WO2015096132A1 - 天线和终端 - Google Patents

天线和终端 Download PDF

Info

Publication number
WO2015096132A1
WO2015096132A1 PCT/CN2013/090696 CN2013090696W WO2015096132A1 WO 2015096132 A1 WO2015096132 A1 WO 2015096132A1 CN 2013090696 W CN2013090696 W CN 2013090696W WO 2015096132 A1 WO2015096132 A1 WO 2015096132A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
branch
pcb
antenna branch
terminal
Prior art date
Application number
PCT/CN2013/090696
Other languages
English (en)
French (fr)
Inventor
王汉阳
徐慧梁
陈丽娜
应李俊
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to PCT/CN2013/090696 priority Critical patent/WO2015096132A1/zh
Priority to CN201380003611.5A priority patent/CN105027352B/zh
Publication of WO2015096132A1 publication Critical patent/WO2015096132A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an antenna and a terminal. Background technique
  • the terminal antenna is designed to be thinner and smaller. Therefore, there is an increasing demand for an antenna having a compact size and a wide operating band of multi-band resonance.
  • an antenna operating in three frequency bands is taken as an example.
  • the conventional antenna design is a three-frequency resonance through a dual-frequency resonant PIFA antenna and a parasitic branch. antenna.
  • the dual-frequency resonant PIFA antenna can work at 900MHZ and 1800MHZ, and the parasitic branch can expand the high-frequency bandwidth.
  • the antenna needs to work at 1900MHZ or 2100MHZ, and the parasitic branch can be added next to the feeder of the dual-frequency resonant PIFA antenna.
  • the high frequency bandwidth of the dual-frequency resonant PIFA antenna extends from 1800 MHz to 1900 MHz or 2100 MHz.
  • the embodiment of the invention provides an antenna and a terminal, which can be applied to a broadband terminal device, and the applicable range of the antenna is increased.
  • a first aspect of the present invention provides an antenna, including: a first antenna node, a second antenna node, a third antenna node, a feeding branch, and a grounding node; wherein, the first end of the feeding branch is respectively The first end of the first antenna branch, the first end of the second antenna branch, and the first end of the third antenna branch are electrically connected, and the second end of the feed branch is on the PCB of the printed circuit board
  • the first end of the grounding branch is electrically connected to the second end of the third antenna branch, and the second end of the grounding branch is electrically connected to the grounding end of the PCB;
  • the first antenna branch and the feeding branch and the grounding branch form a first PIFA antenna
  • the first PIFA antenna is configured to generate a first resonant frequency
  • the second antenna branch and the feeding branch, the grounding branch form a second PIFA antenna
  • the second PIFA antenna is configured to generate a second resonant frequency
  • the third antenna branch, the feeding branch, and the grounding branch form a loop antenna
  • the loop antenna is configured to generate a third resonant frequency, wherein an electrical size of the loop antenna is the third resonant frequency Corresponds to 1/2 of the wavelength.
  • a vertical plane between the first antenna branch, the second antenna branch, and the third antenna branch and the PCB The height is between 3 ⁇ -5 ⁇ .
  • the antenna is located in a cavity formed by a front cover and a rear cover of the terminal, the antenna An antenna holder is further disposed, the PCB and the antenna holder are located in the cavity, wherein the antenna holder is disposed on a side of the PCB facing the back cover, the first antenna branch, the second The antenna stub and the third antenna stub are disposed on a side of the antenna mount facing the back cover.
  • the antenna is located in a cavity formed by a front cover and a rear cover of the terminal, the PCB Located in the cavity, the first antenna segment, the second antenna segment, and the third antenna segment are disposed on a side of the back cover facing the PCB.
  • the third antenna branch is an "F" type structure, and the first ends of the third antenna branches are electrically connected to the first ends of the first antenna segments and the first ends of the second antenna segments, respectively.
  • the second antenna branch is located on a first edge side of the PCB, and the third antenna branch is located The second edge side of the PCB.
  • the third antenna segment is an "E" type structure, and the first end of the third antenna segment is flush with the first end of the first antenna segment and the first end of the second antenna segment.
  • the seventh possible implementation in the first aspect In conjunction with the sixth possible implementation of the first aspect, the seventh possible implementation in the first aspect In the embodiment, the antenna is located on either edge side of the PCB.
  • An antenna provided by the embodiment of the present invention sets the electrical length of the loop antenna formed by the third antenna branch, the feeding branch, and the ground branch to 1/2 of the wavelength corresponding to the third resonant frequency, so that the loop antenna generates the first
  • the three resonant frequencies extend the operating bandwidth of the antenna to a wider frequency band, which in turn can be applied to a wide-band terminal device, increasing the range of application of the antenna.
  • a second aspect of the present invention provides an antenna, including: a first antenna node, a second antenna node, a feeding branch, and a grounding branch; wherein, the first end of the feeding branch and the first antenna branch respectively The first end of the second antenna branch is electrically connected to the first end of the second antenna branch, and the second end of the feed branch is electrically connected to the antenna feed end of the printed circuit board PCB, and the first end of the ground branch is The second end of the second antenna branch is electrically connected, and the second end of the ground branch is electrically connected to the ground end of the PCB;
  • the first antenna branch and the feeding branch, the grounding branch form a first PIFA antenna, the first PIFA antenna is configured to generate a first resonant frequency; the second antenna branch and the feeding branch,
  • the grounding node constitutes a loop antenna, and the loop antenna is configured to generate a second resonant frequency; wherein the loop antenna has an electrical dimension that is 1/2 of a wavelength corresponding to the second resonant frequency.
  • a vertical height between a plane where the first antenna branch and the second antenna branch are located and the PCB is 3 between.
  • the antenna is located in a cavity formed by a front cover and a rear cover of the terminal,
  • the antenna further includes an antenna bracket, the PCB and the antenna bracket are located in the cavity, the antenna bracket is disposed on a side of the PCB facing the back cover, and the first antenna branch and the second antenna branch are disposed On a side of the antenna holder facing the back cover.
  • the antenna is located in a cavity formed by a front cover and a rear cover of the terminal, A PCB is located in the cavity, and the first antenna branch and the second antenna branch are disposed on a side of the back cover facing the PCB.
  • the first antenna branch and the second The antenna branch is a "" structure, the first end of the first antenna branch and the second antenna branch The first end is flush.
  • An antenna provided by the embodiment of the present invention sets the electrical length of the loop antenna formed by the second antenna branch, the feeding branch, and the ground branch to 1/2 of the wavelength corresponding to the second resonant frequency, so that the loop antenna generates the first
  • the two resonant frequencies extend the operating bandwidth of the antenna to a wider frequency band, which in turn can be applied to a wide-band terminal device, increasing the range of application of the antenna.
  • a third aspect of the present invention provides a terminal, including: a radio frequency processing unit, a baseband processing unit, and an antenna; wherein the antenna includes a first antenna node, a second antenna node, a third antenna node, a feeding branch, and a grounding node; The first end of the feeding branch is electrically connected to the first end of the first antenna branch, the first end of the second antenna branch, and the first end of the third antenna branch, respectively.
  • the second end of the feed branch is electrically connected to the antenna feed end on the PCB, the first end of the ground branch is electrically connected to the second end of the third antenna branch, and the second end of the ground branch Electrically connecting with the grounding end of the PCB;
  • the first antenna branch and the feeding branch, the grounding branch form a first PIFA antenna, and the first PIFA antenna is configured to generate a first resonant frequency;
  • the third antenna branch, the feed branch, and Ground stub constituting the antenna loop, the antenna loop for generating a third resonant frequency, wherein the size of the loop antenna electrically to said third resonant frequency corresponding to 1/2 wavelength;
  • the antenna is configured to transmit the received wireless signal to the radio frequency processing unit, or convert the transmission signal of the radio frequency processing unit into an electromagnetic wave, and send the signal;
  • the radio frequency processing unit is configured to receive the The wireless signal is subjected to frequency selection, amplification, down conversion processing, and converted into an intermediate frequency signal or a baseband signal, and sent to the baseband processing unit, or used to upconvert the baseband signal or the intermediate frequency signal sent by the baseband processing unit. And transmitting, transmitting through the antenna; and the baseband processing unit processes the received intermediate frequency signal or the baseband signal.
  • a vertical plane between the plane of the first antenna node, the second antenna node, and the third antenna node and the PCB The height is between 3 ⁇ -5 ⁇ .
  • the antenna is located in a cavity formed by a front cover and a rear cover of the terminal,
  • the antenna further includes an antenna bracket, the PCB and the antenna bracket are located in the cavity, wherein the antenna bracket is disposed on a side of the PCB facing the back cover, the first antenna branch, The second antenna branch and the third antenna branch are disposed on a side of the antenna bracket facing the back cover.
  • the antenna is located in a cavity formed by a front cover and a rear cover of the terminal, A PCB is located in the cavity, and the first antenna segment, the second antenna segment, and the third antenna segment are disposed on a side of the back cover facing the PCB.
  • the first antenna segment, the second antenna segment, and The third antenna branch is an "F" type structure, and the first ends of the third antenna branches are electrically connected to the first ends of the first antenna segments and the first ends of the second antenna segments, respectively.
  • the second antenna branch is located on a first edge side of the PCB, and the third antenna branch is located The second edge side of the PCB.
  • the first antenna segment, the second antenna segment, and The third antenna segment is an "E" type structure, and the first end of the third antenna segment is flush with the first end of the first antenna segment and the first end of the second antenna segment.
  • the antenna is located on either edge side of the PCB.
  • the terminal provided by the embodiment of the present invention sets the electrical length of the loop antenna formed by the third antenna branch, the feeding branch and the ground branch to 1/2 of the wavelength corresponding to the third resonant frequency, so that the loop antenna generates the first
  • the three resonant frequencies extend the operating bandwidth of the antenna to a wider frequency band, which in turn can be applied to a wide-band terminal device, increasing the range of application of the antenna.
  • a fourth aspect of the present invention provides a terminal, including: a radio frequency processing unit, a baseband processing unit, and an antenna;
  • the antenna includes: a first antenna node, a second antenna node, a feeding branch, and a grounding branch, wherein the first end of the feeding branch and the first end of the first antenna branch and the second The first end of the antenna branch is electrically connected to the antenna feed end on the printed circuit board PCB, and the first end of the ground branch and the second antenna branch The second end is electrically connected, and the second end of the grounding branch is electrically connected to the grounding end of the PCB; the first antenna branch And the feeding branch, the grounding branch forming a first PIFA antenna, the first PIFA antenna is configured to generate a first resonant frequency; the second antenna branch is configured with the feeding branch and the grounding branch a loop antenna, wherein the loop antenna is used to generate a second resonant frequency; wherein, the loop antenna has an electrical size that is 1/2 of a wavelength corresponding to the second resonant frequency;
  • the antenna is configured to transmit the received wireless signal to the radio frequency processing unit, or convert the transmission signal of the radio frequency processing unit into an electromagnetic wave, and send the signal;
  • the radio frequency processing unit is configured to receive the The wireless signal is subjected to frequency selection, amplification, down conversion processing, and converted into an intermediate frequency signal or a baseband signal, and sent to the baseband processing unit, or used to upconvert the baseband signal or the intermediate frequency signal sent by the baseband processing unit. And transmitting, transmitting through the antenna; and the baseband processing unit processes the received intermediate frequency signal or the baseband signal.
  • a vertical height between a plane where the first antenna branch and the second antenna branch are located and the PCB is 3 between.
  • the antenna is located in a cavity formed by a front cover and a rear cover of the terminal,
  • the antenna further includes an antenna bracket, the PCB and the antenna bracket are located in the cavity, the antenna bracket is disposed on a side of the PCB facing the back cover, and the first antenna branch and the second antenna branch are disposed On a side of the antenna holder facing the back cover.
  • the antenna is located in a cavity formed by a front cover and a rear cover of the terminal, A PCB is located in the cavity, and the first antenna branch and the second antenna branch are disposed on a side of the back cover facing the PCB.
  • the first antenna branch and the second The antenna branch is a "" structure, and the first end of the first antenna branch is flush with the first end of the second antenna branch.
  • the terminal provided by the embodiment of the present invention sets the electrical length of the loop antenna formed by the second antenna branch, the feeding branch and the ground branch to 1/2 of the wavelength corresponding to the second resonant frequency, so that the loop antenna generates the first
  • the two resonant frequencies extend the operating bandwidth of the antenna to a wider frequency band, which in turn can be applied to a wide-band terminal device, increasing the range of application of the antenna.
  • FIG. 3 is a diagram showing the return loss of the second embodiment of the present invention.
  • Figure 5 is a schematic structural view of a third embodiment of the present invention.
  • Figure 6 is a diagram showing the return loss of the third embodiment of the present invention.
  • FIG. 7 is a simulation diagram of the efficiency of the third embodiment of the present invention.
  • Figure 8 is a graph of the fourth embodiment of the present invention.
  • FIG. 9 is a diagram of the scorpion of the fifth embodiment of the present invention.
  • Figure 10 is an echo of the fifth embodiment of the present invention.
  • FIG. 11 is a first embodiment of a terminal provided by the present invention.
  • FIG. 12 is a second embodiment of a terminal provided by the present invention.
  • 11 the first antenna branch; 12: the second antenna branch; 13: the third antenna branch; 14: the feed branch; 15: the ground branch; 16: PCB;
  • 311 a first end of the first antenna branch; 312: a second end of the first antenna branch
  • 321 a first end of the second antenna branch; 322: a second end of the second antenna branch
  • 331 a first end of the feed branch; 332: a second end of the feed branch;
  • Multi-band resonant antennas can operate in several different frequency bands through a certain radiation mechanism. Corresponding to different working frequency bands, the electrical dimensions of the corresponding antennas are different due to different operating frequencies. In order for the antenna to work well in each operating band, it is necessary to design the working resonant frequency point of the antenna, ie to determine the optimum electrical size of the antenna for each band. If the antenna works at different resonance points, the antenna will have better performance in each working frequency band.
  • the antenna can have several resonant frequencies in several working frequency bands, thereby achieving better working conditions of the antenna multi-band.
  • An embodiment of the present invention provides an antenna, such as a three-band antenna, which can have three resonant frequencies and can be applied to different three-band working scenarios, for example, a wireless local area network (WLAN) antenna.
  • WLAN wireless local area network
  • GPS Global Positioning System
  • LTE Long Term Evolution
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of an antenna provided by the present invention. It should be noted that FIG. 1 is a diagram for more clearly explaining the connection of each antenna branch in the antenna in the embodiment of the present invention.
  • the antenna or the corresponding location is only a schematic representation of the antenna structure in the embodiment of the present invention.
  • the antenna in the embodiment of the present invention may have other structures, and is not limited to the structure shown in FIG. Other structures of the antenna in the embodiment of the present invention will be described in the following embodiments.
  • the antenna includes: a first antenna node 11, a second antenna node 12, a third antenna node 13, a feed node 14, and a grounding node 15; wherein the first end 141 of the feeding branch 14 is respectively The first end 11 1 of the first antenna branch 1 1 , the first end 121 of the second antenna branch 12 , and the first end 131 of the third antenna branch 13 are electrically connected to the second end 142 of the feeding branch 14 and the PCB 16
  • the antenna feed end 17 is electrically connected;
  • the first end 151 of the grounding branch 15 is electrically connected to the second end 132 of the third antenna branch 13, and the second end 152 of the grounding branch 15 is electrically connected to the ground end 18 of the PCB 16;
  • the first antenna branch 1 1 and the feed branch 14 and the ground branch 15 constitute a first PIFA antenna, and the first PIFA antenna is used to generate a first resonant frequency;
  • the second antenna branch 12 and the feed branch 14 and the ground branch 15 constituting a second PIFA antenna
  • the first resonant frequency may be 2. 4 GHz - 2. 5 GHz
  • the center frequency of the second resonant frequency may be 5.2 GHz
  • the center frequency of the third resonant frequency may be 5.8 GHz.
  • the first antenna branch 1 1 , the feeding branch 14 and the grounding branch 15 constitute a first PIFA antenna; wherein, the first end 141 of the feeding branch 14 and the first end of the first antenna branch 11
  • the terminal 111 is electrically connected, and the second end 142 of the feed branch 14 is electrically connected to the antenna feed end 17 on the PCB 16.
  • the first PIFA antenna produces a first resonant frequency by setting the electrical size length of the first PIFA antenna.
  • the first resonant frequency can be 2.4 GHz.
  • the electrical length of the first PIFA antenna may be 1/4 of the wavelength corresponding to the first resonant frequency, and the electrical length of the first PIFA antenna may be from the antenna feeding end 17 of the PCB 16 via the feeding branch 14 to the first The electrical length of the second end 112 of the antenna segment 11.
  • 1/4 of the wavelength corresponding to the first resonance frequency may be an electrical length calculated based on the resonance frequency of 2.4 GHz.
  • the second antenna branch 12 and the feeding branch 14 and the grounding branch 15 constitute a second PIFA antenna; wherein the first end 141 of the feeding branch 14 is electrically connected to the first end 121 of the second antenna branch 12, and the feeding branch 14 The second end 142 is electrically coupled to the antenna feed end 17 on the PCB 16.
  • the second PIFA antenna can generate a second resonant frequency by setting the electrical size length of the second PIFA antenna, wherein The second resonant frequency may be 5. 2 GHz, and the electrical length of the second PIFA antenna may be an electrical length from the antenna feed end 17 via the feed branch 14 to the second end 122 of the second antenna branch 12.
  • the electrical length of the second PIFA antenna is 1/4 of the wavelength corresponding to the second resonant frequency, and the 1/4 of the wavelength corresponding to the second resonant frequency may be the electrical length calculated according to the resonant frequency of 5. 2 GHz.
  • first antenna segment 11 and the second antenna segment 12 in FIG. 1 are only a simple illustration.
  • the first antenna segment 11 may be parallel to the second antenna segment 12, and may not be connected to the second antenna segment 12.
  • Parallel Fig. 1 shows the case where the two are not parallel
  • the first end 111 of the first antenna branch 11 and the first end 121 of the second antenna branch 12 are electrically connected to the first end 141 of the feed branch 14
  • a suitable gap between the second end 112 of the first antenna branch 11 and the second end 122 of the second antenna branch 12 is sufficient.
  • the third antenna branch 13 and the feeding branch 14 and the grounding branch 15 constitute a loop antenna, and the electrical size of the loop antenna is set to 1/2 of the wavelength corresponding to the third resonant frequency, so that the formed loop antenna generates the third resonant frequency.
  • the third resonant frequency may be 5. 8 GHz; the electrical size of the loop antenna herein actually refers to the antenna feed end 17 formed by the feed branch 14, the third antenna branch 13, and the ground branch 15 reaching the ground end 18.
  • the electrical length is the electrical size of the loop antenna.
  • the loop antenna is designed such that the PCB 16 and the antenna have only two contact points of the antenna feed end 17 and the ground end 18, and the additional resonant parasitic branch is not used to generate the third resonant frequency, thereby expanding the working bandwidth of the antenna and also making the antenna The volume is reduced.
  • the 1/2 of the wavelength corresponding to the third resonance frequency may be an electrical length calculated based on the frequency of 5. 8 GHz.
  • the current signal passes through the antenna feeding end 17 on the PCB 16 through the feeding branch 14, the corresponding antenna branch and the grounding branch 15 to reach the grounding end 18 of the PCB, forming The resonant circuit thus generates a radiated electromagnetic field that radiates the current signal in the form of electromagnetic waves.
  • the current signal processed by the terminal is a signal having a center frequency of 5. 8 GHz
  • the current signal passes through the antenna feeding end 17 and enters the feeding branch 14, the third antenna branch 13 and the grounding branch 15 to reach the grounding end 18 of the PCB 16.
  • the antenna can operate at the third resonant frequency, so the electromagnetic wave signal radiated through the loop antenna is stronger than the first PIFA antenna and the second PIFA The electromagnetic wave radiated by the antenna is large and easy to be received by the opposite electronic device.
  • An embodiment of the present invention provides an antenna.
  • the electrical length of the loop antenna formed by the third antenna branch, the feeding branch, and the grounding branch is set to be 1/2 of the wavelength corresponding to the third resonant frequency, so that the loop antenna generates the third.
  • the resonant frequency extends the operating bandwidth of the antenna to a wider frequency band, which in turn can be applied to a wide-band electronic device, increasing the range of application of the antenna.
  • the vertical height between the plane where the first antenna branch 11, the second antenna branch 12, and the third antenna branch 13 are located and the PCB 16 may be between 3 ⁇ _5 ⁇ , This allows the antenna to widen its working frequency band by occupying less space inside the terminal.
  • the antenna is located in a cavity formed by a front cover and a rear cover of the terminal, the antenna further includes an antenna support 19, the PCB 16 and the antenna support 19 are located in the cavity, wherein the antenna A bracket 19 is disposed on a side of the PCB 16 facing the back cover, and the first antenna branch 11, the second antenna branch 12, and the third antenna branch 13 are disposed on a side of the antenna bracket 19 facing the back cover .
  • FIG. 1 shows a positional relationship between the antenna bracket 19 and each of the antennas (the front cover and the rear cover of the terminal are not shown in FIG. 1), and the antenna bracket 19 is disposed at a side of the rear facing cover of the PCB 16 , the first antenna branch 11 , the second antenna branch 12 and the third antenna branch 13 of the antenna are disposed on the same plane of the antenna mount 19 , and the plane is the antenna mount 19 The side facing the back cover of the terminal. Gp, through the antenna bracket 19, the vertical height between the plane where the first antenna branch 11, the second antenna branch 12 and the third antenna branch 13 are located and the PCB 16 can be kept between 3 and 5 ,, so that the antenna Take up less space inside the terminal.
  • the second embodiment the antenna is located in a cavity formed by a front cover and a rear cover of the terminal, the PCB 16 is located in the cavity, the first antenna branch 11, the second antenna branch 12 and the third antenna branch 13 is disposed on a side of the back cover facing the PCB 16.
  • the first antenna branch 11, the second antenna branch 12, and the third antenna in the antenna are in the same plane, and the plane is the side of the terminal back cover facing the PCB 16, that is, the first antenna branch 11, the second antenna branch 12 and the third antenna branch 13 are located in a plane of the terminal back cover, and the plane It is the side of the terminal back cover facing the PCB 16, so that the vertical height between the plane where the first antenna branch 11, the second antenna branch 12 and the third antenna branch 13 are located and the PCB 16 is between 3 and 5 ,, thereby This antenna occupies a small space inside the terminal.
  • An embodiment of the present invention provides an antenna.
  • the electrical length of the loop antenna formed by the third antenna branch, the feeding branch, and the grounding branch is set to be 1/2 of the wavelength corresponding to the third resonant frequency, so that the loop antenna generates the third.
  • the resonant frequency can extend the operating bandwidth of the antenna to a wider frequency band, which in turn can be applied to a wide-band electronic device; in addition, it is not necessary to add a separate parasitic branch to generate a third resonant frequency.
  • the plane where the first antenna branch, the second antenna branch, and the third antenna branch are located may be between 3 ⁇ _5 ⁇ and the vertical height between the PCBs, so that the antenna occupies a small space inside the terminal; further, the PCB and The antenna has only two contact points of the antenna feeding end and the grounding end, which further makes the antenna occupy a small PCB area, and the cost of the PCB can also be reduced due to the reduction of the contact point with the antenna on the PCB.
  • FIG. 2 is a schematic structural diagram of Embodiment 2 of an antenna provided by the present invention
  • FIG. 3 is a simulation diagram of return loss of Embodiment 2 of the antenna provided by the present invention
  • FIG. 4 is a simulation diagram of efficiency of Embodiment 2 of the antenna provided by the present invention.
  • the first antenna branch 11, the second antenna branch 12, and the third antenna branch 13 may be in an "F" type structure, and the first end 131 of the third antenna branch 13 is respectively associated with The first end 111 of the first antenna branch 11 and the first end 121 of the second antenna branch 12 are electrically connected.
  • the first antenna branch 11, the second antenna branch 12, and the third antenna branch 13 form an "F" type structure, where the first antenna branch 11 may be parallel to the second antenna branch 12, or may not
  • the two antenna branches 12 are parallel, as long as the first end 111 of the first antenna branch 11 and the first end 121 of the second antenna branch 12 are electrically connected to the first end 141 of the feed branch 14, the second of the first antenna branch 11
  • the end 112 and the second end 122 of the second antenna branch 12 have a suitable gap.
  • FIG. 1 and FIG. 2 shows that FIG. 1 shows a case where the first antenna branch 11 and the second antenna branch 12 are not parallel, and FIG. 2 shows the first antenna branch 11 The case of being parallel to the second antenna branch 12.
  • the feeding branch 14, the grounding branch 15 and the first antenna branch 11 form a first PIFA antenna;
  • the feeding branch 14, the grounding branch 15 and the second antenna branch 12 form a second PIFA antenna;
  • the antenna branch 13 and the feeding branch 14 and the grounding branch 15 constitute a loop antenna, and the electrical size of the loop antenna is set to 1/2 of the wavelength corresponding to the third resonant frequency, so that the loop antenna can be configured to generate a third resonant frequency;
  • the electrical dimension here actually refers to the electrical length of the loop formed by the antenna feed end 17 of the PCB 16 via the feed branch 14, the third antenna branch 13, and the ground branch 15 to the ground end 18 of the PCB 16, that is, the loop antenna size.
  • the return loss of the antennas of different heights at the resonance point is shown in Fig. 3 respectively. It can be seen from Fig. 3 that the return loss of the antennas operating at three resonance points is relatively small at different antenna heights; The efficiency of the antennas at different resonance points of the antennas at different resonance points is shown in Fig. 4. It can be seen from Fig. 4 that the antennas operating at the three resonance points are relatively efficient at different antenna heights.
  • the second antenna branch 12 can be located
  • the first edge side 20 of the PCB 16 and the third antenna branch 13 may be located on the second edge side 21 of the PCB 17, as shown in Figure 2.
  • the antenna is located at a corner formed on the two edge sides of the PCB 16. It should be noted that the antenna may also be located at other corners formed on the two edge sides of the PCB, which is not limited in this embodiment of the present invention.
  • An embodiment of the present invention provides an antenna.
  • the electrical length of the loop antenna formed by the third antenna branch, the feeding branch, and the grounding branch is set to be 1/2 of the wavelength corresponding to the third resonant frequency, so that the loop antenna generates the third.
  • Resonant frequency thereby extending the operating bandwidth of the antenna to a wider frequency band, which in turn can be applied to a wide-band electronic device; in addition, there is no need to add a separate parasitic branch to generate a third resonant frequency, and the first antenna branch, second
  • the antenna branch and the plane where the third antenna branch is located may be between 3 ⁇ _5 ⁇ and the vertical height between the PCBs, so that the antenna occupies a small space inside the terminal; further, the PCB and the antenna have only the antenna feed end and Two contact points on the ground end further make the antenna occupy a small PCB area, and the cost of the PCB can also be reduced due to the reduction of the contact point with the antenna on the PCB.
  • FIG. 5 is a schematic structural diagram of Embodiment 3 of an antenna provided by the present invention
  • FIG. 6 is a simulation diagram of return loss of Embodiment 3 of the antenna provided by the present invention
  • FIG. 7 is a simulation diagram of efficiency of Embodiment 3 of the antenna provided by the present invention.
  • the first antenna segment 11, the second antenna segment 12, and the third antenna segment 13 are of an "E" type structure
  • the third antenna branch 13 is The first end 131 is flush with the first end 111 of the first antenna segment 11 and the first end 121 of the second antenna segment 12.
  • the first antenna branch 11, the second antenna branch 12, and the third antenna branch 13 are formed.
  • An "E" type structure, the third antenna branch section 13, the first antenna branch section 1 1 and the second antenna branch section 12 may be parallel or non-parallel, as long as the first end 111 of the first antenna branch section 11 is ensured.
  • the first end 121 of the second antenna branch 12 and the first end 131 of the third antenna branch 13 are electrically connected to the first end 141 of the feeding branch 14 , and the second end 112 of the first antenna branch 11 and the second antenna branch 12
  • the second end 122 and the second end 132 of the third antenna branch 13 are in a plane, and the first antenna branch 11, the second antenna branch 12 and the third antenna branch 13 have a suitable interval.
  • Fig. 5 illustrates the specific connection relationship by taking three parallels as an example.
  • the first end 131 of the third antenna branch 13 is flush with the first end 11 1 of the first antenna segment 11 and the first end 121 of the second antenna segment 12, and the concept of flushing can be seen in the structure of FIG.
  • the first end 131 of the third antenna branch 13 and the first antenna branch are shown in the X-axis and the y-axis as shown in FIG.
  • the X coordinate values of the positions of the first end 111 of the 1 1 and the first end 121 of the second antenna branch 12 are the same.
  • the feeding branch 14, the grounding branch 15 and the first antenna branch 11 form a first PIFA antenna; the feeding branch 14, the grounding branch 15 and the second antenna branch 12 form a second PIFA antenna; the third antenna branch 13 and the feeding branch 14
  • the grounding branch 15 constitutes a loop antenna, and the electrical size of the loop antenna is 1/2 of a wavelength corresponding to the third resonant frequency, so that the loop antenna formed can generate a third resonant frequency; the electrical dimension here actually refers to The electrical length of the loop formed by the antenna feed end 17 of the PCB 16 via the feed stub 14, the third antenna stub 13, and the ground stub 15 to the ground end 18 of the PCB 16 is the loop antenna electrical dimension.
  • the antenna of the structure may be located at any corner of the PCB 16 (e.g., the first edge side 20 and the second edge side 21 form the corner).
  • FIG. 5 is a simplified illustration of the antenna on the edge side of the PCB 16, but the embodiment of the present invention does not limit this.
  • the layout of the antenna position in FIG. 5 is such that the antenna has two open radiation boundaries (ie, the upper edge and the left edge shown in FIG. 5), and the positions of the antenna feeding end 17 and the grounding end 18 are easily PCB16 performs better impedance matching for better antenna efficiency.
  • FIG. 6 The return loss at the resonance point when the antenna is located at the upper edge (layout 1) and the left edge (layout 2) of the PCB 16 respectively is shown in FIG. 6, and the antennas are respectively located at the upper edge and the left of the PCB 16 in FIG. 7, respectively.
  • the efficiency of the antenna at the resonance point at the edge It can be seen from Fig. 6 and Fig. 7 that the antenna of this structure has smaller return loss and larger antenna efficiency at three resonance points.
  • An embodiment of the present invention provides an antenna, by using a third antenna branch, a feeding branch, and a grounding branch
  • the electrical length of the loop antenna formed by the section is set to 1/2 of the wavelength corresponding to the third resonant frequency, so that the loop antenna generates a third resonant frequency, thereby expanding the working bandwidth of the antenna to a wider frequency band, and thus can be applied to the broadband In the electronic device of the belt; in addition, there is no need to add a separate parasitic branch to generate a third resonant frequency, and the plane where the first antenna branch, the second antenna branch, and the third antenna branch are located can be maintained at a vertical height of 3 Between -5 ⁇ , the antenna occupies a small space inside the terminal; further, the PCB and the antenna have only two contact points of the antenna feeding end and the ground end, further making the antenna occupy a small PCB area, and due to the PCB The reduction in contact points with the antenna can also reduce the cost of the PCB.
  • FIG. 8 is a schematic structural diagram of Embodiment 4 of an antenna according to the present invention.
  • the antenna includes: a first antenna node 31, a second antenna node 32, a feeding branch 33, and a grounding branch 34; wherein, the first of the feeding branches 33
  • the end 331 is electrically connected to the first end 31 1 of the first antenna branch 31 and the first end 321 of the second antenna branch 32, and the second end 332 of the feeding branch 33 is electrically connected to the antenna feeding end 36 on the PCB 35.
  • the first end 341 of the grounding branch 34 is electrically connected to the second end 322 of the second antenna branch 32, and the second end 342 of the grounding branch 34 is electrically connected to the grounding end 37 of the PCB 35;
  • the first antenna branch 31 and the feeding The branch node 33, the grounding branch 34 constitutes a first PIFA antenna, the first PIFA antenna is used to generate a first resonant frequency;
  • the second antenna branch 32 and the feeding branch 33, the grounding branch 34 constitute a loop antenna, and the loop antenna is used for Generating a second resonant frequency; wherein the loop antenna has an electrical dimension length that is 1/2 of a wavelength corresponding to the second resonant frequency.
  • the first resonant frequency may be 2. 4 GHz - 2. 5 GHz
  • the second resonant frequency may be
  • the first antenna branch 31, the feeding branch 33, and the grounding branch 34 constitute a first PIFA antenna; wherein, the first end 331 of the feeding branch 33 and the first end of the first antenna branch 31 The 311 is electrically connected, and the second end 332 of the feed branch 33 is electrically connected to the antenna feed end 36 on the PCB 35.
  • the first resonant frequency may be 2. 4 GHz.
  • the first resonant frequency may be 2. 4 GHz.
  • the electrical length of the first PIFA antenna may be 1/4 of the wavelength corresponding to the first resonant frequency, and the electrical length of the first PIFA antenna may be from the antenna feeding end 36 of the PCB 35 via the feeding branch 33 to the first The electrical length of the second end 312 of an antenna branch 31. 1/4 of the wavelength corresponding to the first resonant frequency is the electrical length calculated from the resonant frequency of 2.4 GHz.
  • the second antenna branch 32 and the feeding branch 33 and the grounding branch 34 form a loop antenna; wherein the first end 331 of the feeding branch 33 is electrically connected to the first end 321 of the second antenna branch 32, and the feeding branch 33 The two ends 332 are electrically coupled to the antenna feed end 36 on the PCB 35.
  • the second resonant frequency may be 5. 2GHz.
  • the second resonant frequency may be 5. 2GHz.
  • the electrical dimension of the loop antenna herein actually refers to the electrical length of the loop formed by the antenna feed end 36 of the PCB 35 via the feed stub 33, the second antenna stub 32, and the ground stub 34 to the ground end 37, that is, the loop antenna. Electrical size.
  • first antenna branch 31 and the second antenna branch 32 in FIG. 8 are only a simple illustration.
  • the first antenna branch 31 may be parallel to the second antenna branch 32, and may not be parallel to the second antenna branch 32.
  • Parallel Fig. 8 shows the case where the two are not parallel
  • the first end 31 1 of the first antenna branch 31 and the first end 321 of the second antenna branch 32 are electrically connected to the first end 331 of the feed branch 33.
  • the current signal flows through the feeding node 36 on the PCB 35 through the feeding branch 33, the corresponding antenna branch and the grounding branch 34 to reach the grounding end 37 of the PCB 35, forming The resonant circuit thus generates a radiated electromagnetic field that radiates the current signal in the form of electromagnetic waves.
  • the current signal processed by the terminal is a signal having a center frequency of 5. 8 GHz
  • the current signal enters the feeding branch 33, the second antenna branch 32 and the grounding branch 34 through the antenna feeding end 36 to reach the grounding end 37 of the PCB 35.
  • An embodiment of the present invention provides an antenna.
  • the electrical length of the loop antenna formed by the second antenna branch, the feed branch, and the ground branch is set to 1/2 of the wavelength corresponding to the second resonant frequency, so that the loop antenna generates the second. Resonant frequency, thereby extending the operating bandwidth of the antenna to a wider frequency band, Furthermore, it can be applied to a wide-band electronic device.
  • the vertical height between the plane where the first antenna branch 31 and the second antenna branch 32 are located and the PCB 35 may be between 3 mm and 5 mm, thereby This allows the antenna to widen its working frequency band by occupying less space inside the terminal.
  • the antenna is located in a cavity formed by a front cover and a rear cover of the terminal, the antenna further includes an antenna support, and the PCB 35 and the antenna support 38 are located in the cavity, wherein the antenna support 38 is disposed on a side of the PCB 35 facing the back cover, and the first antenna branch 31 and the second antenna branch 32 are disposed on a side of the antenna holder 38 facing the back cover.
  • FIG. 8 shows the antenna bracket 38 and the positions of the respective branches in the antenna (the front cover and the rear cover of the terminal are not shown in FIG. 8), and the antenna bracket 38 is disposed on the PCB 35.
  • the one side of the rear cover facing the terminal, the first antenna branch 31 and the second antenna branch 32 of the antenna are disposed on a plane of the antenna holder 38, and the plane is the side of the antenna holder 38 facing the terminal back cover.
  • the vertical height between the plane where the first antenna branch 31 and the second antenna branch 32 are located and the PCB 35 can be kept between 3 _5 ,, so that the antenna occupies a smaller terminal interior Space.
  • the antenna is located in a cavity formed by a front cover and a rear cover of the terminal, the PCB 35 is located in the cavity, and the first antenna branch 31 and the second antenna branch 32 are disposed behind The side of the cover facing the PCB 35.
  • the first antenna branch 31 and the second antenna branch 32 of the antenna are in a plane, and the plane is the side of the terminal back cover facing the PCB 35, that is, the first antenna branch 31 and the second antenna branch 32 are located behind the terminal.
  • a plane of the cover, and the plane is the side of the terminal back cover facing the PCB 35, such that the vertical height between the plane where the first antenna branch 31 and the second antenna branch 32 are located and the PCB 35 is between 3 and 5 ⁇ So that the antenna occupies a small space inside the terminal.
  • An embodiment of the present invention provides an antenna.
  • the electrical length of the loop antenna formed by the second antenna branch, the feed branch, and the ground branch is set to 1/2 of the wavelength corresponding to the second resonant frequency, so that the loop antenna generates the second.
  • the resonant frequency extends the operating bandwidth of the antenna to a wider frequency band, which in turn can be applied to wideband electronic devices.
  • the plane where the first antenna branch and the second antenna branch are located may be between 3 mm and 5 mm from the vertical height of the PCB, so that the antenna occupies less space. The space inside the terminal.
  • FIG. 9 is a schematic structural diagram of Embodiment 5 of an antenna provided by the present invention
  • FIG. 10 is a simulation diagram of return loss of Embodiment 5 of the antenna provided by the present invention.
  • the first antenna branch 31 and the second antenna branch 32 are ""-shaped structures; the first end 311 and the second antenna branch of the first antenna branch 31 are The first end 321 of 32 is flush.
  • FIG. 8 shows a case where the first antenna branch 31 and the second antenna branch 32 are not parallel
  • FIG. 9 shows the first antenna branch 31 and the first antenna. The case where the two antenna branches 32 are parallel.
  • the second antenna segment 32 and the first antenna segment 31 form a "" structure, and the first end 321 of the second antenna segment 32 is aligned with the first end 311 of the first antenna segment 31.
  • Flat, the concept of flushing referred to here can be seen in the structure of Fig. 9, as shown in Fig. 9, the X-axis and the y-axis, that is, if the position is represented by the horizontal and vertical coordinates, the second antenna branch 32
  • the X coordinate value of the position of the first end 321 and the first end 311 of the first antenna branch 31 is the same.
  • the feeding branch 33, the grounding branch 34 and the first antenna branch 31 form a first PIFA antenna; the feeding branch 33, the grounding branch 34 and the second antenna branch 32 form a loop antenna; the working bandwidth formed by the loop antenna formed here is The operating bandwidth of the second resonant frequency (eg, 5. 2 GHz).
  • the loop antenna has an electrical size corresponding to 1/2 of a wavelength corresponding to the second resonant frequency.
  • the electrical size of the loop antenna herein actually refers to the electrical length of the loop formed by the antenna feed end 36 of the PCB 35 via the feed stub 33, the second antenna stub 32, and the ground stub 34 to the ground end 37 of the PCB 35.
  • the antenna of the structure may be located on either edge side of the PCB 35 (e.g., the first edge side 39 or the second edge side 40 in Fig. 9).
  • the return loss (S11) of the antenna is shown in FIG. As can be seen from Fig. 10, the antenna of this structure has a small return loss at its resonance point.
  • An embodiment of the present invention provides an antenna.
  • the electrical length of the loop antenna formed by the second antenna branch, the feed branch, and the ground branch is set to 1/2 of the wavelength corresponding to the second resonant frequency, so that the loop antenna generates the second.
  • the resonant frequency extends the operating bandwidth of the antenna to a wider frequency band, which in turn can be applied to wideband electronic devices.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a terminal provided by the present invention.
  • the terminal includes a radio frequency processing unit 41, a baseband processing unit 42, and an antenna 43.
  • the antenna 43 includes a first antenna segment 11, a second antenna segment 12, and a third antenna segment 13.
  • the first end 131 of the three antenna branches 13 is electrically connected, and the second end 142 of the feeding branch 14 is electrically connected to the antenna feeding end 17 on the PCB 16, and the first end 151 of the grounding branch 15 and the third antenna branch 13
  • the second end 132 is electrically connected, and the second end 152 of the grounding branch 15 is electrically connected to the grounding end 18 of the PCB 16;
  • the first antenna branch 1 1 and the feeding branch 14 and the grounding branch 15 constitute a first PIFA antenna, the first a PIFA antenna is used to generate a first resonant frequency;
  • the second antenna branch 12 and the feed branch 14, the ground branch 15 constitute a second PIFA antenna, and the second
  • the antenna 43 is configured to transmit the received wireless signal to the radio frequency processing unit 41, or convert the transmission signal of the radio frequency processing unit 41 into an electromagnetic wave, and send it out; the radio frequency processing unit 41 is configured to receive the wireless information to the antenna 43.
  • the signal is subjected to frequency selection, amplification, and down-conversion processing, and is converted into an intermediate frequency signal or a baseband signal and sent to the baseband processing unit 42.
  • the baseband signal or the intermediate frequency signal sent by the baseband processing unit 42 is up-converted and amplified. Transmitted through the antenna 43; the baseband processing unit 42 processes the received intermediate frequency signal or baseband signal.
  • the first resonant frequency may be 2. 4 GHz - 2. 5 GHz
  • the center frequency of the second resonant frequency may be 5.2 GHz
  • the center frequency of the third resonant frequency may be 5.8 GHz.
  • a vertical height between the plane where the first antenna branch 11, the second antenna branch 12, and the third antenna branch 13 and the PCB 16 are between 3 mm and 5 mm.
  • the antenna 43 is located in a cavity formed by a front cover and a rear cover of the terminal, the antenna 43 further includes an antenna support 19, and the PCB 16 and the antenna support 19 are located in the cavity, wherein the antenna support 19 Provided on a side of the PCB 16 facing the back cover, the first antenna branch 11, the second antenna branch 12, and the third antenna branch 13 are disposed on a side of the antenna holder 19 facing the back cover.
  • the antenna 43 is located in a cavity formed by a front cover and a rear cover of the terminal, the PCB 16 is located in the cavity, and the first antenna branch 11, the second antenna branch 12 and the third antenna branch 13 are disposed at The back cover faces one side of the PCB 16.
  • the first antenna segment 1 1 , the second antenna segment 12 , and the third antenna segment 13 are The "F"-shaped structure, the first end 131 of the third antenna branch 13 is vertically and electrically connected to the first end 111 of the first antenna branch 11 and the first end 121 of the second antenna branch 12, respectively.
  • the second antenna branch 12 is located on the first edge side 20 of the PCB 16
  • the third antenna branch 13 is located on the second edge side 21 of the PCB 16 .
  • the first antenna segment 11, the second antenna segment 12, and the third antenna segment 13 are of a type structure, and the first end 131 of the third antenna segment 13 and the first end 111 of the first antenna segment 11 and The first end 121 of the second antenna branch 12 is flush.
  • the antenna is located on either edge side of the PCB 16.
  • the terminal can be a communication terminal such as a data card, a wireless network card, a wireless router, a mobile phone, a wearable device, glasses, a media device, or the like.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of a terminal provided by the present invention. As shown in FIG. 8 and FIG. 12, the terminal includes a radio frequency processing unit 44, a baseband processing unit 45, and an antenna 46.
  • the antenna 46 includes: a first antenna node 31, a second antenna node 32, a feeding branch 33, and a grounding branch 34.
  • the first end 331 of the feeding branch 33 and the first end of the first antenna branch 31 are respectively 311.
  • the first end 321 of the second antenna branch 32 is electrically connected.
  • the second end 332 of the feeding branch 33 is electrically connected to the antenna feeding end 36 of the PCB 35.
  • the first end 341 and the second antenna branch 32 of the grounding branch 34 are connected.
  • the second end 322 is electrically connected, and the second end 342 of the grounding branch 34 is electrically connected to the grounding end 37 of the PCB 35;
  • the first antenna branch 31 and the feeding branch 33 and the grounding branch 34 constitute a first PIFA antenna, the first a PIFA antenna is used to generate a first resonant frequency;
  • the second antenna branch 32 and the feeding branch 33, the grounding branch 34 constitute a loop antenna, and the loop antenna is used to generate a second resonant frequency; wherein the electrical size of the loop antenna
  • the second resonant frequency corresponds to 1/2 of the wavelength.
  • the antenna 46 is configured to transmit the received wireless signal to the radio frequency processing unit 44, or convert the transmission signal of the radio frequency processing unit 44 into an electromagnetic wave, and send it out; the radio frequency processing unit 44 is configured to receive the wireless information to the antenna 46.
  • the signal is subjected to frequency selection, amplification, and down-conversion processing, and is converted into an intermediate frequency signal or a baseband signal and sent to the baseband processing unit 45, or is used for up-converting and amplifying the baseband signal or the intermediate frequency signal sent by the baseband processing unit 45.
  • the baseband processing unit 45 Transmitted through the antenna 46; the baseband processing unit 45 processes the received intermediate frequency signal or baseband signal.
  • the second resonant frequency may be 2. 9GHz-5. 9GHz. Further, the vertical height between the plane where the first antenna branch 31 and the second antenna branch 32 are located and the PCB 35 is between 3 mm and 5 mm.
  • the antenna 46 is located in a cavity formed by a front cover and a rear cover of the terminal.
  • the antenna 46 further includes an antenna support 38.
  • the PCB 35 and the antenna support 38 are located in the cavity, and the antenna support 38 is disposed on the PCB 35.
  • the first antenna branch 31 and the second antenna branch 32 are disposed on a side of the antenna cover 38 facing the back cover.
  • the antenna 46 is located in a cavity formed by a front cover and a rear cover of the terminal, the PCB 35 is located in the cavity, and the first antenna branch 31 and the second antenna branch 32 are disposed on the back cover. Facing the side of the PCB35.
  • the first antenna branch 31 and the second antenna branch 32 are ""-shaped structures, and the first end 31 1 of the first antenna branch 31 and the first end 322 of the second antenna branch 32 are flush.
  • the terminal can be a communication terminal such as a data card, a wireless network card, a wireless router, a mobile phone, a wearable device, glasses, a media device, or the like.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本发明实施例提供一种天线和终端。该天线包括:第一天线枝节、第二天线枝节、第三天线枝节、馈电枝节和接地枝节;其中,第一天线枝节与馈电枝节、接地枝节构成产生第一谐振频率的第一PIFA 天线;第二天线枝节与馈电枝节、接地枝节构成产生第二谐振频率的第二PIFA 天线;第三天线枝节、馈电枝节和接地枝节构成产生第三谐振频率的环形天线,其中,环形天线的电尺寸为第三谐振频率对应波长的1/2。本发明实施例提供的天线的工作带宽能够拓展到更宽的频带,进而可以适用于宽频带的电子设备中,天线的适用范围广。

Description

天线和终端
技术领域
本发明涉及通信技术领域, 尤其涉及一种天线和终端。 背景技术
随着通信技术的不断发展, 用户对移动终端的工作带宽要求越来越高, 终端天线作为一种小天线, 外观尺寸设计的越来越薄, 越来越小。 因此, 对 具有紧凑尺寸并且工作频段宽的多频段谐振的天线的需求变得越来越大。
现有技术中, 对谐振在多频段工作的天线而言, 以谐振在三个频段工作 的天线为例,传统的天线设计是通过一个双频谐振的 PIFA天线和一个寄生枝 节构成一个三频谐振天线。 其中, 双频谐振的 PIFA天线可以工作在 900MHZ 和 1800MHZ , 寄生枝节可以拓展高频的带宽, 例如天线需要工作在 1900MHZ 或 2100MHZ, 可以在双频谐振 PIFA天线的馈线旁增加寄生枝节, 从而可以使 双频谐振的 PIFA天线高频带宽从 1800MHZ拓展到 1900MHZ或 2100MHZ。
随着技术的发展, 天线需要工作在越来越宽的频带, 传统的天线难以满 足未来发展的需求, 因此,传统的天线无法适用于工作在宽频带的终端设备 中。 发明内容
本发明实施例提供一种天线和终端, 可以适用于宽频带的终端设备中, 增大了天线的适用范围。
本发明实施例第一方面提供一种天线, 包括: 第一天线枝节、 第二天线 枝节、 第三天线枝节、 馈电枝节和接地枝节; 其中, 所述馈电枝节的第一端 分别与所述第一天线枝节的第一端、 所述第二天线枝节的第一端、 所述第三 天线枝节的第一端电连接, 所述馈电枝节的第二端与印制电路板 PCB上的天 线馈电端电连接, 所述接地枝节的第一端与所述第三天线枝节的第二端电连 接, 所述接地枝节的第二端与所述 PCB上的接地端电连接;
所述第一天线枝节与所述馈电枝节、 所述接地枝节构成第一 PIFA天线, 所述第一 PIFA天线用于产生第一谐振频率;所述第二天线枝节与所述馈电枝 节、 所述接地枝节构成第二 PIFA天线, 所述第二 PIFA天线用于产生第二谐 振频率; 所述第三天线枝节、 所述馈电枝节和所述接地枝节构成环形天线, 所述环形天线用于产生第三谐振频率, 其中, 所述环形天线的电尺寸为所述 第三谐振频率对应波长的 1/2。
结合第一方面, 在第一方面的第一种可能的实施方式中, 所述第一天线 枝节、 所述第二天线枝节和所述第三天线枝节所在的平面与所述 PCB之间的 垂直高度在 3匪- 5匪之间。
结合第一方面或第一方面的第一种可能的实施方式, 在第一方面第二种 可能的实施方式中, 所述天线位于由终端的前盖和后盖形成的腔体内, 所述 天线还包括天线支架, 所述 PCB和所述天线支架位于所述腔体内, 其中, 所 述天线支架设置在所述 PCB的面向所述后盖的一面, 所述第一天线枝节、 所 述第二天线枝节和所述第三天线枝节设置在所述天线支架的面向所述后盖的 一面。
结合第一方面或第一方面的第一种可能的实施方式, 在第一方面第三种 可能的实施方式中, 所述天线位于由终端的前盖和后盖形成的腔体内, 所述 PCB 位于所述腔体内, 所述第一天线枝节、 所述第二天线枝节和所述第三天 线枝节设置在所述后盖的面向所述 PCB的一面。
结合第一方面至第一方面的第三种可能的实施方式中的任一项, 在第一 方面的第四种可能的实施方式中, 所述第一天线枝节、 所述第二天线枝节和 所述第三天线枝节为 " F "型结构, 所述第三天线枝节的第一端分别与所述 第一天线枝节的第一端和所述第二天线枝节的第一端电连接。
结合第一方面的第四种可能的实施方式, 在第一方面的第五种可能的实 施方式中, 所述第二天线枝节位于所述 PCB的第一边缘侧, 所述第三天线枝 节位于所述 PCB的第二边缘侧。
结合第一方面至第一方面的第三种可能的实施方式中的任一项, 在第一 方面的第六种可能的实施方式中, 所述第一天线枝节、 所述第二天线枝节和 所述第三天线枝节为 " E "型结构, 所述第三天线枝节的第一端与所述第一天 线枝节的第一端以及所述第二天线枝节的第一端齐平。
结合第一方面的第六种可能的实施方式, 在第一方面的第七种可能的实 施方式中, 所述天线位于所述 PCB的任一边缘侧。
本发明实施例提供的一种天线, 通过将第三天线枝节、 馈电枝节和接地 枝节构成的环形天线的电尺寸长度设置为第三谐振频率对应波长的 1/2, 使 得该环形天线产生第三谐振频率,从而将天线的工作带宽拓展到更宽的频带, 进而可以适用于宽频带的终端设备中, 增大了天线的适用范围。
本发明第二方面提供一种天线, 包括: 第一天线枝节、 第二天线枝节、 馈电枝节和接地枝节; 其中, 所述馈电枝节的第一端分别与所述第一天线枝 节的第一端、 所述第二天线枝节的第一端电连接, 所述馈电枝节的第二端与 印制电路板 PCB上的天线馈电端电连接, 所述接地枝节的第一端与所述第二 天线枝节的第二端电连接, 所述接地枝节的第二端与所述 PCB上的接地端电 连接;
所述第一天线枝节与所述馈电枝节、 所述接地枝节构成第一 PIFA天线, 所述第一 PIFA天线用于产生第一谐振频率;所述第二天线枝节与所述馈电枝 节、 所述接地枝节构成环形天线, 所述环形天线用于产生第二谐振频率; 其 中, 所述环形天线的电尺寸为所述第二谐振频率对应波长的 1/2。
结合第二方面, 在第二方面的第一种可能的实施方式中, 所述第一天线 枝节和所述第二天线枝节所在的平面与所述 PCB之间的垂直高度在 3皿-5匪 之间。
结合第二方面或第二方面的第一种可能的实施方式, 在第二方面的第二 种可能的实施方式中, 所述天线位于由终端的前盖和后盖形成的腔体内, 所 述天线还包括天线支架, 所述 PCB和所述天线支架位于所述腔体内, 所述天 线支架设置在所述 PCB的面向所述后盖的一面, 所述第一天线枝节和第二天 线枝节设置在所述天线支架的面向所述后盖的一面。
结合第二方面或第二方面的第一种可能的实施方式, 在第二方面的第三 种可能的实施方式中, 所述天线位于由终端的前盖和后盖形成的腔体内, 所 述 PCB位于所述腔体内, 所述第一天线枝节和所述第二天线枝节设置在所述 后盖的面向所述 PCB的一面。
结合第二方面的第二种可能的实施方式或第二方面的第三种可能的实施 方式, 在第二方面的第四种可能的实施方式中, 所述第一天线枝节和所述第 二天线枝节为 " "型结构, 所述第一天线枝节的第一端和所述第二天线枝节 的第一端齐平。
本发明实施例提供的一种天线, 通过将第二天线枝节、 馈电枝节和接地 枝节构成的环形天线的电尺寸长度设置为第二谐振频率对应波长的 1/2, 使 得该环形天线产生第二谐振频率,从而将天线的工作带宽拓展到更宽的频带, 进而可以适用于宽频带的终端设备中, 增大了天线的适用范围。
本发明第三方面提供一种终端, 包括: 射频处理单元、 基带处理单元和 天线; 其中, 所述天线包括第一天线枝节、 第二天线枝节、 第三天线枝节、 馈电枝节和接地枝节; 其中, 所述馈电枝节的第一端分别与所述第一天线枝 节的第一端、 所述第二天线枝节的第一端、 所述第三天线枝节的第一端电连 接, 所述馈电枝节的第二端与所述 PCB上的天线馈电端电连接, 所述接地枝 节的第一端与所述第三天线枝节的第二端电连接, 所述接地枝节的第二端与 所述 PCB上的接地端电连接; 所述第一天线枝节与所述馈电枝节、 所述接地 枝节构成第一 PIFA天线, 所述第一 PIFA天线用于产生第一谐振频率; 所述 第二天线枝节与所述馈电枝节、所述接地枝节构成第二 PIFA天线, 所述第二 PIFA天线用于产生第二谐振频率; 所述第三天线枝节、 所述馈电枝节和所述 接地枝节构成环形天线, 所述环形天线用于产生第三谐振频率, 其中, 所述 环形天线的电尺寸为所述第三谐振频率对应波长的 1/2;
所述天线, 用于将接收到的无线信号传输给所述射频处理单元, 或者将 射频处理单元的发射信号转换为电磁波, 发送出去; 所述射频处理单元, 用 于对所述天线接收到的无线信号进行选频、 放大、 下变频处理, 并将其转换 成中频信号或基带信号发送给所述基带处理单元, 或者, 用于将所述基带处 理单元发送的基带信号或中频信号经过上变频、 放大, 通过所述天线发送出 去; 所述基带处理单元, 对接收到的所述中频信号或所述基带信号进行处理。
结合第三方面, 在第三方面的第一种可能的实施方式中, 所述第一天线 枝节、 所述第二天线枝节和所述第三天线枝节所在的平面与所述 PCB之间的 垂直高度在 3匪- 5匪之间。
结合第三方面或第三方面的第一种可能的实施方式, 在第三方面的第二 种可能的实施方式中,所述天线位于由所述终端的前盖和后盖形成的腔体内, 所述天线还包括天线支架, 所述 PCB和所述天线支架位于所述腔体内, 其中, 所述天线支架设置在所述 PCB的面向所述后盖的一面, 所述第一天线枝节、 所述第二天线枝节和所述第三天线枝节设置在所述天线支架的面向所述后盖 的一面。
结合第三方面或第三方面的第一种可能的实施方式, 在第三方面的第三 种可能的实施方式中, 所述天线位于由终端的前盖和后盖形成的腔体内, 所 述 PCB位于所述腔体内, 所述第一天线枝节、 所述第二天线枝节和所述第三 天线枝节设置在所述后盖的面向所述 PCB的一面。
结合第三方面至第三方面的第三种可能的实施方式中的任一项, 在第三 方面的第四种可能的实施方式中, 所述第一天线枝节、 所述第二天线枝节和 所述第三天线枝节为 " F "型结构, 所述第三天线枝节的第一端分别与所述 第一天线枝节的第一端和所述第二天线枝节的第一端电连接。
结合第三方面的第四种可能的实施方式, 在第三方面的第五种可能的实 施方式中, 所述第二天线枝节位于所述 PCB的第一边缘侧, 所述第三天线枝 节位于所述 PCB的第二边缘侧。
结合第三方面至第三方面的第三种可能的实施方式中的任一项, 在第三 方面的第六种可能的实施方式中, 所述第一天线枝节、 所述第二天线枝节和 所述第三天线枝节为 " E "型结构, 所述第三天线枝节的第一端与所述第一天 线枝节的第一端以及所述第二天线枝节的第一端齐平。
结合第三方面的第六种可能的实施方式, 在第三方面的第七种可能的实 施方式中, 所述天线位于所述 PCB的任一边缘侧。
本发明实施例提供的一种终端, 通过将第三天线枝节、 馈电枝节和接地 枝节构成的环形天线的电尺寸长度设置为第三谐振频率对应波长的 1/2, 使 得该环形天线产生第三谐振频率,从而将天线的工作带宽拓展到更宽的频带, 进而可以适用于宽频带的终端设备中, 增大了天线的适用范围。
本发明第四方面提供一种终端, 包括: 射频处理单元、 基带处理单元和 天线;
其中, 所述天线包括: 第一天线枝节、 第二天线枝节、 馈电枝节和接地 枝节, 所述馈电枝节的第一端分别与所述第一天线枝节的第一端、 所述第二 天线枝节的第一端电连接, 所述馈电枝节的第二端与印制电路板 PCB上的天 线馈电端电连接, 所述接地枝节的第一端与所述第二天线枝节的第二端电连 接, 所述接地枝节的第二端与所述 PCB上的接地端电连接; 所述第一天线枝 节与所述馈电枝节、 所述接地枝节构成第一 PIFA天线, 所述第一 PIFA天线 用于产生第一谐振频率; 所述第二天线枝节与所述馈电枝节、 所述接地枝节 构成环形天线, 所述环形天线用于产生第二谐振频率; 其中, 所述环形天线 的电尺寸为所述第二谐振频率对应波长的 1/2 ;
所述天线, 用于将接收到的无线信号传输给所述射频处理单元, 或者将 射频处理单元的发射信号转换为电磁波, 发送出去; 所述射频处理单元, 用 于对所述天线接收到的无线信号进行选频、 放大、 下变频处理, 并将其转换 成中频信号或基带信号发送给所述基带处理单元, 或者, 用于将所述基带处 理单元发送的基带信号或中频信号经过上变频、 放大, 通过所述天线发送出 去; 所述基带处理单元, 对接收到的所述中频信号或所述基带信号进行处理。
结合第四方面, 在第四方面的第一种可能的实施方式中, 所述第一天线 枝节和所述第二天线枝节所在的平面与所述 PCB之间的垂直高度在 3皿-5匪 之间。
结合第四方面或第四方面的第一种可能的实施方式, 在第四方面的第二 种可能的实施方式中, 所述天线位于由终端的前盖和后盖形成的腔体内, 所 述天线还包括天线支架, 所述 PCB和所述天线支架位于所述腔体内, 所述天 线支架设置在所述 PCB的面向所述后盖的一面, 所述第一天线枝节和第二天 线枝节设置在所述天线支架的面向所述后盖的一面。
结合第四方面或第四方面的第一种可能的实施方式, 在第四方面的第三 种可能的实施方式中, 所述天线位于由终端的前盖和后盖形成的腔体内, 所 述 PCB位于所述腔体内, 所述第一天线枝节和所述第二天线枝节设置在所述 后盖的面向所述 PCB的一面。
结合第四方面的第二种可能的实施方式或第四方面的第三种可能的实施 方式, 在第四方面的第四种可能的实施方式中, 所述第一天线枝节和所述第 二天线枝节为 " "型结构, 所述第一天线枝节的第一端和所述第二天线枝节 的第一端齐平。
本发明实施例提供的一种终端, 通过将第二天线枝节、 馈电枝节和接地 枝节构成的环形天线的电尺寸长度设置为第二谐振频率对应波长的 1/2, 使 得该环形天线产生第二谐振频率,从而将天线的工作带宽拓展到更宽的频带, 进而可以适用于宽频带的终端设备中, 增大了天线的适用范围。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图 1为本发明提供的天线 施例一的结构
图 2为本发明提供的天线 施例二的结构
图 3为本发明提供的天 έ ^施例二的回波损耗
Figure imgf000008_0001
图 4为本发明提供的天 ¾ ^施例二的效率仿真图;
图 5为本发明提供的天 έ ^施例三的结构示意图;
图 6为本发明提供的天 έ ^施例三的回波损耗
Figure imgf000008_0002
图 7为本发明提供的天 έ ^施例三的效率仿真图
图 8为本发明提供的天 έ ^施例四的结柊
图 9为本发明提供的天 έ ^施例五的结柊
图 10为本发明提供的天 实施例五的回波
Figure imgf000008_0003
图 11为本发明提供的终端实施例一的
图 12为本发明提供的终端实施例二的
附图标记说明
11: 第一天线枝节; 12: 第二天线枝节; 13: 第三天线枝节; 14: 馈电枝节; 15: 接地枝节; 16: PCB;
17: 天线馈电端; 18: 接地端; 19: 天线支架; 20: PCB的第一边缘侧; 21 PCB的第二边缘侧; 111: 第一天线枝节的第一端 112 第一天线枝节的第二端 121: 第二天线枝节的第一端 122 第二天线枝节的第二端 131: 第三天线枝节的第一端 132 第三天线枝节的第二端 141: 馈电枝节的第一端; 142 馈电枝节的第二端; 151: 接地枝节的第一端; 152 接地枝节的第二端; 41: 射频处理单元; 42 : 基带处理单元; 43: 天线; 31: 第一天线枝节; 第二天线枝节;
33 馈电枝节; 34: 接地枝节; 35: PCB;
36 天线馈电端; 37: 接地端; 38: 天线支架;
39 PCB的第一边缘侧; 40: PCB的第二边缘侧;
311 第一天线枝节的第一端; 312: 第一天线枝节的第二端
321 第二天线枝节的第一端; 322: 第二天线枝节的第二端
331 馈电枝节的第一端; 332: 馈电枝节的第二端;
341 接地枝节的第一端; 342: 接地枝节的第二端;
44: 射频处理单元; 45: 基带处理单元; 46: 天线。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
多频段谐振天线通过一定的辐射机理, 可以在几个不同的频段内工 作。 而对应不同的工作频段, 由于工作频率的不同, 对应天线的电尺寸是 不同的。 要使天线在每个工作频段内能很好的工作, 就需要设计天线的工 作谐振频率点, 即确定每个频段的天线的最佳电尺寸。 若天线工作在不同 的谐振点上, 会使天线在各个工作频段内, 具有较好的性能。
一般地, 天线有几个工作频段就可以有几个谐振频率, 从而实现天线 多频段较佳的工作状态。本发明实施例提供了一种天线,例如三频段天线, 其可以有三个谐振频率, 可应用到不同的三频段工作场景中, 例如: 无线 局域网 (Wireless Local Area Networks , 以下简称 WLAN) 天线的场景、 复合 WLAN和全球定位系统 ( Global Positioning System, 以下简称 GPS ) 天线的场景、 长期演进 (Long Term Evolution, 以下简称 LTE ) 分集天线 和 LTE主天线的场景等。
图 1为本发明提供的天线实施例一的结构示意图。 需要说明的是, 图 1是为了能够更清楚的说明本发明实施例中天线中各个天线枝节的连接关 系或者相应的位置, 且只是本发明实施例中的天线结构的一种示意, 本发 明实施例中的天线还可以有其他的结构, 并不限制于图 1所示的结构。 本 发明实施例中天线的其他结构在后面的实施例中会介绍到。
如图 1所示, 该天线包括: 第一天线枝节 11、 第二天线枝节 12、 第三 天线枝节 13、 馈电枝节 14和接地枝节 15; 其中, 该馈电枝节 14的第一端 141分别与第一天线枝节 1 1的第一端 11 1、 第二天线枝节 12的第一端 121、 第三天线枝节 13的第一端 131电连接, 馈电枝节 14的第二端 142与 PCB16 上的天线馈电端 17电连接;接地枝节 15的第一端 151与第三天线枝节 13的 第二端 132电连接, 接地枝节 15的第二端 152与 PCB16上的接地端 18电连 接; 所述第一天线枝节 1 1与馈电枝节 14、 接地枝节 15构成第一 PIFA天线, 该第一 PIFA天线用于产生第一谐振频率; 所述第二天线枝节 12与馈电枝节 14、接地枝节 15构成第二 PIFA天线, 该第二 PIFA天线用于产生第二谐振频 率; 所述第三天线枝节 13、 馈电枝节 14和接地枝节 15构成环形天线, 该环 形天线用于产生第三谐振频率, 其中, 该环形天线的电尺寸为第三谐振频率 对应波长的 1/2。
其中, 第一谐振频率可以为 2. 4GHz-2. 5GHz, 第二谐振频率的中心频 率可以为 5. 2GHz, 第三谐振频率的中心频率可以为 5. 8GHz。
具体的, 如图 1所示, 第一天线枝节 1 1、 馈电枝节 14和接地枝节 15 构成第一 PIFA天线; 其中, 馈电枝节 14的第一端 141与第一天线枝节 11 的第一端 111 电连接, 馈电枝节 14的第二端 142与 PCB16上的天线馈电端 17电连接。 通过设置第一 PIFA天线的电尺寸长度使得第一 PIFA天线产生第 一谐振频率。 其中, 该第一谐振频率可以为 2. 4GHz。 该第一 PIFA天线的电 尺寸长度可以为第一谐振频率对应的波长的 1/4, 该第一 PIFA天线的电尺寸 长度可以为从 PCB16的天线馈电端 17经由馈电枝节 14到第一天线枝节 11的 第二端 112的电长度。 这里的第一谐振频率对应的波长的 1/4可以是根据谐 振频率 2. 4GHz计算出来的电长度。
第二天线枝节 12与馈电枝节 14、 接地枝节 15构成第二 PIFA天线; 其中,该馈电枝节 14的第一端 141与第二天线枝节 12的第一端 121电连接, 馈电枝节 14的第二端 142与 PCB16上的天线馈电端 17电连接。 通过设置第 二 PIFA天线的电尺寸长度可以使得第二 PIFA天线产生第二谐振频率,其中, 该第二谐振频率可以为 5. 2GHz , 该第二 PIFA天线的电尺寸长度可以为从天 线馈电端 17经由馈电枝节 14到第二天线枝节 12的第二端 122的电长度。这 里的第二 PIFA天线的电尺寸长度为第二谐振频率对应的波长的 1/4, 这里的 第二谐振频率对应的波长的 1/4可以是根据谐振频率 5. 2GHz计算出来的电 长度。
需要说明的是, 图 1中第一天线枝节 11和第二天线枝节 12的位置只是 一个简单的示意, 第一天线枝节 11可以和第二天线枝节 12平行, 也可以和 第二天线枝节 12不平行(图 1示出了二者不平行的情况) , 只要确保第一天 线枝节 11的第一端 111和第二天线枝节 12的第一端 121与馈电枝节 14的第 一端 141电连接, 第一天线枝节 11的第二端 112和第二天线枝节 12的第二 端 122之间有合适的缝隙即可。
第三天线枝节 13与馈电枝节 14、接地枝节 15构成环形天线, 通过将 该环形天线的电尺寸设置为第三谐振频率对应波长的 1/2, 使得所构成的环 形天线产生第三谐振频率, 该第三谐振频率可以为 5. 8GHz; 这里的环形天线 的电尺寸实际上指的是天线馈电端 17经由馈电枝节 14、 第三天线枝节 13、 接地枝节 15到达接地端 18构成的电长度, 即就是环形天线电尺寸。 环形天 线的设计, 使得 PCB16与天线只有天线馈电端 17和接地端 18两个接触点, 且不用增加额外的寄生枝节来产生第三谐振频率, 就可以拓展天线的工作带 宽, 还可以使得天线的体积减小。 这里的第三谐振频率对应的波长的 1/2可 以是根据频率 5. 8GHz计算出来的电长度。
当终端内部需要将处理后的电流信号经过天线辐射出去, 则电流信号 经过 PCB16上的天线馈电端 17流经馈电枝节 14、 相应的天线枝节和接地 枝节 15到达 PCB的接地端 18, 形成谐振回路从而产生辐射电磁场, 将电 流信号以电磁波的形式辐射出去。假设终端内部处理的电流信号是中心频 率为 5. 8GHz频段的信号, 则该电流信号经过天线馈电端 17进入馈电枝节 14、 第三天线枝节 13和接地枝节 15到达 PCB16的接地端 18形成一个闭 环回路, 从而产生辐射电磁场, 将该电流信号以电磁波的形式辐射出去; 需要注意的是, 该电流信号也会通过第一 PIFA天线和第二 PIFA天线以电 磁波的形式辐射出去, 只是由于环形天线可以工作在第三谐振频率上, 因 此经由环形天线辐射出去的电磁波信号强度较第一 PIFA天线和第二 PIFA 天线辐射的电磁波强度要大, 易于对端的电子设备接收。 需要说明的是, 这里只是简单介绍了通过天线将电流信号发送出去的过程, 利用本发明实 施例中的天线接收相应频段的电磁波信号, 并将该电磁波信号转换为电流 信号的过程的原理和所述发送过程的原理类似, 在此不再赘述。
本发明实施例提供一种天线, 通过将第三天线枝节、 馈电枝节和接地枝 节构成的环形天线的电尺寸长度设置为第三谐振频率对应波长的 1/2, 使得 该环形天线产生第三谐振频率, 从而将天线的工作带宽拓展到更宽的频带, 进而可以适用于宽频带的电子设备中, 增大了天线的适用范围。
进一步地, 在上述实施例的基础上, 所述第一天线枝节 11、 第二天线枝 节 12和第三天线枝节 13所在的平面与 PCB16之间的垂直高度可以为 3匪_5匪 之间, 这样可以使得天线只需占用终端内部较小的空间就可以拓宽自己的工 作频带。
具体可以有两种实施方式, 分别为:
第一种实施方式: 所述天线位于由终端的前盖和后盖形成的腔体内, 所 述天线还包括天线支架 19, 所述 PCB16和天线支架 19位于所述腔体内, 其 中, 所述天线支架 19设置在 PCB16的面向所述所述后盖的一面, 所述第一天 线枝节 11、 第二天线枝节 12和第三天线枝节 13设置在所述天线支架 19的 面向所述后盖的一面。
具体的, 可以参照图 1, 图 1中示出了天线支架 19和所述天线中各个枝 节的位置关系(图 1中未示出终端的前盖和后盖) , 所述天线支架 19设置在 PCB16的面向终端的后盖的一面, 所述天线的第一天线枝节 11、 第二天线枝 节 12和第三天线枝节 13设置在天线支架 19的同一个平面上,并且该平面为 天线支架 19的面向终端后盖的一面。 gp, 通过天线支架 19可以使得所述第 一天线枝节 11、 第二天线枝节 12和第三天线枝节 13所在的平面与 PCB16间 的垂直高度保持在 3皿_5匪之间, 从而使得该天线占用较小的终端内部的空 间。
第二种实施方式: 所述天线位于由终端的前盖和后盖形成的腔体内, 所 述 PCB16位于所述腔体内, 所述第一天线枝节 11、 第二天线枝节 12和第三 天线枝节 13设置在所述后盖的面向 PCB16的一面。
具体的, 所述天线中的第一天线枝节 11、 第二天线枝节 12和第三天线 枝节 13在同一个平面, 并且该平面为终端后盖的面向 PCB16的一面, 即第一 天线枝节 11、第二天线枝节 12和第三天线枝节 13位于终端后盖的一个平面, 并且所述平面为终端后盖的面向 PCB16的一面, 这样可以使得第一天线枝节 11、 第二天线枝节 12和第三天线枝节 13所在的平面与 PCB16间的垂直高度 在 3皿-5匪之间, 从而使得该天线占用较小的终端内部的空间。
本发明实施例提供一种天线, 通过将第三天线枝节、 馈电枝节和接地枝 节构成的环形天线的电尺寸长度设置为第三谐振频率对应波长的 1/2, 使得 该环形天线产生第三谐振频率, 从而可以将天线的工作带宽拓展到更宽的频 带, 进而可以适用于宽频带的电子设备中; 另, 无需增加单独的寄生枝节来 产生第三谐振频率。 第一天线枝节、 第二天线枝节以及第三天线枝节所在的 平面可以和 PCB间的垂直高度在 3匪_5匪之间, 使得该天线占用较小的终端 内部的空间; 进一步的, PCB 与天线只有天线馈电端和接地端两个接触点, 进一步使得天线占用较小的 PCB面积,并且由于 PCB上与天线接触点的减少, 也可以使得 PCB的成本降低。
图 2为本发明提供的天线实施例二的结构示意图, 图 3为本发明提供 的天线实施例二的回波损耗仿真图, 图 4为本发明提供的天线实施例二的 效率仿真图。 在上述实施例的基础上, 进一步地, 所述第一天线枝节 11、 第二天线枝节 12和第三天线枝节 13可以为 " F "型结构, 第三天线枝节 13 的第一端 131分别与第一天线枝节 11的第一端 111和第二天线枝节 12的第 一端 121电连接。
具体的, 第一天线枝节 11、 第二天线枝节 12和第三天线枝节 13形成了 一个 " F "型结构, 这里的第一天线枝节 11可以和第二天线枝节 12平行, 也可以不和第二天线枝节 12平行, 只要确保第一天线枝节 11的第一端 111 和第二天线枝节 12的第一端 121与馈电枝节 14的第一端 141电连接, 第一 天线枝节 11的第二端 112和第二天线枝节 12的第二端 122有合适的缝隙即 可。 需要说明的是, 所述图 1和图 2的区别在于图 1中示出的是第一天线枝 节 11和第二天线枝节 12不平行的情况, 图 2中示出的是第一天线枝节 11和 第二天线枝节 12平行的情况。
馈电枝节 14、 接地枝节 15与第一天线枝节 11形成第一 PIFA天线; 馈 电枝节 14、 接地枝节 15与第二天线枝节 12形成第二 PIFA天线; 通过第三 天线枝节 13与馈电枝节 14、 接地枝节 15构成环形天线, 通过将该环形天 线的电尺寸设置为第三谐振频率对应波长的 1/2, 使得所构成的环形天线能 够产生第三谐振频率; 这里的电尺寸实际上指的是由 PCB16的天线馈电端 17 经由馈电枝节 14、第三天线枝节 13、接地枝节 15到达 PCB16的接地端 18构 成的环的电长度, 即就是环形天线电尺寸。
图 3中分别示出了不同高度的天线在谐振点上的回波损耗, 由图 3可以 看出, 不同的天线高度下, 工作在三个谐振点上的天线的回波损耗都比较小; 图 4中分别示出了不同高度的天线在谐振点上的天线的效率, 由图 4可以看 出, 不同的天线高度下, 工作在三个谐振点上的天线的效率都比较大。
为了能够更好的将电流信号辐射出去, 所述第二天线枝节 12可以位于
PCB16的第一边缘侧 20, 第三天线枝节 13可以位于 PCB17的第二边缘侧 21, 具体位置可以参见图 2所示。 所述天线位于 PCB16上两个边缘侧形成的一个 拐角处。 需要说明的是, 所述天线还可以位于 PCB上两个边缘侧形成的其他 拐角处, 本发明实施例对此并不做限制。
本发明实施例提供一种天线, 通过将第三天线枝节、 馈电枝节和接地枝 节构成的环形天线的电尺寸长度设置为第三谐振频率对应波长的 1/2, 使得 该环形天线产生第三谐振频率, 从而将天线的工作带宽拓展到更宽的频带, 进而可以适用于宽频带的电子设备中; 另, 无需增加单独的寄生枝节来产生 第三谐振频率, 并且第一天线枝节、 第二天线枝节以及第三天线枝节所在的 平面可以和 PCB间的垂直高度在 3匪_5匪之间, 使得该天线占用较小的终端 内部的空间; 进一步地, PCB 与天线只有天线馈电端和接地端两个接触点, 进一步使得天线占用较小的 PCB面积,并且由于 PCB上与天线接触点的减少, 也可以使得 PCB的成本降低。
图 5为本发明提供的天线实施例三的结构示意图, 图 6为本发明提供 的天线实施例三的回波损耗仿真图, 图 7为本发明提供的天线实施例三的 效率仿真图。 如图 5所示, 在所述实施例的基础上, 进一步地, 所述第一 天线枝节 11、 第二天线枝节 12和第三天线枝节 13为 " E "型结构, 第三天 线枝节 13的第一端 131与第一天线枝节 11的第一端 111以及第二天线枝节 12的第一端 121齐平。
具体的, 第一天线枝节 11、 第二天线枝节 12和第三天线枝节 13形成了 一个 " E "型结构, 该第三天线枝节 13、 第一天线枝节 1 1以及第二天线枝节 12三者可以平行, 也可以不平行, 只要确保第一天线枝节 11的第一端 111、 第二天线枝节 12的第一端 121、 第三天线枝节 13的第一端 131与馈电枝节 14的第一端 141 电连接, 第一天线枝节 11的第二端 112、 第二天线枝节 12 的第二端 122和第三天线枝节 13的第二端 132在一平面, 第一天线枝节 11、 第二天线枝节 12和第三天线枝节 13有合适的间隔即可。 图 5以三者平行作 为实例来说明具体的连接关系。
第三天线枝节 13的第一端 131与第一天线枝节 11的第一端 11 1以及第 二天线枝节 12的第一端 121齐平,这里所说的齐平的概念可以参见图 5的结 构所示, 即若在 PCB16的面向后盖的一面以横纵坐标来表示位置的话, 如图 5中所示的 X轴和 y轴, 第三天线枝节 13的第一端 131与第一天线枝节 1 1 的第一端 111、 第二天线枝节 12的第一端 121的位置的 X坐标值是相同的。
馈电枝节 14、 接地枝节 15与第一天线枝节 11形成第一 PIFA天线; 馈 电枝节 14、 接地枝节 15与第二天线枝节 12形成第二 PIFA天线; 第三天线 枝节 13与馈电枝节 14、 接地枝节 15构成环形天线, 该环形天线的电尺寸 为第三谐振频率对应波长的 1/2, 这样可以使得所构成的环形天线能够产生 第三谐振频率;这里的电尺寸实际上指的是由 PCB16的天线馈电端 17经由馈 电枝节 14、第三天线枝节 13、接地枝节 15到达 PCB16的接地端 18构成的环 的电长度, 即就是环形天线电尺寸。
为了能够更好的将电流信号辐射出去,所述结构的天线可以位于 PCB16 的任一拐角处(例如, 所述第一边缘侧 20和第二边缘侧 21形成所述拐角) 。 图 5是所述天线位于 PCB16的边缘侧的简单示意, 但本发明实施例对此不做 限制。 可选的, 图 5中的天线位置的布局, 使得天线存在两个开放的辐射边 界 (即图 5所示的上边缘和左边缘) , 其天线馈电端 17和接地端 18的位置 易于与 PCB16做更好的阻抗匹配, 从而具有更好的天线效率。 图 6中分别示 出了天线分别位于 PCB16的上边缘 (布局一) 和左边缘 (布局二) 时在谐振 点上的回波损耗, 图 7中分别示出天线分别位于 PCB16的上边缘和左边缘时 在谐振点上的天线的效率。 由图 6和图 7可以看出, 这种结构的天线在三个 谐振点上均具有较小的回波损耗和较大的天线效率。
本发明实施例提供一种天线, 通过将第三天线枝节、 馈电枝节和接地枝 节构成的环形天线的电尺寸长度设置为第三谐振频率对应波长的 1/2, 使得 该环形天线产生第三谐振频率, 从而将天线的工作带宽拓展到更宽的频带, 进而可以适用于宽频带的电子设备中; 另, 无需增加单独的寄生枝节来产生 第三谐振频率, 并且第一天线枝节、 第二天线枝节以及第三天线枝节所在的 平面可以和 PCB间的垂直高度保持在 3皿-5匪之间, 使得该天线占用较小的 终端内部的空间; 进一步地, PCB 与天线只有天线馈电端和接地端两个接触 点, 进一步使得天线占用较小的 PCB面积, 并且由于 PCB上与天线接触点的 减少, 也可以使得 PCB的成本降低。 图 8为本发明提供的天线实施例四的结构示意图, 该天线包括: 第一 天线枝节 31、 第二天线枝节 32、 馈电枝节 33和接地枝节 34; 其中, 该馈电 枝节 33的第一端 331分别与第一天线枝节 31的第一端 31 1、 第二天线枝节 32的第一端 321电连接, 馈电枝节 33的第二端 332与 PCB35上的天线馈电 端 36电连接,接地枝节 34的第一端 341与第二天线枝节 32的第二端 322电 连接, 接地枝节 34的第二端 342与 PCB35上的接地端 37电连接; 所述第一 天线枝节 31与馈电枝节 33、 接地枝节 34构成第一 PIFA天线, 该第一 PIFA 天线用于产生第一谐振频率; 所述第二天线枝节 32与馈电枝节 33、 接地枝 节 34构成环形天线, 该环形天线用于产生第二谐振频率; 其中, 该环形天线 的电尺寸长度为所述第二谐振频率对应波长的 1/2。
其中, 第一谐振频率可以为 2. 4GHz-2. 5GHz, 第二谐振频率可以为
4. 9GHz-5. 9GHz o
具体的, 如图 8所示, 第一天线枝节 31、 馈电枝节 33和接地枝节 34 构成第一 PIFA天线; 其中, 馈电枝节 33的第一端 331与第一天线枝节 31 的第一端 311 电连接, 馈电枝节 33的第二端 332与 PCB35上的天线馈电端 36电连接。 通过设置第一 PIFA天线的电尺寸长度使得第一 PIFA天线产生第 一谐振频率, 该第一谐振频率可以为 2. 4GHz。 该第一 PIFA天线的电尺寸长 度可以为第一谐振频率对应的波长的 1/4, 并且该第一 PIFA天线的电尺寸长 度可以为从 PCB35的天线馈电端 36经由馈电枝节 33到第一天线枝节 31的第 二端 312的电长度。 这里的第一谐振频率对应的波长的 1/4是根据谐振频率 2. 4GHz计算出来的电长度。 第二天线枝节 32与馈电枝节 33、 接地枝节 34构成环形天线; 其中, 该馈电枝节 33的第一端 331与第二天线枝节 32的第一端 321电连接, 馈电 枝节 33的第二端 332与 PCB35上的天线馈电端 36电连接。 通过将该环形天 线的电尺寸设置为第二谐振频率对应波长的 1/2, 使得所构成的环形天线产 生第二谐振频率, 该第二谐振频率可以为 5. 2GHz。 这里的环形天线的电尺寸 实际上指的是由 PCB35的天线馈电端 36经由馈电枝节 33、第二天线枝节 32、 接地枝节 34到达接地端 37构成的环的电长度, 即就是环形天线电尺寸。
需要说明的是, 图 8中第一天线枝节 31和第二天线枝节 32的位置只是 一个简单的示意, 第一天线枝节 31可以和第二天线枝节 32平行, 也可以和 第二天线枝节 32不平行(图 8示出了二者不平行的情况) , 只要确保第一天 线枝节 31的第一端 31 1和第二天线枝节 32的第一端 321与馈电枝节 33的第 一端 331电连接, 第一天线枝节 31的第二端 312和第二天线枝节 32的第二 端 322之间有合适的缝隙即可。
当终端内部需要将处理后的电流信号经过天线辐射出去, 则电流信号 经过 PCB35上的天线馈电端 36流经馈电枝节 33、 相应的天线枝节和接地 枝节 34到达 PCB35的接地端 37, 形成谐振回路从而产生辐射电磁场, 将 电流信号以电磁波的形式辐射出去。假设终端内部处理的电流信号是中心 频率为 5. 8GHz频段内的信号, 则该电流信号经过天线馈电端 36进入馈电 枝节 33、 第二天线枝节 32和接地枝节 34到达 PCB35的接地端 37形成一 个闭环回路, 从而产生辐射电磁场, 将该电流信号以电磁波的形式辐射出 去; 需要注意的是, 该电流信号也会通过第一 PIFA天线以电磁波的形式 辐射出去, 只是由于环形天线可以工作在第二谐振频率上, 因此经由环形 天线辐射出去的电磁波信号强度较第一 PIFA天线辐射的电磁波强度要大, 易于对端的电子设备接收。 需要说明的是, 这里只是简单介绍了通过天线 将电流信号发送出去的过程, 利用本发明实施例中的天线接收相应频段内 的电磁波信号, 并将该电磁波信号转换为电流信号的过程的原理和上述发 送过程的原理类似, 在此不再赘述。
本发明实施例提供一种天线, 通过将第二天线枝节、 馈电枝节和接地枝 节构成的环形天线的电尺寸长度设置为第二谐振频率对应波长的 1/2, 使得 该环形天线产生第二谐振频率, 从而将天线的工作带宽拓展到更宽的频带, 进而可以适用于宽频带的电子设备中。
进一步地, 进一步地, 在上述图 8所示实施例的基础上, 所述第一天线 枝节 31 和第二天线枝节 32 所在的平面与 PCB35 之间的垂直高度可以在 3mm-5mm之间, 从而使得天线只需占用终端内部较小的空间就可以拓宽自己 的工作频带。 具体可以有两种实施方式, 分别为:
第一种实施方式: 所述天线位于由终端的前盖和后盖形成的腔体内, 所 述天线还包括天线支架, 所述 PCB35和天线支架 38位于所述腔体内, 其中, 所述天线支架 38设置在 PCB35 的面向所述后盖的一面, 所述第一天线枝节 31和第二天线枝节 32设置在所述天线支架 38的面向所述后盖的一面。
具体的, 可以参照图 8, 图 8中示出了天线支架 38和所述天线中各个枝 节的位置(图 8中未示出终端的前盖和后盖),所述天线支架 38设置在 PCB35 的面向终端的后盖的一面, 所述天线的第一天线枝节 31和第二天线枝节 32 设置在天线支架 38的一个平面上, 并且该平面为天线支架 38的面向终端后 盖的一面。 gP, 通过天线支架 38可以使得所述第一天线枝节 31和第二天线 枝节 32所在的平面与 PCB35间的垂直高度保持在 3皿_5匪之间,从而使得该 天线占用较小的终端内部的空间。
第二种实施方式: 所述天线位于由终端的前盖和后盖形成的腔体内, 所 述 PCB35位于所述腔体内, 所述第一天线枝节 31和第二天线枝节 32设置在 所述后盖的面向 PCB35的一面。
具体的, 所述天线的第一天线枝节 31和第二天线枝节 32在一个平面, 并且该平面为终端后盖的面向 PCB35的一面,即第一天线枝节 31和第二天线 枝节 32位于终端后盖的一个平面,并且该平面为终端后盖的面向 PCB35的一 面, 这样可以使得第一天线枝节 31和第二天线枝节 32所在的平面与 PCB35 之间的垂直高度在 3皿-5匪之间, 从而使得该天线占用较小的终端内部的空 间。
本发明实施例提供一种天线, 通过将第二天线枝节、 馈电枝节和接地枝 节构成的环形天线的电尺寸长度设置为第二谐振频率对应波长的 1/2, 使得 该环形天线产生第二谐振频率, 从而将天线的工作带宽拓展到更宽的频带, 进而可以适用于宽频带的电子设备中。 另, 第一天线枝节和第二天线枝节所 在的平面可以和 PCB间的垂直高度在 3mm_5mm之间, 使得该天线占用较小的 终端内部的空间。
图 9为本发明提供的天线实施例五的结构示意图, 图 10为本发明提供 的天线实施例五的回波损耗仿真图。 在图 8所示实施例的基础上, 进一步 地, 所述第一天线枝节 31和第二天线枝节 32为 " "型结构; 所述第一天 线枝节 31的第一端 311和第二天线枝节 32的第一端 321齐平。
需要说明的是, 图 8和图 9的区别在于, 图 8中示出的是第一天线枝节 31和第二天线枝节 32不平行的情况, 图 9示出的是第一天线枝节 31和第二 天线枝节 32平行的情况。
具体的, 所述第二天线枝节 32和所述第一天线枝节 31形成了一个 " " 型结构, 并且该第二天线枝节 32的第一端 321与第一天线枝节 31的第一端 311齐平, 这里所说的齐平的概念可以参见图 9的结构所示, 如图 9中所示 的 X轴和 y轴, 即若以横纵坐标来表示位置的话, 则第二天线枝节 32的第一 端 321与第一天线枝节 31的第一端 311的位置的 X坐标值是相同的。
馈电枝节 33、 接地枝节 34与第一天线枝节 31形成第一 PIFA天线; 馈 电枝节 33、 接地枝节 34与第二天线枝节 32形成环形天线; 这里所形成的环 形天线能够覆盖的工作带宽是第二谐振频率 (例如 5. 2GHz ) 的工作带宽。 该 环形天线的电尺寸为对应第二谐振频率对应波长的 1/2。 其中, 这里的环形 天线的电尺寸实际上指的是由 PCB35的天线馈电端 36经由馈电枝节 33、 第 二天线枝节 32、 接地枝节 34到达 PCB35的接地端 37构成的环的电长度。
为了能够更好的将电流信号辐射出去,所述结构的天线可以位于 PCB35 的任一边缘侧 (例如: 图 9中的第一边缘侧 39或第二边缘侧 40 ) 。 图 10中 示出了该天线的回波损耗 (S11 ) 。 由图 10可以看出, 这种结构的天线在其 谐振点上均具有较小的回波损耗。
本发明实施例提供一种天线, 通过将第二天线枝节、 馈电枝节和接地枝 节构成的环形天线的电尺寸长度设置为第二谐振频率对应波长的 1/2, 使得 该环形天线产生第二谐振频率, 从而将天线的工作带宽拓展到更宽的频带, 进而可以适用于宽频带的电子设备中。
图 11为本发明提供的终端实施例一的结构示意图, 请参阅图 11和图 1, 该终端包括射频处理单元 41、 基带处理单元 42和天线 43。
所述天线 43, 包括第一天线枝节 11、 第二天线枝节 12、 第三天线枝节 13、 馈电枝节 14和接地枝节 15; 其中, 该馈电枝节 14的第一端 141分别与 第一天线枝节 1 1的第一端 1 11、第二天线枝节 12的第一端 121、第三天线枝 节 13的第一端 131电连接, 所述馈电枝节 14的第二端 142与 PCB16上的天 线馈电端 17电连接,接地枝节 15的第一端 151与第三天线枝节 13的第二端 132电连接, 接地枝节 15的第二端 152与 PCB16上的接地端 18电连接; 所 述第一天线枝节 1 1与馈电枝节 14、 接地枝节 15构成第一 PIFA天线, 该第 一 PIFA天线用于产生第一谐振频率; 所述第二天线枝节 12与馈电枝节 14、 接地枝节 15构成第二 PIFA天线, 该第二 PIFA天线用于产生第二谐振频率; 所述第三天线枝节 13、 馈电枝节 14和接地枝节 15构成环形天线, 该环形天 线用于产生第三谐振频率, 其中, 该环形天线的电尺寸为第三谐振频率对应 波长的 1/2。
所述天线 43, 用于将接收到的无线信号传输给射频处理单元 41, 或者将 射频处理单元 41 的发射信号转换为电磁波, 发送出去; 射频处理单元 41, 用于对天线 43接收到的无线信号进行选频、 放大、 下变频处理, 并将其转换 成中频信号或基带信号发送给基带处理单元 42, 或者, 用于将基带处理单元 42发送的基带信号或中频信号经过上变频、 放大, 通过天线 43发送出去; 基带处理单元 42, 对接收到的所述中频信号或基带信号进行处理。
其中, 第一谐振频率可以为 2. 4GHz-2. 5GHz, 第二谐振频率的中心频 率可以为 5. 2GHz, 第三谐振频率的中心频率可以为 5. 8GHz。
进一步地, 所述第一天线枝节 11、 第二天线枝节 12和第三天线枝节 13 所在的平面与 PCB16之间的垂直高度在 3mm-5mm之间。
可选的, 所述天线 43 位于由终端的前盖和后盖形成的腔体内, 该天线 43还包括天线支架 19, 所述 PCB16和天线支架 19位于所述腔体内, 其中, 该天线支架 19设置在所述 PCB16的面向所述后盖的一面, 第一天线枝节 11、 第二天线枝节 12和第三天线枝节 13设置在天线支架 19的面向所述后盖的一 面。
可选的,所述天线 43位于由终端的前盖和后盖形成的腔体内,所述 PCB16 位于所述腔体内, 第一天线枝节 11、 第二天线枝节 12和第三天线枝节 13设 置在所述后盖的面向 PCB16的一面。
可选的, 所述第一天线枝节 1 1、 第二天线枝节 12和第三天线枝节 13为 " F "型结构, 该第三天线枝节 13的第一端 131分别与第一天线枝节 11的 第一端 111和 1第二天线枝节 12的第一端 121垂直电连接。 并且, 可选的, 所述第二天线枝节 12位于 PCB16的第一边缘侧 20, 第三天线枝节 13位于 PCB16的第二边缘侧 21。
可选的, 所述第一天线枝节 11、 第二天线枝节 12和第三天线枝节 13为 型结构, 该第三天线枝节 13的第一端 131与第一天线枝节 11的第一端 111以及第二天线枝节 12的第一端 121齐平。 并且, 可选的, 所述天线位于 PCB16的任一边缘侧。
需要说明的是, 此处的天线 43可以参照所述图 1-图 7中的天线结构实 施例的描述, 在此不再赘述。 该终端可以为数据卡、 无线上网卡、 无线路由 器、 手机、 穿戴式设备、 眼镜、 媒体装置等通信终端。
图 12为本发明提供的终端实施例二的结构示意图, 如图 8和图 12所 示, 该终端包括射频处理单元 44、 基带处理单元 45和天线 46。
所述天线 46包括: 第一天线枝节 31、 第二天线枝节 32、 馈电枝节 33和 接地枝节 34; 其中, 该馈电枝节 33的第一端 331分别与第一天线枝节 31的 第一端 311、 第二天线枝节 32的第一端 321 电连接, 馈电枝节 33的第二端 332与 PCB35上的天线馈电端 36电连接, 接地枝节 34的第一端 341与第二 天线枝节 32的第二端 322电连接, 接地枝节 34的第二端 342与 PCB35上的 接地端 37电连接; 所述第一天线枝节 31与馈电枝节 33、 接地枝节 34构成 第一 PIFA天线, 该第一 PIFA天线用于产生第一谐振频率; 所述第二天线枝 节 32与馈电枝节 33、 接地枝节 34构成环形天线, 该环形天线用于产生第二 谐振频率; 其中, 该环形天线的电尺寸为所述第二谐振频率对应波长的 1/2。
所述天线 46, 用于将接收到的无线信号传输给射频处理单元 44, 或者将 射频处理单元 44的发射信号转换为电磁波, 发送出去; 射频处理单元 44, 用于对天线 46接收到的无线信号进行选频、 放大、 下变频处理, 并将其转换 成中频信号或基带信号发送给基带处理单元 45, 或者, 用于将基带处理单元 45发送的基带信号或中频信号经过上变频、 放大, 通过天线 46发送出去; 基带处理单元 45, 对接收到的所述中频信号或基带信号进行处理。
其中, 第一谐振频率可以为 2. 4GHz-2. 5GHz, 第二谐振频率可以为 4. 9GHz-5. 9GHz。 进一步地,所述第一天线枝节 31和第二天线枝节 32所在的平面与 PCB35 之间的垂直高度在 3mm_5mm之间。
可选的, 所述天线 46 位于由终端的前盖和后盖形成的腔体内, 该天线 46还包括天线支架 38, PCB35和天线支架 38位于所述腔体内, 该天线支架 38设置在 PCB35的面向所述后盖的一面, 所述第一天线枝节 31和第二天线 枝节 32设置在天线支架 38的面向所述后盖的一面。
可选的, 所述天线 46位于由终端的前盖和后盖形成的腔体内, 该 PCB35 位于所述腔体内, 所述第一天线枝节 31和第二天线枝节 32设置在所述后盖 的面向 PCB35的一面。
可选的, 所述第一天线枝节 31和第二天线枝节 32为 " "型结构, 该第 一天线枝节 31的第一端 31 1和第二天线枝节 32的第一端 322齐平。
需要说明的是, 此处的天线 46可以参照上述图 8-图 10中对天线结构实 施例的描述, 在此不再赘述。 该终端可以为数据卡、 无线上网卡、 无线路由 器、 手机、 穿戴式设备、 眼镜、 媒体装置等通信终端。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种天线, 其特征在于, 包括: 第一天线枝节、 第二天线枝节、 第三 天线枝节、 馈电枝节和接地枝节; 其中, 所述馈电枝节的第一端分别与所述 第一天线枝节的第一端、 所述第二天线枝节的第一端、 所述第三天线枝节的 第一端电连接, 所述馈电枝节的第二端与印制电路板 PCB上的天线馈电端电 连接, 所述接地枝节的第一端与所述第三天线枝节的第二端电连接, 所述接 地枝节的第二端与所述 PCB上的接地端电连接;
所述第一天线枝节与所述馈电枝节、 所述接地枝节构成第一 PIFA天线, 所述第一 PIFA天线用于产生第一谐振频率;所述第二天线枝节与所述馈电枝 节、 所述接地枝节构成第二 PIFA天线, 所述第二 PIFA天线用于产生第二谐 振频率; 所述第三天线枝节、 所述馈电枝节和所述接地枝节构成环形天线, 所述环形天线用于产生第三谐振频率, 其中, 所述环形天线的电尺寸为所述 第三谐振频率对应波长的 1/2。
2、 根据权利要求 1所述的天线, 其特征在于, 所述第一天线枝节、 所述 第二天线枝节和所述第三天线枝节所在的平面与所述 PCB之间的垂直高度在
3mm_5mm之间。
3、 根据权利要求 1或 2所述的天线, 其特征在于, 所述天线位于由终端 的前盖和后盖形成的腔体内, 所述天线还包括天线支架, 所述 PCB和所述天 线支架位于所述腔体内, 其中, 所述天线支架设置在所述 PCB的面向所述后 盖的一面, 所述第一天线枝节、 所述第二天线枝节和所述第三天线枝节设置 在所述天线支架的面向所述后盖的一面。
4、 根据权利要求 1或 2所述的天线, 其特征在于, 所述天线位于由终端 的前盖和后盖形成的腔体内, 所述 PCB位于所述腔体内, 所述第一天线枝节、 所述第二天线枝节和所述第三天线枝节设置在所述后盖的面向所述 PCB的一 面。
5、 根据权利要求 1-4任一项所述的天线, 其特征在于, 所述第一天线枝 节、 所述第二天线枝节和所述第三天线枝节为 " F "型结构, 所述第三天线 枝节的第一端分别与所述第一天线枝节的第一端和所述第二天线枝节的第一 端电连接。
6、 根据权利要求 5所述的天线, 其特征在于, 所述第二天线枝节位于所 述 PCB的第一边缘侧, 所述第三天线枝节位于所述 PCB的第二边缘侧。
7、 根据权利要求 1-4任一项所述的天线, 其特征在于, 所述第一天线枝 节、 所述第二天线枝节和所述第三天线枝节为 型结构, 所述第三天线枝 节的第一端与所述第一天线枝节的第一端以及所述第二天线枝节的第一端齐 平。
8、 根据权利要求 7所述的天线, 其特征在于, 所述天线位于所述 PCB的 任一边缘侧。
9、 一种天线, 其特征在于, 包括: 第一天线枝节、 第二天线枝节、 馈电 枝节和接地枝节; 其中, 所述馈电枝节的第一端分别与所述第一天线枝节的 第一端、 所述第二天线枝节的第一端电连接, 所述馈电枝节的第二端与印制 电路板 PCB上的天线馈电端电连接, 所述接地枝节的第一端与所述第二天线 枝节的第二端电连接,所述接地枝节的第二端与所述 PCB上的接地端电连接; 所述第一天线枝节与所述馈电枝节、 所述接地枝节构成第一 PIFA天线, 所述第一 PIFA天线用于产生第一谐振频率;所述第二天线枝节与所述馈电枝 节、 所述接地枝节构成环形天线, 所述环形天线用于产生第二谐振频率; 其 中, 所述环形天线的电尺寸为所述第二谐振频率对应波长的 1/2。
10、 根据权利要求 9所述的天线, 其特征在于, 所述第一天线枝节和所 述第二天线枝节所在的平面与所述 PCB之间的垂直高度在 3mm-5mm之间。
11、 根据权利要求 8或 9所述的天线, 其特征在于, 所述天线位于由终 端的前盖和后盖形成的腔体内, 所述天线还包括天线支架, 所述 PCB和所述 天线支架位于所述腔体内, 所述天线支架设置在所述 PCB的面向所述后盖的 一面, 所述第一天线枝节和第二天线枝节设置在所述天线支架的面向所述后 盖的一面。
12、 根据权利要求 8或 9所述的天线, 其特征在于, 所述天线位于由终 端的前盖和后盖形成的腔体内, 所述 PCB位于所述腔体内, 所述第一天线枝 节和所述第二天线枝节设置在所述后盖的面向所述 PCB的一面。
13、 根据权利要求 11或 12所述的天线, 其特征在于, 所述第一天线枝 节和所述第二天线枝节为 " "型结构, 所述第一天线枝节的第一端和所述第 二天线枝节的第一端齐平。
14、 一种终端, 其特征在于, 包括: 射频处理单元、 基带处理单元和天 其中, 所述天线包括第一天线枝节、 第二天线枝节、 第三天线枝节、 馈 电枝节和接地枝节; 其中, 所述馈电枝节的第一端分别与所述第一天线枝节 的第一端、所述第二天线枝节的第一端、所述第三天线枝节的第一端电连接, 所述馈电枝节的第二端与所述 PCB上的天线馈电端电连接, 所述接地枝节的 第一端与所述第三天线枝节的第二端电连接, 所述接地枝节的第二端与所述 PCB 上的接地端电连接; 所述第一天线枝节与所述馈电枝节、 所述接地枝节 构成第一 PIFA天线, 所述第一 PIFA天线用于产生第一谐振频率; 所述第二 天线枝节与所述馈电枝节、所述接地枝节构成第二 PIFA天线,所述第二 PIFA 天线用于产生第二谐振频率; 所述第三天线枝节、 所述馈电枝节和所述接地 枝节构成环形天线, 所述环形天线用于产生第三谐振频率, 其中, 所述环形 天线的电尺寸为所述第三谐振频率对应波长的 1/2 ;
所述天线, 用于将接收到的无线信号传输给所述射频处理单元, 或者将 射频处理单元的发射信号转换为电磁波, 发送出去; 所述射频处理单元, 用 于对所述天线接收到的无线信号进行选频、 放大、 下变频处理, 并将其转换 成中频信号或基带信号发送给所述基带处理单元, 或者, 用于将所述基带处 理单元发送的基带信号或中频信号经过上变频、 放大, 通过所述天线发送出 去; 所述基带处理单元, 对接收到的所述中频信号或所述基带信号进行处理。
15、 根据权利要求 14所述的终端, 其特征在于, 所述第一天线枝节、 所 述第二天线枝节和所述第三天线枝节所在的平面与所述 PCB之间的垂直高度 在 3mm_5mm之间。
16、 根据权利要求 14或 15所述的终端, 其特征在于, 所述天线位于由 所述终端的前盖和后盖形成的腔体内, 所述天线还包括天线支架, 所述 PCB 和所述天线支架位于所述腔体内, 其中, 所述天线支架设置在所述 PCB的面 向所述后盖的一面, 所述第一天线枝节、 所述第二天线枝节和所述第三天线 枝节设置在所述天线支架的面向所述后盖的一面。
17、 根据权利要求 14或 15所述的终端, 其特征在于, 所述天线位于由 终端的前盖和后盖形成的腔体内, 所述 PCB位于所述腔体内, 所述第一天线 枝节、所述第二天线枝节和所述第三天线枝节设置在所述后盖的面向所述 PCB 的一面。
18、 根据权利要求 14-17任一项所述的终端, 其特征在于, 所述第一天 线枝节、 所述第二天线枝节和所述第三天线枝节为 " F "型结构, 所述第三 天线枝节的第一端分别与所述第一天线枝节的第一端和所述第二天线枝节的 第一端电连接。
19、 根据权利要求 18所述的终端, 其特征在于, 所述第二天线枝节位于 所述 PCB的第一边缘侧, 所述第三天线枝节位于所述 PCB的第二边缘侧。
20、 根据权利要求 14-17任一项所述的终端, 其特征在于, 所述第一天 线枝节、 所述第二天线枝节和所述第三天线枝节为 型结构, 所述第三天 线枝节的第一端与所述第一天线枝节的第一端以及所述第二天线枝节的第一 端齐平。
21、 根据权利要求 20所述的终端, 其特征在于, 所述天线位于所述 PCB 的任一边缘侧。
22、 一种终端, 其特征在于, 包括: 射频处理单元、 基带处理单元和天 、 其中, 所述天线包括: 第一天线枝节、 第二天线枝节、 馈电枝节和接地 枝节, 所述馈电枝节的第一端分别与所述第一天线枝节的第一端、 所述第二 天线枝节的第一端电连接, 所述馈电枝节的第二端与印制电路板 PCB上的天 线馈电端电连接, 所述接地枝节的第一端与所述第二天线枝节的第二端电连 接, 所述接地枝节的第二端与所述 PCB上的接地端电连接; 所述第一天线枝 节与所述馈电枝节、 所述接地枝节构成第一 PIFA天线, 所述第一 PIFA天线 用于产生第一谐振频率; 所述第二天线枝节与所述馈电枝节、 所述接地枝节 构成环形天线, 所述环形天线用于产生第二谐振频率; 其中, 所述环形天线 的电尺寸为所述第二谐振频率对应波长的 1/2 ;
所述天线, 用于将接收到的无线信号传输给所述射频处理单元, 或者将 射频处理单元的发射信号转换为电磁波, 发送出去; 所述射频处理单元, 用 于对所述天线接收到的无线信号进行选频、 放大、 下变频处理, 并将其转换 成中频信号或基带信号发送给所述基带处理单元, 或者, 用于将所述基带处 理单元发送的基带信号或中频信号经过上变频、 放大, 通过所述天线发送出 去; 所述基带处理单元, 对接收到的所述中频信号或所述基带信号进行处理。
23、 根据权利要求 22所述的终端, 其特征在于, 所述第一天线枝节和所 述第二天线枝节所在的平面与所述 PCB之间的垂直高度在 3mm-5mm之间。
24、 根据权利要求 22或 23所述的终端, 其特征在于, 所述天线位于由 终端的前盖和后盖形成的腔体内, 所述天线还包括天线支架, 所述 PCB和所 述天线支架位于所述腔体内, 所述天线支架设置在所述 PCB的面向所述后盖 的一面, 所述第一天线枝节和第二天线枝节设置在所述天线支架的面向所述 后盖的一面。
25、 根据权利要求 22或 23所述的终端, 其特征在于, 所述天线位于由 终端的前盖和后盖形成的腔体内, 所述 PCB位于所述腔体内, 所述第一天线 枝节和所述第二天线枝节设置在所述后盖的面向所述 PCB的一面。
26、 根据权利要求 24或 25所述的终端, 其特征在于, 所述第一天线枝 节和所述第二天线枝节为 " "型结构, 所述第一天线枝节的第一端和所述第 二天线枝节的第一端齐平。
PCT/CN2013/090696 2013-12-27 2013-12-27 天线和终端 WO2015096132A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/090696 WO2015096132A1 (zh) 2013-12-27 2013-12-27 天线和终端
CN201380003611.5A CN105027352B (zh) 2013-12-27 2013-12-27 天线和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090696 WO2015096132A1 (zh) 2013-12-27 2013-12-27 天线和终端

Publications (1)

Publication Number Publication Date
WO2015096132A1 true WO2015096132A1 (zh) 2015-07-02

Family

ID=53477396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090696 WO2015096132A1 (zh) 2013-12-27 2013-12-27 天线和终端

Country Status (2)

Country Link
CN (1) CN105027352B (zh)
WO (1) WO2015096132A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106067591A (zh) * 2016-06-12 2016-11-02 北京小米移动软件有限公司 天线组件

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107834179B (zh) * 2017-11-27 2023-08-11 深圳市信维通信股份有限公司 一种全金属背盖的wifi天线
WO2020062293A1 (zh) 2018-09-30 2020-04-02 华为技术有限公司 天线及终端
US11460891B2 (en) * 2019-04-25 2022-10-04 Compal Electronics, Inc. Electronic device
CN112448140B (zh) * 2019-08-30 2022-03-01 北京小米移动软件有限公司 天线模组及终端
CN112531329B (zh) 2019-09-17 2024-01-02 北京小米移动软件有限公司 天线和终端
CN113451788B (zh) * 2020-03-24 2022-10-18 华为技术有限公司 天线、天线模组及无线网络设备
CN114824749B (zh) * 2021-01-22 2023-07-18 华为技术有限公司 一种电子设备
CN116417791A (zh) * 2021-12-29 2023-07-11 中兴通讯股份有限公司 一种终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587983A (zh) * 2008-05-21 2009-11-25 深圳富泰宏精密工业有限公司 多频天线及具有该多频天线的无线通讯装置
CN101719584A (zh) * 2009-12-24 2010-06-02 深圳华为通信技术有限公司 可重构手机内置天线及其实现方法
CN102918708A (zh) * 2011-06-02 2013-02-06 松下电器产业株式会社 天线装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897760A (ja) * 1994-09-27 1996-04-12 Mitsubishi Electric Corp 携帯無線機用アンテナ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587983A (zh) * 2008-05-21 2009-11-25 深圳富泰宏精密工业有限公司 多频天线及具有该多频天线的无线通讯装置
CN101719584A (zh) * 2009-12-24 2010-06-02 深圳华为通信技术有限公司 可重构手机内置天线及其实现方法
CN102918708A (zh) * 2011-06-02 2013-02-06 松下电器产业株式会社 天线装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106067591A (zh) * 2016-06-12 2016-11-02 北京小米移动软件有限公司 天线组件

Also Published As

Publication number Publication date
CN105027352A (zh) 2015-11-04
CN105027352B (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
US10819031B2 (en) Printed circuit board antenna and terminal
US10320060B2 (en) Antenna and mobile terminal
CN111758184B (zh) 用于转换射频能量的天线系统及方法
WO2015096132A1 (zh) 天线和终端
WO2020173298A1 (zh) 一种天线模块、天线装置以及终端设备
US10601116B2 (en) Wireless terminal
WO2015120779A1 (zh) 一种天线及移动终端
EP2747201B1 (en) Multimode wideband antenna module and wireless terminal
WO2021238347A1 (zh) 天线和电子设备
JP2012244620A (ja) 手持ち式装置及びその平面アンテナ
US10879590B2 (en) Antenna and mobile terminal
JP2012109875A (ja) アンテナ装置及び無線通信装置
TW201511406A (zh) 寬頻天線
US9806404B2 (en) Fin-shaped multi-band antenna module
CN106299679B (zh) 天线及射频信号收发装置
CN112805877A (zh) 公共辐射器多频带天线系统
WO2017206074A1 (zh) 一种天线和电子设备
US20120127051A1 (en) Multi-Band Dipole Antenna
CN112768875A (zh) 电子设备
WO2023125207A1 (zh) 一种天线结构和电子设备
CN104466394A (zh) 宽带天线
TW201417399A (zh) 寬頻天線及具有該寬頻天線的可攜帶型電子裝置
Al-Azza et al. Low Profile Tri-Bands Antenna for Wireless Applications
CN104836034B (zh) 一种天线及移动终端
CN109950698A (zh) 一种双频天线

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380003611.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900114

Country of ref document: EP

Kind code of ref document: A1