WO2020168926A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2020168926A1
WO2020168926A1 PCT/CN2020/074486 CN2020074486W WO2020168926A1 WO 2020168926 A1 WO2020168926 A1 WO 2020168926A1 CN 2020074486 W CN2020074486 W CN 2020074486W WO 2020168926 A1 WO2020168926 A1 WO 2020168926A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
screen
metal strip
antenna
metal
Prior art date
Application number
PCT/CN2020/074486
Other languages
English (en)
French (fr)
Inventor
许志玮
余冬
汤杭飞
谢志远
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/432,826 priority Critical patent/US11888239B2/en
Priority to KR1020217029920A priority patent/KR102569091B1/ko
Priority to CN202080013234.3A priority patent/CN113454843B/zh
Priority to AU2020224880A priority patent/AU2020224880B2/en
Priority to CN202211596046.5A priority patent/CN115832679A/zh
Priority to EP20759996.0A priority patent/EP3920327A4/en
Priority to JP2021548617A priority patent/JP7298805B2/ja
Publication of WO2020168926A1 publication Critical patent/WO2020168926A1/zh
Priority to US18/538,416 priority patent/US20240113431A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/392Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to the field of antenna technology, in particular to an antenna device used in electronic equipment.
  • the embodiment of the present invention provides an antenna device based on a flexible screen structure of electronic equipment, which can effectively use the second metal strip provided on the secondary screen frame, improve the radiation efficiency of the first metal strip provided on the main screen frame, and optimize the first
  • the antenna performance of the metal strip when the flexible screen is in the folded state reduces the gap between the antenna performance when the flexible screen is in the folded state and when the flexible screen is in the open state.
  • this application provides an antenna device applied to an electronic device.
  • the electronic device may include: a flexible screen, a rotating shaft, and a frame.
  • the flexible screen may include: a main screen and a secondary screen.
  • the shaft connects the main screen and the sub screen.
  • the width of the main screen and the width of the secondary screen (w2) can be equal or not equal.
  • the frame of the electronic device may include a main screen frame and a secondary screen frame.
  • the main screen may be referred to as the first screen
  • the secondary screen may be referred to as the second screen.
  • the flexible screen can be bent at the shaft.
  • being bent may include the flexible screen being bent outward and the flexible screen being bent inward.
  • the antenna device may include: a first metal strip and a second metal strip. Both ends of the first metal strip are open, and may have a first open end and a second open end.
  • the first metal strip may have a first feeding point close to the first open end and a second feeding point close to the second open end.
  • the first feeding point may be connected to the matching circuit of the first antenna (such as a diversity antenna).
  • the feeding point can be connected to the matching circuit of the second antenna (such as a GPS antenna).
  • a first grounding point may be provided on the first metal strip.
  • One end of the second metal strip is open, and the other end is grounded.
  • the second metal strip may be provided with a first connection point, the first connection point is connected to the first filter, and the working frequency band of the first filter may include the radiation frequency band of the first antenna (such as the low frequency frequency band) and the radiation frequency band of the second antenna (Such as GPS frequency band).
  • the first metal strip can be arranged on the frame of the first screen close to the first end of the rotating shaft; the second metal strip can be arranged on the frame of the second screen close to the first end of the rotating shaft.
  • the first metal strip can couple with the second metal to generate radiation in the radiation frequency band of the first antenna.
  • the second metal strip can serve as a parasitic structure of the first metal strip.
  • the implementation of the antenna device provided in the first aspect can effectively use the second metal strip provided on the secondary screen frame. Since the first filter is provided on the second metal strip on the secondary screen frame, it is improved when the flexible screen is in the folded state.
  • the radiation efficiency of the first metal strip set on the main screen frame is optimized, and the antenna performance of the first metal strip when the flexible screen is in the folded state is optimized, and the gap between the antenna performance when the flexible screen is in the folded state and when the flexible screen is in the open state is reduced .
  • a second filter may be provided on the side of the first metal strip close to the first open end.
  • the second filter may be band-passed to the ground in the radiation frequency band of the second antenna (such as the GPS frequency band).
  • the introduction of the second filter can produce a boundary condition: the two ends of the radiator between the first ground point and the second connection point of the second filter are closed, and both ends are current strong points.
  • the 1/4 wavelength mode of the radiator between the second filter and the first open end can also generate resonance in the radiation frequency band of the second antenna. In this way, the resonance of the radiation frequency band of the second antenna can be supplemented to improve the radiation performance of the second antenna.
  • the isolation between the first antenna and the second antenna can be further improved.
  • the second filter may be arranged at the first feeding point, or arranged between the first feeding point and the first ground point close to the first feeding point Place.
  • the frame of the first screen may be a metal frame.
  • the frame of the first screen has a metallic appearance
  • the first metal strip may be formed by the metal frame.
  • two gaps can be opened in the metal frame: a first gap and a second gap, and a section of the metal frame between the two gaps can be used as the first metal strip.
  • One of the two slits may be opened at a position close to the first end of the rotating shaft.
  • close means that the distance between the gap and the rotating shaft is less than the first preset distance (for example, 2 mm).
  • the frame of the first screen may include a first frame part and a second frame part.
  • the first frame part is metal (metal appearance)
  • the second frame part is non-metallic (non-metal appearance).
  • One end of the first frame part is connected to the first end of the rotating shaft, the other end of the first frame part is connected to the second frame part, and the other end is open.
  • a gap can be opened on the first frame part near the first end of the rotating shaft.
  • the slit may be referred to as a third slit, and the third slit may be the aforementioned first slit.
  • close means that the distance between the gap and the rotating shaft is less than the first preset distance (for example, 2 mm).
  • the metal frame at one end between the gap and the other end of the first screen frame part can be used as the first metal strip.
  • the frame of the first screen may be a non-metal frame (such as a plastic frame, a glass frame, etc.).
  • the appearance of the main screen frame is non-metallic (such as plastic, glass, etc.).
  • the first metal strip can be a metal strip pasted on the inner surface of the non-metal frame, or it can be printed on the inner surface of the non-metal frame using conductive silver paste.
  • the frame of the first screen may be a metal frame.
  • the frame of the first screen has a metallic appearance
  • the second metal strip may be formed by the metal frame.
  • a second grounding point can be provided on the metal frame, and a gap can be opened on the metal frame close to the first end of the rotating shaft.
  • close means that the distance between the gap and the shaft is less than the second preset distance (for example, 2 mm).
  • a section of the metal frame between the gap and the second ground point can be used as the second metal strip.
  • the slit may be referred to as a fourth slit.
  • the frame of the first screen may be a non-metallic frame (such as a plastic frame, a glass frame, etc.), and the appearance of the frame of the first screen is a non-metallic appearance.
  • the second metal strip can be a metal strip pasted on the inner surface of the non-metal frame, or it can be printed on the inner surface of the non-metal frame using conductive silver paste.
  • the length of the first metal strip may be greater than the length of the second metal strip.
  • the second filter may be included in the matching circuit of the first antenna (such as a diversity antenna).
  • the second connection point 31-4 of the second filter and the first feeder Electric point 31-1 can be overlapped.
  • the distance between the first connection point 32-3 of the first filter 32-4 and the open end 32-5 is smaller than the third preset distance value.
  • the distance between the connection point 32-3 of the first filter 32-4 and the second ground point 32-1 is less than the fourth preset distance, and in this case, the first filter The distance between the connection point 32-3 of the filter 32-4 and the second ground point 32-1 is shorter than the distance between the connection point 32-3 of the first filter 32-4 and the open end 32-5 (or the gap 32-2). The distance between is closer.
  • the position of the first filter 32-4 on the metal strip 13-3 can have multiple choices, which is not limited in this application.
  • the present application provides an electronic device, which may include a flexible screen, a rotating shaft, a frame, and the antenna device described in the first aspect.
  • the flexible screen can include a first screen and a second screen, the first screen and the second screen can be connected by a shaft; the flexible screen can be folded at the shaft, the flexible screen can have a folded state and an unfolded state; the frame can include a second screen The frame of the first screen and the frame of the second screen.
  • the electronic device may also include a printed circuit board PCB and a back cover.
  • FIGS. 1A-1C are structural schematic diagrams of an electronic device provided by an embodiment of the present application.
  • FIGS. 2A-2D are schematic diagrams of several antenna devices provided in this application.
  • 3A-3C are schematic structural diagrams of the antenna structure provided in the present application in an electronic device
  • FIGS. 4A-4C are schematic diagrams of antenna design solutions provided by an embodiment of the present application.
  • 5A-5B are some simulation schematic diagrams of the antenna design scheme shown in FIGS. 4A-4B;
  • Fig. 6 is another schematic diagram of simulation of the antenna design scheme shown in Figs. 4A-4B;
  • FIGS. 7A-7B are schematic diagrams of antenna design solutions provided by another embodiment of the present application.
  • FIGS. 8A-8B are schematic diagrams of antenna design solutions provided by still another embodiment of the present application.
  • FIGS. 9A-9B are schematic diagrams of antenna design solutions provided by still another example of the present application.
  • 10A-10B are schematic diagrams of antenna design solutions provided by some further examples of this application.
  • the technical solution provided in this application is applicable to electronic devices that use one or more of the following communication technologies: global system for mobile communication (GSM) technology, code division multiple access (CDMA) communication technology, Wideband code division multiple access (WCDMA) communication technology, general packet radio service (GPRS), long term evolution (LTE) communication technology, Wi-Fi communication technology, 5G communication Technology, millimeter wave (mmWave) communication technology, SUB-6G communication technology and other future communication technologies.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • Wi-Fi communication technology 5G communication Technology
  • mmWave millimeter wave
  • SUB-6G communication technology SUB-6G communication technology and other future communication technologies.
  • the following embodiments do not highlight the requirements of the communication network, and only illustrate the operating characteristics of the antenna in terms of the frequency band.
  • the electronic device may be a mobile phone, a tablet computer, a personal digital assistant (
  • FIG. 1A exemplarily shows the electronic device on which the antenna design solution provided in this application is based.
  • the electronic device may include: a flexible screen 11, a rotating shaft 13, and a frame.
  • the flexible screen 11 may include: a main screen 11-1, and one or more secondary screens 11-3. To simplify the drawing, only one secondary screen 11-3 is shown in the drawing.
  • the rotating shaft 13 connects the main screen 11-1 and the auxiliary screen 11-3.
  • the width (w1) of the main screen 11-1 and the width (w2) of the sub screen 11-3 may be equal or different.
  • the main screen may be referred to as the first screen
  • the secondary screen may be referred to as the second screen.
  • the frame of the electronic device may include a main screen frame 12-1 and a secondary screen frame 12-3.
  • the main screen frame 12-1 may include three main screen frame parts, wherein two main screen frame parts may be respectively close to two ends of the rotating shaft 13, and the other main screen frame part may be parallel to the rotating shaft 13.
  • the secondary screen frame 12-3 may also include three secondary screen frame parts, wherein two secondary screen frame parts can be respectively close to the two ends of the rotating shaft 13, and the other secondary screen frame part can be parallel to the rotating shaft 13.
  • the aforementioned frame can be a metal frame or a non-metal frame (such as a plastic frame, a glass frame, etc.).
  • the flexible screen 11 can be bent at the rotating shaft 13.
  • being bent may include the flexible screen 11 being bent outward and the flexible screen 11 being bent inward.
  • Folded outwards means that the flexible screen 11 appears on the outside after being bent, the back cover of the electronic device appears on the inside, and the display content on the flexible screen 11 is visible to the user.
  • Being bent inward means that the flexible screen 11 hides the inside after being bent, the back cover of the electronic device is presented on the outside, and the display content on the flexible screen 11 is not visible to the user.
  • the flexible screen 11 has two modes: an open state and a folded state.
  • the expanded state may refer to the state when the included angle ⁇ between the main screen and the secondary screen exceeds the first angle (for example, 120°).
  • the folded state may refer to a state when the included angle ⁇ between the main screen and the secondary screen is smaller than the second angle (for example, 15°).
  • the electronic device when the flexible screen 11 is in the unfolded state, the electronic device may be exemplarily shown in FIG. 1A; when the flexible screen 11 is in the folded state, the electronic device may be exemplarily shown in FIG. 1C.
  • the electronic device may also include a printed circuit board (PCB) and a back cover (not shown).
  • PCB printed circuit board
  • back cover not shown
  • the main design idea of the present application may include: arranging a first metal strip on the main screen frame 12-1 near one end of the rotating shaft 13, and setting a second metal strip on the secondary screen frame 12-3 close to the same end of the rotating shaft 13.
  • the first metal strip can be implemented as multiple antennas by adopting a dual-fed design, that is, the first antenna (such as a diversity antenna) and the second antenna (such as a GPS antenna) mentioned in the subsequent content.
  • the first metal strip can couple with the second metal strip to generate radiation.
  • the second metal strip can serve as a parasitic antenna of the first metal strip.
  • the second metal strip provided on the secondary screen frame 12-3 can be effectively used to improve the radiation efficiency of the first metal strip provided on the main screen frame 12-1, and optimize the performance of the first metal strip when the flexible screen 11 is in the folded state.
  • the antenna performance reduces the gap between the antenna performance when the flexible screen 11 is in the folded state and when the flexible screen 11 is in the open state.
  • Fig. 2A schematically shows the multi-antenna realized by the double-fed design of the first metal strip.
  • both ends of the first metal strip may be open, including a first open end and a second open end. Compared with the first open end, the second open end is closer to the rotating shaft 13.
  • the first metal strip may have two feed points: feed 1 and feed 2. Feed 1 can be referred to as the first feed point, and feed 2 can be referred to as the second feed point.
  • the first feeding point may be the feeding point of the diversity antenna, which is connected to the diversity antenna matching circuit.
  • the second feeding point may be the feeding point of the GPS antenna, which is connected to the GPS antenna matching circuit.
  • a ground point (GND1) may be set between the two feed points, and the ground point is grounded to isolate the diversity antenna and the GPS antenna. This ground point (GND1) may be referred to as the first ground point.
  • the matching circuit of the diversity antenna may include a parallel capacitor and a series capacitor to achieve frequency band switching.
  • the low-frequency (such as 690MHz-960MHz) signal of the diversity antenna can be generated in the left-hand mode, and the medium and high-frequency (such as 17000MHz-2700MHz) signal can be the 1/4 wavelength of the radiator from the first feed point (feed 1) to the first open end Pattern generation.
  • the 3/4 wavelength mode of the radiator from the first ground point (GND1) to the first open end can also generate a signal near 2.7GHz, which can supplement the carrier aggregation state (carrier LTE B7 resonance in aggregation, CA) state.
  • the range of LTE B7 frequency band is: 2500-2570MHz for uplink and 2620-2690MHz for downlink.
  • the signal of the radiation frequency band of the GPS antenna (the GPS frequency band near 1575 MHz) can be generated from the 1/4 wavelength mode of the radiator from the second feed point (feed 2) to the second open end.
  • the triple frequency of the GPS frequency band is the 5 GHz frequency band, so the radiator from the second feed point (feed 2) to the second open end can simultaneously radiate signals in the GPS frequency band and 5 GHz frequency band.
  • FIG. 2B shows a simplified antenna structure composed of the first metal strip and the second metal strip.
  • the first metal strip refers to the related description of FIG. 2A.
  • one end of the second metal strip is closed (grounded GND2), and one end close to the rotating shaft 13 is open.
  • the second metal strip may be provided with a filter 1 near the open end.
  • the working frequency band of the filter 1 may include: the radiation frequency band of the diversity antenna and the radiation frequency band of the GPS antenna, that is, the filter 1 may be a dual-frequency filter capable of simultaneously working in the low frequency band and the GPS frequency band.
  • the filter 1 may be a high-order filter, such as a third-order filter.
  • a filter can also be provided on the side of the first metal strip close to the first open end. ⁇ 2.
  • Filter 2 can be band-passed to ground in the GPS frequency band.
  • the introduction of filter 2 can produce a boundary condition: the radiator between the first ground point (GND1) and filter 2 is closed at both ends, and both ends are current strong points.
  • the 1/4 wavelength mode of the radiator between the filter 2 and the first open end can also generate resonance in the GPS frequency band.
  • the resonance of the GPS frequency band can be supplemented to improve the radiation performance of the GPS antenna.
  • the isolation between the diversity antenna and the GPS antenna can be further improved, and the resonance energy of the GPS antenna can be made unaffected when the diversity status of the diversity antenna changes.
  • the second metal strip may be provided with a filter 1 near the open end, and the first metal strip may be provided with a filter 2 on the side near the first open end.
  • the antenna performance of the first metal strip on the main screen frame 12-1 can be more significantly improved, the shielding of the secondary screen 11-3 and the shielding of the shaft 13 can be avoided, and the diversity antenna and GPS antenna on the first metal strip can be improved. High isolation to avoid the influence of diversity status change on GPS resonance.
  • the antenna fed by the first feeding point (feed 1) may be referred to as the first antenna. It is not limited to the diversity antenna, and the first antenna may also include other antennas, such as a 2.4 GHz Wi-Fi antenna.
  • the antenna fed by the second feeding point (feed 2) may be referred to as the second antenna. Not limited to GPS antennas, the second feed point (feed 2) can also be connected to the matching circuit of other antennas, such as LTE B3, LTE B5 antennas, etc.
  • FIGS. 3A-3C the architecture of the antenna structure provided in the present application in the electronic device is summarized in conjunction with FIGS. 3A-3C.
  • the first metal strip can be a metal strip 13-1
  • the second metal strip can be a metal strip 13-3.
  • 3A shows the antenna structure formed by the metal strip 13-1 and the metal strip 13-3 when the flexible screen 11 is in the expanded state
  • Figures 3B-3C show the metal strip 13-1 and the metal strip 13-3.
  • the antenna structure is formed when the flexible screen 11 is in the folded state.
  • the metal strip 13-1 may be arranged on the main screen frame 12-1 near one end of the rotating shaft 13. To facilitate subsequent reference, one end of the rotating shaft 13 may be referred to as the first end of the rotating shaft 13.
  • the concrete realization of the metal strip 13-1 can include the following several ways:
  • the main screen frame 12-1 may be a metal frame.
  • the main screen frame 12-1 has a metallic appearance, and the metal strip 13-1 may be formed by the metal frame.
  • two gaps can be opened in the metal frame, for example, a first gap opened near position a and a second gap opened near position b.
  • a section of the metal frame between the two gaps can be used as a metal strip. 13-1.
  • One of the slits (slot 1 in FIG. 3A) may be opened at a position close to the first end of the rotating shaft 13.
  • close means that the distance between the gap (such as the gap 1) and the rotating shaft 13 is less than the first predetermined distance (such as 2 mm).
  • the main screen frame 12-1 may include a first frame part (such as the main screen frame part between position a and position b) and a second frame part (such as the main screen part between position b and position c or position b and position d) Border part).
  • the first frame part is metal (metal appearance)
  • the second frame part is non-metallic (non-metal appearance).
  • One end of the first frame part is connected to the first end of the rotating shaft 13, the other end of the first frame part is connected to the second frame part, and the other end is open.
  • a gap may be opened on the first frame part close to the first end of the rotating shaft 13.
  • the slit may be referred to as a third slit, and the third slit may be the aforementioned first slit.
  • close means that the distance between the gap (such as the gap 1) and the rotating shaft 13 is less than the first predetermined distance (such as 2 mm).
  • the metal frame at one end between the gap and the other end of the first screen frame portion can be used as the metal strip 13-1.
  • the main screen frame 12-1 may be a non-metal frame (such as a plastic frame, a glass frame, etc.). At this time, the appearance of the main screen frame is non-metallic (such as plastic, glass, etc.).
  • the metal strip 13-1 can be a metal strip pasted on the inner surface of the non-metallic frame, or it can be printed on the inner surface of the non-metallic frame using conductive silver paste.
  • the metal strip 13-3 can be arranged on the secondary screen frame 12-3 close to the first end of the rotating shaft 13.
  • the specific realization of the metal bar 13-3 can include the following methods:
  • the secondary screen frame 12-3 may be a metal frame.
  • the appearance of the secondary screen frame 12-3 is a metal appearance
  • the metal strip 13-3 may be formed by the metal frame.
  • a second ground point (GND2) can be provided on the metal frame, and a gap (slit 2) can be opened on the metal frame at a position close to the first end of the rotating shaft 13.
  • close means that the distance between the gap (such as the gap 2) and the rotating shaft 13 is less than the second preset distance (such as 2 mm).
  • a section of the metal frame between the gap (slot 2) and the second ground point (GND2) can be used as the metal strip 13-3.
  • the slit may be referred to as a fourth slit.
  • the secondary screen frame 12-3 may be a non-metallic frame (such as a plastic frame, a glass frame, etc.), and the appearance of the secondary screen frame 12-3 is a non-metallic appearance.
  • the metal strip 13-3 can be a metal strip pasted on the inner surface of the non-metal frame, or it can be printed on the inner surface of the non-metal frame using conductive silver paste.
  • the metal strip 13-1 may have two feeding points: feeding 1 and feeding 2.
  • Feed 1 can be the feed point of the diversity antenna
  • feed 2 can be the feed point of the GPS antenna.
  • a ground point (GND1) can be set between the two feed points.
  • the metal strip 13-3 may be provided with a filter 1 (not shown in Figure 3A-3B) near the open end (slot 2) to improve the antenna performance of the metal strip 13-1 and improve the secondary screen 11-3
  • a filter 2 (not shown in Figures 3A-3B) can be provided on the side of the metal strip 13-1 far from the shaft 13 to further improve the antenna performance of the side of the metal strip 13-1 close to the shaft 13 and improve the shaft being rotated. 13
  • FIG. 2A-2D which will not be repeated here.
  • the length of the metal strip 13-1 may be greater than or equal to or less than the length of the metal strip 13-3.
  • the antenna on the side of the metal strip 13-1 far from the rotating shaft 13 has better performance. Because, when the flexible screen is in the folded state, the opening condition on the side of the metal strip 13-1 far from the rotating shaft 13 is good.
  • the antenna structure may include: a metal strip 13-1 arranged on the main screen frame 12-1 and a metal strip 13-3 arranged on the secondary screen frame 12-3.
  • the size of the electronic device on which the antenna structure provided in this embodiment is based may be 160 (mm) x 75 (mm) x 10.5 (mm).
  • 160 (mm) refers to the width of the flexible screen 11 in the expanded state, as shown in W in FIG. 4A.
  • the length of the flexible screen 11 is 75 (mm), as shown in L in FIG. 4A. 10.5 (mm) refers to the thickness of the flexible screen 11 when it is in the folded state, as shown in H in FIG. 4C.
  • the length of the metal strip 13-1 on the main screen frame 12-1 may be about 58.5 mm, and the length of the metal strip 13-3 on the secondary screen frame 12-3 may be about 43 mm.
  • the non-overlapping width of the main screen 11-1 and the auxiliary screen 11-3 when the flexible screen 11 is in the expanded state may be 15 mm. among them,
  • Both ends of the metal strip 13-1 may be open, including a first open end 31-7 and a second open end 31-8. Compared to the first open end 31-7, the second open end 31-8 is closer to the first end 33 of the rotating shaft 13.
  • the second open end 31-8 of the metal strip 13-1 can be implemented by opening a gap 31-5 at a position close to the first end 33 of the rotating shaft 13.
  • the metal strip 13-1 may have two feeding points: a first feeding point 31-1 and a second feeding point 31-2.
  • the first feeding point 31-1 can be connected to the matching circuit of the diversity antenna.
  • the second feeding point 31-2 can be connected to the matching circuit of the GPS antenna.
  • a first ground point 31-3 (GND1) can be set between the two feed points to isolate the diversity antenna and the GPS antenna.
  • One end 32-3 of the metal strip 13-3 close to the rotating shaft 13 is open, and the other end 32-1 of the metal strip 13-3 is grounded (GND2).
  • the open end 32-5 of the metal strip 13-3 can be implemented by opening a gap 32-2 at a position close to the first end 33 of the rotating shaft 13.
  • the metal strip 13-3 may be provided with a first filter 32-4 near the open end 32-5.
  • being close means that the distance between the first connection point 32-3 of the first filter 32-4 and the open end 32-5 is smaller than the third preset distance value.
  • the working frequency band of the first filter 32-4 may include the radiation frequency band of the diversity antenna and the radiation frequency band of the GPS antenna, such as the low frequency frequency band and the GPS frequency band.
  • the first filter 32-4 may be a dual-frequency filter capable of working in the low frequency band and the GPS band.
  • the metal strip 13-1 can be coupled to the metal strip 13-3 to generate radiation in the radiation frequency band of the diversity antenna and the radiation frequency band of the GPS antenna (ie, low frequency band and GPS frequency band) , Can improve the shielding problem of the secondary screen 11-3, and improve the antenna performance of the metal strip 13-1.
  • the metal strip 13-3 can serve as a parasitic structure of the metal strip 13-1.
  • FIG. 5A-5B show the efficiency simulation curve of the antenna structure provided by this embodiment (the first filter 32-4 is added separately) when the flexible screen is in the folded state.
  • FIG. 5A compares the radiation efficiency of the antenna structure with or without the first filter 32-4 in the low frequency band (0.7GHz-0.96GHz) when the flexible screen is in the folded state. It can be seen that when the flexible screen is in the folded state, since the first filter 32-4 is provided on the metal strip 13-3 on the secondary screen 11-3, the antenna radiation efficiency in the low frequency band is increased by about 1.5dB.
  • Figure 5B compares the radiation efficiency of the antenna structure with or without the first filter 32-4 in the GPS frequency band (1.55GHz-1.65GHz) when the flexible screen is in the folded state. It can be seen that the flexible screen is in the folded state. At this time, since the first filter 32-4 is provided on the metal strip 13-3 on the secondary screen 11-3, the antenna radiation efficiency of the GPS frequency band is increased by about 0.5dB.
  • a second filter 31-6 can also be provided on the side of the metal strip 13-1 close to the first open end 31-7.
  • the second filter 31-6 may be arranged at the first feed point 31-1 (feed 1). That is, the second connection point 31-4 of the second filter 31-6 coincides with the first feeding point 31-1.
  • the second filter 31-6 can be band-passed to the ground in the radiation frequency band of the GPS antenna.
  • the quarter-wavelength mode of the radiator between the position 31-4 and the first open end 31-7 can also generate resonance in the GPS frequency band. In this way, the resonance of the radiation frequency band of the GPS antenna can be supplemented to improve the radiation performance of the GPS antenna.
  • FIG. 6 shows the efficiency simulation curve of the antenna structure provided by this embodiment (further adding the second filter 31-6) when the flexible screen is in the folded state. It can be seen that when the flexible screen is in the folded state, since the second filter 31-6 is provided on the metal strip 13-1 on the main screen 11-1, the antenna radiation efficiency of the GPS frequency band is increased by more than 0.5dB. By introducing the second filter 31-6, the isolation between the diversity antenna and the GPS antenna can be further improved, and the resonance energy of the GPS antenna can be made unaffected when the diversity status of the diversity antenna changes.
  • the second filter 31-6 may be included in the matching circuit of the diversity antenna.
  • the second connection point 31-4 of the second filter 31-6 and the first feeding point 31-1 may overlap.
  • the matching circuit and the feeding source can be placed on the PCB, and the metal strip 13-1 can be connected with the matching circuit and the feeding source on the PCB through structural design (such as metal shrapnel, etc.).
  • the matching circuit of the diversity antenna may also include a parallel variable capacitor and a series connected variable capacitor for frequency tuning.
  • the first filter 32-4 can be arranged on the near-ground side of the metal strip 13-3, that is, the connection point 32-3 of the first filter 32-4 and The distance between the second ground point 32-1 is smaller than the fourth preset distance. At this time, the distance between the connection point 32-3 of the first filter 32-4 and the second ground point 32-1 is longer than that of the first filter 32-1. The distance between the connection point 32-3 of 32-4 and the open end 32-5 (or the gap 32-2) is closer. In other words, the position of the first filter 32-4 on the metal strip 13-3 can have multiple choices, which is not limited in this application.
  • the second filter 31-6 can be arranged at other positions between the first feed point 31-1 (feed 1) and the first ground point 31-3. It is not limited to the first feeding point 31-1 (feeding 1).
  • the first antenna (such as the diversity antenna) may include the matching of the first feeding point 31-1 (feeding 1) and the first feeding point 31-1 (feeding 1).
  • the circuit and the following radiators the radiator from the first ground point 31-3 to the first open end 31-7, and the radiator from the first feed point 31-1 (feed 1) to the first open end 31-7.
  • the 1/4 wavelength mode of the radiator from the first ground point 31-3 to the first open end 31-7 can generate low-frequency resonance, and the first feed point 31-1 (feed 1) to the first open end 31
  • the 1/4 wavelength mode of the -7 radiator can generate mid-high frequency resonance, and the 3/4 wavelength mode of the radiator from the first ground point 31-3 to the first open end 31-7 can also generate resonance near 2.7 GHz. It can complement the LTE B7 resonance in the CA state.
  • the second antenna (such as a GPS antenna) may include a matching connection between the second feeding point 31-2 (feeding 2) and the second feeding point 31-2 (feeding 2).
  • the circuit and the following radiators the radiator from the first ground point 31-3 to the second open end 31-8, and the radiator from the second filter 31-4 (filter 2) to the second open end 31-8.
  • the 1/4 wavelength mode of the radiator from the first ground point 31-3 to the second open end 31-8 can generate GPS frequency resonance, and the radiation from the first ground point 31-3 to the second open end 31-8
  • the 3/4 wavelength mode of the body can generate a resonance in the 5 GHz frequency band
  • the radiator from the second filter 31-4 (filter 2) to the second open end 31-8 can generate a resonance near 1.65 GHz.
  • the shaft 13 connecting the connection point of the main screen frame 12-1 to the radiator of the slot 31-5 can also generate resonance in the 6 GHz frequency band.
  • the antenna structure provided in Embodiment 1 to Embodiment 3 may only be provided with the second filter 31-6 on the first metal strip 31-1, or only on the second metal strip 31
  • the first filter 32-4 is set on -3.
  • the second filter 31-6 is not provided on the first metal strip 31-1 and the first filter 32-4 is provided on the second metal strip 31-3. In this way, the antenna performance of the first metal strip 31-1 can also be improved from different dimensions.
  • FIG. 2B and FIG. 2C please refer to the related descriptions of FIG. 2B and FIG. 2C.
  • FIG. 9A-9B exemplarily show the antenna structure provided in the fourth embodiment.
  • FIG. 9A shows a simple schematic diagram of the antenna structure
  • FIG. 9B shows the structure of the antenna structure in an electronic device.
  • FIG. 9B also shows the architecture of the antenna structure provided in the foregoing embodiment in an electronic device. It is not limited to that shown in FIG. 9B, and the antenna structure provided in the fourth embodiment can also be independently applied to an electronic device.
  • the antenna structure may include: a third metal strip 51-1 and a fourth metal strip 51-3.
  • both ends of the third metal strip 51-1 are open, the third metal strip 51-1 is provided with a gap 55-1, and a third connection point 57 and a third ground point 56 are provided on one side of the gap 55-1.
  • a third feed point 53 and a fourth ground point 56-2 are provided on the other side of the slot 55-1.
  • the third connection point 57 is connected to the third filter.
  • Both ends of the fourth metal strip 51-3 are open, the fourth metal strip 51-3 is provided with a gap 55-5, and a fifth grounding point 56-3 is provided on one side of the gap 55-5.
  • a sixth ground point 56-4 and a seventh ground point 56-5 are provided on the other side of the
  • the third metal strip 51-1 may be disposed on the main screen frame 12-1 near the other end of the rotating shaft 13 (may be referred to as the second end 35).
  • the fourth metal strip 51-3 may be disposed on the secondary screen frame 12-3 close to the second end 35 of the rotating shaft 13.
  • the third metal strip 51-1 can generate resonance of 1710-2700 MHz and resonance of 3300-5000 MHz.
  • the 1/4 wavelength mode from the slot 55-1 to the fourth ground point 56-2 (GND6) can generate resonance at 1700-2200MHz
  • the slot 55-1 to the third ground point 56-1 (GND5) is 1/
  • the 4-wavelength mode can generate 2300-2700MHz resonance
  • the 1/4-wavelength mode from the slot 55-1 to the third connection point 57 (connected to filter 3) can generate 3300-4200MHz resonance
  • the 3/4 wavelength mode of 56-2 (GND6) can produce 4200-5000MHz resonance.
  • the third metal strip 51-1 can be coupled with the fourth metal strip 51-3 to excite the following three resonance modes: (1) The sixth ground point 56-4 (GND8) to the seventh The LOOP resonance mode of the radiator at the ground point 56-5 (GND9) can produce resonance around 3300MHz; (2) The 1/4-wavelength resonance mode of the radiator at the slot 55-5 to the sixth ground point 56-4 (GND8) Can produce resonance around 5000MHz; (3) The 1/4 wavelength resonance mode from the gap 55-5 to the fifth ground point 56-3 (GND7) can produce resonance around 2700MHz or around 5000MHz.
  • the above three resonance modes can improve the antenna performance of the third metal strip 51-1 when the flexible screen 11 is in the folded state.
  • FIG. 10A exemplarily shows the antenna structure provided in the fifth embodiment.
  • the fifth ground point 56-3 may not be provided on the fourth metal strip 51-3.
  • the third metal strip 51-1 can be coupled to the fourth metal strip 51-3 to excite the following two resonance modes: (1)
  • the sixth ground point 56-4 The LOOP resonance mode of the radiator from GND8) to the seventh ground point 56-5 (GND9) can produce resonance around 3300MHz; (2) 1 of the radiator from the gap 55-5 to the sixth ground point 56-4 (GND8)
  • the /4-wavelength resonance mode can produce resonance around 5000MHz.
  • FIG. 10B exemplarily shows the antenna structure provided in the sixth embodiment.
  • the sixth ground point 56-4 may not be provided on the fourth metal strip 51-3.
  • the third metal The strip 51-1 can be coupled with the fourth metal strip 51-3 to excite the following two resonance modes: (1) The 1/4 wavelength resonance mode of the radiator from the gap 55-5 to the sixth ground point 56-4 (GND8) Can produce resonance around 5000MHz; (2) The 1/4 wavelength resonance mode from the gap 55-5 to the fifth ground point 56-3 (GND7) can produce resonance around 2700MHz or around 5000MHz.
  • the wavelength in a certain wavelength mode of the antenna may refer to the wavelength of the signal radiated by the antenna.
  • the half-wavelength mode of a suspended metal antenna can generate resonance in the 1.575 GHz band, where the wavelength in the half-wavelength mode refers to the wavelength of the antenna radiating signals in the 1.575 GHz band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Support Of Aerials (AREA)
  • Telephone Set Structure (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Burglar Alarm Systems (AREA)
  • Details Of Aerials (AREA)

Abstract

一种天线装置,该天线装置可以适用具有柔性屏的电子设备,该柔性屏可以在转轴处弯折,该柔性屏包括主屏和副屏,主屏和副屏通过转轴相连接。该天线装置可包括在靠近转轴的一端的主屏边框上设置第一金属条,以及在靠近转轴的相同端的副屏边框上设置第二金属条。第一金属条可采用双馈设计实现为多天线。当柔性屏处于折叠态时,第一金属条可耦合第二金属条产生辐射,此时第二金属条可作为第一金属条的寄生天线。这样,可有效使用副屏边框上设置的第二金属条,提高主屏边框上设置的第一金属条的辐射效率,优化第一金属条在柔性屏处于折叠态时的天线性能,减小柔性屏处于折叠态时和柔性屏处于打开态时的天线性能的差距。

Description

天线装置及电子设备
本申请要求在2019年2月22日提交中国国家知识产权局、申请号为201910136437.0、发明名称为“天线装置及电子设备”的中国专利申请的优先权其全部内容通过引用结合在本申请中。
技术领域
本发明涉及天线技术领域,特别涉及应用在电子设备中的天线装置。
背景技术
随着移动通信技术的发展与智能型手机的普及,为了更好的用户体验、新颖的外观和功能,智能型手机的设计从大屏、全面屏、可绕式屏幕等演进到了可折叠式屏幕。这种演进也依赖于柔性屏技术的发展。智能型手机等电子设备的可折叠式屏幕为电子设备的功能设计带来了新的可能性,能够适用和覆盖更多的新的应用场景。同时,可折叠式屏幕也为电子设备的天线设计带来了新的挑战和新的可能性。
发明内容
本发明实施例提供了一种天线装置,基于电子设备的柔性屏架构,可有效使用副屏边框上设置的第二金属条,提高主屏边框上设置的第一金属条的辐射效率,优化第一金属条在柔性屏处于折叠态时的天线性能,减小柔性屏处于折叠态时和柔性屏处于打开态时的天线性能的差距。
第一方面,本申请提供了一种应用于电子设备的天线装置,该电子设备可包括:柔性屏、转轴和边框。其中,柔性屏可包括:主屏和副屏。转轴将主屏和副屏相连接。主屏的宽度和副屏的宽度(w2)可以相等,也可以不相等。电子设备的边框可包括主屏边框和副屏边框。本申请中,可以将主屏成为第一屏,可以将副屏称为第二屏。柔性屏可在转轴处被弯折。这里,被弯折可以包括柔性屏向外被弯折、柔性屏向内被弯折。
该天线装置可包括:第一金属条、第二金属条。第一金属条的两端开放,可具有第一开放端和第二开放端。第一金属条可具有靠近的第一开放端的第一馈电点和靠近第二开放端的第二馈电点,第一馈电点可连接第一天线(如分集天线)的匹配电路,第二馈电点可连接第二天线(如GPS天线)的匹配电路。在第一馈电点和第二馈电点之间,第一金属条上可设置有第一接地点。第二金属条的一端开放,另一端接地。第二金属条上可设置有第一连接点,第一连接点连接第一滤波器,第一滤波器的工作频段可包括第一天线的辐射频段(如低频频段)和第二天线的辐射频段(如GPS频段)。其中,第一金属条可设置于靠近转轴的第一端的第一屏的边框上;第二金属条可设置于靠近转轴的第一端的第二屏的边框上。在柔性屏处于折叠态时,第一金属条可耦合第二金属在第一天线的辐射频段产生辐射。这样可提高第一金属条在第一天线的辐射频段(如低频频段)以及在第二天线的辐射频段(如GPS频段)的天线性能。此时,第二金属条可作为第一金属条的寄生结构。
实施第一方面提供的天线装置,可有效使用副屏边框上设置的第二金属条,由于在副屏 边框上的第二金属条上设置了第一滤波器,在柔性屏处于折叠态时提高了主屏边框上设置的第一金属条的辐射效率,优化第一金属条在柔性屏处于折叠态时的天线性能,减小柔性屏处于折叠态时和柔性屏处于打开态时的天线性能的差距。
结合第一方面,在一些可选实施例中,还可以在第一金属条上靠近第一开放端的一侧设置第二滤波器。第二滤波器可以在第二天线的辐射频段(如GPS频段)呈现带通到地。第二滤波器的引入可以产生一边界条件:第一接地点到第二滤波器的第二连接点之间的辐射体两端封闭,两端均为电流强点。第二滤波器至第一开放端之间的辐射体的1/4波长模式也可产生第二天线的辐射频段的谐振。这样,可补充第二天线的辐射频段的谐振,以提高第二天线的辐射性能。而且,通过设置第二滤波器,可以进一步提高第一天线和第二天线之间的隔离度。
结合第一方面,在一些可选实施例中,第二滤波器可以设置在第一馈电点处,或者设置在第一馈电点和第一接地点之间接近第一馈电点的位置处。
结合第一方面,在一些可选实施例中,第一屏的边框可以为金属边框,此时第一屏的边框的外观呈现为金属外观,第一金属条可以由该金属边框构成。具体的,可以在该金属边框开设两个缝隙:第一缝隙和第二缝隙,这两个缝隙之间的一段金属边框可以作为第一金属条。这两个缝隙中的一个缝隙可开设在靠近转轴的第一端的位置处。这里,靠近是指该缝隙与转轴的距离小于第一预设距离(如2毫米)。
结合第一方面,在一些可选实施例中,第一屏的边框可包括第一边框部分和第二边框部分。其中,第一边框部分为金属的(金属外观),第二边框部分为非金属的(非金属外观)。第一边框部分的一端连接转轴的第一端,第一边框部分的另一端连接第二边框部分,该另一端是开放的。第一边框部分上靠近转轴的第一端的位置处可开设有缝隙。这里,可以将该缝隙称为第三缝隙,第三缝隙可以为前述第一缝隙。这里,靠近是指该缝隙与转轴的距离小于第一预设距离(如2毫米)。该缝隙和第一屏边框部分的另一端之间一端金属边框可以作为第一金属条。
结合第一方面,在一些可选实施例中,第一屏的边框可以为非金属边框(如塑料边框、玻璃边框等)。此时该主屏边框的外观呈现为非金属(如塑料、玻璃等)。第一金属条可以为粘贴于该非金属边框的内表面的金属条,还可以使用导电银浆印制在该非金属边框的内表面。
结合第一方面,在一些可选实施例中,第一屏的边框可以为金属边框,此时第一屏的边框的外观呈现为金属外观,第二金属条可以由该金属边框构成。具体的,可以在该金属边框上设置第二接地点,并且可以在该金属边框上靠近转轴的第一端的位置处开设缝隙。这里,靠近是指该缝隙与转轴的距离小于第二预设距离(如2毫米)。该缝隙至第二接地点之间的一段金属边框可作为第二金属条。这里,可以将该缝隙称为第四缝隙。
结合第一方面,在一些可选实施例中,第一屏的边框可以为非金属边框(如塑料边框、玻璃边框等),此时第一屏的边框的外观呈现为非金属外观。第二金属条可以为粘贴于该非金属边框的内表面的金属条,还可以使用导电银浆印制在该非金属边框的内表面。
结合第一方面,在一些可选实施例中,第一金属条的长度可以大于第二金属条的长度。
结合第一方面,在一些可选实施例中,第二滤波器可以包含于第一天线(如分集天线)的匹配电路,此时第二滤波器的第二连接点31-4和第一馈电点31-1可以重合。
结合第一方面,在一些可选实施例中,第一滤波器32-4的第一连接点32-3与开放端32-5之间的距离小于第三预设距离值。
结合第一方面,在一些可选实施例中,第一滤波器32-4的连接点32-3与第二接地点32-1之间的距离小于第四预设距离,此时第一滤波器32-4的连接点32-3与第二接地点32-1之间的距离比第一滤波器32-4的连接点32-3与开放端32-5(或缝隙32-2)之间的距离更近。也即是说,第一滤波器32-4在金属条13-3上的位置可以有多种选择,本申请对此不限定。
第二方面,本申请提供了一种电子设备,该电子设备可包括柔性屏、转轴、边框以及上述第一方面描述的天线装置。其中,柔性屏可包括第一屏和第二屏,第一屏和第二屏可通过转轴相连接;柔性屏在转轴处能够被折叠,柔性屏可具有折叠态和展开态;边框可包括第一屏的边框和第二屏的边框。另外,电子设备还可以包括印刷电路板PCB和后盖。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1A-图1C是本申请的一个实施例提供的电子设备的结构示意图;
图2A-图2D是本申请提供的几种天线装置的示意图;
图3A-图3C是本申请提供的天线结构在电子设备中的架构示意图;
图4A-图4C是本申请的一个实施例的提供的天线设计方案的示意图;
图5A-图5B是图4A-图4B所示的天线设计方案的一些仿真示意图;
图6是图4A-图4B所示的天线设计方案的另一个仿真示意图;
图7A-图7B是本申请的另一个实施例提供的天线设计方案的示意图;
图8A-图8B是本申请的再一个实施例的提供的天线设计方案的示意图;
图9A-图9B是本申请的再一个实例例的提供的天线设计方案的示意图;
图10A-图10B是本申请的再一些实例例的提供的天线设计方案的示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本申请提供的技术方案适用于采用以下一种或多种通信技术的电子设备:全球移动通讯(global system for mobile communication,GSM)技术、码分多址(code division multiple access,CDMA)通信技术、宽带码分多址(wideband code division multiple access,WCDMA)通信技术、通用封包无线服务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)通信技术、Wi-Fi通信技术、5G通信技术、毫米波(mmWave)通信技术、SUB-6G通信技术以及未来其他通信技术等。以下实施例不突出通信网络的需求,仅以频段高低说明天线的工作特性。本申请中,电子设备可以是手机、平板电脑、个人数码助理(personal digital assistant,PDA)等等电子设备。
图1A示例性示出了本申请提供的天线设计方案所基于的电子设备。如图1A所示,电子设备可包括:柔性屏11、转轴13和边框。其中,柔性屏11可包括:主屏11-1,以及一个或多个副屏11-3。为了简化附图,附图中只示出了一个副屏11-3。转轴13将主屏11-1和副屏11-3相连接。主屏11-1的宽度(w1)和副屏11-3的宽度(w2)可以相等,也可以不相等。 本申请中,可以将主屏成为第一屏,可以将副屏称为第二屏。电子设备的边框可包括主屏边框12-1和副屏边框12-3。主屏边框12-1可以包括三个主屏边框部分,其中,两个主屏边框部分可分别靠近转轴13的两端,另一个主屏边框部分可平行于转轴13。同样的,副屏边框12-3也可以包括三个副屏边框部分,其中,两个副屏边框部分可分别靠近转轴13的两端,另一个副屏边框部分可平行于转轴13。前面提及的边框可以是金属边框,也可以是非金属边框(如塑料边框、玻璃边框等)。
如图1B所示,柔性屏11可在转轴13处被弯折。这里,被弯折可以包括柔性屏11向外被弯折、柔性屏11向内被弯折。向外被弯折是指被弯折后柔性屏11呈现在外侧,电子设备的后盖呈现在内侧,柔性屏11中的显示内容对用户可视。向内被弯折是指被弯折后柔性屏11隐藏内侧,电子设备的后盖呈现在外侧,柔性屏11中的显示内容对用户不可视。柔性屏11具有两种模式:展开(open)态和折叠(folded)态。展开态可以是指主屏和副屏之间的夹角α超过第一角度(如120°)时的状态。折叠态可以是指主屏和副屏之间的夹角α小于第二角度(如15°)时的状态。其中,当柔性屏11处于展开态时,电子设备可如图1A示例性所示;当柔性屏11处于折叠态时,电子设备可如图1C示例性所示。
电子设备还可以包括未示出的印刷电路板(printed circuit board,PCB)、后盖。
基于图1A-图1C所示的电子设备,下面介绍本申请提供的天线设计方案。
本申请的主要设计思想可包括:在靠近转轴13的一端的主屏边框12-1上设置第一金属条,在靠近转轴13的相同端的副屏边框12-3上设置第二金属条。第一金属条可采用双馈设计实现为多天线,即后续内容中提及的第一天线(如分集天线)和第二天线(如GPS天线)。当柔性屏11处于折叠态时,第一金属条可耦合第二金属条产生辐射,此时第二金属条可作为第一金属条的寄生天线。这样,可有效使用副屏边框12-3上设置的第二金属条,提高主屏边框12-1上设置的第一金属条的辐射效率,优化第一金属条在柔性屏11处于折叠态时的天线性能,减小柔性屏11处于折叠态时和柔性屏11处于打开态时的天线性能的差距。
首先,结合图2A-图2D概述本申请提供的天线设计方案。
图2A简化示出了第一金属条采用双馈设计所实现的多天线。如图2A所示,第一金属条的两端可以开放,包括第一开放端和第二开放端。相较于第一开放端,第二开放端更靠近转轴13。第一金属条可具有两个馈电点:馈电1和馈电2。馈电1可称为第一馈电点,馈电2可称为第二馈电点。第一馈电点可以为分集天线馈电点,连接分集天线匹配电路。第二馈电点可以为GPS天线的馈电点,连接GPS天线匹配电路。这两个馈电点之间可设置有接地点(GND1),该接地点接地,以隔离分集天线和GPS天线。该接地点(GND1)可以称为第一接地点。
其中,分集天线的匹配电路可包括一个并联电容与一个串连电容,以实现频段切换。分集天线的低频(如690MHz-960MHz)信号可以由左手模式产生、中高频(如17000MHz-2700MHz)信号可以为第一馈电点(馈电1)到第一开放端的辐射体的1/4波长模式产生。另外,藉由匹配电路中可调器件调整谐振频率,第一接地点(GND1)至第一开放端的辐射体的3/4波长模式也可产生2.7GHz附近的信号,可补充载波聚合态(carrier aggregation,CA)态的LTE B7谐振。LTE B7频段的范围为:上行2500-2570MHz,下行2620-2690MHz。
其中,GPS天线的辐射频段(1575 MHz附近的GPS频段)的信号可以由第二馈电点(馈电2)至第二开放端的辐射体的1/4波长模式产生。另,GPS频段的3倍频为5GHz频段,故第二馈电点(馈电2)至第二开放端的辐射体可同时辐射GPS频段的信号和5GHz频段的信号。
可以理解的是,当柔性屏11处于折叠态时,由于受到副屏11-3的遮挡,因此设置于主屏边框上的第一金属条的天线性能会降低,明显差于柔性屏11处于展开态时第一金属条的天线性能。
为了提高设置于主屏边框上的第一金属条的天线性能,本申请提供天线设计方案充分利用了设置于副屏边框上的第二金属条。图2B简化示出了第一金属条和第二金属条构成的天线结构。第一金属条的说明可参考图2A的相关描述。如图2B所示,第二金属条的一端封闭(接地GND2),靠近转轴13的一端开放。第二金属条在靠近开放端处可设置有滤波器1。滤波器1的工作频段可以包括:分集天线的辐射频段和GPS天线的辐射频段,即滤波器1可以是能够同时工作在低频频段和GPS频段的双频滤波器。具体实现时,滤波器1可以高阶滤波器,例如三阶滤波器。当柔性屏11处于折叠态时,第一金属条可耦合第二金属条在低频频段和GPS频段产生辐射,可提高第一金属条在低频频段和GPS频段的天线性能。此时,第二金属条可作为第一金属条的寄生结构。
可以理解的是,由于转轴13的存在,第一金属条靠近转轴的一侧相对于另一侧较为封闭。为了提高第一金属条靠近转轴的一侧的天线性能,例如提高该侧天线在GPS频段的天线性能,如图2C所示,还可以在第一金属条上靠近第一开放端的一侧设置滤波器2。滤波器2可以在GPS频段呈现带通到地。滤波器2的引入可以产生一边界条件:第一接地点(GND1)到滤波器2之间的辐射体两端封闭,两端均为电流强点。滤波器2至第一开放端之间的辐射体的1/4波长模式也可产生GPS频段的谐振。这样,可补充GPS频段的谐振,以提高GPS天线的辐射性能。而且,通过设置滤波器2,可以进一步提高分集天线和GPS天线之间的隔离度,且可以使得GPS天线的谐振能在分集天线的分集状态改变时不受影响。
如图2D所示,第二金属条在靠近开放端处可设置有滤波器1,同时第一金属条上靠近第一开放端的一侧可设置滤波器2。这样,可以更加显著的提高主屏边框12-1上的第一金属条的天线性能,避免副屏11-3的遮挡以及转轴13的遮挡,而且还可以提高第一金属条上分集天线和GPS天线的隔离度,避免分集状态改变对GPS谐振的影响。
本申请中,可以将第一馈电点(馈电1)所馈电的天线称为第一天线。不限于分集天线,第一天线还可以包括其他天线,例如2.4GHz Wi-Fi天线。本申请中,可以将第二馈电点(馈电2)所馈电的天线称为第二天线。不限于GPS天线,第二馈电点(馈电2)也可以连接其他天线的匹配电路,例如LTE B3、LTE B5天线等。
其次,结合图3A-图3C概述本申请提供的天线结构在电子设备中的架构。
如图3A-图3C所示,第一金属条可为金属条13-1,第二金属条可为金属条13-3。其中,图3A示出了金属条13-1和金属条13-3在柔性屏11处于展开态时构成的天线结构,图3B-图3C示出了金属条13-1和金属条13-3在柔性屏11处于折叠态时构成的天线结构。
其中,金属条13-1可以设置于靠近转轴13的一端的主屏边框12-1上。为方便后续引用,可以将该转轴13的一端称为转轴13的第一端。金属条13-1的具体实现可包括以下几种方式:
方式1,主屏边框12-1可以为金属边框,此时主屏边框12-1的外观呈现为金属外观,金属条13-1可以由该金属边框构成。具体的,可以在该金属边框开设两个缝隙,例如在位置a附近处开设的第一缝隙和在位置b附近处开设的第二缝隙,这两个缝隙之间的一段金属边框可以作为金属条13-1。其中一个缝隙(如图3A中缝隙1)可开设在靠近转轴13的第一端的位置处。这里,靠近是指该缝隙(如缝隙1)与转轴13的距离小于第一预设距离(如2毫米)。
方式2,主屏边框12-1可包括第一边框部分(如位置a至位置b之间的主屏边框部分)和第二边框部分(如位置b至位置c或者位置b至位置d之间的主屏边框部分)。其中,第一边框部分为金属的(金属外观),第二边框部分为非金属的(非金属外观)。第一边框部分的一端连接转轴13的第一端,第一边框部分的另一端连接第二边框部分,该另一端是开放的。第一边框部分上靠近转轴13的第一端的位置处可开设有缝隙。这里,可以将该缝隙称为第三缝隙,第三缝隙可以为前述第一缝隙。这里,靠近是指该缝隙(如缝隙1)与转轴13的距离小于第一预设距离(如2毫米)。该缝隙和第一屏边框部分的另一端之间一端金属边框可以作为金属条13-1。
方式3,主屏边框12-1可以为非金属边框(如塑料边框、玻璃边框等)。此时该主屏边框的外观呈现为非金属(如塑料、玻璃等)。金属条13-1可以为粘贴于该非金属边框的内表面的金属条,还可以使用导电银浆印制在该非金属边框的内表面。
其中,金属条13-3可以设置于靠近转轴13的第一端的副屏边框12-3上。金属条13-3的具体实现可包括以下几种方式:
方式1,副屏边框12-3可以为金属边框,此时副屏边框12-3的外观呈现为金属外观,金属条13-3可以由该金属边框构成。具体的,可以在该金属边框上设置第二接地点(GND2),并且可以在该金属边框上靠近转轴13的第一端的位置处开设缝隙(缝隙2)。这里,靠近是指该缝隙(如缝隙2)与转轴13的距离小于第二预设距离(如2毫米)。该缝隙(缝隙2)至第二接地点(GND2)之间的一段金属边框可作为金属条13-3。这里,可以将该缝隙称为第四缝隙。
方式2,副屏边框12-3可以为非金属边框(如塑料边框、玻璃边框等),此时副屏边框12-3的外观呈现为非金属外观。金属条13-3可以为粘贴于该非金属边框的内表面的金属条,还可以使用导电银浆印制在该非金属边框的内表面。
如图3A-图3C所示,金属条13-1可具有两个馈电点:馈电1和馈电2。馈电1可以为分集天线馈电点,馈电2可以为GPS天线的馈电点。这两个馈电点之间可设置有接地点(GND1)。金属条13-3在靠近开放端(缝隙2)处可设置有滤波器1(图3A-图3B中未示出),以提高金属条13-1的天线性能,改善被副屏11-3遮挡的问题。金属条13-1上远离转轴13的一侧可设置滤波器2(图3A-图3B中未示出),以进一步提高金属条13-1靠近转轴13的一侧的天线性能,改善被转轴13遮挡的问题。具体可参考图2A-图2D的相关内容,这里不再赘述。
金属条13-1的长度可以大于或等于或小于金属条13-3的长度。当金属条13-1的长度大于金属条13-3的长度时,金属条13-1上远离转轴13的一侧的天线性能较好。因为,当柔性屏处于折叠态时,金属条13-1上远离转轴13的一侧的开放条件良好。
下面将详细说明本申请的几个实施例提供的天线结构。
实施例一
图4A-图4C示例性示出了实施例一提供的天线结构。其中,图4A示出了柔性屏11处于展开态时构成的天线结构,图4B-图4C示出了在柔性屏11处于折叠态时构成的天线结构。如图4A-图4C所示,该天线结构可以包括:设置于主屏边框12-1上的金属条13-1和设置于副屏边框12-3上的金属条13-3。本实施例提供的天线结构所基于的电子设备的尺寸可以为160(mm)x 75(mm)x 10.5(mm)。这里,160(mm)是指柔性屏11处于展开态时的宽度,如图4A中的W。75(mm)柔性屏11的长度,如图4A中的L。10.5(mm)是指柔性屏11处于折叠态时的厚度,如图4C中的H。主屏边框12-1上的金属条13-1的长度可以约为58.5mm,副屏边框12-3上的金属条13-3的长度可以约为43mm。主屏11-1与副屏11-3在柔性屏11处于展开态时的无重叠宽度可以为15mm。其中,
金属条13-1的两端可以开放,包括第一开放端31-7和第二开放端31-8。相较于第一开放端31-7,第二开放端31-8更靠近转轴13的第一端33。当主屏边框12-1是金属边框时,金属条13-1的第二开放端31-8可以通过在靠近转轴13的第一端33的位置处开设缝隙31-5来实现。
金属条13-1可具有两个馈电点:第一馈电点31-1和第二馈电点31-2。第一馈电点31-1可以连接分集天线的匹配电路。第二馈电点31-2可以连接GPS天线的匹配电路。这两个馈电点之间可设置有第一接地点31-3(GND1),以隔离分集天线和GPS天线。
金属条13-3的靠近转轴13的一端32-3开放,金属条13-3的另一端32-1接地(GND2)。当副屏边框12-3是金属边框时,金属条13-3的开放端32-5可以通过在靠近转轴13的第一端33的位置处开设缝隙32-2来实现。
金属条13-3在靠近开放端32-5处可设置有第一滤波器32-4。这里,靠近是指第一滤波器32-4的第一连接点32-3与开放端32-5之间的距离小于第三预设距离值。第一滤波器32-4的工作频段可包括分集天线的辐射频段和GPS天线的辐射频段,如低频频段和GPS频段。第一滤波器32-4可以是能够工作在低频频段和GPS频段的双频滤波器。当柔性屏11处于折叠态(如图4B所示)时,金属条13-1可耦合金属条13-3在分集天线的辐射频段和GPS天线的辐射频段(即低频频段和GPS频段)产生辐射,可改善副屏11-3的遮挡问题,提高金属条13-1的天线性能。此时,金属条13-3可作为金属条13-1的寄生结构。
图5A-图5B示出了本实施例提供的天线结构(单独加入第一滤波器32-4)在柔性屏处于折叠态时的效率仿真曲线。其中,图5A对比了在柔性屏处于折叠态时有无第一滤波器32-4的天线结构在低频频段(0.7GHz-0.96GHz)的辐射效率。可以看出,在柔性屏处于折叠态时,由于在副屏11-3上的金属条13-3上设置了第一滤波器32-4,低频频段的天线辐射效率提升了约1.5dB。其中,图5B对比了在柔性屏处于折叠态时有无第一滤波器32-4的天线结构在GPS频段((1.55GHz-1.65GHz)的辐射效率。可以看出,在柔性屏处于折叠态时,由于在副屏11-3上的金属条13-3上设置了第一滤波器32-4,GPS频段的天线辐射效率提升了约0.5dB。
另外,还可以在金属条13-1上靠近第一开放端31-7的一侧设置第二滤波器31-6。具体的,第二滤波器31-6可以设置在第一馈电点31-1(馈电1)处。即第二滤波器31-6的第二连接点31-4与第一馈电点31-1重合。第二滤波器31-6可以在GPS天线的辐射频段呈现带通到地。位置31-4到第一开放端31-7之间的辐射体的1/4波长模式也可产生GPS频段的谐振。这样,可补充GPS天线的辐射频段的谐振,以提高GPS天线的辐射性能。图6示出了本实 施例提供的天线结构(进一步加入第二滤波器31-6)在柔性屏处于折叠态时的效率仿真曲线。可以看出,在柔性屏处于折叠态时,由于在主屏11-1上的金属条13-1上设置了第二滤波器31-6,GPS频段的天线辐射效率提升了0.5dB以上。通过引入第二滤波器31-6,还可以进一步提高分集天线和GPS天线之间的隔离度,且可以使得GPS天线的谐振能在分集天线的分集状态改变时不受影响。
在实施例一中,第二滤波器31-6可以包含于分集天线的匹配电路,此时第二滤波器31-6的第二连接点31-4和第一馈电点31-1可以重合。匹配电路与馈入源可以放置于PCB上,透过结构设计(如金属弹片等)可实现金属条13-1与PCB上匹配电路、馈入源连接。分集天线的匹配电路除第二滤波器31-6外,还可以包括一个并联可变电容与一个串连的可变电容,以进行频率调谐。
实施例二
图7A-图7B示例性示出了实施例二提供的天线结构。和实施例一提供的天线结构不同的是,在第一滤波器32-4可以设置在金属条13-3上的近地一侧,即第一滤波器32-4的连接点32-3与第二接地点32-1之间的距离小于第四预设距离,此时第一滤波器32-4的连接点32-3与第二接地点32-1之间的距离比第一滤波器32-4的连接点32-3与开放端32-5(或缝隙32-2)之间的距离更近。也即是说,第一滤波器32-4在金属条13-3上的位置可以有多种选择,本申请对此不限定。
实施例三
图8A-图8B示例性示出了实施例三提供的天线结构。和实施例一提供的天线结构不同的是,第二滤波器31-6可以设置在第一馈电点31-1(馈电1)和第一接地点31-3之间的其他位置处,不限于第一馈电点31-1(馈电1)处。
在上述实施例一至实施例三中,第一天线(如分集天线)可包括第一馈电点31-1(馈电1)、第一馈电点31-1(馈电1)连接的匹配电路以及以下辐射体:第一接地点31-3到第一开放端31-7的辐射体、第一馈电点31-1(馈电1)到第一开放端31-7的辐射体。其中,第一接地点31-3到第一开放端31-7的辐射体的1/4波长模式可产生低频谐振,第一馈电点31-1(馈电1)到第一开放端31-7的辐射体的1/4波长模式可产生中高频谐振,第一接地点31-3到第一开放端31-7的辐射体的3/4波长模式也可产生2.7GHz附近的谐振,可补充CA态的LTE B7谐振。
在上述实施例一至实施例三中,第二天线(如GPS天线)可包括第二馈电点31-2(馈电2)、第二馈电点31-2(馈电2)连接的匹配电路以及以下辐射体:第一接地点31-3到第二开放端31-8的辐射体、第二滤波器31-4(滤波器2)到第二开放端31-8的辐射体。其中,第一接地点31-3到第二开放端31-8的辐射体的1/4波长模式可产生GPS频段的谐振,第一接地点31-3到第二开放端31-8的辐射体的3/4波长模式可产生5GHz频段的谐振,第二滤波器31-4(滤波器2)到第二开放端31-8的辐射体可产生1.65GHz附近的谐振。另外,当第二天线在电子设备中的设计如图4A所示时,转轴13连接主屏边框12-1的连接点到缝隙31-5的辐射体还可产生6GHz频段的谐振。
不限于实施例一至实施例三提供的天线结构,另一些实施例提供的天线结构可以仅在第 一金属条31-1上设置了第二滤波器31-6,或者仅在第二金属条31-3上设置了第一滤波器32-4。而没有既在第一金属条31-1上设置第二滤波器31-6,又在第二金属条31-3上设置第一滤波器32-4。这样,也可以从不同维度来改善第一金属条31-1的天线性能,具体可参考图2B、图2C的相关描述。
实施例四
图9A-图9B示例性示出了实施例四提供的天线结构。其中,图9A示出了该天线结构的简单示意图,图9B示出了该天线结构在电子设备中架构。图9B也示出了前述实施例提供的天线结构在电子设备中的架构。不限于图9B所示,实施例四提供的天线结构也可以单独应用在电子设备中。
如图9A-图9B所示,该天线结构可包括:第三金属条51-1和第四金属条51-3。其中,第三金属条51-1的两端开放,第三金属条51-1上开设有缝隙55-1,在缝隙55-1的一侧设置有第三连接点57、第三接地点56-1,在缝隙55-1的另一侧设置有第三馈电点53、第四接地点56-2。其中,第三连接点57连接第三滤波器。第四金属条51-3的两端开放,第四金属条51-3上开设有缝隙55-5,在缝隙55-5的一侧设置有第五接地点56-3,在缝隙55-5的另一侧设置有第六接地点56-4、第七接地点56-5。
其中,第三金属条51-1可以设置于靠近转轴13的另一端(可以称为第二端35)的主屏边框12-1上。第四金属条51-3可以设置于靠近转轴13的第二端35的副屏边框12-3上。
通过在第三馈电点53处馈电,第三金属条51-1可以产生1710-2700MHz的谐振和3300-5000MHz的谐振。其中,缝隙55-1到第四接地点56-2(GND6)的1/4波长模式可产生在1700-2200MHz的谐振,缝隙55-1到第三接地点56-1(GND5)的1/4波长模式可产生2300-2700MHz的谐振,缝隙55-1到第三连接点57(连接滤波器3)的1/4波长模式可产生3300-4200MHz的谐振,缝隙55-1到第四接地点56-2(GND6)的3/4波长模式可产生4200-5000MHz的谐振。当柔性屏11处于折叠态时,第三金属条51-1可以耦合第四金属条51-3,激励出以下3个谐振模式:(1)第六接地点56-4(GND8)到第七接地点56-5(GND9)的辐射体的LOOP谐振模式可产生3300MHz附近的谐振;(2)缝隙55-5到第六接地点56-4(GND8)的辐射体的1/4波长谐振模式可产生5000MHz附近的谐振;(3)缝隙55-5到第五接地点56-3(GND7)的1/4波长谐振模式可产生2700MHz附近的谐振或者5000MHz附近的谐振。通过以上3个谐振模式可提升第三金属条51-1在柔性屏11处于折叠态时的天线性能。
实施例五
图10A示例性示出了实施例五提供的天线结构。和实施例四提供的天线结构不同的是,第四金属条51-3上可以不设置第五接地点56-3(GND7)。本实施例中,当柔性屏11处于折叠态时,第三金属条51-1可以耦合第四金属条51-3,激励出以下2个谐振模式:(1)第六接地点56-4(GND8)到第七接地点56-5(GND9)的辐射体的LOOP谐振模式可产生3300MHz附近的谐振;(2)缝隙55-5到第六接地点56-4(GND8)的辐射体的1/4波长谐振模式可产生5000MHz附近的谐振。
实施例六
图10B示例性示出了实施例六提供的天线结构。和实施例四提供的天线结构不同的是,第四金属条51-3上可以不设置第六接地点56-4(GND8。本实施例中,当柔性屏11处于折叠态时,第三金属条51-1可以耦合第四金属条51-3,激励出以下2个谐振模式:(1)缝隙55-5到第六接地点56-4(GND8)的辐射体的1/4波长谐振模式可产生5000MHz附近的谐振;(2)缝隙55-5到第五接地点56-3(GND7)的1/4波长谐振模式可产生2700MHz附近的谐振或者5000MHz附近的谐振。
本申请中,天线的某种波长模式(如二分之一波长模式等)中的波长可以是指该天线辐射的信号的波长。例如,悬浮金属天线的二分之一波长模式可产生1.575GHz频段的谐振,其中二分之一波长模式中的波长是指天线辐射1.575GHz频段的信号的波长。应理解的是,辐射信号在空气中的波长可以如下计算:波长=光速/频率,其中频率为辐射信号的频率。辐射信号在介质中的波长可以如下计算:波长=(光速/√)/频率,其中,ε为该介质的相对介电常数,频率为辐射信号的频率。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种应用于电子设备的天线装置,其特征在于,所述电子设备包括:柔性屏、转轴和边框;所述柔性屏包括第一屏和第二屏,所述第一屏和所述第二屏通过所述转轴相连接;所述柔性屏在所述转轴处能够被折叠;所述边框包括第一屏的边框和第二屏的边框;
    所述天线装置包括:第一金属条、第二金属条;所述第一金属条的两端开放,具有第一开放端和第二开放端;所述第一金属条具有靠近的第一开放端的第一馈电点和靠近第二开放端的第二馈电点,所述第一馈电点连接第一天线的匹配电路,所述第二馈电点连接第二天线的匹配电路;在所述第一馈电点和第二馈电点之间,所述第一金属条上设置有第一接地点;所述第二金属条的一端开放,另一端接地;所述第二金属条上设置有第一连接点,所述第一连接点连接第一滤波器,所述第一滤波器的工作频段包括所述第一天线的辐射频段和所述第二天线的辐射频段;
    其中,所述第一金属条设置于靠近所述转轴的第一端的所述第一屏的边框上;所述第二金属条设置于靠近所述转轴的第一端的所述第二屏的边框上。
  2. 如权利要求1所述的天线装置,其特征在于,所述第一屏的边框为金属边框;所述第一屏的边框上开设有第一缝隙和第二缝隙,所述第一缝隙和所述第二缝隙之间的一段金属边框构成所述第一金属条;所述两个缝隙中的一个缝隙与所述转轴的距离小于第一预设距离。
  3. 如权利要求1所述的天线装置,其特征在于,所述第一屏的边框包括第一边框部分和第二边框部分,所述第一边框部分为金属的,所述第二边框部分为非金属的;所述第一边框部分的一端连接所述转轴的所述第一端,所述第一边框部分的另一端连接所述第二边框部分;所述第一边框部分上开设有第三缝隙,所述第三缝隙和所述第一屏边框部分的另一端之间的金属边框构成所述第一金属条。
  4. 如权利要求1所述的天线装置,其特征在于,所述第一屏的边框为非金属边框;所述第一金属条为设置于所述第一屏的边框的内表面的金属条。
  5. 如权利要求1-4中任一项所述的天线装置,其特征在于,所述第二屏的边框为金属边框;所述第二屏的边框上设置有第二接地点,且开设有第四缝隙,所述第四缝隙与所述转轴的所述第一端之间的距离小于第二预设距离,所述第四缝隙与所述第二接地点之间的一段金属边框构成所述第二金属条。
  6. 如权利要求1-4中任一项所述的天线装置,其特征在于,所述第二屏的边框为非金属边框;所述第一金属条为设置于所述第二屏的边框的内表面的金属条。
  7. 如权利要求1-6中任一项所述的天线装置,其特征在于,连接所述第一滤波器的所述第一连接点与所述第二金属条的开放端之间的距离小于第三预设距离值。
  8. 如权利要求1-6中任一项所述所述的天线装置,其特征在于,连接所述第一滤波器的 所述第一连接点与所述第二金属条的接地端之间的距离小于第四预设距离值。
  9. 如权利要求1-8中任一项所述的天线装置,其特征在于,所述第一金属条上设置有第二连接点,所述第二连接点连接第二滤波器。
  10. 如权利要求9所述的天线装置,其特征在于,连接所述第二滤波器的所述第二连接点与所述第一馈电点重合。
  11. 如权利要求9或10所述的天线装置,其特征在于,所述第二滤波器包含于所述第一天线的匹配电路。
  12. 如权利要求1-11中任一项所述的天线装置,其特征在于,所述第一天线包括分集天线。
  13. 如权利要求1-12中任一项所述的天线装置,其特征在于,所述第二天线包括GPS天线。
  14. 一种电子设备,其特征在于,包括柔性屏、转轴、边框以及如权利要求1至13中任意一项所述的天线装置;其中,所述柔性屏包括第一屏和第二屏,所述第一屏和所述第二屏通过所述转轴相连接;所述柔性屏在所述转轴处能够被折叠;所述边框包括第一屏的边框和第二屏的边框。
PCT/CN2020/074486 2019-02-22 2020-02-07 天线装置及电子设备 WO2020168926A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US17/432,826 US11888239B2 (en) 2019-02-22 2020-02-07 Antenna apparatus and electronic device
KR1020217029920A KR102569091B1 (ko) 2019-02-22 2020-02-07 안테나 장치 및 전자 디바이스
CN202080013234.3A CN113454843B (zh) 2019-02-22 2020-02-07 天线装置及电子设备
AU2020224880A AU2020224880B2 (en) 2019-02-22 2020-02-07 Antenna apparatus and electronic device
CN202211596046.5A CN115832679A (zh) 2019-02-22 2020-02-07 天线装置及电子设备
EP20759996.0A EP3920327A4 (en) 2019-02-22 2020-02-07 AERIAL DEVICE AND ELECTRONIC DEVICE
JP2021548617A JP7298805B2 (ja) 2019-02-22 2020-02-07 アンテナ装置および電子デバイス
US18/538,416 US20240113431A1 (en) 2019-02-22 2023-12-13 Antenna Apparatus and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910136437.0 2019-02-22
CN201910136437.0A CN111613873B (zh) 2019-02-22 2019-02-22 天线装置及电子设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/432,826 A-371-Of-International US11888239B2 (en) 2019-02-22 2020-02-07 Antenna apparatus and electronic device
US18/538,416 Continuation US20240113431A1 (en) 2019-02-22 2023-12-13 Antenna Apparatus and Electronic Device

Publications (1)

Publication Number Publication Date
WO2020168926A1 true WO2020168926A1 (zh) 2020-08-27

Family

ID=72143671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074486 WO2020168926A1 (zh) 2019-02-22 2020-02-07 天线装置及电子设备

Country Status (7)

Country Link
US (2) US11888239B2 (zh)
EP (1) EP3920327A4 (zh)
JP (1) JP7298805B2 (zh)
KR (1) KR102569091B1 (zh)
CN (4) CN111613873B (zh)
AU (1) AU2020224880B2 (zh)
WO (1) WO2020168926A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018519A (zh) * 2020-08-31 2020-12-01 维沃移动通信有限公司 一种天线结构及电子设备
CN112599962A (zh) * 2020-12-28 2021-04-02 维沃移动通信有限公司 电子设备
WO2022271321A1 (en) * 2021-06-23 2022-12-29 Microsoft Technology Licensing, Llc Parasitic antenna coupling in a physically configurable communication device
JP7289899B1 (ja) 2021-12-08 2023-06-12 レノボ・シンガポール・プライベート・リミテッド 電子機器

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824756B (zh) * 2019-03-15 2023-07-07 华为技术有限公司 一种可折叠终端设备
KR20210054262A (ko) * 2019-11-05 2021-05-13 삼성전자주식회사 안테나 구조체 및 이를 포함하는 전자 장치
CN114122710A (zh) * 2020-08-28 2022-03-01 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的电子设备
CN114243265B (zh) * 2020-09-09 2024-05-07 北京小米移动软件有限公司 一种天线结构及通信设备
CN114256593A (zh) * 2020-09-22 2022-03-29 Oppo广东移动通信有限公司 电子设备及电子设备控制方法
CN112242854B (zh) * 2020-10-19 2022-05-03 维沃移动通信有限公司 电子设备、电子设备的控制方法及装置
CN114597630A (zh) * 2020-12-03 2022-06-07 华为技术有限公司 可折叠电子设备
CN114614237A (zh) * 2020-12-09 2022-06-10 华为技术有限公司 可折叠电子设备
CN112736404B (zh) * 2020-12-24 2023-12-08 维沃移动通信有限公司 电子设备
CN114696093A (zh) * 2020-12-30 2022-07-01 华为技术有限公司 天线装置及电子设备
CN112952345B (zh) * 2021-01-27 2023-05-26 维沃移动通信有限公司 电子设备
CN112993528B (zh) * 2021-02-23 2023-05-23 维沃移动通信有限公司 电子设备
CN116231273A (zh) * 2021-12-06 2023-06-06 Oppo广东移动通信有限公司 电子设备
CN116345145A (zh) * 2021-12-22 2023-06-27 荣耀终端有限公司 可折叠电子设备及其天线系统
CN114583443A (zh) * 2022-04-11 2022-06-03 维沃移动通信有限公司 折叠设备
CN114845497A (zh) * 2022-05-09 2022-08-02 Oppo广东移动通信有限公司 电子设备
CN115296013B (zh) * 2022-08-04 2023-08-04 荣耀终端有限公司 一种天线组件和电子设备
CN115343856A (zh) * 2022-09-01 2022-11-15 维沃移动通信有限公司 智能眼镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107465433A (zh) * 2017-08-31 2017-12-12 珠海格力电器股份有限公司 一种可折叠移动终端
CN108292796A (zh) * 2015-12-07 2018-07-17 三星电子株式会社 包括天线的电子设备
US20180332152A1 (en) * 2013-08-23 2018-11-15 Rohm Co., Ltd. Mobile telephone
CN108879072A (zh) * 2018-07-10 2018-11-23 Oppo广东移动通信有限公司 电子设备
CN109361062A (zh) * 2018-11-12 2019-02-19 维沃移动通信有限公司 移动终端

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598267B2 (ja) 2000-12-26 2010-12-15 レノボ シンガポール プライヴェート リミテッド 伝送装置、コンピュータシステムおよび開閉構造体
US8060167B2 (en) * 2002-07-19 2011-11-15 Panasonic Corporation Portable wireless machine
DE602004012377T2 (de) 2003-09-18 2009-03-12 Sony Ericsson Mobile Communications Japan, Inc. Endgerät für eine mobile Kommunikation
JP2006115419A (ja) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd 折畳式携帯無線機
CN102800931A (zh) * 2012-08-23 2012-11-28 广东欧珀移动通信有限公司 一种移动通信终端天线装置
US9203463B2 (en) 2013-12-13 2015-12-01 Google Technology Holdings LLC Mobile device with antenna and capacitance sensing system with slotted metal bezel
WO2016108439A1 (en) * 2014-12-29 2016-07-07 Samsung Electronics Co., Ltd. Foldable device and method of controlling the same
US10310551B2 (en) * 2015-04-09 2019-06-04 Samsung Electronics Co., Ltd. Foldable device
KR102518499B1 (ko) * 2016-04-22 2023-04-05 삼성전자주식회사 안테나 및 이를 포함하는 전자 장치
RU2619930C1 (ru) 2016-07-08 2017-05-22 Игорь Валентинович Исиченко Способ очистки углеводородных сред от сероводорода и меркаптанов
AU2016429569B2 (en) 2016-11-17 2020-09-10 Huawei Technologies Co., Ltd. Communications terminal
US10015897B1 (en) 2017-06-21 2018-07-03 Dell Products L.P. Flexible information handling system display sliding frame
CN109167154B (zh) * 2018-08-29 2020-06-16 Oppo广东移动通信有限公司 电子设备
CN109167151B (zh) 2018-08-29 2021-02-09 Oppo广东移动通信有限公司 电子设备
CN109167153B (zh) * 2018-08-29 2021-03-02 Oppo广东移动通信有限公司 电子设备、天线辐射体控制方法及存储介质
CN109216876B (zh) * 2018-08-29 2021-03-23 Oppo广东移动通信有限公司 电子设备
CN111384581B (zh) * 2018-12-29 2021-09-21 Oppo广东移动通信有限公司 电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180332152A1 (en) * 2013-08-23 2018-11-15 Rohm Co., Ltd. Mobile telephone
CN108292796A (zh) * 2015-12-07 2018-07-17 三星电子株式会社 包括天线的电子设备
CN107465433A (zh) * 2017-08-31 2017-12-12 珠海格力电器股份有限公司 一种可折叠移动终端
CN108879072A (zh) * 2018-07-10 2018-11-23 Oppo广东移动通信有限公司 电子设备
CN109361062A (zh) * 2018-11-12 2019-02-19 维沃移动通信有限公司 移动终端

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018519A (zh) * 2020-08-31 2020-12-01 维沃移动通信有限公司 一种天线结构及电子设备
CN112599962A (zh) * 2020-12-28 2021-04-02 维沃移动通信有限公司 电子设备
CN112599962B (zh) * 2020-12-28 2023-05-26 维沃移动通信有限公司 电子设备
WO2022271321A1 (en) * 2021-06-23 2022-12-29 Microsoft Technology Licensing, Llc Parasitic antenna coupling in a physically configurable communication device
JP7289899B1 (ja) 2021-12-08 2023-06-12 レノボ・シンガポール・プライベート・リミテッド 電子機器
JP2023084903A (ja) * 2021-12-08 2023-06-20 レノボ・シンガポール・プライベート・リミテッド 電子機器

Also Published As

Publication number Publication date
CN115832679A (zh) 2023-03-21
US20240113431A1 (en) 2024-04-04
US20220123469A1 (en) 2022-04-21
KR102569091B1 (ko) 2023-08-21
CN115939729A (zh) 2023-04-07
JP7298805B2 (ja) 2023-06-27
CN111613873A (zh) 2020-09-01
US11888239B2 (en) 2024-01-30
KR20210121265A (ko) 2021-10-07
AU2020224880B2 (en) 2023-06-01
EP3920327A4 (en) 2022-04-06
CN113454843A (zh) 2021-09-28
JP2022521226A (ja) 2022-04-06
CN113454843B (zh) 2022-12-30
CN111613873B (zh) 2022-11-25
AU2020224880A1 (en) 2021-09-23
EP3920327A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2020168926A1 (zh) 天线装置及电子设备
CN109346833B (zh) 具有wifi mimo天线的终端设备
CN103178325B (zh) 松耦合无线电天线设备和方法
JP7103556B2 (ja) アンテナシステム及び端末デバイス
US8860623B2 (en) Antenna system with high isolation characteristics
US9306282B2 (en) Antenna arrangement
CN104037501B (zh) 移动装置
CN105375109A (zh) 用于全闭合金属边框手机的可调谐天线结构
EP2677596B1 (en) Communication device and antenna system therein
GB2567905A (en) Hybrid closed slot LTE antenna
CN106058461B (zh) 具有天线的电子装置
WO2015096132A1 (zh) 天线和终端
WO2024027258A1 (zh) 天线结构及电子设备
WO2022156550A1 (zh) 一种电子设备
CN210576421U (zh) 基于金属边框的mimo天线结构及移动设备
CN205811047U (zh) 具有天线的电子装置
CN107039746A (zh) 一种小型化十一频段手机天线
Zou et al. Compact frame-integrated MIMO antenna in the LTE Band 42/4.9-GHz Band/5.2-GHz WLAN for 5G wearable applications
GB2579119A (en) Compact LTE Antenna With WiFi Support
US20230299491A1 (en) Antenna module and manufacturing method thereof
JP7243966B2 (ja) アンテナシステム及び端末デバイス
CN107026323A (zh) 一种小型化十一频段手机天线上发送信号的方法
Yang et al. Design of a Novel Compact LTE/WWAN Antenna for Mobile Phone Applications
CN115483543A (zh) 天线模块及其制造方法
CN117154383A (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020759996

Country of ref document: EP

Effective date: 20210903

ENP Entry into the national phase

Ref document number: 20217029920

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020224880

Country of ref document: AU

Date of ref document: 20200207

Kind code of ref document: A