6D及び第3電極6AにはELVDDを印加し、第1電極6C及び第4電極6BにはELVSSを印加することができる。
 図6の(a)~図6の(e)は、点灯モード1から5のそれぞれにおける第1電極6C、第2電極6D、第3電極6A及び第4電極6Bの極性と、点灯部分と、消灯部分とを示す図である。
 図1に図示する画像タイミングコントローラ5は、入力画像信号の階調値に基づいて、図6の(a)~図6の(e)に図示する点灯モード1~5の中から一つを選択する点灯モード選択信号を出力する。例えば、入力画像信号の階調数が8ビットの場合、画像タイミングコントローラ5が、入力画像信号の階調値が160階調~256階調の場合、図6の(a)に図示する点灯モード1(8分の6点灯)を選択する点灯モード選択信号を出力し、入力画像信号の階調値が64階調~159階調の場合、図6の(b)に図示する点灯モード2(8分の4点灯)を選択する点灯モード選択信号を出力し、入力画像信号の階調値が32階調~63階調の場合、図6の(c)に図示する点灯モード3(8分の3点灯)を選択する点灯モード選択信号を出力し、入力画像信号の階調値が2階調~31階調の場合、図6の(d)に図示する点灯モード4(8分の1点灯)を選択する点灯モード選択信号を出力し、入力画像信号の階調値が1階調の場合、図6の(e)に図示する点灯モード5(8分の0点灯)を選択する点灯モード選択信号を出力するようにしてもよい。
 なお、各点灯モードにおける各階調の表示は、図5に図示するデータ線(Data)を介して供給されるデータ信号に基づいて行われる。
 本実施形態のように、(第1領域(L1)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=3/8であり、(第4領域(L4)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=3/8であり、(第2領域(L2)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=1/8であり、(第3領域(L3)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=1/8である場合、図6の(a)~図6の(e)に図示する点灯モード1~5の場合、以下の割合の領域が点灯する。
 なお、第1領域L1の面積が第4領域L4の面積と同じであり、第3領域L3の面積が第2領域L2の面積と同じであれば、第1領域L1の面積、第2領域L2の面積、第3領域L3の面積及び第4領域L4の面積は適宜調整することができるのは言うまでもない。
 図6の(a)に図示する点灯モード1の場合、(第1領域(L1)の面積+第4領域(L4)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=6/8が点灯する。図6の(b)に図示する点灯モード2の場合、(第1領域(L1)の面積+第2領域(L2)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=4/8または、(第3領域(L3)の面積+第4領域(L4)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=4/8が点灯する。図6の(c)に図示する点灯モード3の場合、(第1領域(L1)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=3/8または、(第4領域(L4)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=3/8が点灯する。図6の(d)に図示する点灯モード4の場合、(第2領域(L2)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=1/8または、(第3領域(L3)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=1/8が点灯する。図6の(e)に図示する点灯モード5の場合、(0/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=0/8が点灯する。
 図6の(b)~図6の(d)に図示するように、点灯モード2~4の場合、第1の点灯期間と、前記第1の点灯期間の後の第2の点灯期間とにおいて、発光層16の異なる領域が発光するようにできるので、発光素子の寿命低下を防止することが可能となる。
 また、例えば、図6の(b)、図6の(d)及び図6の(e)に図示するように、第1の点灯期間の後の第2の点灯期間に、第1電極6C、第2電極6D、第3電極6A及び第4電極6Bのそれぞれに、前記第1の点灯期間とは逆極性の電圧を印加、すなわち、交流駆動を行なう場合、発光素子の寿命低下を防止することが可能となる。
 なお、前記第1の点灯期間の長さと前記第2の点灯期間の長さとは、同じであってもよく、異なってよい。
 図7の(a)~図7の(e)は、図6の(a)~図6の(e)に図示する点灯モード1から5のそれぞれにおける第1電極6C、第2電極6D、第3電極6A及び第4電極6Bの極性と、第1領域L1から第4領域L4の電界の向き及び点灯/消灯とを示す図である。
 図7の(a)~図7の(e)中において、第1電極6C、第2電極6D、第3電極6A及び第4電極6Bの極性が+とは、これらの電極にELVDDが供給される場合を意味し、第1電極6C、第2電極6D、第3電極6A及び第4電極6Bの極性が-とは、これらの電極にELVSSが供給される場合を意味する。また、電界の向きが下方向とは、発光層16において、上側電極から下側電極方向に電界が発生する場合を意味し、電界の向きが上方向とは、発光層16において、下側電極から上側電極方向に電界が発生する場合を意味する。電界の向きが無とは、発光層16において、電界が発生しない場合を意味する。また、点灯/消灯がONとは、第1領域L1、第2領域L2、第3領域L3及び第4領域L4中の該当する領域が点灯している状態を意味し、点灯/消灯がOFFとは、第1領域L1、第2領域L2、第3領域L3及び第4領域L4中の該当する領域が消灯している状態を意味する。
 図8は、実施形態1の表示装置1の発光素子アレイ2に備えられた発光素子における素子印加電圧と発光層電流との関係を示す図である。
 図示しているように、発光素子においては、低階調から高階調まで、安定したリニアな素子印加電圧と発光層電流(輝度)の特性が得られるので、表示面内の輝度ばらつきを抑制した表示装置1を実現できる。
 本実施形態においては、点灯モードの分割数を点灯モード1~5の5つである場合を一例に挙げて説明したが、点灯モードの分割数はこれに限定することはない。
 また、本実施形態においては、点灯領域の分割数を、第1領域L1、第2領域L2、第3領域L3及び第4領域L4の4つの領域に分割した場合を一例に挙げて説明したが、これに限定されることはない。
 また、本実施形態においては、第1領域L1の面積は、第4領域L4の面積と同じであり、第2領域L2の面積は、第3領域L3の面積と同じである場合を一例に挙げて説明したが、これに限定されることはない。
 また、本実施形態においては、図5に図示する一画素の画素回路における、図中の上側のデータ線(Data)と、図中の下側のデータ線(Data)とには、同一のデータ信号が供給される場合を一例に挙げて説明したが、これに限定されることはなく、図中の上側のデータ線(Data)と、図中の下側のデータ線(Data)とには、異なるデータ信号が供給されてもよい。
 また、本実施形態においては、画像タイミングコントローラ5(回路)から点灯モード選択信号が出力される場合を一例に挙げて説明したが、これに限定されることはなく、点灯モード選択信号は、例えば、Dataドライバ4(回路)から出力されてもよい。
 正孔輸送層(HTL)14及び正孔輸送層(HTL)17の構成材料としては、発光層16への正孔25の輸送を安定化させることができる正孔輸送性材料であれば特に限定されるものではない。中でも、正孔輸送性材料は、正孔移動度が高いものであることが好ましい。さらに、正孔輸送性材料は、陰極から移動してきた電子の突き抜けを防止することが可能なもの(電子ブロック性材料)であることが好ましい。これにより、発光層16における正孔25と電子26の結合効率を高めることができるからである。このような正孔輸送層に用いられる材料としては、アリールアミン誘導体、アントラセン誘導体、カルバゾール誘導体、チオフェン誘導体、フルオレン誘導体、ジスチリルベンゼン誘導体、スピロ化合物等を挙げることができる。尚、このような正孔輸送層に用いられる材料は、ポリビニルカルバゾール(PVK)、又は、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン)](TFB)であることがより好ましい。PVK及びTFBは、発光層16で電子26と正孔25とが再結合することによる発光の効率を向上するため、電界発光素子の発光特性を改善するという効果を奏する。
 また、正孔輸送層(HTL)14の第3電極6A側及び正孔輸送層(HTL)17の第2電極6D側には図示しない正孔注入層が形成されていてもよい。正孔注入層に用いられる材料としては、発光層16内への正孔25の注入を安定化させることができる正孔注入性材料であれば特に限定されるものではない。正孔注入性材料としては、例えば、アリールアミン誘導体、ポルフィリン誘導体、フタロシアニン誘導体、カルバゾール誘導体、さらにはポリアニリン誘導体、ポリチオフェン誘導体、ポリフェニレンビニレン誘導体等の導電性高分子などを挙げることができる。尚、正孔注入層に用いられる材料は、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホン酸(PEDOT-PSS)であることがより好ましい。PEDOT-PSSは、発光層16で電子26と正孔25とが再結合することによる発光の効率を向上するため、電界発光素子の発光特性を改善するという効果を奏する。
 正孔輸送層(HTL)14、正孔輸送層(HTL)17及び前記正孔注入層の形成方法としては、例えば蒸着法、印刷法、インクジェット法、スピンコート法、キャスティング法、ディッピング法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、フォトリソグラフィー法、もしくは自己組織化法(交互吸着法、自己組織化単分子膜法)等を挙げることができるが、これに限定されない。中でも、蒸着法、スピンコート法、インクジェット法、もしくは、フォトリソグラフィー法を用いることが好ましい。
 電子輸送層(ETL)15及び電子輸送層(ETL)18の構成材料としては、電子輸送層の材料は、発光層16内での正孔25および電子26の再結合効率を高めるために、陽極から移動してきた正孔25の突き抜けを防止することが可能なものであることが好ましいが、電子輸送層に酸化亜鉛を用いる場合は、発光層16と電子輸送層のイオン化ポテンシャルの差、即ち、発光層16から電子輸送層への正孔輸送の障壁は比較的に大きいため、発光層16内での正孔25および電子26の再結合効率が高まり、発光効率が向上するという効果も奏する。
 また、電子輸送層(ETL)15の第1電極6C側または、電子輸送層(ETL)18の第4電極6B側には、図示しない電子注入層が形成されていてもよい。電子注入層に用いられる材料としては、発光層16内への電子26の注入を安定化させることができる電子注入性材料であれば特に限定されるものではない。電子注入性材料としては、例えば、アルミニウム、ストロンチウム、カルシウム、リチウム、セシウム、酸化マグネシウム、酸化アルミニウム、酸化ストロンチウム、酸化リチウム、フッ化リチウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化カルシウム、フッ化バリウム、フッ化セシウム、ポリメチルメタクリレートポリスチレンスルホン酸ナトリウム等のようなアルカリ金属またはアルカリ土類金属、アルカリ金属またはアルカリ土類金属の酸化物、アルカリ金属またはアルカリ土類金属のフッ化物、アルカリ金属の有機錯体等を挙げることができる。
 電子輸送層(ETL)15、電子輸送層(ETL)18及び電子注入層の形成方法としては、例えば蒸着法、印刷法、インクジェット法、スピンコート法、キャスティング法、ディッピング法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、フォトリソグラフィー法、もしくは自己組織化法(交互吸着法、自己組織化単分子膜法)等を挙げることができるが、これに限定されない。中でも、蒸着法、スピンコート法、インクジェット法、もしくは、フォトリソグラフィー法を用いることが好ましい。
 本実施形態においては、発光層16として、量子ドット発光層を用いているが、これに限定されることはない。量子ドット発光層は、正孔25と、電子26との再結合が発生することにより、光を発する層である。本実施形態においては、発光材料として、1又は複数層を積層した量子ドット(半導体ナノ粒子)を、赤色画素では赤色発光ピークを有する量子ドット発光層として、緑色画素では緑色発光ピークを有する量子ドット発光層として、青色画素では青色発光ピークを有する量子ドット発光層として備える。量子ドット発光層を構成する材料としては、例えば、Cd、S、Te、Se、Zn、In、N、P、As、Sb、Al、Ga、Pb、Si、Ge、Mg、およびこれらの化合物を含む群から選択される、1または複数の半導体材料を含んでもよい。また、量子ドット発光層は、二成分コア型、三成分コア型、四成分コア型、コアシェル型またはコアマルチシェル型であってもよい。また、量子ドット発光層は、ドープされたナノ粒子を含んでいてもよく、または、組成傾斜した構造を備えていてもよい。量子ドット発光層の厚みとしては、電子26と正孔25との再結合の場を提供して発光する機能を発現することができる厚みであれば特に限定されなく、例えば1nm~200nm程度とすることができる。
 発光層16としての量子ドット発光層を形成する方法としては、電界発光素子に要求される微細なパターンの形成が可能な方法であれば特に限定されるものではない。例えば、蒸着法、印刷法、インクジェット法、スピンコート法、キャスティング法、ディッピング法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、フォトリソグラフィー法、もしくは自己組織化法(交互吸着法、自己組織化単分子膜法)等を挙げることができる。中でも、蒸着法、スピンコート法、インクジェット法、もしくは、フォトリソグラフィー法を用いることが好ましい。蒸着法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等が挙げられ、真空蒸着法の具体例としては、抵抗加熱蒸着法、フラッシュ蒸着法、アーク蒸着法、レーザー蒸着法、高周波加熱蒸着法、電子ビーム蒸着法等が挙げられる。スピンコート法やインクジェット法等の塗工液の塗布により発光層16を形成する場合、塗工液の溶媒としては、発光層16の各構成材料を溶解又は分散させることができれば特に限定されず、例えば、トルエン、キシレン、シクロヘキサノン、シクロヘキサノール、テトラリン、メシチレン、塩化メチレン、テトラヒドロフラン、ジクロロエタン、クロロホルム等を挙げることができる。
 第1電極6C、第2電極6D、第3電極6A及び第4電極6Bは、横方向に並行に配置されており、かつ電気的にも膜的にも分離されている必要がある。なお、例えば、第3電極6A及び第4電極6Bは透明であることが好ましく、一方、光の取出し面と反対側の電極である第1電極6C及び第2電極6Dは、透明であってもなくてもよい。また、これらの電極の抵抗は小さいことが好ましく、一般には導電性材料である金属材料が用いられるが、有機化合物又は無機化合物を用いてもよい。電極材料としては、正孔25および電子26が注入しやすいように、Au、Ta、W、Pt、Ni、Pd、Cr、Cu、Mo、アルカリ金属、アルカリ土類金属等の金属;これらの金属の酸化物;AlLi、AlCa、AlMg等のAl合金、MgAg等のMg合金、Ni合金、Cr合金、アルカリ金属の合金、アルカリ土類金属の合金等の合金;酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)、酸化インジウム等の無機酸化物;金属ドープされたポリチオフェン、ポリアニリン、ポリアセチレン、ポリアルキルチオフェン誘導体、ポリシラン誘導体等の導電性高分子;α-Si、α-SiC;、さらには、Li、Cs、Ba、Sr、Ca等のアルカリ金属類およびアルカリ土類金属類の合金などが挙げられる。Al又はAl合金は電極として汎用性が高く比較的安価なため、製造コストを抑えることが可能となるという効果を奏する。これらの導電性材料は、単独で用いても、2種類以上を組み合わせて用いてもよい。2種類以上を用いる場合には、各材料からなる層を積層してもよい。尚、酸化インジウム錫(ITO)を用いることがより好ましい。酸化インジウム錫(ITO)は透明電極として多くのディスプレイに採用されている実績があり、製造装置の転用が可能なため、製造コストを抑えることが可能となるという効果を奏する。
 第1電極6C、第2電極6D、第3電極6A及び第4電極6Bの成膜方法としては、一般的な電極の形成方法を用いることができ、例えば、真空蒸着法、スパッタリング法、EB蒸着法、イオンプレーティング法等の物理的蒸着(PVD)法、あるいは、化学的蒸着(CVD)法などを挙げることができる。また、これらの電極のパターニング方法としては、所望のパターンに精度よく形成することができる方法であれば特に限定されるものではないが、具体的にはフォトリソグラフィー法やインクジェット法等を挙げることができる。
 図9は、実施形態1の表示装置に備えることができる他の発光素子アレイ2aの概略構成を示す図である。なお、図9には、複数の発光素子を含む発光素子アレイ2aの一部であるアクティブマトリクス基板19上に備えられた一つの発光素子のみを図示している。
 図2の(a)に図示する発光素子アレイ2に備えられた発光素子においては、上述したように、第1電極6Cと、第2電極6Dとの間に形成された第1間隙に、別途、絶縁体22を形成し、電子輸送層(ETL)15と正孔輸送層(HTL)17との間に形成された第3間隙にも、別途、絶縁体21を形成し、正孔輸送層(HTL)14と電子輸送層(ETL)18との間に形成された第4間隙にも、別途、絶縁体20を形成した。
 一方、図9に図示する発光素子アレイ2aに備えられた発光素子においては、その間に第1間隙を有する、第1電極6Cと、第2電極6Dとが同時または別々に製膜された後に、電子輸送層(ETL)15’を製膜する。電子輸送層(ETL)15’により第1電極6Cと、第2電極6Dとの間の第1間隙は埋められてもよい。その後、電子輸送層(ETL)15’が目的の形状に製膜された後に、正孔輸送層(HTL)17を形成する。その後、発光層16aを製膜するが、その際に、発光層16aにより電子輸送層(ETL)15’と正孔輸送層(HTL)17との間に形成された第3間隙を埋めてもよい。その後、その間に第4間隙を有する、正孔輸送層(HTL)14と電子輸送層(ETL)18とを同様に所望の形状に発光層16aの上に形成する。さらにその後、第3電極6A’及び第4電極6Bを形成するが、第3電極6A’を形成の際に、第3電極6A’により正孔輸送層(HTL)14と電子輸送層(ETL)18との間に形成された第4間隙が埋められてもよい。
 図10は、実施形態1の表示装置に備えることができる他の発光素子アレイ2bの概略構成を示す図である。なお、図10には、複数の発光素子を含む発光素子アレイ2bの一部であるアクティブマトリクス基板19上に備えられた一つの発光素子のみを図示している。
 図10に図示する発光素子アレイ2bに備えられた発光素子においては、その間に第1間隙を有する、第1電極6Cと、第2電極6Dとが同時または別々に製膜された後に、電子輸送層(ETL)15a・15bを製膜する。但し、前記第1間隙に対応する間隙、すなわち、前記第1間隙と接する間隙を形成するように、電子輸送層(ETL)15aと電子輸送層(ETL)15bとを分離して形成する。そして、前記第1間隙に対応する間隙、すなわち、前記第1間隙と接する間隙と、前記第1間隙とに、絶縁体23を形成する。
 また、第3電極6Aと第4電極6Bとの間に形成される第2間隙に対応する間隙、すなわち、前記第2間隙と接する間隙を形成するように、電子輸送層(ETL)18aと電子輸送層(ETL)18bとを分離して形成する。そして、前記第2間隙に対応する間隙、すなわち、前記第2間隙と接する間隙と、前記第2間隙とに、絶縁体24を形成する。
 以上のような構成であるため、第1電極6Cと第2電極6Dとの極性が逆極性であるときや第3電極6Aと第4電極6Bとの極性が逆極性であるときに、絶縁体23・24によって、ラテラル方向の+極性から-極性方向への電界を遮断することができるので、横方向電界の乱れによる、第1領域L1~第4領域L4の境界乱れを抑制することが可能になり、各領域の発光状態を周囲ぎりぎりまで有効に使えるようになる。
 〔実施形態2〕
 次に、図11から図16に基づき、本発明の実施形態2について説明する。本実施形態の発光素子アレイ32・52に備えられた発光素子においては、第1領域L1の面積と、第4領域L4の面積とが異なる点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図11は、発光素子アレイ32の概略構成を示す図である。なお、図11には、複数の発光素子を含む発光素子アレイ32の一部であるアクティブマトリクス基板19上に備えられた一つの発光素子のみを図示している。
 図12の(a)は、発光素子アレイ32の上面図であり、図12の(b)は、第1領域L1から第4領域L4を図示した発光素子アレイ32の上面図である。
 図11に図示するように、第2電極36Dは、電子輸送層(ETL)15と正孔輸送層(HTL)17とに跨って形成されているとともに、正孔輸送層(HTL)14と電子輸送層(ETL)18とにも跨って形成されている。また、第3電極36Aも、電子輸送層(ETL)15と正孔輸送層(HTL)17とに跨って形成されているとともに、正孔輸送層(HTL)14と電子輸送層(ETL)18とにも跨って形成されている。
 また、図11、図12の(a)及び図12の(b)に図示するように、第2電極36Dの面積は第1電極36Cの面積より大きく、第3電極36Aの面積は第4電極36Bの面積より大きい。そして、第2電極36Dの面積と第1電極36Cの面積の差は、第3電極36Aの面積と第4電極36Bの面積の差より小さい。
 また、本実施形態においては、図11、図12の(a)及び図12の(b)に図示するように、電子輸送層(ETL)15は正孔輸送層(HTL)17と同じ面積で形成し、正孔輸送層(HTL)14は電子輸送層(ETL)18と同じ面積で形成し、電子輸送層(ETL)15は正孔輸送層(HTL)14と同じ面積であり、正孔輸送層(HTL)17は電子輸送層(ETL)18と同じ面積である場合を一例に挙げて説明するが、これに限定されることはない。また、発光素子アレイ32に備えられた発光素子においては、第1領域L1の面積が第4領域L4の面積より大きく、第4領域L4の面積が第3領域L3の面積より大きく、第3領域L3の面積が第2領域L2の面積より大きい。
 本実施形態においては、図11に図示するように、第1電極36Cと、第2電極36Dとの間に形成された第1間隙には絶縁体29を形成し、電子輸送層(ETL)15と正孔輸送層(HTL)17との間に形成された第3間隙には絶縁体31を形成し、正孔輸送層(HTL)14と電子輸送層(ETL)18との間に形成された第4間隙には絶縁体30を形成した場合を一例に挙げて説明するが、図9及び図10に基づいて上述したように、これに限定されることはない。
 図13の(a)~図13の(g)は、点灯モード1から7のそれぞれにおける第1電極36C、第2電極36D、第3電極36A及び第4電極36Bの極性と、点灯部分と、消灯部分とを示す図である。
 図1に図示する画像タイミングコントローラ5は、入力画像信号の階調値に基づいて、図13の(a)~図13の(g)に図示する点灯モード1~7の中から一つを選択する点灯モード選択信号を出力する。例えば、入力画像信号の階調数が8ビットの場合、画像タイミングコントローラ5が、入力画像信号の階調値が168階調~256階調の場合、図13の(a)に図示する点灯モード1(16分の13点灯)を選択する点灯モード選択信号を出力し、入力画像信号の階調値が128階調~167階調の場合、図13の(b)に図示する点灯モード2(16分の8点灯)を選択する点灯モード選択信号を出力し、入力画像信号の階調値が96階調~127階調の場合、図13の(c)に図示する点灯モード3(16分の7点灯)を選択する点灯モード選択信号を出力し、入力画像信号の階調値が32階調~95階調の場合、図13の(d)に図示する点灯モード4(16分の6点灯)を選択する点灯モード選択信号を出力し、入力画像信号の階調値が16階調~31階調の場合、図13の(e)に図示する点灯モード5(16分の2点灯)を選択する点灯モード選択信号を出力し、入力画像信号の階調値が2階調~15階調の場合、図13の(f)に図示する点灯モード6(16分の1点灯)を選択する点灯モード選択信号を出力し、入力画像信号の階調値が1階調の場合、図13の(g)に図示する点灯モード7(8分の0点灯)を選択する点灯モード選択信号を出力するようにしてもよい。
 本実施形態のように、(第1領域(L1)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=7/16であり、(第4領域(L4)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=6/16であり、(第2領域(L2)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=1/16であり、(第3領域(L3)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=2/16である場合、図13の(a)~図13の(g)に図示する点灯モード1~7の場合、以下の割合の領域が点灯する。
 図13の(a)に図示する点灯モード1の場合、(第1領域(L1)の面積+第4領域(L4)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=13/16が点灯する。図13の(b)に図示する点灯モード2の場合、(第1領域(L1)の面積+第2領域(L2)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=8/16または、(第3領域(L3)の面積+第4領域(L4)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=8/16が点灯する。図13の(c)に図示する点灯モード3の場合、(第1領域(L1)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=7/16が点灯する。図13の(d)に図示する点灯モード4の場合、(第4領域(L4)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=6/16が点灯する。図13の(e)に図示する点灯モード5の場合、(第3領域(L4)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=2/16が点灯する。図13の(f)に図示する点灯モード6の場合、(第2領域(L2)の面積)/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=1/16が点灯する。図13の(g)に図示する点灯モード7の場合、(0/(第1領域(L1)の面積+第2領域(L2)の面積+第3領域(L3)の面積+第4領域(L4)の面積)=0/18が点灯する。
 図13の(b)に図示するように、点灯モード2の場合、第1の点灯期間と、前記第1の点灯期間の後の第2の点灯期間とにおいて、発光層16の異なる領域が発光するようにできるので、発光素子の寿命低下を防止することが可能となる。
 また、例えば、図13の(b)、及び図13の(g)に図示するように、第1の点灯期間の後の第2の点灯期間に、第1電極36C、第2電極36D、第3電極36A及び第4電極36Bのそれぞれに、前記第1の点灯期間とは逆極性の電圧を印加、すなわち、交流駆動を行なう場合、発光素子の寿命低下を防止することが可能となる。
 なお、前記第1の点灯期間の長さと前記第2の点灯期間の長さとは、同じであってもよく、異なってよい。
 図14の(a)~図14の(g)は、図12の(a)~図12の(g)に図示する点灯モード1から7のそれぞれにおける第1電極36C、第2電極36D、第3電極36A及び第4電極36Bの極性と、第1領域L1から第4領域L4の電界の向き及び点灯/消灯とを示す図である。
 図14の(a)~図14の(g)中において、第1電極36C、第2電極36D、第3電極36A及び第4電極36Bの極性が+とは、これらの電極にELVDDが供給される場合を意味し、第1電極36C、第2電極36D、第3電極36A及び第4電極36Bの極性が-とは、これらの電極にELVSSが供給される場合を意味する。また、電界の向きが下方向とは、発光層16において、上側電極から下側電極方向に電界が発生する場合を意味し、電界の向きが上方向とは、発光層16において、下側電極から上側電極方向に電界が発生する場合を意味する。電界の向きが無とは、発光層16において、電界が発生しない場合を意味する。また、点灯/消灯がONとは、第1領域L1、第2領域L2、第3領域L3及び第4領域L4中の該当する領域が点灯している状態を意味し、点灯/消灯がOFFとは、第1領域L1、第2領域L2、第3領域L3及び第4領域L4中の該当する領域が消灯している状態を意味する。
 図15は、発光素子アレイ32に備えられた発光素子における素子印加電圧と発光層電流との関係を示す図である。
 図示しているように、発光素子においては、低階調から高階調まで、安定したリニアな素子印加電圧と発光層電流(輝度)の特性が得られるので、表示面内の輝度ばらつきを抑制した表示装置を実現できる。
 上述したように、発光素子アレイ32に備えられた発光素子においては、第1領域L1の面積と、第2領域L2の面積と、第3領域L3の面積と、第4領域L4の面積とがそれぞれ異なる場合であって、第1領域L1の面積が第4領域L4の面積より大きい場合を一例に挙げて説明したが、これに限定されることはなく、後述するように、第4領域L4の面積が第1領域L1の面積より大きくなるようにしてもよい。
 図16の(a)は、実施形態2の表示装置に備えることができる変形例である発光素子アレイ52の第1領域L1から第4領域L4を図示した発光素子アレイ52の上面図であり、図16の(b)は、実施形態2の表示装置に備えることができる変形例である発光素子アレイ52の概略構成を示す図である。なお、図16の(b)には、複数の発光素子を含む発光素子アレイ52の一部であるアクティブマトリクス基板19上に備えられた一つの発光素子のみを図示している。
 図16の(a)に図示するように、第4領域L4の面積は第1領域L1の面積より大きく、第1領域L1の面積は第3領域L3の面積より大きく、第3領域L3の面積は第2領域L2の面積より大きい。
 図16の(b)に図示するように、第2電極46Dは、電子輸送層(ETL)15と正孔輸送層(HTL)17とに跨って形成されているとともに、正孔輸送層(HTL)14と電子輸送層(ETL)18とにも跨って形成されている。また、第3電極46Aも、電子輸送層(ETL)15と正孔輸送層(HTL)17とに跨って形成されているとともに、正孔輸送層(HTL)14と電子輸送層(ETL)18とにも跨って形成されている。第2電極46Dの面積は第1電極46Cの面積より大きく、第3電極46Aの面積は第4電極46Bの面積より大きい。そして、第2電極46Dの面積と第1電極46Cの面積の差は、第3電極46Aの面積と第4電極46Bの面積の差より大きい。
 また、本実施形態においては、図16の(b)に図示するように、電子輸送層(ETL)15は正孔輸送層(HTL)14と同じ面積で形成し、正孔輸送層(HTL)17は電子輸送層(ETL)18と同じ面積で形成し、電子輸送層(ETL)15は正孔輸送層(HTL)17より小さい面積で形成し、正孔輸送層(HTL)14は電子輸送層(ETL)18より小さい面積で形成した場合を一例に挙げて説明するが、これに限定されることはない。
 本実施形態においては、図16の(b)に図示するように、第1電極46Cと、第2電極46Dとの間に形成された第1間隙には絶縁体43を形成し、電子輸送層(ETL)15と正孔輸送層(HTL)17との間に形成された第3間隙には絶縁体42を形成し、正孔輸送層(HTL)14と電子輸送層(ETL)18との間に形成された第4間隙には絶縁体41を形成し、第3電極46Aと、第4電極46Bとの間に形成された第2間隙には絶縁体40を形成した場合を一例に挙げて説明するが、これに限定されることはない。
 なお、第1電極46Cと、第2電極46Dとの間に形成された第1間隙は非発光領域S1となり、電子輸送層(ETL)15と正孔輸送層(HTL)17との間に形成された第3間隙及び正孔輸送層(HTL)14と電子輸送層(ETL)18との間に形成された第4間は非発光領域S2となり、第3電極46Aと、第4電極46Bとの間に形成された第2間隙は非発光領域S3となる。
 〔まとめ〕
 〔態様1〕
 発光層と、前記発光層の一方側に備えられた上側電極と、前記発光層の一方側とは反対側の他方側に備えられた下側電極と、を含む発光素子であって、
 前記下側電極は、その間に第1間隙を有する、第1電極と、前記第1電極より面積が大きい第2電極とで構成され、
 前記上側電極は、その間に第2間隙を有する、前記第1電極及び前記第2電極と対向する第3電極と、前記第2電極と対向し、かつ、前記第3電極より面積が小さい第4電極とで構成され、
 前記下側電極と前記発光層との間には、第1電荷輸送層と、第2電荷輸送層とが備えられ、
 前記上側電極と前記発光層との間には、前記第1電荷輸送層と対向する第3電荷輸送層と、前記第2電荷輸送層と対向する第4電荷輸送層とが備えられ、
 前記第1電極と前記第3電極とが重畳する第1領域は、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とを含み、
 前記第2電極と前記第3電極とが重畳する領域の一部である第2領域は、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とを含み、
 前記第2電極と前記第3電極とが重畳する領域の他の一部である第3領域は、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とを含み、
 前記第2電極と前記第4電極とが重畳する第4領域は、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とを含み、
 前記第1電荷輸送層及び前記第4電荷輸送層は、第1キャリアの輸送層であり、
 前記第2電荷輸送層及び前記第3電荷輸送層は、前記第1キャリアとは異なる第2キャリアの輸送層である発光素子。
 〔態様2〕
 前記第1キャリアは、正孔であり、
 前記第2キャリアは、電子であり、
 前記第1電荷輸送層及び前記第4電荷輸送層は、正孔輸送層であり、
 前記第2電荷輸送層及び前記第3電荷輸送層は、電子輸送層である態様1に記載の発光素子。
 〔態様3〕
 前記第1キャリアは、電子であり、
 前記第2キャリアは、正孔であり、
 前記第1電荷輸送層及び前記第4電荷輸送層は、電子輸送層であり、
 前記第2電荷輸送層及び前記第3電荷輸送層は、正孔輸送層である態様1に記載の発光素子。
 〔態様4〕
 前記第1領域中において、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とが重畳して発光領域となる面積と、
 前記第4領域中において、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とが重畳して発光領域となる面積とは等しい態様1から3の何れかに記載の発光素子。
 〔態様5〕
 前記第2領域中において、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とが重畳して発光領域となる面積と、
 前記第3領域中において、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とが重畳して発光領域となる面積とは等しい態様1から4の何れかに記載の発光素子。
 〔態様6〕
 前記第1領域中の発光領域となる面積または前記第4領域中の発光領域となる面積は、前記第2領域中の発光領域となる面積または前記第3領域中の発光領域となる面積より大きい態様4または5に記載の発光素子。
 〔態様7〕
 前記第1領域中において、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とが重畳して発光領域となる面積は、
 前記第4領域中において、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とが重畳して発光領域となる面積より大きい態様1から3の何れかに記載の発光素子。
 〔態様8〕
 前記第1領域中において、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とが重畳して発光領域となる面積は、
 前記第4領域中において、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とが重畳して発光領域となる面積より小さい態様1から3の何れかに記載の発光素子。
 〔態様9〕
 前記第1電極と前記第2電極との間の前記第1間隙には、前記第1電荷輸送層と同一材料が形成されている態様1から8の何れかに記載の発光素子。
 〔態様10〕
 前記第1電極と前記第2電極との間の前記第1間隙には、絶縁体が形成されている態様1から8の何れかに記載の発光素子。
 〔態様11〕
 前記第1電極と前記第2電極との間の前記第1間隙と、前記第1電荷輸送層における前記第1間隙と接する間隙とには、絶縁体が形成されている態様10に記載の発光素子。
 〔態様12〕
 前記第1電荷輸送層と前記第2電荷輸送層との間には、第3間隙が形成されており、
 前記第3間隙には、前記発光層と同一材料が形成されている態様1から11の何れかに記載の発光素子。
 〔態様13〕
 前記第1電荷輸送層と前記第2電荷輸送層との間には、第3間隙が形成されており、
 前記第3間隙には、絶縁体が形成されている態様1から11の何れかに記載の発光素子。
 〔態様14〕
 前記第3電荷輸送層と前記第4電荷輸送層との間には、第4間隙が形成されており、
 前記第4間隙には、前記第3電極と同一材料が形成されている態様1から13の何れかに記載の発光素子。
 〔態様15〕
 前記第3電荷輸送層と前記第4電荷輸送層との間には、第4間隙が形成されており、
 前記第4間隙には、絶縁体が形成されている態様1から13の何れかに記載の発光素子。
 〔態様16〕
 前記第3電極と前記第4電極との間の前記第2間隙には、絶縁体が形成されている態様1から15の何れかに記載の発光素子。
 〔態様17〕
 前記第3電極と前記第4電極との間の前記第2間隙と、前記第4電荷輸送層における前記第2間隙と接する間隙とには、絶縁体が形成されている態様16に記載の発光素子。
 〔態様18〕
 アクティブマトリクス基板に、前記態様1から17の何れかに記載の発光素子が設けられた発光素子アレイと、
 入力画像信号の階調に基づいて、前記第1電極、前記第2電極、前記第3電極及び前記第4電極をそれぞれ陰極または陽極に切り替える信号を出力する回路と、を含む表示装置。
 〔態様19〕
 前記回路は、第1の点灯期間に、前記第1電極と前記第4電極とを陰極とし、前記第2電極と第3電極とを陽極とする信号を出力する態様18に記載の表示装置。
 〔態様20〕
 前記回路は、第1の点灯期間に、前記第1電極と前記第2電極とを陰極とし、前記第3電極と第4電極とを陽極とする信号を出力する態様18に記載の表示装置。
 〔態様21〕
 前記回路は、第1の点灯期間に、前記第1電極を陰極とし、前記第2電極と前記第3電極と第4電極とを陽極とする信号を出力する態様18に記載の表示装置。
 〔態様22〕
 前記回路は、第2の点灯期間に、前記第1電極と前記第2電極とを陽極とし、前記第3電極と第4電極とを陰極とする信号を出力する態様20に記載の表示装置。
 〔態様23〕
 前記第1の点灯期間の長さと、前記第2の点灯期間の長さとは同じである態様22に記載の表示装置。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、発光素子及び表示装置に利用することができる。
 1        表示装置
 2、2a、2b  発光素子アレイ
 3        Scanドライバ
 4        Dataドライバ
 5        画像タイミングコントローラ(回路)
 6A、6A’   第3電極
 6B       第4電極
 6C       第1電極
 6D       第2電極
 7A~10A   スイッチング素子
 7B~10B   スイッチング素子
 11       ELVDD供給源
 12       ELVSS供給源
 14       正孔輸送層(第3電荷輸送層)
 15、15’、15a、15b 電子輸送層(第1電荷輸送層)
 16、16a   発光層
 17       正孔輸送層(第2電荷輸送層)
 18、18a、18b 電子輸送層(第4電荷輸送層)
 19       アクティブマトリクス基板
 20~24    絶縁体
 25       正孔
 26       電子
 29~31    絶縁体
 32、52    発光素子アレイ
 36A、46A  第3電極
 36B、46B  第4電極
 36C、46C  第1電極
 36D、46D  第2電極
 40~43    絶縁体
 L1       第1領域
 L2       第2領域
 L3       第3領域
 L4       第4領域
 S1、S2、S3 非発光領域

Claims (23)

  1.  発光層と、前記発光層の一方側に備えられた上側電極と、前記発光層の一方側とは反対側の他方側に備えられた下側電極と、を含む発光素子であって、
     前記下側電極は、その間に第1間隙を有する、第1電極と、前記第1電極より面積が大きい第2電極とで構成され、
     前記上側電極は、その間に第2間隙を有する、前記第1電極及び前記第2電極と対向する第3電極と、前記第2電極と対向し、かつ、前記第3電極より面積が小さい第4電極とで構成され、
     前記下側電極と前記発光層との間には、第1電荷輸送層と、第2電荷輸送層とが備えられ、
     前記上側電極と前記発光層との間には、前記第1電荷輸送層と対向する第3電荷輸送層と、前記第2電荷輸送層と対向する第4電荷輸送層とが備えられ、
     前記第1電極と前記第3電極とが重畳する第1領域は、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とを含み、
     前記第2電極と前記第3電極とが重畳する領域の一部である第2領域は、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とを含み、
     前記第2電極と前記第3電極とが重畳する領域の他の一部である第3領域は、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とを含み、
     前記第2電極と前記第4電極とが重畳する第4領域は、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とを含み、
     前記第1電荷輸送層及び前記第4電荷輸送層は、第1キャリアの輸送層であり、
     前記第2電荷輸送層及び前記第3電荷輸送層は、前記第1キャリアとは異なる第2キャリアの輸送層であることを特徴とする発光素子。
  2.  前記第1キャリアは、正孔であり、
     前記第2キャリアは、電子であり、
     前記第1電荷輸送層及び前記第4電荷輸送層は、正孔輸送層であり、
     前記第2電荷輸送層及び前記第3電荷輸送層は、電子輸送層であることを特徴とする請求項1に記載の発光素子。
  3.  前記第1キャリアは、電子であり、
     前記第2キャリアは、正孔であり、
     前記第1電荷輸送層及び前記第4電荷輸送層は、電子輸送層であり、
     前記第2電荷輸送層及び前記第3電荷輸送層は、正孔輸送層であることを特徴とする請求項1に記載の発光素子。
  4.  前記第1領域中において、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とが重畳して発光領域となる面積と、
     前記第4領域中において、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とが重畳して発光領域となる面積とは等しいことを特徴とする請求項1から3の何れか1項に記載の発光素子。
  5.  前記第2領域中において、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とが重畳して発光領域となる面積と、
     前記第3領域中において、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とが重畳して発光領域となる面積とは等しいことを特徴とする請求項1から4の何れか1項に記載の発光素子。
  6.  前記第1領域中の発光領域となる面積または前記第4領域中の発光領域となる面積は、前記第2領域中の発光領域となる面積または前記第3領域中の発光領域となる面積より大きいことを特徴とする請求項4または5に記載の発光素子。
  7.  前記第1領域中において、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とが重畳して発光領域となる面積は、
     前記第4領域中において、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とが重畳して発光領域となる面積より大きいことを特徴とする請求項1から3の何れか1項に記載の発光素子。
  8.  前記第1領域中において、前記第1電荷輸送層と、前記発光層と、前記第3電荷輸送層とが重畳して発光領域となる面積は、
     前記第4領域中において、前記第2電荷輸送層と、前記発光層と、前記第4電荷輸送層とが重畳して発光領域となる面積より小さいことを特徴とする請求項1から3の何れか1項に記載の発光素子。
  9.  前記第1電極と前記第2電極との間の前記第1間隙には、前記第1電荷輸送層と同一材料が形成されていることを特徴とする請求項1から8の何れか1項に記載の発光素子。
  10.  前記第1電極と前記第2電極との間の前記第1間隙には、絶縁体が形成されていることを特徴とする請求項1から8の何れか1項に記載の発光素子。
  11.  前記第1電極と前記第2電極との間の前記第1間隙と、前記第1電荷輸送層における前記第1間隙と接する間隙とには、絶縁体が形成されていることを特徴とする請求項10に記載の発光素子。
  12.  前記第1電荷輸送層と前記第2電荷輸送層との間には、第3間隙が形成されており、
     前記第3間隙には、前記発光層と同一材料が形成されていることを特徴とする請求項1から11の何れか1項に記載の発光素子。
  13.  前記第1電荷輸送層と前記第2電荷輸送層との間には、第3間隙が形成されており、
     前記第3間隙には、絶縁体が形成されていることを特徴とする請求項1から11の何れか1項に記載の発光素子。
  14.  前記第3電荷輸送層と前記第4電荷輸送層との間には、第4間隙が形成されており、
     前記第4間隙には、前記第3電極と同一材料が形成されていることを特徴とする請求項1から13の何れか1項に記載の発光素子。
  15.  前記第3電荷輸送層と前記第4電荷輸送層との間には、第4間隙が形成されており、
     前記第4間隙には、絶縁体が形成されていることを特徴とする請求項1から13の何れか1項に記載の発光素子。
  16.  前記第3電極と前記第4電極との間の前記第2間隙には、絶縁体が形成されていることを特徴とする請求項1から15の何れか1項に記載の発光素子。
  17.  前記第3電極と前記第4電極との間の前記第2間隙と、前記第4電荷輸送層における前記第2間隙と接する間隙とには、絶縁体が形成されていることを特徴とする請求項16に記載の発光素子。
  18.  アクティブマトリクス基板に、前記請求項1から17の何れか1項に記載の発光素子が設けられた発光素子アレイと、
     入力画像信号の階調に基づいて、前記第1電極、前記第2電極、前記第3電極及び前記第4電極をそれぞれ陰極または陽極に切り替える信号を出力する回路と、を含む表示装置。
  19.  前記回路は、第1の点灯期間に、前記第1電極と前記第4電極とを陰極とし、前記第2電極と第3電極とを陽極とする信号を出力することを特徴とする請求項18に記載の表示装置。
  20.  前記回路は、第1の点灯期間に、前記第1電極と前記第2電極とを陰極とし、前記第3電極と第4電極とを陽極とする信号を出力することを特徴とする請求項18に記載の表示装置。
  21.  前記回路は、第1の点灯期間に、前記第1電極を陰極とし、前記第2電極と前記第3電極と第4電極とを陽極とする信号を出力することを特徴とする請求項18に記載の表示装置。
  22.  前記回路は、第2の点灯期間に、前記第1電極と前記第2電極とを陽極とし、前記第3電極と第4電極とを陰極とする信号を出力することを特徴とする請求項20に記載の表示装置。
  23.  前記第1の点灯期間の長さと、前記第2の点灯期間の長さとは同じであることを特徴とする請求項22に記載の表示装置。
PCT/JP2019/006644 2019-02-21 2019-02-21 発光素子及び表示装置 WO2020170399A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980089667.4A CN113439348B (zh) 2019-02-21 2019-02-21 发光元件以及显示装置
PCT/JP2019/006644 WO2020170399A1 (ja) 2019-02-21 2019-02-21 発光素子及び表示装置
US17/423,826 US20220115618A1 (en) 2019-02-21 2019-02-21 Light-emitting element and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006644 WO2020170399A1 (ja) 2019-02-21 2019-02-21 発光素子及び表示装置

Publications (1)

Publication Number Publication Date
WO2020170399A1 true WO2020170399A1 (ja) 2020-08-27

Family

ID=72144813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006644 WO2020170399A1 (ja) 2019-02-21 2019-02-21 発光素子及び表示装置

Country Status (3)

Country Link
US (1) US20220115618A1 (ja)
CN (1) CN113439348B (ja)
WO (1) WO2020170399A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838108A (zh) * 2020-12-29 2021-05-25 广东聚华印刷显示技术有限公司 显示面板及其制作方法与显示装置
EP4254388A4 (en) * 2020-12-24 2023-11-08 Huawei Technologies Co., Ltd. PIXEL STRUCTURE AND DISPLAY PANEL

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845662A (ja) * 1994-07-29 1996-02-16 Shinko Denshi Kk エレクトロルミネッセントパネル駆動回路
JP2003029708A (ja) * 2000-12-08 2003-01-31 Matsushita Electric Ind Co Ltd El表示装置
JP2006235609A (ja) * 2005-01-31 2006-09-07 Semiconductor Energy Lab Co Ltd 発光装置及び電子機器
WO2012093671A1 (ja) * 2011-01-07 2012-07-12 株式会社カネカ 有機el装置及び有機el装置の製造方法
JP2015102723A (ja) * 2013-11-26 2015-06-04 株式会社ジャパンディスプレイ 有機el表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1290752A1 (en) * 2000-05-02 2003-03-12 Paratek Microwave, Inc. Voltage tuned dielectric varactors with bottom electrodes
EP1775780A1 (en) * 2005-10-14 2007-04-18 STMicroelectronics S.r.l. Organic electroluminescent device and process for manufacturing the device
US8136961B2 (en) * 2007-11-28 2012-03-20 Global Oled Technology Llc Electro-luminescent area illumination device
JP2012064730A (ja) * 2010-09-15 2012-03-29 Panasonic Corp 固体撮像装置及びその製造方法
EP3175496B1 (en) * 2014-08-01 2021-06-16 Orthogonal Inc. Photolithographic patterning of organic electronic devices
JP2016072250A (ja) * 2014-09-30 2016-05-09 株式会社半導体エネルギー研究所 発光装置、電子機器、及び照明装置
KR102568778B1 (ko) * 2016-05-12 2023-08-22 삼성디스플레이 주식회사 박막트랜지스터 및 이를 포함하는 표시 장치
CN106654029B (zh) * 2016-12-14 2018-09-07 上海天马有机发光显示技术有限公司 一种有机发光显示面板及装置
JP6887321B2 (ja) * 2017-06-14 2021-06-16 スタンレー電気株式会社 発光装置、および、その製造方法
US20190296264A1 (en) * 2018-03-26 2019-09-26 Apple Inc. Quantum dot based pixel assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845662A (ja) * 1994-07-29 1996-02-16 Shinko Denshi Kk エレクトロルミネッセントパネル駆動回路
JP2003029708A (ja) * 2000-12-08 2003-01-31 Matsushita Electric Ind Co Ltd El表示装置
JP2006235609A (ja) * 2005-01-31 2006-09-07 Semiconductor Energy Lab Co Ltd 発光装置及び電子機器
WO2012093671A1 (ja) * 2011-01-07 2012-07-12 株式会社カネカ 有機el装置及び有機el装置の製造方法
JP2015102723A (ja) * 2013-11-26 2015-06-04 株式会社ジャパンディスプレイ 有機el表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4254388A4 (en) * 2020-12-24 2023-11-08 Huawei Technologies Co., Ltd. PIXEL STRUCTURE AND DISPLAY PANEL
CN112838108A (zh) * 2020-12-29 2021-05-25 广东聚华印刷显示技术有限公司 显示面板及其制作方法与显示装置

Also Published As

Publication number Publication date
US20220115618A1 (en) 2022-04-14
CN113439348A (zh) 2021-09-24
CN113439348B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
US7679093B2 (en) Dual emission organic light emitting display device and method of driving the same
JP4808479B2 (ja) 有機発光トランジスタ素子及びその製造方法並びに発光表示装置
US7633084B2 (en) Light emitting transistor
US8441472B2 (en) Method of driving display panel
CN101552283A (zh) 有机发光显示装置
KR100962739B1 (ko) 전계 발광 소자의 구동 방법
KR20100076789A (ko) 유기발광 다이오드
JP4246949B2 (ja) 有機薄膜発光トランジスタ
KR20080048339A (ko) 유기전계 발광소자의 홀 주입층 형성방법과 이를 포함한유기전계 발광소자의 제조방법
JP5490815B2 (ja) 調整可能な発光ダイオード
KR20150105520A (ko) 유기 발광 장치
JP2007214228A (ja) 有機電界発光素子
TWI466350B (zh) Thin film active element group, thin film active element array, organic light emitting device, display device and thin film active element group manufacturing method
WO2020170399A1 (ja) 発光素子及び表示装置
US9692002B2 (en) Organic light emitting display device
KR20100022638A (ko) 유기발광 표시장치
JP2002100470A (ja) 有機エレクトロルミネッセンス素子の駆動方法、駆動装置およびそれを用いた表示装置
KR100864758B1 (ko) 풀 컬러 유기 전기 발광 소자
KR20150041314A (ko) 유기전계 발광소자 및 그 제조방법
KR20080057791A (ko) 핀구조 유기전계 발광소자 및 이를 포함하는 유기전계발광표시장치
US20230215385A1 (en) Organic light emitting display device
JP2001160492A (ja) 有機薄膜エレクトロルミネッセンス素子およびその駆動方法
KR100570975B1 (ko) 유기 전계 발광 표시 장치
KR100826002B1 (ko) 유기전계발광소자
JP2020017335A (ja) 有機elディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP