WO2017206074A1 - 一种天线和电子设备 - Google Patents

一种天线和电子设备 Download PDF

Info

Publication number
WO2017206074A1
WO2017206074A1 PCT/CN2016/084177 CN2016084177W WO2017206074A1 WO 2017206074 A1 WO2017206074 A1 WO 2017206074A1 CN 2016084177 W CN2016084177 W CN 2016084177W WO 2017206074 A1 WO2017206074 A1 WO 2017206074A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
capacitor
inductor
electronic device
ghz
Prior art date
Application number
PCT/CN2016/084177
Other languages
English (en)
French (fr)
Inventor
邓绍刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680081784.2A priority Critical patent/CN108701895A/zh
Priority to US16/305,665 priority patent/US20200328520A1/en
Priority to PCT/CN2016/084177 priority patent/WO2017206074A1/zh
Publication of WO2017206074A1 publication Critical patent/WO2017206074A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/103Resonant slot antennas with variable reactance for tuning the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0224Patterned shielding planes, ground planes or power planes
    • H05K1/0225Single or multiple openings in a shielding, ground or power plane

Definitions

  • the present invention relates to the field of antenna technologies, and in particular, to an antenna and an electronic device.
  • metal materials to design the product casing in order to attract consumers.
  • the metal casing of the product casing may affect the radiation performance of the antenna.
  • the slot antenna can effectively resist the influence of the metal material around the antenna on the antenna performance.
  • the slot antenna can usually generate a frequency band.
  • the slot antenna can cover the WLAN (English name: Wireless Local Area Networks) bandwidth, wherein the bandwidth of the WLAN can be 2.4 GHz-2.5 GHz or 5.0 GHz-5.8 GHz. How to cover a low frequency based on the generation of a frequency band by the slot antenna is an urgent problem to be solved.
  • WLAN Wireless Local Area Networks
  • the invention provides an antenna and an electronic device, and the antenna can generate a low frequency based on the original frequency band.
  • the present invention provides an antenna, including a PCB board, a matching circuit, and a feed line, wherein the PCB board has a ground plane, the ground plane has an open slot, and one end of the matching circuit is connected to a signal source, and the other end of the matching circuit An end of the feed line is connected, the feed line passes through the open slot, and the end of the feed line is connected to the other side of the open slot.
  • the antenna further includes a capacitor C1 and an inductor L1. The capacitor C1 and the inductor L1 are located in the open slot.
  • the capacitor C1 and the inductor L1 are connected in series, and one end of the series connected capacitor C1 and the inductor L1 is connected to one side of the open slot, and the other end of the series connected capacitor C1 and the inductor L1 is connected to the other side of the open slot.
  • the series capacitor C1 and the inductor L1 are located in the opening gap, and the capacitor after the series connection C1 and the inductor L1 are connected to both sides of the open slot, and the antenna can cover a low frequency based on covering the original frequency band.
  • the antenna utilizes the space of the opening gap, and the series capacitor C1 and the inductor L1 are added in the opening gap, and the size of the antenna is not affected on the basis of increasing the low frequency.
  • the other end of the series connected capacitor C1 and the inductor L1 is connected to the other side of the open slot and the other end of the feed line is connected to the other side of the open slot.
  • one side of the opening slit is opposite to the other side of the opening slit.
  • the size of the opening slit is 25 mm*2 mm.
  • the capacitance of the capacitor C1 ranges from 0.5 pF to 1 pF
  • the inductance of the inductor L1 ranges from 5 nH to 15 nH.
  • the capacitance of the capacitor C1 is 0.5 pF, and the inductance of the inductor L1 is 9.1 nH.
  • the feed line has a width of 0.2 mm.
  • the antenna can generate three operating frequencies.
  • the three operating frequencies are 2.45 GHz, 5.5 GHz, and 1.575 GHz.
  • the antenna can work not only in the Wireless Local Area Networks (WLAN) band but also in the Global Positioning System (GPS) band.
  • WLAN Wireless Local Area Networks
  • GPS Global Positioning System
  • An antenna according to the first aspect of the invention wherein one side of the opening slit is opposite to the other side of the opening slit.
  • the printed circuit board may have a size of 135 mm*65 mm*1.6 mm, that is, the length of the PCB board is 135 mm, the width is 65 mm, and the height is 1.6 mm.
  • the opening gap is greater than or equal to 30 mm from the edge of the PCB.
  • the other end of the series connected capacitor C1 and the inductor L1 is connected to the other side of the open slot and the other end of the feed line is connected to the other side of the open slot.
  • the opening slit has a size of 10 mm * 2 mm.
  • the capacitance of the capacitor C1 ranges from 0.5 pF to 1 pF
  • the inductance of the inductor L1 ranges from 5 nH to 15 nH.
  • the capacitance of the capacitor C1 is 0.5 pF, and the inductance of the inductor L1 is 10 nH.
  • the feed line has a width of 0.2 mm.
  • the antenna can generate two operating frequencies.
  • the two operating frequencies are 5.5 GHz and 2.45 GHz.
  • the antenna can work not only at 5.5 GHz of Wireless Local Area Networks (WLAN) but also at 2.45 GHz of WLAN.
  • WLAN Wireless Local Area Networks
  • the present invention also provides an electronic device including an antenna, a radio frequency processor, and a baseband processor, wherein
  • the antenna includes a PCB board, a matching circuit, and a feed line, wherein the PCB board has a ground plane, the ground plane has an open slot, one end of the matching circuit is connected to a signal source, and the other end of the matching circuit is connected to one end of the feed line, the feed line Passing through the open slot, the end of the feed line is connected to the other side of the open slot.
  • the antenna further includes a capacitor C1 and an inductor L1.
  • the capacitor C1 and the inductor L1 are located in the open slot, and the capacitor C1 is connected in series with the inductor L1.
  • One end of the series capacitor C1 and the inductor L1 is connected to one side of the open slot, and the other end of the series connected capacitor C1 and the inductor L1 is connected to the other side of the open slot;
  • the baseband processor is connected to the signal source through the radio frequency processor;
  • the antenna is configured to transmit the received wireless signal to the radio frequency processor, or convert the transmit signal of the radio frequency processor into an electromagnetic wave, and send the radio signal
  • the radio frequency processor is configured to perform the wireless signal received by the antenna Selecting, amplifying, downconverting, and converting the signal into an intermediate frequency signal or a baseband signal, or transmitting the baseband signal or the intermediate frequency signal sent by the baseband processor to the baseband signal
  • the antenna is sent out; the baseband processor processes the received intermediate frequency signal or the baseband signal.
  • the other end of the series connected capacitor C1 and the inductor L1 is connected to the other side of the open slot and the other end of the feed line is connected to the other side of the open slot.
  • one side of the opening slit is opposite to the other side of the opening slit.
  • the opening distance of the feed line 70 from the opening slit 11 may be 4 mm.
  • the ground plane may be a copper surface of the PCB board.
  • the series capacitor C1 and the inductor L1 are located in the open slot, and the series capacitor C1 and the inductor L1 are connected to both sides of the open slot, and the antenna can cover a low frequency based on covering the original frequency band.
  • the antenna utilizes the space of the opening gap, and the series capacitor C1 and the inductor L1 are added in the opening gap, and the size of the antenna is not affected on the basis of increasing the low frequency. Further, the use of the antenna on the electronic device can reduce the impact of surrounding metal devices on antenna performance.
  • FIG. 1 is a schematic diagram of an embodiment of an antenna of the present invention
  • FIG. 2 is a schematic diagram showing the return loss of a capacitor and an inductor connected in series with a capacitor and an inductor without series connection in an open slot of the antenna embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a real part curve of a capacitor and an inductor connected in series with an open capacitor in an antenna according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing current distribution of capacitors and inductors in series with an open slot in an antenna embodiment of the present invention
  • FIG. 5 is a schematic diagram showing an electric field distribution of a capacitor and an inductor connected in series in an opening gap according to an embodiment of the antenna of the present invention
  • FIG. 6 is a graph showing an antenna of an embodiment in which an opening gap of an antenna of the present invention increases capacitance and inductance in series;
  • FIG. 7 is a schematic diagram of passive efficiency of an opening slot of an antenna according to an embodiment of the present invention at different positions of a PCB board;
  • FIG. 8 is a schematic diagram of a matching circuit of an antenna embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the return loss curves of the capacitor and the inductor connected in series with the capacitor and the inductor without series connection in the second embodiment
  • FIG. 10 is a schematic diagram showing the real part curve of the capacitance and inductance of the series connection and the capacitance and inductance of the series without the series connection;
  • FIG. 11 is a schematic diagram showing current distribution of capacitors and inductors in series with an open slot in the antenna embodiment of the present invention
  • FIG. 12 is a diagram showing the electric field distribution of the capacitor and the inductor in series with the opening gap of the second embodiment of the antenna of the present invention; intention;
  • FIG. 13 is a graph showing an antenna of an embodiment in which the opening gap of the antenna of the second embodiment increases the capacitance and inductance of the series;
  • FIG. 14 is a schematic diagram of passive efficiency of an open slot series capacitor and inductor according to Embodiment 2 of the antenna of the present invention.
  • FIG. 15 is a schematic diagram of Embodiment 3 of an electronic device according to the present invention.
  • FIG. 1 is a schematic diagram of an embodiment of an antenna according to the present invention.
  • the antenna 100 includes a printed circuit board (PCB), a matching circuit 50, and a feed line 70.
  • the PCB has a ground plane 10 having an open slot 11 and one end of the matching circuit 50 is connected.
  • a signal source 30 the other end of the matching circuit 50 is connected to one end 72 of the feed line 70, the feed line 70 passes through the open slot 11, and the end 71 of the feed line 70 is connected to the other side 113 of the open slot 11, wherein the antenna 100 further includes a capacitor C1 20 and an inductor L1 40.
  • the capacitor C1 20 and the inductor L1 40 are located in the open slot 11.
  • the capacitor C1 20 is connected in series with the inductor L1 40.
  • the capacitor C1 20 and the inductor L1 40 are connected in series.
  • One end of the opening slit 11 is connected to one side 111, and the other end of the series capacitor C1 20 and the inductor L1 40 is connected to the other side 113 of the opening slit 11.
  • the one side 111 of the opening slit 11 is opposite to the other side 113 of the opening slit 11.
  • the opening 115 of the opening slit 11 communicates with the outside.
  • the structure of the opening slit 11 can be referred to the schematic diagram shown in FIG. Referring to FIG. 1, the opening slit 11 has two sides, that is, one side 111 of the opening slit 11 in FIG. 1 and the other side 113 of the opening slit, and one side 111 and the other side 113 of the opening slit 11 are linear. .
  • the structure of the opening slit 11 may also be other structures.
  • one side 111 and the other side 113 of the opening slit may also be curved.
  • the series capacitor C1 20 and the inductor L1 40 are located in the open slot 11, and the series connected capacitor C1 20 and the inductor L1 40 are connected to both sides of the open slot 11, and the antenna 100 can cover the original There is a frequency band based on a low frequency.
  • the antenna 100 utilizes the space of the opening slit 11, and the capacitor C1 20 and the inductor L1 40 connected in series are added to the opening slit 11, and the size of the antenna is not affected on the basis of increasing the low frequency.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a schematic diagram of an embodiment of an antenna according to the present invention.
  • the antenna 100 includes a printed circuit board (PCB), a matching circuit 50, and a feed line 70.
  • the PCB has a ground plane 10 having an open slot 11 and one end of the matching circuit 50 is connected.
  • a signal source 30 the other end of the matching circuit 50 is connected to one end 72 of the feed line 70, the feed line 70 passes through the open slot 11, and the end 71 of the feed line 70 is connected to the other side 113 of the open slot 11, wherein the antenna 100 further includes a capacitor C1 20 and an inductor L1 40.
  • the capacitor C1 20 and the inductor L1 40 are located in the open slot 11.
  • the capacitor C1 20 is connected in series with the inductor L1 40.
  • the capacitor C1 20 and the inductor L1 40 are connected in series.
  • One end of the open slot 11 is connected to one side 111, and the other end of the series connected capacitor C1 20 and the inductor L1 40 is connected to the other side 113 of the open slot 11.
  • the one side 111 of the opening slit 11 is opposite to the other side 113 of the opening slit 11.
  • the opening slit 11 may have a size of 25 mm * 2 mm, that is, the opening slit has a length of 25 mm and a width of 2 mm.
  • the feed line 70 has a width of 0.2 mm.
  • the feed line 70 may be 4 mm from the opening 115 of the open slit 11.
  • the capacitance value of the capacitor C1 20 may range from 0.5 pF to 1 pF, and the inductance value of the inductor L1 40 may range from 5 nH to 15 nH.
  • the capacitance of the capacitor C1 20 may be 0.5 pF, and the inductance of the inductor L1 40 may be 9.1 nH.
  • the matching circuit 50 includes a capacitor C2 52 and an inductor L2 54 .
  • One end of the matching circuit 50 is connected to the signal source 30.
  • the other end of the matching circuit 50 is connected to one end 72 of the feeding line 70.
  • the one end of the capacitor C2 52 is connected to the signal source 30.
  • the other end of the capacitor C2 52 is connected to the signal source 30.
  • Feeder 70, one end of the inductor L2 54 is connected to the other end of the capacitor C2 52 and one end 72 of the feed line 70, and the other end of the inductor L2 54 is grounded.
  • the other end of the inductor L2 54 is grounded to connect the other end of the inductor L2 54 to the ground plane 10.
  • FIG. 2 is a schematic diagram showing the return loss of a series-connected capacitor and inductor and a series-connected capacitor and inductor antenna in an open slot of the antenna embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the actual capacitance of the capacitor and the inductor in series with the capacitor and the inductor impedance without series connection in the opening gap of the antenna embodiment of the present invention.
  • the broken line indicates the resonance mode generated by the series capacitor and the inductance in the opening slit 11
  • the solid line indicates the resonance mode generated by the series capacitance and inductance in the opening slit 11.
  • the slot antennas produce two operating frequencies at approximately 2.45 GHz and 5.5 GHz, respectively.
  • the solid lines in Fig. 2 and Fig. 3 after the capacitor and the inductor are connected in series in the slit 11, a new operating frequency is generated around 1.575 GHz.
  • FIG. 4 is a schematic diagram showing current distribution of capacitors and inductors in series in an open slot of an antenna embodiment according to the present invention. It can be seen from FIG. 4 that the series capacitor and the inductor in the open slot 11 generate an operating frequency of 1.575 GHz, and the current distribution is evenly distributed with respect to 2.45 GHz and 5.5 GHz. As shown in Figure 4, the 1.575 GHz current produced by the antenna embodiment of the present invention continues to flow toward the edge of the slot.
  • FIG. 5 is a schematic diagram showing an electric field distribution of a capacitor and an inductor connected in series in an opening gap according to an embodiment of the antenna of the present invention.
  • the three frequency points namely 1.575 GHz, 2.45 GHz and 5.5 GHz, have similar electric field distributions at the feed point 90 (can be understood as 1.575 GHz, 2.45 GHz and 5.5 GHz).
  • the three frequency points are large electric fields at the feed point, so the resonance of the three frequency points can be excited by the same excitation method.
  • FIG. 6 is an antenna diagram of an example in which the opening gap of the antenna embodiment of the present invention increases the capacitance and inductance of the series.
  • Fig. 6 after the opening capacitor 11 of the antenna embodiment of the present invention increases the capacitance C1 20 and the inductance L1 40 in series, an operating frequency of 1.575 GHz can be generated, as shown by the approximate position of 1 in Fig. 6.
  • FIG. 7 is a schematic diagram showing the passive efficiency of the opening slot of the antenna according to the embodiment of the present invention at different positions of the PCB board.
  • the solid line is a passive efficiency diagram of the open slot 11 located at a substantially intermediate position of the PCB board
  • the broken line is a passive efficiency diagram of the open slot 11 at a position of 10 mm from the edge of the PCB board, as can be seen from FIG. 7 .
  • the opening slit 11 is located at a substantially intermediate position of the PCB board.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a schematic diagram of an embodiment of an antenna according to the present invention.
  • the antenna 100 includes a printed circuit board (PCB), a matching circuit 50, and a feed line 70.
  • the PCB has a ground plane 10 having an open slot 11 and one end of the matching circuit 50 is connected.
  • a signal source 30 the other end of the matching circuit 50 is connected to one end 72 of the feed line 70, the feed line 70 passes through the open slot 11, and the end 71 of the feed line 70 is connected to the other side 113 of the open slot 11, wherein the antenna
  • the 100 further includes a capacitor C1 20 and an inductor L1 40.
  • the capacitor C1 20 and the inductor L1 40 are located in the open slot 11.
  • the capacitor C1 20 is connected in series with the inductor L1 40.
  • the series connected capacitor C1 20 and one end of the inductor L1 40 A side 111 connecting the opening slit 11 is connected, and the other end of the series capacitor C1 20 and the inductor L1 40 is connected to the other side 113 of the opening slit 11.
  • the one side 111 of the opening slit 11 is opposite to the other side 113 of the opening slit 11.
  • the PCB board has a size of 135 mm*65 mm*1.6 mm, that is, the length of the PCB board is 135 mm, the width is 65 mm, and the height is 1.6 mm.
  • the opening slit 11 is at a distance greater than or equal to 30 mm from the edge of the PCB.
  • the feed line has a width of 0.2 mm.
  • the feed line 70 may have an opening of 4 mm from the opening slit 11.
  • the size of the opening slit 11 is 10 mm * 2 mm, that is, the opening slit 11 has a length of 10 mm and a width of 2 mm.
  • the capacitance value of the capacitor C1 20 ranges from 0.5 pF to 1 pF
  • the inductance of the inductor L1 40 ranges from 5 nH to 15 nH.
  • the capacitance of the capacitor C1 20 is 0.5 pF
  • the inductance of the inductor L1 40 is 10 nH.
  • the at least two operating frequencies may be 5.5 GHz and 2.45 GHz.
  • the matching circuit 50 includes an inductor L3 51 , a capacitor C3 57 , and a capacitor C4 53 .
  • One end of the matching circuit 50 is connected to the signal source 30, and the other end of the matching circuit 50 is connected to one end 72 of the feeding line 70.
  • the one end of the capacitor C3 57 and one end of the inductor L3 51 are connected to the signal source 30.
  • One end of the capacitor C3 57 is connected to one end of the inductor L3 51.
  • the other end of the capacitor C3 57 is grounded.
  • the other end of the inductor L3 51 is connected to one end of the capacitor C4 53 .
  • the other end of the capacitor C4 53 is connected to one end of the feed line 70. 72.
  • the other end of the capacitor C3 57 is grounded, and the other end of the capacitor C3 57 can be connected to the ground plane 10.
  • the capacitor C4 53 can be used to tune the low frequency band, and the inductor L3 51 and the capacitor C3 57 can be used to tune the tuning band.
  • the capacitance of the capacitor C4 53 may be 0.5 pF.
  • FIG. 9 is a schematic diagram showing the return loss of a capacitor and an inductor connected in series with a capacitor and an inductor without a series connection in the second embodiment of the antenna according to the present invention.
  • FIG. 10 is a schematic diagram showing the actual capacitance of the capacitor and the inductor connected in series with the capacitor and the inductor impedance without series connection in the second embodiment of the antenna of the present invention.
  • the broken line indicates the resonance mode generated by the series capacitor and the inductance in the opening slit 11
  • the solid line indicates the resonance mode generated by the series capacitance and inductance in the opening slit 11.
  • the slot antenna is at an operating frequency of approximately 5.5 GHz.
  • the solid lines in Figures 9 and 10 open After the capacitor and inductor are connected in series in the slot 11, a new operating frequency is generated around 2.45 GHz.
  • FIG. 11 is a schematic diagram showing the current distribution of the capacitor and the inductor in series in the opening gap of the antenna embodiment of the present invention.
  • the antenna embodiments of the present invention have similar current distributions at 2.45 GHz and 5.5 GHz.
  • FIG. 12 is a schematic diagram showing the electric field distribution of the capacitor and the inductor in series in the opening gap of the antenna embodiment of the present invention.
  • the two frequency points of 2.45 GHz and 5.5 GHz have the same electric field distribution at the feed point 92 (it can be understood that the two frequencies of 2.45 GHz and 5.5 GHz are large electric fields at the feed point), so that it can be used.
  • the same excitation method excites the resonance of the two frequencies.
  • FIG. 13 is an antenna diagram of the capacitor and the inductor in series with the opening gap of the antenna embodiment of the present invention.
  • an operating frequency of about 2.45 GHz can be generated.
  • FIG. 14 is a schematic diagram showing the passive efficiency of the opening gap of the antenna embodiment of the present invention after adding a series capacitor and an inductor.
  • the scheme can reach -3.5dB or more in the WLAN frequency band (2.4 to 2.5G, 5 to 5.8G).
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 15 is a schematic diagram of an embodiment of an electronic device according to the present invention.
  • the electronic device 200 includes an antenna 100, a radio frequency processor 300, and a baseband processor 500, wherein
  • the antenna 100 includes a PCB board, a matching circuit 50 , and a feed line 70 .
  • the PCB board has a ground plane 10 .
  • the ground plane 10 has an open slot 11 .
  • One end of the matching circuit 50 is connected to the signal source 30 .
  • the other end of the matching circuit 50 is connected to one end 72 of the feed line 70.
  • the feed line 70 passes through the open slot 11.
  • the end of the feed line 70 is connected to the other side of the open slot 11.
  • the antenna further includes a capacitor C1 20 and an inductor L1.
  • the capacitor C1 20 and the inductor L1 40 are located in the open slot 11, the capacitor C1 20 and the inductor L1 40 are connected in series, and one end of the series connected capacitor C1 20 and the inductor L1 40 is connected to the side 111 of the open slot 11 The other end of the series capacitor C1 20 and the inductor L1 40 is connected to the other side 113 of the opening slit 11;
  • the baseband processor 500 is connected to the signal source 30 through the radio frequency processor 300;
  • the antenna 100 is configured to transmit the received wireless signal to the radio frequency processor 300, or convert the transmit signal of the radio frequency processor 300 into an electromagnetic wave, and send the radio signal processor 300 for receiving the antenna 100.
  • the obtained wireless signal is subjected to frequency selection, amplification, down conversion processing, and converted into an intermediate frequency signal or a baseband signal, and sent to the baseband processor 500, or used to pass the baseband signal or the intermediate frequency signal transmitted by the baseband processor 500. Upconverting, amplifying, transmitting through the antenna 100; the baseband processor 500 processes the received intermediate frequency signal or the baseband signal.
  • the series capacitor C1 20 and the inductor L1 40 are located in the open slot 11, and the series connected capacitor C1 20 and the inductor L1 40 are connected to both sides of the open slot 11, and the antenna 100 can cover the original A low frequency band is covered on the basis of the frequency band.
  • the antenna 100 utilizes the space of the opening slit 11, and the capacitor C1 20 and the inductor L1 40 connected in series are added to the opening slit 11, and the size of the antenna is not affected on the basis of increasing the low frequency band.
  • the use of the antenna 100 on the electronic device 200 can reduce the impact of surrounding metal devices on antenna performance.
  • the one side 111 of the opening slit 11 is opposite to the other side 113 of the opening slit 11.
  • the antenna 100 For a description of the antenna 100, refer to the antenna embodiment in the first embodiment or the second embodiment. It will not be described in detail here.
  • the electronic device can be a mobile phone, a car product (such as a car box T-Box), a tablet computer or a wearable device, and the like. This embodiment of the present invention does not limit this.
  • the working frequency provided in the above embodiments 1 to 3 is related to the physical length L of the opening slit 11, the matching circuit and the dielectric material.
  • One of ordinary skill in the art can adjust the values of the inductance and capacitance in the matching circuit, and/or select different dielectric materials, and/or adjust the physical length L of the opening slit 11 to produce similarities in the first to third embodiments.
  • the working frequency is related to the physical length L of the opening slit 11, the matching circuit and the dielectric material.
  • two different matching circuits are given in the antenna embodiment of the present invention, and those skilled in the art can increase the capacitance and/or inductance design based on the two different matching circuits given in the antenna embodiment of the present invention.
  • Different matching circuits may also adjust the values of the capacitance and/or the inductance of the matching circuit to achieve different matching.
  • the matching circuit is not limited in the embodiment of the present invention.
  • the capacitor C1 20 and the inductor L1 40 provided in the device embodiment are located in the open slot 11, the capacitor C1 20 and the inductor L1 40 are connected in series, and the serialized capacitor C1 20 and one end of the inductor L1 40 are connected to one side of the open slot 11 111, the capacitor C1 20 after the series connection and the other end of the inductor L1 40 are connected to the other side 113 of the opening slit 11, adjusting the capacitance value of the capacitor C1 20 and/or the inductance value of the inductor L1 40 and/or the capacitance in series.
  • the antenna embodiment and the electronic device embodiment of the present invention are not limited to the 1.575 GHz operating frequency generated in the first embodiment and the operating frequency of 2.45 GHz generated in the second embodiment, and the capacitance value and/or the inductance L1 40 of the capacitor C1 20 can be adjusted.
  • the inductance value and/or the series capacitance C1 20 and the inductance L1 40 are located in the opening slit 11 to produce different operating frequencies.
  • the 1.575 GHz, 2.45 GHz, and 5.5 GHz mentioned in the embodiments of the present invention are also understood as the resonant frequency.
  • 7-13% of the resonant frequency may be the normal operating bandwidth of the antenna (which may also be understood as a frequency band).
  • the resonant frequency of the antenna is 5.5 GHz, and the normal operating bandwidth is 7% of the resonant frequency, so that the operating frequency range of the antenna can be approximately 5.30 GHz - 5.69 GHz.
  • ground plane 10 mentioned in the embodiment of the present invention may be a copper surface of the PCB board.
  • capacitors and inductors mentioned in the first embodiment to the third embodiment may be a lumped capacitor and a lumped inductor, and may also be a capacitor and an inductor, and may also be a distributed capacitor and a distributed inductor.
  • the embodiments of the present invention are not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供了一种天线和电子设备。该天线包括PCB板、匹配电路、馈线,其中,该PCB板具有接地面,该接地面具有开口缝隙,该匹配电路的一端连接信号源,该匹配电路的另一端连接该馈线的一端,该馈线穿过该开口缝隙,该馈线的末端连接该开口缝隙的另一侧,该天线还包括电容C1和电感L1,该电容C1和该电感L1位于该开口缝隙,该电容C1和电感L1串联,该串联后的电容C1和电感L1的一端连接该开口缝隙的一侧,该串联后的电容C1和电感L1的另一端连接该开口缝隙的该另一侧。该天线可以在原有频带的基础上再产生一个低频。

Description

一种天线和电子设备 技术领域
本发明涉及天线技术领域,特别涉及一种天线和电子设备。
背景技术
随着科学技术的发展,电子设备例如智能手机、平板电脑等装置为了吸引消费者,通常使用金属材料来设计产品外壳。产品外壳采用金属材料可能会影响天线的辐射性能。
缝隙天线相比于传统的inverted-F天线(简称IFA天线)或者单极子天线(英文:monopole antenna),可以有效抵抗天线周围金属材质器件对天线性能的影响。
然而,缝隙天线通常可以产生一个频带,例如缝隙天线可以覆盖WLAN(英文名称为:Wireless Local Area Networks)带宽,其中,WLAN的带宽可以为2.4GHz-2.5GHz或者5.0GHz-5.8GHz。如何在缝隙天线产生一个频带的基础上涵盖一个低频是急需解决的问题。
发明内容
本发明提供一种天线和电子设备,天线可以在原有频带的基础上再产生一个低频。
一方面,本发明提供一种天线,包括PCB板、匹配电路、馈线,其中,该PCB板具有接地面,该接地面具有开口缝隙,该匹配电路的一端连接信号源,该匹配电路的另一端连接该馈线的一端,该馈线穿过该开口缝隙,该馈线的末端连接该开口缝隙的另一侧,该天线还包括电容C1和电感L1,该电容C1和该电感L1位于该开口缝隙,该电容C1和该电感L1串联,该串联后的电容C1和电感L1的一端连接该开口缝隙的一侧,该串联后的电容C1和电感L1的另一端连接该开口缝隙的该另一侧。
可以看出,该串联的电容C1和电感L1位于该开口缝隙,该串联后的电容 C1和该电感L1连接该开口缝隙的两侧,该天线可以在覆盖原有频带的基础上再涵盖一个低频。另外,该天线利用了开口缝隙的空间,在开口缝隙内增加了串联的电容C1和电感L1,在增加低频的基础上不会影响天线的尺寸。
其中,该串联后的电容C1和电感L1的另一端连接该开口缝隙的另一侧和该馈线的末端连接该开口缝隙的另一侧的位置不同。
其中,该开口缝隙的一侧与该开口缝隙的另一侧相对。
其中,该开口缝隙的尺寸为25mm*2mm。
可选的或进一步的,该电容C1的电容值取值范围为0.5pF-1pF,该电感L1的电感值取值范围为5nH-15nH。
其中,该电容C1的电容值为0.5pF,该电感L1的电感值为9.1nH。
可选的或进一步的,该馈线的宽度为0.2mm。
可选的或进一步的,该天线可以产生三个工作频率。其中,该三个工作频率为2.45GHz、5.5GHz和1.575GHz。这样,该天线不仅可以工作在无线局域网(Wireless Local Area Networks,简称WLAN)频段,还可以工作在全球定位系统(Global Positioning System,简称GPS)频段。
基于本发明第一方面的天线,其中,该开口缝隙的一侧与该开口缝隙的另一侧相对。
其中,该印制电路板(Printed Circuit Board,简称PCB)的尺寸可以为135mm*65mm*1.6mm,即PCB板的长为135mm,宽为65mm,高为1.6mm。
可选的或进一步的,该开口缝隙与该PCB板边缘距离大于或等于30mm。
其中,该串联后的电容C1和电感L1的另一端连接该开口缝隙的另一侧和该馈线的末端连接该开口缝隙的另一侧的位置不同。
可选的或进一步的,该开口缝隙的尺寸为10mm*2mm。
可选的或进一步的,该电容C1的电容值取值范围为0.5pF-1pF,该电感L1的电感值取值范围为5nH-15nH。
其中,该电容C1的电容值为0.5pF,该电感L1的电感值为10nH。
可选的或进一步的,该馈线的宽度为0.2mm。
进一步的,该天线可以产生两个工作频率。该两个工作频率为5.5GHz和2.45GHz。这样,该天线不仅可以工作在无线局域网(Wireless Local Area Networks,简称WLAN)的5.5GHz,也可以工作在无线局域网的2.45GHz。
另一方面,本发明还提供了一种电子设备,包括天线、射频处理器和基带处理器,其中,
该天线包括PCB板、匹配电路、馈线,其中,该PCB板具有接地面,该接地面具有开口缝隙,该匹配电路的一端连接信号源,该匹配电路的另一端连接该馈线的一端,该馈线穿过该开口缝隙,该馈线的末端连接该开口缝隙的另一侧,该天线还包括电容C1和电感L1,该电容C1和该电感L1位于该开口缝隙,该电容C1和该电感L1串联,该串联后的电容C1和电感L1一端连接该开口缝隙的一侧,该串联后的电容C1和电感L1另一端连接该开口缝隙的该另一侧;
该基带处理器通过该射频处理器与该信号源连接;
该天线,用于将接收到的无线信号传输给该射频处理器,或者将该射频处理器的发射信号转换为电磁波,发送出去;该射频处理器,用于对该天线接收到的无线信号进行选频、放大、下变频处理,并将其转换成中频信号或基带信号发送给该基带处理器,或者,用于将该基带处理器发送的基带信号或中频信号经过上变频、放大,通过该天线发送出去;该基带处理器,对接收到的该中频信号或该基带信号进行处理。
其中,该串联后的电容C1和电感L1的另一端连接该开口缝隙的另一侧和该馈线的末端连接该开口缝隙的另一侧的位置不同。
其中,该开口缝隙的一侧与该开口缝隙的另一侧相对。
可选的或进一步的,对于上述第一方面的天线和另一方面的电子设备而言,该馈线70与开口缝隙11的开口距离可以为4mm。
其中,对于上述第一方面的天线和另一方面的电子设备而言,该接地面可以为PCB板的覆铜面。
可以看出,该串联的电容C1和电感L1位于该开口缝隙,该串联后的电容C1和该电感L1连接该开口缝隙的两侧,该天线可以在覆盖原有频带的基础上再涵盖一个低频。另外,该天线利用了开口缝隙的空间,在开口缝隙内增加了串联的电容C1和电感L1,在增加低频的基础上不会影响天线的尺寸。进一步的,在该电子设备上使用该天线可以减少周围金属器件对天线性能的影响。
附图说明
图1为本发明天线实施例的示意图;
图2为本发明天线实施例一开口缝隙增加串联的电容和电感与无串联的电容和电感天线回波损耗曲线示意图;
图3为本发明天线实施例一开口缝隙增加串联的电容和电感与无串联的电容和电感阻抗实部曲线示意图;
图4为本发明天线实施例一开口缝隙增加串联的电容和电感的电流分布示意图;
图5为本发明天线实施例一开口缝隙增加串联的电容和电感的电场分布示意图;
图6为本发明天线实施例一开口缝隙增加串联的电容和电感的天线曲线图;
图7为本发明天线实施例一开口缝隙位于PCB板不同位置的无源效率示意图;
图8为本发明天线实施例二匹配电路示意图;
图9为本发明天线实施例二开口缝隙增加串联的电容和电感与无串联的电容和电感天线回波损耗曲线示意图;
图10为本发明天线实施例二开口缝隙增加串联的电容和电感与无串联的电容和电感阻抗实部曲线示意图;
图11为本发明天线实施例二开口缝隙增加串联的电容和电感的电流分布示意图;
图12为本发明天线实施例二开口缝隙增加串联的电容和电感的电场分布示 意图;
图13为本发明天线实施例二开口缝隙增加串联的电容和电感的天线曲线图;
图14为本发明天线实施例二开口缝隙串联电容和电感后的无源效率示意图;
图15为本发明电子设备实施例三的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,为本发明天线实施例的示意图。该天线100包括印刷电路板(英文:Printed Circuit Board,简称PCB)、匹配电路50和馈线70,该PCB板具有接地面10,该接地面10具有一开口缝隙11,该匹配电路50的一端连接信号源30,该匹配电路50的另一端连接该馈线70的一端72,该馈线70穿过该开口缝隙11,该馈线70的末端71连接该开口缝隙11的另一侧113,其中,该天线100还包括电容C1 20和电感L1 40,该电容C1 20和该电感L1 40位于该开口缝隙11,该电容C1 20和该电感L1 40串联,该串联后的电容C1 20和该电感L1 40的一端连接该开口缝隙11的一侧111,该串联后的电容C1 20和电感L1 40的另一端连接该开口缝隙11的另一侧113。
其中,该开口缝隙11的一侧111与该开口缝隙11的另一侧113相对。
其中,该开口缝隙11的开口115与外界连通。该开口缝隙11的结构可以参考图1所示的示意图。请参阅图1,该开口缝隙11具有两侧,即图1中的开口缝隙11的一侧111和开口缝隙的另一侧113,该开口缝隙11的一侧111和另一侧113为直线形。当然,该开口缝隙11的结构也可以为其他结构,例如该开口缝隙的一侧111和另一侧113也可以为曲线形。
其中,该串联后的电容C1 20和电感L1 40的另一端连接该开口缝隙11的另一侧113和该馈线70的末端71连接该开口缝隙11的另一侧113的位置不同,如图1所示。
由上可以看出,该串联的电容C1 20和电感L1 40位于该开口缝隙11,该串联后的电容C1 20和该电感L1 40连接该开口缝隙11的两侧,该天线100可以在覆盖原有频带的基础上再涵盖一个低频。另外,该天线100利用了开口缝隙11的空间,在开口缝隙11内增加了串联的电容C1 20和电感L1 40,在增加低频的基础上不会影响天线的尺寸。
实施例一:
请参阅图1,为本发明天线实施例的示意图。该天线100包括印刷电路板(英文:Printed Circuit Board,简称PCB)、匹配电路50和馈线70,该PCB板具有接地面10,该接地面10具有一开口缝隙11,该匹配电路50的一端连接信号源30,该匹配电路50的另一端连接该馈线70的一端72,该馈线70穿过该开口缝隙11,该馈线70的末端71连接该开口缝隙11的另一侧113,其中,该天线100还包括电容C1 20和电感L1 40,该电容C1 20和该电感L1 40位于该开口缝隙11,该电容C1 20和该电感L1 40串联,该串联后的电容C1 20和该电感L1 40的一端连接该开口缝隙11的一侧111,该串联后的电容C1 20和该电感L1 40的另一端连接该开口缝隙11的另一侧113。
其中,该开口缝隙11的一侧111与该开口缝隙11的另一侧113相对。
其中,该开口缝隙11的尺寸可以为25mm*2mm,即该开口缝隙的长度为25mm,宽度为2mm。
可选的或进一步的,该馈线70的宽度为0.2mm。
可选的或进一步的,该馈线70距开口缝隙11的开口115可以为4mm。
可选的或进一步的,该电容C1 20的电容值的取值范围可以为0.5pF-1pF,该电感L1 40的电感值的取值范围可以为5nH-15nH。
本实施例中,该电容C1 20的电容值可以为0.5pF,该电感L1 40的电感值可以为9.1nH。
其中,续请参阅图1,该匹配电路50包括电容C2 52和电感L2 54。该匹配电路50的一端连接该信号源30,该匹配电路50的另一端连接该馈线70的一端72,包括:该电容C2 52的一端连接该信号源30,该电容C2 52的另一端连接该馈线70,该电感L2 54的一端连接该电容C2 52的另一端和该馈线70的一端72,该电感L2 54的另一端接地。该电感L2 54的另一端接地可以为该电感L2 54的另一端连接该接地面10。
其中,该串联后的电容C1 20和电感L1 40的另一端连接该开口缝隙11的另一侧113和该馈线70的末端71连接该开口缝隙11的另一侧113的位置不同,如图1所示。
请参阅图2,为本发明天线实施例一开口缝隙增加串联的电容和电感与无串联的电容和电感天线回波损耗曲线示意图。请参阅图3,为本发明天线实施例一开口缝隙增加串联的电容和电感与无串联的电容和电感阻抗实部曲线示意图。
如图2和图3所示,虚线表示开口缝隙11中无串联电容和电感产生的谐振模态,实线表示开口缝隙11中串联电容和电感产生的谐振模态。如图2和图3虚线所示,缝隙天线分别在大约2.45GHz和5.5GHz产生两个工作频率。如图2和图3实线所示,开口缝隙11中串联电容和电感后,大约在1.575GHz附近产生一个新的工作频率。
请参阅图4,为本发明天线实施例一开口缝隙增加串联的电容和电感的电流分布示意图。由图4可以看出,开口缝隙11中串联电容和电感后产生1.575GHz的工作频率,电流分布相对2.45GHz和5.5GHz的电流分布均匀一些。如图4所示,本发明天线实施例产生的1.575GHz的电流继续流向缝隙边缘。
请参阅图5,为本发明天线实施例一开口缝隙增加串联的电容和电感的电场分布示意图。由图5可以看出,三个频点,即1.575GHz、2.45GHz和5.5GHz三个频点在馈点90处电场分布相当(可以理解为,1.575GHz、2.45GHz和5.5GHz 三个频点在馈点处为大电场),因此可以用相同的激励方式将三个频点的谐振激励出来。
请参阅图6,为本发明天线实施例一开口缝隙增加串联的电容和电感的天线曲线图。从图6可以看出,在本发明天线实施例的开口缝隙11增加串联的电容C1 20和电感L1 40后,可以产生1.575GHz的工作频率,如图6中1大致位置所示的工作频率。
请参阅图7,为本发明天线实施例一开口缝隙位于PCB板不同位置的无源效率示意图。如图7所示,其中,实线为开口缝隙11位于PCB板大致中间位置的无源效率示意图,虚线为开口缝隙11距PCB板边缘为10mm位置的无源效率示意图,从图7可以看出,开口缝隙11位于PCB板大致中间位置是比较好的一个位置。
实施例二:
请参阅图1,为本发明天线实施例的示意图。该天线100包括印刷电路板(英文:Printed Circuit Board,简称PCB)、匹配电路50和馈线70,该PCB板具有接地面10,该接地面10具有一开口缝隙11,该匹配电路50的一端连接信号源30,该匹配电路50的另一端连接该馈线70的一端72,该馈线70穿过该开口缝隙11,该馈线70的末端71连接该开口缝隙11的另一侧113,其中,该天线100还包括电容C1 20和电感L1 40,该电容C1 20和电感L1 40位于该开口缝隙11,该电容C1 20和该电感L1 40串联,该串联后的电容C1 20和该电感L1 40的一端连接该开口缝隙11的一侧111,该串联后的电容C1 20和该电感L1 40的另一端连接该开口缝隙11的另一侧113。
其中,该开口缝隙11的一侧111与该开口缝隙11的另一侧113相对。
其中,该PCB板的尺寸为135mm*65mm*1.6mm,即PCB板的长为135mm,宽为65mm,高为1.6mm。该开口缝隙11与该PCB板边缘距离大于或等于30mm。
可选的或进一步的,该馈线的宽度为0.2mm。
可选的或进一步的,该馈线70距开口缝隙11的开口可以为4mm。
可选的或进一步的,该开口缝隙11的尺寸为10mm*2mm,即该开口缝隙11的长度为10mm,宽度为2mm。
可选的或进一步的,该电容C1 20的电容值的取值范围为0.5pF-1pF,该电感L1 40的电感值的取值范围为5nH-15nH。
具体的,该电容C1 20的电容值为0.5pF,该电感L1 40的电感值为10nH。
更进一步的,该至少两个工作频率可以为5.5GHz和2.45GHz。
其中,请参阅图8,该匹配电路50包括电感L3 51、电容C3 57和电容C4 53。其中,该匹配电路50的一端连接信号源30,该匹配电路50的另一端连接该馈线70的一端72,包括:该电容C3 57的一端和该电感L3 51的一端连接该信号源30,该电容C3 57的一端连接该电感L3 51的一端,该电容C3 57的另一端接地,该电感L3 51的另一端连接该电容C4 53的一端,该电容C4 53的另一端连接该馈线70的一端72。其中,该电容C3 57的另一端接地,可以为该电容C3 57的另一端连接接地面10。
其中,该电容C4 53可以用于调谐低频段,该电感L3 51和电容C3 57可以用于调谐调频段。其中,该电容C4 53的电容值可以为0.5pF。
其中,该串联后的电容C1 20和电感L1 40的另一端连接该开口缝隙11的另一侧113和该馈线70的末端71连接该开口缝隙11的另一侧113的位置不同,如图1所示。
请参阅图9,为本发明天线实施例二开口缝隙增加串联的电容和电感与无串联的电容和电感天线回波损耗曲线示意图。请参阅图10,为本发明天线实施例二开口缝隙增加串联的电容和电感与无串联的电容和电感阻抗实部曲线示意图。
如图9和图10所示,虚线表示开口缝隙11中无串联电容和电感产生的谐振模态,实线表示开口缝隙11中串联电容和电感产生的谐振模态。如图9和10虚线所示,缝隙天线大约在5.5GHz一个工作频率。如图9和10实线所示,开 口缝隙11中串联电容和电感后,大约在2.45GHz附近产生一个新的工作频率。
请参阅图11,为本发明天线实施例二开口缝隙增加串联的电容和电感的电流分布示意图。其中,本发明天线实施例在2.45GHz和5.5GHz的电流分布类似。
请参阅图12,为本发明天线实施例二开口缝隙增加串联的电容和电感的电场分布示意图。由图12可以看出,2.45GHz和5.5GHz两个频点在馈点92处电场分布相当(可以理解为,2.45GHz和5.5GHz两个频点在馈点处为大电场),因此可以用相同的激励方式将两个频点的谐振激励出来。
请参阅图13,为本发明天线实施例二开口缝隙增加串联的电容和电感的天线曲线图。从图13可以看出,在本发明天线实施例的开口缝隙11增加串联的电容C1 20和电感L1 40后,可以产生大约2.45GHz的工作频率。
请参阅图14,为本发明天线实施例开口缝隙增加串联电容和电感后的无源效率示意图。如图14所示,从无源效率上看,该方案在WLAN频段(2.4~2.5G,5~5.8G)可以达到-3.5dB以上。
实施例三:
请参阅图15,为本发明电子设备实施例的示意图。该电子设备200包括天线100,射频处理器300和基带处理器500,其中,
续请参阅图1,该天线100包括PCB板、匹配电路50、馈线70,其中,该PCB板具有接地面10,该接地面10具有开口缝隙11,该匹配电路50的一端连接信号源30,该匹配电路50的另一端连接该馈线70的一端72,该馈线70穿过该开口缝隙11,该馈线70的末端连接该开口缝隙11的另一侧,该天线还包括电容C1 20和电感L1 40,该电容C1 20和该电感L1 40位于该开口缝隙11,该电容C1 20和该电感L1 40串联,该串联后的电容C1 20和电感L1 40的一端连接该开口缝隙11的一侧111,该串联后的电容C1 20和电感L1 40的另一端连接该开口缝隙11的另一侧113;
该基带处理器500通过该射频处理器300与该信号源30连接;
该天线100,用于将接收到的无线信号传输给该射频处理器300,或者将该射频处理器300的发射信号转换为电磁波,发送出去;该射频处理器300,用于对该天线100接收到的无线信号进行选频、放大、下变频处理,并将其转换成中频信号或基带信号发送给该基带处理器500,或者,用于将该基带处理器500发送的基带信号或中频信号经过上变频、放大,通过该天线100发送出去;该基带处理器500,对接收到的该中频信号或该基带信号进行处理。
由上可以看出,该串联的电容C1 20和电感L1 40位于该开口缝隙11,该串联后的电容C1 20和该电感L1 40连接该开口缝隙11的两侧,该天线100可以在覆盖原有频带的基础上再涵盖一个低频段。另外,该天线100利用了开口缝隙11的空间,在开口缝隙11内增加了串联的电容C1 20和电感L1 40,在增加低频段的基础上不会影响天线的尺寸。进一步的,在该电子设备200上使用该天线100可以减少周围金属器件对天线性能的影响。
其中,该开口缝隙11的一侧111与该开口缝隙11的另一侧113相对。
其中,该天线100的描述请参阅实施例一或实施例二中的天线实施例描述。在此不再详述。
其中,该电子设备可以为手机、车载产品(例如汽车盒子T-Box)、平板电脑或穿戴式设备等等。本发明实施例对此并不进行限制。
需要说明的是,请参阅图1,上述实施例一至三中提供的工作频率与该开口缝隙11的物理长度L、匹配电路和介质材料有关。本领域的普通技术人员可以调整匹配电路中电感和电容的值,和/或,选用不同的介质材料,和/或,调整该开口缝隙11的物理长度L,可以产生实施例一至三中相类似的工作频率。
另外,本发明天线实施例中给出了两种不同的匹配电路,本领域的普通技术人员可以基于本发明天线实施例中给出的两种不同的匹配电路,再增加电容和/或电感设计不同的匹配电路,也可以调整匹配电路的电容和/或电感的值实现不同的匹配,本发明实施例中对该匹配电路并不进行限制。
需要说明的是,本领域的普通技术人员可以基于本发明天线实施例和电子 设备实施例提供的电容C1 20和电感L1 40位于开口缝隙11,该电容C1 20和该电感L1 40串联,该串联后的电容C1 20和该电感L1 40的一端连接该开口缝隙11的一侧111,该串联后的电容C1 20和该电感L1 40的另一端连接该开口缝隙11的另一侧113,调整电容C1 20的电容值和/或电感L1 40的电感值和/或串联的电容C1 20和电感L1 40位于该开口缝隙11中的位置,实现对低频的调整。本发明天线实施例和电子设备实施例并不限于实施例一中产生的1.575GHz工作频率和实施例二中产生的2.45GHz的工作频率,可以调整电容C1 20的电容值和/或电感L1 40的电感值和/或串联的电容C1 20和电感L1 40位于该开口缝隙11中的位置,产生不同的工作频率。
需要说明的是,本发明实施例中提到的1.575GHz、2.45GHz和5.5GHz也可以理解为谐振频率。对于本领域普通技术人员而言,位于谐振频率的7-13%可以为天线正常的工作频宽(也可以理解为频带)。例如,天线的谐振频率为5.5GHz,正常的工作频宽为谐振频率的7%,这样天线的工作频率范围大致可以为5.30GHz-5.69GHz。
需要说明的是,本发明实施例中提到的接地面10可以为PCB板的覆铜面。
需要说明的是,上述实施例一至三中提到的电容和电感可以为集总电容和集总电感,也可以为电容器和电感器,当然也可以为分布电容和分布电感。本发明实施例对此并不限制。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (25)

  1. 一种天线,其特征在于,所述天线包括PCB板、匹配电路、馈线,其中,所述PCB板具有接地面,所述接地面具有开口缝隙,所述匹配电路的一端连接信号源,所述匹配电路的另一端连接所述馈线的一端,所述馈线穿过所述开口缝隙,所述馈线的末端连接所述开口缝隙的另一侧,所述天线还包括电容C1和电感L1,所述电容C1和所述电感L1位于所述开口缝隙,所述电容C1和所述电感L1串联,所述串联后的电容C1和电感L1的一端连接所述开口缝隙的一侧,所述串联后的电容C1和电感L1的另一端连接所述开口缝隙的所述另一侧。
  2. 如权利要求1所述的天线,其特征在于,所述开口缝隙的尺寸为25mm*2mm。
  3. 如权利要求1或2所述的天线,其特征在于,所述电容C1的电容值的取值范围为0.5pF-1pF,所述电感L1的电感值的取值范围为5nH-15nH。
  4. 如权利要求3所述的天线,其特征在于,所述电容C1的电容值为0.5pF,所述电感L1的电感值为9.1nH。
  5. 如权利要求4所述的天线,其特征在于,所述天线产生至少三个工作频率。
  6. 如权利要求5所述的天线,其特征在于,所述至少三个工作频率包括2.45GHz、5.5GHz和1.575GHz。
  7. 如权利要求1或3所述的天线,其特征在于,所述PCB板的尺寸为135mm*65mm*1.6mm,所述开口缝隙与所述PCB板边缘距离大于或等于30mm。
  8. 如权利要求1或3或7所述的天线,其特征在于,所述开口缝隙的尺寸为10mm*2mm。
  9. 如权利要求8所述的天线,其特征在于,所述电容C1的电容值为0.5pF,所述电感L1的电感值为10nH。
  10. 如权利要求9所述的天线,其特征在于,所述天线产生至少两个工作 频率。
  11. 如权利要求10所述的天线,其特征在于,所述至少两个工作频率包括5.5GHz和2.45GHz。
  12. 如权利要求1-11任一所述的天线,其特征在于,所述馈线的宽度为0.2mm。
  13. 一种电子设备,包括天线、射频处理器和基带处理器,其中,
    所述天线包括PCB板、匹配电路、馈线,其中,所述PCB板具有接地面,所述接地面具有开口缝隙,所述匹配电路的一端连接信号源,所述匹配电路的另一端连接所述馈线的一端,所述馈线穿过所述开口缝隙,所述馈线的末端连接所述开口缝隙的另一侧,所述天线还包括电容C1和电感L1,所述电容C1和所述电感L1位于所述开口缝隙,所述电容C1和所述电感L1串联,所述串联后的电容C1和电感L1的一端连接所述开口缝隙的一侧,所述串联后的电容C1和电感L1的另一端连接所述开口缝隙的所述另一侧;
    所述基带处理器通过所述射频处理器与所述信号源连接;
    所述天线,用于将接收到的无线信号传输给所述射频处理器,或者将所述射频处理器的发射信号转换为电磁波,发送出去;所述射频处理器,用于对所述天线接收到的无线信号进行选频、放大、下变频处理,并将其转换成中频信号或基带信号发送给所述基带处理器,或者,用于将所述基带处理器发送的基带信号或中频信号经过上变频、放大,通过所述天线发送出去;所述基带处理器,对接收到的所述中频信号或所述基带信号进行处理。
  14. 如权利要求13所述的电子设备,其特征在于,所述开口缝隙的尺寸为25mm*2mm。
  15. 如权利要求13或14所述的电子设备,其特征在于,所述电容C1的电容值的取值范围为0.5pF-1pF,所述电感L1的电感值的取值范围为5nH-15nH。
  16. 如权利要求15所述的电子设备,其特征在于,所述电容C1的电容值为0.5pF,所述电感L1的电感值为9.1nH。
  17. 如权利要求16所述的电子设备,其特征在于,所述天线产生至少三个工作频率。
  18. 如权利要求17所述的电子设备,其特征在于,所述至少三个工作频率包括2.45GHz、5.5GHz和1.575GHz。
  19. 如权利要求13或15所述的电子设备,其特征在于,所述PCB板的尺寸为135mm*65mm*1.6mm,所述开口缝隙与所述PCB板边缘距离大于或等于30mm。
  20. 如权利要求13或15或19所述的电子设备,其特征在于,所述开口缝隙的尺寸为10mm*2mm。
  21. 如权利要求20所述的电子设备,其特征在于,所述电容C1的电容值为0.5pF,所述电感L1的电感值为10nH。
  22. 如权利要求21所述的电子设备,其特征在于,所述天线产生至少两个工作频率。
  23. 如权利要求22所述的电子设备,其特征在于,所述至少两个工作频率包括5.5GHz和2.45GHz。
  24. 如权利要求13-23任一所述的电子设备,其特征在于,所述馈线的宽度为0.2mm。
  25. 如权利要求13-24任一所述的电子设备,其特征在于,所述电子设备为手机、车载产品、平板电脑中的一种。
PCT/CN2016/084177 2016-05-31 2016-05-31 一种天线和电子设备 WO2017206074A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680081784.2A CN108701895A (zh) 2016-05-31 2016-05-31 一种天线和电子设备
US16/305,665 US20200328520A1 (en) 2016-05-31 2016-05-31 Antenna and Electronic Device
PCT/CN2016/084177 WO2017206074A1 (zh) 2016-05-31 2016-05-31 一种天线和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/084177 WO2017206074A1 (zh) 2016-05-31 2016-05-31 一种天线和电子设备

Publications (1)

Publication Number Publication Date
WO2017206074A1 true WO2017206074A1 (zh) 2017-12-07

Family

ID=60478422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084177 WO2017206074A1 (zh) 2016-05-31 2016-05-31 一种天线和电子设备

Country Status (3)

Country Link
US (1) US20200328520A1 (zh)
CN (1) CN108701895A (zh)
WO (1) WO2017206074A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019218966A1 (zh) * 2018-05-18 2019-11-21 华为技术有限公司 天线装置和终端
CN112032687A (zh) * 2020-09-04 2020-12-04 浙江涂鸦智能电子有限公司 灯板及智能灯泡
CN113067124A (zh) * 2019-12-28 2021-07-02 中国移动通信集团终端有限公司 小型化Wi-Fi双频天线以及工作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719824B (zh) * 2020-02-06 2021-02-21 啓碁科技股份有限公司 天線結構
WO2022159087A1 (en) * 2021-01-21 2022-07-28 Hewlett-Packard Development Company, L.P. Antenna for devices
CN113422186A (zh) * 2021-03-05 2021-09-21 苏州威洁通讯科技有限公司 小型化中心结及环形器
CN113193361A (zh) * 2021-05-28 2021-07-30 深圳迈睿智能科技有限公司 具有缝隙电感的抗干扰微波探测天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110273350A1 (en) * 2010-05-07 2011-11-10 Bae Systems Information And Electronic Systems Integration Inc. Tapered slot antenna
CN102422487A (zh) * 2009-03-12 2012-04-18 雷斯潘公司 多带复合右手和左手(crlh)缝隙天线
CN105390810A (zh) * 2015-12-09 2016-03-09 广东欧珀移动通信有限公司 一种收发多频段无线信号的天线和终端
CN105390804A (zh) * 2015-12-09 2016-03-09 广东欧珀移动通信有限公司 一种多模式缝隙天线和移动终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267709A (zh) * 2014-10-20 2015-01-07 山东超越数控电子有限公司 一种基于bds的计算机远程控制及信息采集方法
CN105337036B (zh) * 2015-11-12 2018-09-07 深圳市万普拉斯科技有限公司 移动终端及其天线结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422487A (zh) * 2009-03-12 2012-04-18 雷斯潘公司 多带复合右手和左手(crlh)缝隙天线
US20110273350A1 (en) * 2010-05-07 2011-11-10 Bae Systems Information And Electronic Systems Integration Inc. Tapered slot antenna
CN105390810A (zh) * 2015-12-09 2016-03-09 广东欧珀移动通信有限公司 一种收发多频段无线信号的天线和终端
CN105390804A (zh) * 2015-12-09 2016-03-09 广东欧珀移动通信有限公司 一种多模式缝隙天线和移动终端

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019218966A1 (zh) * 2018-05-18 2019-11-21 华为技术有限公司 天线装置和终端
US11658401B2 (en) 2018-05-18 2023-05-23 Huawei Technologies Co., Ltd. Antenna apparatus and terminal
CN113067124A (zh) * 2019-12-28 2021-07-02 中国移动通信集团终端有限公司 小型化Wi-Fi双频天线以及工作方法
CN113067124B (zh) * 2019-12-28 2022-10-04 中国移动通信集团终端有限公司 小型化Wi-Fi双频天线以及工作方法
CN112032687A (zh) * 2020-09-04 2020-12-04 浙江涂鸦智能电子有限公司 灯板及智能灯泡

Also Published As

Publication number Publication date
US20200328520A1 (en) 2020-10-15
CN108701895A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
US11431088B2 (en) Antenna and mobile terminal
US10320060B2 (en) Antenna and mobile terminal
WO2017206074A1 (zh) 一种天线和电子设备
US10819031B2 (en) Printed circuit board antenna and terminal
TWI425713B (zh) 諧振產生之三頻段天線
US8203489B2 (en) Dual-band antenna
US9640868B2 (en) Wideband antenna and wireless communication device
US7453402B2 (en) Miniature balanced antenna with differential feed
TWI599095B (zh) 天線結構及應用該天線結構的無線通訊裝置
US20150061952A1 (en) Broadband Antenna
US10008776B2 (en) Wideband antenna
WO2015096132A1 (zh) 天线和终端
CN112768875B (zh) 电子设备
US7920095B2 (en) Three-dimensional multi-frequency antenna
EP3382798B1 (en) Slot antenna and terminal
Al-Azza et al. Low Profile Tri-Bands Antenna for Wireless Applications
TWI530025B (zh) 可攜式電子裝置之多頻天線
TW201301657A (zh) 天線及無線通訊裝置
TW201004036A (en) Multi-band antenna

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903459

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903459

Country of ref document: EP

Kind code of ref document: A1