WO2019218966A1 - 天线装置和终端 - Google Patents

天线装置和终端 Download PDF

Info

Publication number
WO2019218966A1
WO2019218966A1 PCT/CN2019/086635 CN2019086635W WO2019218966A1 WO 2019218966 A1 WO2019218966 A1 WO 2019218966A1 CN 2019086635 W CN2019086635 W CN 2019086635W WO 2019218966 A1 WO2019218966 A1 WO 2019218966A1
Authority
WO
WIPO (PCT)
Prior art keywords
slit
radiator
frequency band
slot
antenna device
Prior art date
Application number
PCT/CN2019/086635
Other languages
English (en)
French (fr)
Inventor
邓绍刚
柳青
陈伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2019269823A priority Critical patent/AU2019269823B2/en
Priority to KR1020207033304A priority patent/KR102463269B1/ko
Priority to CA3098970A priority patent/CA3098970A1/en
Priority to JP2020564519A priority patent/JP7034335B2/ja
Priority to CN201980032882.0A priority patent/CN112219313B/zh
Priority to EP19804293.9A priority patent/EP3780268B1/en
Priority to US17/056,253 priority patent/US11658401B2/en
Priority to BR112020022178-3A priority patent/BR112020022178A2/pt
Publication of WO2019218966A1 publication Critical patent/WO2019218966A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/392Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element

Definitions

  • the invention belongs to the technical field of communication antennas, and in particular to an antenna device and a terminal.
  • the horizontal gain index of the antenna is the main indicator for measuring the vehicle antenna.
  • the maximum radiation direction of the antenna is on the floor plane (hereinafter referred to as the horizontal plane).
  • the floor size cannot be infinitely large, and the maximum radiation direction of the antenna is Will be upturned, the floor level gain will be worse than the infinite floor.
  • the embodiment of the present application provides an antenna device, which can improve the direction of the antenna and improve the gain on the horizontal plane.
  • an antenna device provided by an embodiment of the present application includes a grounding plate, a radiator, and a signal source.
  • the radiator is disposed on the grounding plate, and the signal source is configured to feed the first frequency band to the radiator.
  • An electromagnetic wave signal the grounding plate defines a first slit and a second slit, wherein the first slit and the second slit are closed slits, and surround the radiator, the first slit And the second slit is configured to suppress a current distribution on the ground plate such that a current generated by an electromagnetic wave signal of the first frequency band is trapped inside and around the first slit and the second slit.
  • the current is prevented from flowing toward the edge of the ground plate, and the current is trapped inside and around the first slit and the second slit, thereby changing the pattern of the radiator, so that the maximum of the radiator The direction of radiation moves toward the horizontal plane, thereby increasing the horizontal gain of the radiator.
  • the first slot and the second slot are symmetrically disposed centering on a connection between the radiator and the ground plate.
  • the centrally symmetric first and second slits provide nearly the same current distribution across the ground plane around the radiator such that the pattern of the antenna is nearly identical in all directions around the radiator.
  • the radial distance from the radiator to the first slit is 0.2-0.3 ⁇ 1
  • ⁇ 1 is the wavelength of the electromagnetic wave signal in the first frequency band.
  • the first gap is set to be 0.2-0.3 ⁇ 1 , and the current flows from the radiator to the first gap.
  • the current When flowing through the distance of 0.2-0.3 ⁇ 1 , the current is in a weak state, the electric field is strong, and resonance occurs, and the current is generated. It will be trapped in and around the first slit, so that the current of the electromagnetic wave signal of the first frequency band flows through the path to generate resonance at the first slit, thereby causing the current to be trapped inside and around the first slit.
  • the first slit has a circular arc shape, and a distance between an inner side of the first slit and a center of the radiator is a first radius, and the first radius is 0.25 ⁇ 1 .
  • the first radius is 0.25 ⁇ 1 , so that the current of the electromagnetic wave signal of the first frequency band flows through the path and generates resonance at the first gap, because the current at 0.25 ⁇ 1 is the smallest, the electric field is the strongest, and the resonance effect is the best.
  • the current is forced inside and around the first slit.
  • the dimension of the first slot extending in the circumferential direction is a first electrical length, and the first electrical length is 0.5 ⁇ 1 .
  • the first electric length is set to 0.5 ⁇ 1 so that the current of the electromagnetic wave signal of the first frequency band flows to the first slit 11, resonance occurs at the first slit 11.
  • the dimension of the first slot in the radial direction is a first width, the first width is 0.05 ⁇ 1 , and the first frequency band is 5.9 GHz.
  • the first width is 0.05 ⁇ 1
  • the first frequency band 5.9 GHz conforming to the operating frequency range of the antenna is obtained.
  • the signal source is further configured to feed the radiator with an electromagnetic wave signal of a second frequency band, wherein the second frequency band is lower than the first frequency band
  • the antenna device further includes a slit and a third slit and a fourth slit at a periphery of the second slit, the third slit and the fourth slit are closed slits, and the third slit and the fourth slit are used for containment
  • the current distribution on the ground plate causes a current generated by the electromagnetic wave signal of the second frequency band to be trapped inside and around the third slit and the fourth slit.
  • the electromagnetic wave signal of the second frequency band is fed through the signal source, so that the antenna device can also be used to radiate the electromagnetic wave signal of the second frequency band, so that the antenna device can be used for the multi-frequency terminal, and the current generated by the electromagnetic wave signal of the second frequency band is the third gap.
  • the fourth gap is bound to increase the gain of the horizontal plane of the electromagnetic wave signal in the second frequency band.
  • the third slot and the fourth slot are symmetrically disposed centering on a connection between the radiator and the ground plate.
  • the centrally symmetric third and fourth slits provide nearly identical current distribution across the ground plane around the radiator such that the antenna pattern is nearly identical in shape in all directions around the radiator.
  • the radial distance from the radiator to the third slot is: a radial distance from the radiator to the third slot: 0.2-0.3 ⁇ 2
  • ⁇ 2 is an electromagnetic wave of the second frequency band The wavelength of the signal.
  • the third gap distance is set to 0.2-0.3 ⁇ 2 , and the current flows from the radiator to the third gap.
  • the current When flowing through the distance of 0.2-0.3 ⁇ 2 , the current is in a weak state, the electric field is strong, and resonance occurs, and the current is generated. It will be trapped in and around the third slit, so that the current of the electromagnetic wave signal of the second frequency band flows through the path to generate resonance at the third slit, thereby causing the current to be bound inside and around the third slit.
  • the third slit has a circular arc shape, and a distance between an inner side of the third slit and a center of the radiator is a second radius, and the second radius is 0.25 ⁇ 2 .
  • the second radius is 0.25 ⁇ 2 , so that the current of the electromagnetic wave signal of the second frequency band flows through the path and generates resonance at the third slit, because the current at 0.25 ⁇ 2 is the smallest, the electric field is the strongest, and the resonance effect is the best.
  • the current is forced inside and around the third slit.
  • the dimension of the third slit extending in the circumferential direction is a second electrical length, and the second electrical length is 0.5 ⁇ 2 .
  • the second electrical length is set to 0.5 ⁇ 2 such that the current of the electromagnetic wave signal of the second frequency band flows to the third slit, resonance occurs at the third slit.
  • the dimension of the third slot in the radial direction is a second width, the second width is equal to the first width, and the second frequency band is 2.45 GHz.
  • the antenna device includes a grounding plate, a radiator, a signal source, a first filter, and a second filter, where the radiator is disposed on the grounding plate, and the signal source is used for Transmitting an electromagnetic wave signal of the first frequency band and the second frequency band to the radiator, wherein the second frequency band is lower than the first frequency band, and the third slot and the fourth slot are opened on the ground plate, and the third slot And the fourth slit is a closed slit, and surrounds the radiator, the first filter is disposed in the third slit, and the third slit is divided into two slits, The second filter is disposed in the fourth slot, and divides the fourth slot into two segments, the first filter and the second filter make the third slot and the The fourth slits respectively form two different electrical lengths, so that the currents generated by the electromagnetic wave signals of the first frequency band and the second frequency band can be bound inside the third slit and the fourth slit and around.
  • the current is prevented from flowing toward the edge of the ground plate, and two different electrical lengths are generated on the third slit by providing the first filter and the second filter, fourth Two different electrical lengths are generated on the gap, so that the radiator generates resonances of the two modes of the first frequency band and the second frequency band, which satisfies the requirements of multi-frequency communication, and further, the binding effect of the third slot and the fourth slot on the current
  • the gain of the electromagnetic wave signals in the first frequency band and the second frequency band is increased in the horizontal plane.
  • first filter and the second filter are band-pass filters in series with an inductor and a capacitor, both for passing current generated by the electromagnetic wave signal of the second frequency band, and blocking the first
  • the current generated by the electromagnetic wave signal of the frequency band is such that the electrical length of the electromagnetic wave signal of the second frequency band is greater than the electrical length of the electromagnetic wave signal of the first frequency band.
  • the electrical length of the frequency band, a portion of the third slit is the electrical length of the first frequency band having a higher frequency, and the other portion has no current flowing due to the blocking action of the first filter, and is not used to bind the electromagnetic wave signal of the first frequency.
  • the specific position of the first filter in the third slot and the second filter in the fourth slot is related to the wavelength ⁇ 1 of the electromagnetic wave signal in the first frequency band, where the first A filter is disposed at an end point 0.5 ⁇ 1 from the third slit, and the second filter is disposed at an end point 0.5 ⁇ 1 from the fourth slit.
  • the first electrical length of the electromagnetic wave signal of the first frequency band is 0.5 ⁇ 1
  • the second electrical length of the electromagnetic wave signal of the second frequency band is 0.5 ⁇ 2
  • ⁇ 1 is the wavelength of the electromagnetic wave signal of the first frequency band.
  • ⁇ 2 is the wavelength of the electromagnetic wave signal of the second frequency band.
  • the third slot and the fourth slot are symmetrically disposed centering on a connection between the radiator and the ground plate.
  • the centrally symmetric third and fourth slits provide nearly identical current distribution across the ground plane around the radiator such that the antenna pattern is nearly identical in shape in all directions around the radiator.
  • the radial distance from the radiator to the third slot is 0.2-0.3 ⁇ 2
  • ⁇ 2 is the wavelength of the electromagnetic wave signal in the second frequency band.
  • the third gap distance is set to 0.2-0.3 ⁇ 2 , and the current flows from the radiator to the third gap.
  • the current When flowing through the distance of 0.2-0.3 ⁇ 2 , the current is in a weak state, the electric field is strong, and resonance occurs, and the current is generated. It will be trapped in and around the third slit, so that the current of the electromagnetic wave signals of the first frequency band and the second frequency band will flow through the path to generate resonance at the third slit, thereby causing the current to be bound inside and around the third slit.
  • the third slit has a circular arc shape, and a distance between an inner side of the third slit and a center of the radiator is a first radius, and the first radius is 0.25 ⁇ 2 .
  • the first radius is 0.5 ⁇ 1 , so that the current of the electromagnetic wave signal of the first frequency band flows through the path and generates resonance at the third gap, because the current at 0.25 ⁇ 2 is the smallest, the electric field is the strongest, and the resonance effect is the best.
  • the current is forced inside and around the third slit.
  • the dimension of the third slit extending in the circumferential direction is a first electrical length, and the first electrical length is 0.5 ⁇ 2 .
  • the first electrical length is set to ⁇ 1 such that the current of the electromagnetic wave signal of the second frequency band flows to the third slit, resonance occurs at the third slit.
  • the dimension of the first slot in the radial direction is a first width
  • the first width is 0.05 ⁇ 1
  • ⁇ 1 is a wavelength of an electromagnetic wave signal in the first frequency band
  • the first frequency band is 5.9 GHz.
  • the second frequency band is 2.45 GHz.
  • a terminal provided by an embodiment of the present application includes a PCB board and the foregoing antenna device, wherein a radiator of the antenna device is disposed on the PCB board, and the ground plate is a part of the PCB board, and the PCB board
  • the signal source for feeding is provided thereon, the signal source feeding the radiator.
  • FIG. 1a is a schematic structural diagram of a terminal according to an embodiment
  • Figure 1b is a schematic structural view of an antenna device of the terminal of Figure 1a;
  • FIG. 2a is a schematic structural view of an antenna device according to an embodiment
  • Figure 2b is a partially enlarged schematic view of the portion A of Figure 2a;
  • 2c is a schematic diagram of simulation of return loss (S11) of an antenna device according to an embodiment
  • 2d is a schematic diagram of current distribution simulation of an unopened and slotted ground plate in an embodiment, wherein the left picture shows the simulation result without gaps, and the right picture shows the simulation result after opening the gap;
  • 2 e is a simulation diagram of an antenna device in an embodiment without a gap, wherein the left diagram is a top view of the simulation direction diagram, the middle diagram is a side view of the simulation direction diagram, and the right diagram is a side view of the simulation direction diagram (and The middle view angle is vertical);
  • 2f is a simulation direction diagram of the antenna device after the slit is opened in an embodiment, wherein the left figure is a top view of the simulation direction, the middle view is a side view of the simulation direction, and the right picture is a side view of the simulation direction (with the middle) View angle is vertical);
  • 2g is a schematic diagram of a horizontal plane gain comparison of an antenna device of an embodiment without gaps and slits;
  • FIG. 3a is a schematic structural diagram of an antenna device according to another embodiment, in which a signal source and a matching circuit are omitted;
  • Figure 3b is a partially enlarged schematic view of the portion A of Figure 3a;
  • 3c is a schematic diagram of simulation of return loss (S11) of an antenna device according to an embodiment
  • FIG. 3d is a schematic diagram of current distribution simulation of an uninterrupted ground plate of an embodiment.
  • the left figure shows the simulation result of the unopened gap of 2.45 GHz mode, and the right figure shows the simulation of the 5.9 GHz mode without gap. result;
  • FIG. 3e is a schematic diagram of current distribution simulation on a ground plate after slitting according to an embodiment, wherein the left figure shows the simulation result after the opening of the 2.45 GHz mode, and the right picture shows the simulation after the 5.9 GHz mode open gap. result;
  • FIG. 3f is a simulation diagram of an antenna device when the 2.45 GHz mode is not open, and the left side of the figure is a top view of the simulation direction diagram, the middle diagram is a side view of the simulation direction diagram, and the right diagram is a simulation direction diagram. Side view (vertical to the middle view);
  • FIG. 3g is a simulation diagram of an antenna device when the 5.9 GHz mode is not open, and the left side of the figure is a top view of the simulation direction diagram, the middle diagram is a side view of the simulation direction diagram, and the right diagram is a simulation direction diagram. Side view (vertical to the middle view);
  • FIG. 3h is a simulation diagram of an antenna device after a 2.45 GHz modal open slot of an embodiment, wherein the left side of the figure is a top view of the simulation direction diagram, the middle diagram is a side view of the simulation direction diagram, and the right diagram is a simulation direction diagram side. View (vertical to the middle view);
  • 3i is a simulation diagram of an antenna device after a 5.9 GHz modal open slot of an embodiment, wherein the left figure is a top view of the simulation direction, the middle view is a side view of the simulation direction, and the right picture is a simulation direction side. View (vertical to the middle view);
  • FIG. 3j is a schematic diagram showing a comparison of the horizontal plane gain after the unopened and open gap of the 2.45 GHz mode and the 5.9 GHz mode of the antenna device of an embodiment
  • FIG. 4a is a schematic structural diagram of an antenna device according to another embodiment
  • Figure 4b is a partially enlarged schematic view of the portion A of Figure 4a;
  • 4c is a schematic diagram of simulation of return loss (S11) of an antenna device according to an embodiment
  • 4d is a schematic diagram of current distribution simulation of an uninterrupted ground plate of an embodiment.
  • the left picture shows the simulation results of the unopened gap of 2.45 GHz mode, and the right picture shows the simulation of the 5.9 GHz mode without gaps. result;
  • 4e is a schematic diagram of current distribution simulation on the ground plate after the slit is opened in an embodiment, wherein the left figure shows the simulation result after the opening of the 2.45 GHz mode, and the right picture shows the simulation after the 5.9 GHz mode open gap. result;
  • 4f is a simulation diagram of an antenna device when the 2.45 GHz mode is not open, in which the left figure is a top view of the simulation direction, the middle view is a side view of the simulation direction, and the right picture is a simulation direction. Side view (vertical to the middle view);
  • 4g is a simulation diagram of the antenna device when the 5.9 GHz mode is not open, in which the left figure is a top view of the simulation direction, the middle view is a side view of the simulation direction, and the right picture is a simulation direction. Side view (vertical to the middle view);
  • 4h is a simulation diagram of an antenna device after a 2.45 GHz modal open slot and a filter is added.
  • the left figure is a top view of the simulation direction
  • the middle view is a side view of the simulation direction
  • the right picture is Side view of the simulation pattern (vertical to the middle view);
  • 4i is a simulation diagram of an antenna device after a 5.9 GHz modal open slot and a filter is added, in which the left figure is a top view of the simulation direction, the middle view is a side view of the simulation direction, and the right picture is Side view of the simulation pattern (vertical to the middle view);
  • 4j is a schematic diagram showing the comparison of the horizontal plane gains of the 2.45 GHz mode and the 5.9 GHz mode of the antenna device without gaps and slits after adding the filter.
  • an embodiment of the present application provides a terminal, which can be a moving vehicle such as a car or an airplane, and improves the wireless communication effect of the terminal by improving the horizontal plane gain of the antenna device of the terminal.
  • the antenna device of the terminal may be a vehicle external antenna or a vehicle T-Box, and the antenna device of the terminal may be disposed at a position such as a car roof or an engine cover.
  • the terminal includes a PCB board and an antenna device provided by the embodiment of the present application.
  • the radiator 20 of the antenna device is connected to the PCB board, and the grounding board 10 is A portion of a PCB board on which the signal source for feeding is provided, the signal source feeding the radiator 20.
  • the pattern of the radiator 20 on the PCB board 10 is upturned, resulting in a reduction in the horizontal plane gain, and by opening a gap in the PCB board 10, the radiator 20 can be The pattern is pulled down, so that the maximum radiation direction of the radiator 20 is close to the horizontal plane, thereby increasing the horizontal gain of the antenna and improving the wireless communication effect of the terminal.
  • an embodiment of the present application provides an antenna device including a grounding plate 10, a radiator 20, and a signal source 30.
  • the radiator 20 is disposed on the grounding plate 10, and the signal source 30 is provided.
  • An electromagnetic wave signal for feeding the first frequency band to the radiator 20.
  • the antenna device may further include a matching circuit 40 electrically connected between the radiator 20 and the signal source 30 for adjusting a resonance state of the radiator 20.
  • a first slot 11 and a second slot 12 are defined in the grounding plate 10, and the first slot 11 and the second slot 12 are closed slots, and surround the radiator 20, the first a slit 11 and the second slit 12 are for suppressing a current distribution on the ground plate 10 such that a current generated by an electromagnetic wave signal of the first frequency band is bound to the first slit 11 and the second slit 12 inside and around.
  • the first slit 11 and the second slit 12 surrounding the radiator 20, current is suppressed from flowing toward the edge of the ground plate 10, and current is trapped inside and around the first slit 11 and the second slit 11, thereby changing the direction of the radiator 20.
  • the figure causes the maximum radiation direction of the radiator 20 to move toward the horizontal plane, thereby increasing the horizontal gain of the radiator 20.
  • the grounding plate 10 can be a PCB board, the PCB board is provided with a copper surface, and the radiator 20 is connected to the copper surface to achieve grounding.
  • the size of the grounding plate 10 can be set to be much larger than the radiation.
  • the size of the body 20 itself makes the grounding plate 10 simulate an infinite ground as much as possible, which facilitates the antenna design with reference to the antenna radiation theory of the infinite ground, and the error is relatively small.
  • the shape of the grounding plate 10 may be any shape such as a circle, a square, a triangle, or the like, as long as a large conductive surface is provided as a horizontal surface of the grounding plate 10.
  • the first slit 11 and the second slit 12 which are opened on the grounding plate 10 are closed slits, that is, the first slit 11 and the second slit 12 do not intersect with each other, and are not connected to the edge of the ground plate 10, but are located at In the middle of the grounding plate 10, preferably, the first slit 11 and the second slit 12 are both disposed around the center point of the grounding plate 10.
  • the first slot 11 and the second slot 12 are disposed on the grounding plate 10 around the radiator 20, and the first slot 11 surrounds one side of the radiator 20, and the second slot 12 surrounds the radiator 20.
  • the other side opposite to the first slit 11, and the angle between the two ends connecting the first slit 11 and the second slit 12 and the radiator 20 is less than 180°; the other form is the first
  • the slit 11 and the second slit 12 are nested, and the first slit 11 is located inside the second slit 12, that is, the angle between the two ends of the first slit 11 connected to the radiator 20 is greater than 180°, and the second slit 12 It is located on the side of the opening of the first slit 11 and does not coincide with the first slit 11 and has at least partial overlap in the circumferential extent of the radiator 20.
  • the grounding plate 10 has an at least partially connected region in the slotted region and outside the slotted region to provide a support structure for the radiator 20, and the current on the radiator 20 can be extracted from the slotted region.
  • the inside flows into the inner portion of the first slit 11 and the second slit 12 and the surrounding area outside the slit region.
  • the shape of the first slit 11 and the second slit 12 may be a circular arc shape, a wave shape, a rectangular shape (ie, the first slit 11 and the second slit 12 each have a straight line segment and a corner so that the two are combined to form a rectangle) or a zigzag shape.
  • the first slit 11 and the second slit 12 are disposed around the antenna 12, so that the shapes of the first slit 11 and the second slit 12 cannot be two straight lines.
  • the first slit 11 and the second slit 12 may be formed by a mechanical processing process, and a through groove penetrating through the upper and lower surfaces of the ground plate 10 is dug on the ground plate 10 to form the first slit 11 and the second slit 12.
  • the radiator 20 may be an antenna structure of a type such as a monopole antenna, an IFA (inverted F) antenna, a LOOP (ring) antenna, or the like, and the radiator 20 may be erected on the ground plate 10, that is, the main structure of the radiator 20 is standing, and The non-body is attached to the surface of the grounding plate 10.
  • the extending direction of the body of the radiator 20 may be perpendicular to the plane of the grounding plate 10 (ie, the ground or the horizontal plane), or may have a slight inclination angle, for example, the direction in which the radiator 20 extends.
  • the angle between the plane of the grounding plate 10 and the plane of the grounding plate 10 is 45° to 90°, so that the area occupied by the connection point of the radiator 20 and the grounding plate 10 is minimized, and the radiator 20 extends away from the grounding plate 10.
  • the ideal state ie, infinite ground
  • the first slit 11 and the second slit 12 are symmetrically disposed centering on a joint of the radiator 20 and the ground plate 10.
  • the centrally symmetric first slit 11 and the second slit 12 can produce almost the same current distribution on the ground plate 10 around the radiator 20 such that the shape of the antenna is almost the same in all directions around the radiator 20.
  • the radial distance of the radiator 20 to the first slit 11 is 0.2-0.3 ⁇ 1
  • ⁇ 1 is the wavelength of the electromagnetic wave signal of the first frequency band.
  • the first slit 11 is disposed at a distance of 0.2-0.3 ⁇ 1 from the radiator 20, and the current flows from the radiator 20 to the first slit 11.
  • the current When flowing through a distance of 0.2-0.3 ⁇ 1 , the current is in a weak state, and the electric field is strong, resulting in Resonance, current is trapped in and around the first slit 11, so that a current of an electromagnetic wave signal of the first frequency band flows through the path to generate resonance at the first slit 11, thereby causing current to flow inside and around the first slit 11. Being tied.
  • the first slit 11 has a circular arc shape, and a distance between an inner side of the first slit 11 and a center of the radiator 20 is a first radius R1, and the first radius R1 is 0.25 ⁇ 1 .
  • the first radius R1 is 0.25 ⁇ 1 , so that the current of the electromagnetic wave signal of the first frequency band flows through the path and generates resonance at the first slit 11 because the current at 0.25 ⁇ 1 is the smallest, the electric field is the strongest, and the resonance effect is the most
  • the current is trapped inside and around the first slit 11.
  • the dimension of the first slit 11 extending in the circumferential direction is a first electrical length, and the first electrical length is 0.5 ⁇ 1 .
  • the dimension of the first slit 11 in the radial direction is a first width W1, the first width W1 is 0.05 ⁇ 1 , and the first frequency band is 5.9 GHz.
  • the frequency bands used by smartphones are low frequency, medium frequency and high frequency, and the upper and lower limits of each frequency band are limited.
  • the antennas of smart phones need to work in these frequency bands; the same is true for vehicle antennas, and there are also dedicated antennas.
  • Frequency band In summary, when designing the structure of the antenna device, it is necessary to satisfy the antenna within the specified frequency range. In this embodiment, the first frequency band is located in the specified frequency range.
  • the frequency of 5.9 GHz is a commonly used communication frequency, and the 5.9 GHz frequency obtained by the above setting is superior to the vehicle antenna. Better wireless communication can be achieved within the frequency range.
  • the structures of the first slit 11 and the second slit 12 need to be set. More specifically, the sizes of the first slit 11 and the second slit 12 are required to be defined, and the size and the feeding radiator 20 are set.
  • the wavelength ⁇ 1 of the electromagnetic wave signal of the first frequency band is correlated, so that when the resonance of the first frequency band is reached, the first slit 11 and the second slit 12 can be different in size according to ⁇ 1 , and the antenna device satisfying various terminals can be satisfied.
  • the need for the layout is correlated, so that when the resonance of the first frequency band is reached, the first slit 11 and the second slit 12 can be different in size according to ⁇ 1 , and the antenna device satisfying various terminals can be satisfied.
  • the radiator 20 preferably uses a monopole antenna, and the height of the radiator 20 is preferably 0.25 ⁇ 1 .
  • the monopole antenna has a dual characteristic. In an ideal state (that is, the ground plane is an infinite plane), the maximum radiation direction is a horizontal plane, but when applied on the terminal, the size of the grounding plate 10 cannot be infinitely large, so the first slit 11 is provided. And the second slit 12 is used to change the pattern of the antenna.
  • the height of the antenna 10 is 0.25 ⁇ 1
  • the first radius R1 is 0.2 ⁇ 1 -0.3 ⁇ 1 , preferably 0.25 ⁇ 1 , so that the total length of the path through which the current flows on the radiator 20 and the ground plate 10 is 0.5 ⁇ 1 , at this time, the radiation pattern of the antenna is closest to the radiation pattern of the dipole antenna, and the horizontal gain obtained at this time is the highest.
  • the first electrical length of the first slot 11 is set to 0.5 ⁇ 1 , and the signal source 30 feeds the radiator 20 while feeding the first slot 11 so that the resonant mode excited on the first slot 11 and the radiator
  • the resonant mode of 20 is the same mode, and the current on the ground plate 10 flows to the first slit 11, forming a resonance on the first slit 11, and no longer flows further, with respect to the ground plate 10
  • the current distribution on the grounding plate 10 is changed, so that the maximum radiation direction of the antenna moves toward the horizontal plane, thereby increasing the horizontal gain.
  • a ground plate 10 is circular, the radius R for 65mm, the radiator 20 as a monopole antenna, a height H of 10mm, a first radius R1 is 10mm, The first electrical length is 20 mm, and the first width W1 is 2 mm.
  • the antenna device is simulated, and the simulation results are shown in the following description.
  • the return loss S11 of the antenna shows that when the slot is not opened, the return loss curve of the antenna (shown by the dotted line) does not form a significant resonance point, and the first slot 11 and the second slot 12 are opened.
  • the antenna return loss curve shown by the solid line
  • the resonant frequency is near the 6 GHz position, and the vicinity of this resonance is the first frequency band to be obtained in this embodiment, and the simulation result and the expected resonance point of 5.9 GHz.
  • the design purpose of the antenna device is achieved.
  • the left figure shows the current distribution when there is no gap.
  • the right picture shows the current distribution after the gap is opened.
  • the current distribution on the grounding plate 10 extends to the edge of the board. After the gap is added, Most of the current on the ground plane is "bound" inside and around the gap. The current outside the gap is weak. The presence of the gap changes the current distribution on the ground plane 10, which in turn changes the antenna pattern and horizontal gain.
  • the left picture shows the top view of the simulation direction
  • the middle picture shows the side view of the simulation direction
  • the right picture shows the side view of the simulation direction (perpendicular to the middle view).
  • FIG. 2f The left figure is the top view of the simulation direction diagram, the middle diagram is the side view of the simulation direction diagram, and the right diagram is the side view of the simulation direction diagram (perpendicular to the angle of view of the middle diagram).
  • the grounding plate 10 is The change of the current distribution causes the antenna pattern to change, and the antenna pattern is pulled down, so that the maximum radiation direction of the antenna deviates from the horizontal plane, and the maximum radiation direction is closer to the horizontal plane, thereby increasing the horizontal plane gain. .
  • the circular line connecting the inner circle is the horizontal gain when the gap is not opened, and the line connecting the outer circle is the horizontal gain after the opening. It can be seen that the horizontal gain is improved after opening the gap. The amount is above 2dB.
  • FIG. 3a and FIG. 3b in which the signal source 30 and the matching circuit 40 are omitted, similar to the previous embodiment, except that the signal source 30 is also used to the radiator.
  • An electromagnetic wave signal fed to the second frequency band, wherein the second frequency band is lower than the first frequency band, and the antenna device further includes a third slit 13 located at a periphery of the first slit 11 and the second slit 12 And the fourth slit 14, the third slit 13 and the fourth slit 14 are closed slits, and the third slit 13 and the fourth slit 14 are used for suppressing current distribution on the grounding plate 10. And causing a current generated by the electromagnetic wave signal of the second frequency band to be trapped inside and around the third slit 13 and the fourth slit 14.
  • the electromagnetic wave signal of the second frequency band is fed through the signal source 30, so that the antenna device can also be used to radiate the electromagnetic wave signal of the second frequency band, so that the antenna device can be used for the multi-frequency terminal, and the current generated by the electromagnetic wave signal of the second frequency band is third.
  • the slit 13 and the fourth slit 14 are bound to increase the gain of the horizontal plane of the electromagnetic wave signal of the second frequency band.
  • the first frequency band and the second frequency band are both located within a specified frequency range, and the specified frequency band is a frequency range of two different ranges, and the two do not coincide.
  • the third slit 13 and the fourth slit 14 are symmetrically disposed centering on the junction of the radiator 20 and the ground plate 10.
  • the centrally symmetric third slit 13 and fourth slit 14 can produce almost the same current distribution on the ground plate 10 around the radiator 20 such that the pattern of the antenna is almost identical in shape in all directions around the radiator 20.
  • the radial distance of the radiator 20 to the third slit 13 is 0.2-0.3 ⁇ 2
  • ⁇ 2 is the wavelength of the electromagnetic wave signal of the second frequency band.
  • the third slit 13 is disposed at a distance of 0.2-0.3 ⁇ 2 from the radiator 20, and the current flows from the radiator 20 to the third slit 13.
  • the current When flowing through a distance of 0.2-0.3 ⁇ 2 , the current is in a weak state, and the electric field is strong, resulting in Resonance, current is trapped in and around the third slit 13, so that the current of the electromagnetic wave signal of the second frequency band flows through the path and resonates at the third slit 13, thereby causing the current to be inside and around the third slit 13. Being tied.
  • the third slit 13 has a circular arc shape, and a distance between an inner side of the third slit 13 and a center of the radiator 20 is a second radius R2, and the second radius R2 is 0.25 ⁇ 2 .
  • the second radius R2 is 0.25 ⁇ 2 , so that the current of the electromagnetic wave signal of the second frequency band flows through the path and generates resonance at the third slit 13 because the current at 0.25 ⁇ 2 is the smallest, the electric field is the strongest, and the resonance effect is the most
  • the current is trapped inside and around the third slit 13.
  • the dimension of the third slit 13 extending in the circumferential direction is a second electrical length, and the second electrical length is 0.5 ⁇ 2 .
  • the second electrical length is set to 0.5 ⁇ 2 such that the current of the electromagnetic wave signal of the second frequency band flows to the third slit 13 , resonance occurs at the third slit 13 .
  • the dimension of the third slit 13 in the radial direction is a second width W2, the second width W2 is equal to the first width W1, and the second frequency band is 2.45 GHz.
  • the first width W1 and the second width W2 are set to be the same, a second frequency band of 2.45 GHz conforming to the operating frequency range of the antenna is obtained.
  • the frequency of 2.45 GHz is also a commonly used communication frequency.
  • the 2.45 GHz frequency obtained by the above setting is located in the optimal frequency range of the vehicle antenna, and can achieve better wireless communication effect.
  • the radiator 20 preferably uses a monopole antenna, and the height of the radiator 20 is preferably 0.25 ⁇ 2 .
  • the sizes of the first slit 11, the second slit 12, the third slit 13, and the fourth slit 14 are defined, and the wavelength ⁇ 1 of the electromagnetic wave signal of the first frequency band fed into the radiator 20 and the electromagnetic wave of the second frequency band are set.
  • the wavelength ⁇ 2 of the signal is correlated such that the first slit 11 and the second slit 12 are used to form a resonance of the electromagnetic wave signal of the first frequency band, and the third slit 13 and the fourth slit 14 are used for forming the resonance of the electromagnetic wave signal of the second frequency band.
  • the radiator 20 and the first slit 11, the second slit 12, the third slit 13, and the fourth slit 14 can be different in size according to ⁇ , and satisfy the needs of the arrangement of the antenna devices of various terminals.
  • a ground plate 10 is circular, the radius R of 100mm, a monopole antenna radiator 20, a height H of 20mm, a first radius R1 is 8mm, The first electrical length is 20 mm, the first width W1 and the second width W2 are 2 mm, the second radius R2 is 20 mm, and the second electrical length is 40 mm.
  • the antenna device is simulated, and the simulation results are shown in the following description.
  • the return loss S11 of the antenna shows that the resonance point in the return loss curve (shown by the solid line) of the antenna is not opened, and the first slot 11, the second slot 12, and the first slot are opened.
  • the antenna return loss curve shown by the dashed line
  • the simulation result is substantially the same as the preset resonance point of 2.45 GHz and 5.9 GHz, and the antenna device is reached.
  • Design purpose It should be noted that resonance near the 4.5 GHz position is also generated, which is caused by the resonance of the first slit 11 and the second slit 12 itself, which is different from the gist of the present embodiment and may be ignored.
  • FIG. 3d Please refer to FIG. 3d.
  • the left figure shows the current distribution of the 2.45 GHz mode when there is no gap
  • the right figure shows the current distribution of the 5.9 GHz mode when there is no gap. It can be seen that when there is no gap, The current distribution on the ground plane 10 extends all the way to the edge of the board.
  • FIG. 3e The left figure is the current distribution diagram of the 2.45 GHz mode after the slit is opened, and the right figure is the current distribution diagram of the 5.9 GHz mode after the slit is opened. It can be seen that most of the current on the grounding plate 10 Being “bound” in and around the gap, the current outside the gap is weak, and the presence of the gap changes the distribution of current on the ground plane 10, which in turn changes the antenna pattern and horizontal gain.
  • the left picture shows the top view of the simulation direction
  • the middle picture shows the side view of the simulation direction
  • the right picture shows the side view of the simulation direction (vertical to the middle view).
  • the left picture shows the top view of the simulation direction
  • the middle picture shows the side view of the simulation direction
  • the right picture shows the side view of the simulation direction (vertical to the middle view).
  • FIG. 3h Please refer to FIG. 3h.
  • the left figure is the top view of the simulation direction
  • the middle view is the side view of the simulation direction
  • the right picture is the side view of the simulation direction (perpendicular to the middle view).
  • the grounding plate 10 is The variation of the current distribution causes the antenna's 2.45 GHz modal pattern to change, and the antenna pattern is pulled down, so that the maximum radiation direction of the antenna deviates from the horizontal plane, and the maximum radiation direction is closer to the horizontal plane, thereby increasing Large horizontal gain.
  • FIG. 3i The left figure is a top view of the simulation direction diagram, the middle diagram is a side view of the simulation direction diagram, and the right diagram is a side view of the simulation direction diagram (perpendicular to the intermediate view angle).
  • the grounding plate 10 is The variation of the current distribution causes the 5.9 GHz modal pattern of the antenna to change, and the antenna pattern is pulled down, so that the maximum radiation direction of the antenna deviates from the horizontal plane, and the maximum radiation direction is closer to the horizontal plane, thereby increasing Large horizontal gain.
  • the inner circular dot connection is the horizontal plane gain of the 2.45 GHz mode when the gap is not opened
  • the outer circular dot connection is the horizontal plane gain of the 2.45 GHz mode after the slit is opened
  • the inner circle is
  • the solid line shape is the horizontal plane gain of the 5.9 GHz mode when the gap is not opened
  • the outer circle dotted line is the horizontal plane gain of the 5.9 GHz mode after the slit is opened. It can be seen that the horizontal plane gain increase of the two modes after the slit is opened Both are above 2dB.
  • another embodiment of the present invention provides an antenna device including a grounding plate 10, a radiator 20, and a signal source 30.
  • the radiator 20 is disposed on the grounding plate 10.
  • the antenna device may further include a matching circuit 40 electrically connected between the radiator 20 and the signal source 30 for adjusting a resonance state of the radiator 20.
  • the signal source 30 is configured to feed the electromagnetic wave signal of the first frequency band and the second frequency band to the radiator 20, wherein the second frequency band is lower than the first frequency band, and the third gap 13 is opened on the grounding plate 10.
  • the antenna device further includes a first filter 131 and a second a filter 141, the first filter 131 is disposed in the third slot 13, and the third slot 13 is divided into two slots, and the second filter 141 is disposed in the fourth slot 14. Dividing the fourth slit 14 into two slits, the first filter 131 and the second filter 141 respectively forming the third slit 13 and the fourth slit 14 into two different shapes.
  • the electrical length is such that currents generated by electromagnetic wave signals of the first frequency band and the second frequency band are both trapped inside and around the third slit 13 and the fourth slit 14.
  • the current is suppressed from flowing toward the edge of the ground plate 10, and by providing the first filter 131 and the second filter 141, two kinds of the third slit 13 are produced. Different electrical lengths, two different electrical lengths are generated on the fourth slot 14, so that the radiator 20 generates resonances of the first mode and the second band, satisfying the requirements of multi-frequency communication, and further, due to the third slot
  • the restraint of the current by the 13 and fourth slits 14 causes the gain of the electromagnetic wave signals of the first frequency band and the second frequency band to increase in the horizontal plane.
  • the complete third slot 13 and the fourth slot 14 are used to bind the current generated by the electromagnetic wave signal of the second frequency band, and the first filter 131 and the second filter 141 are added, so that the antenna device can simultaneously be the first
  • the current generated by the electromagnetic wave signal of the frequency band is formed to be restrained so as to be bound in a portion of the third slit 13 and a portion of the fourth slit 14.
  • the third slit 13 and the fourth slit 14 in this embodiment are substantially the same as those in the embodiment shown in FIGS. 3a and 3b, and are equivalent to canceling the first slit 11 and the second slit 12 in FIGS. 3a and 3b, and A first filter 131 and a second filter 141 are added to the third slit 13 and the fourth slit 14.
  • the first filter 131 and the second filter 141 are both band-pass filters in series with an inductor and a capacitor, both for passing current generated by the electromagnetic wave signal of the second frequency band, and blocking the first
  • the current generated by the electromagnetic wave signal of the frequency band is such that the electrical length of the electromagnetic wave signal of the second frequency band is greater than the electrical length of the electromagnetic wave signal of the first frequency band.
  • the electrical length of the second second frequency band, the third slot 13 is the electrical length of the first frequency band with a higher frequency, and the other segment has no current flowing due to the blocking action of the first filter 131, so it is not used for the binding.
  • the electromagnetic wave signal of one frequency, the fourth slit 14 is similar to this, and will not be described again.
  • the specific position of the first filter 131 in the third slot 13 and the second filter 141 in the fourth slot 14 is related to the wavelength ⁇ 1 of the electromagnetic wave signal of the first frequency band, specifically, the first filter 131 is set at the distance.
  • the second filter 141 is disposed at an end point 0.5 ⁇ 1 from the end point 14 of the fourth slit 14.
  • the third slit 13 and the fourth slit 14 are symmetrically disposed centering on the junction of the radiator 20 and the ground plate 10.
  • the centrally symmetric third slit 13 and fourth slit 14 can produce almost the same current distribution on the ground plate 10 around the radiator 20 such that the pattern of the antenna is almost identical in shape in all directions around the radiator 20.
  • the radial distance of the radiator 20 to the third slit 13 is 0.2-0.3 ⁇ 2
  • ⁇ 2 is the wavelength of the electromagnetic wave signal of the second frequency band.
  • the third slit 13 is disposed at a distance of 0.2-0.3 ⁇ 2 from the radiator 20, and the current flows from the radiator 20 to the third slit 13.
  • the current When flowing through a distance of 0.2-0.3 ⁇ 2 , the current is in a weak state, and the electric field is strong, resulting in Resonance, the current is trapped in and around the third slit 13, so that the current of the electromagnetic wave signals of the first frequency band and the second frequency band flows through the path to generate resonance at the third slit 13, thereby causing the current to be in the third gap. 13 inside and around are tied.
  • the third slit 13 has a circular arc shape, and a distance between an inner side of the third slit 13 and a center of the radiator 20 is a first radius R1, and the first radius is 0.25 ⁇ 2 .
  • the first radius R1 is 0.25 ⁇ 2 , so that the current of the electromagnetic wave signal of the first frequency band flows through the path and generates resonance at the third slit 13 because the current at 0.25 ⁇ 2 is the smallest, the electric field is the strongest, and the resonance effect is the most
  • the current is trapped inside and around the third slit 13.
  • the dimension of the third slit 13 extending in the circumferential direction is a first electrical length, and the first electrical length is 0.5 ⁇ 2 .
  • the first electric length is set to 0.5 ⁇ 2 such that the current of the electromagnetic wave signal of the second frequency band flows to the third slit 13 , resonance occurs at the third slit 13 .
  • the dimension of the third slit 13 in the radial direction is a first width W1, the first width W1 is 0.05 ⁇ 1 , and ⁇ 1 is a wavelength of an electromagnetic wave signal of the first frequency band, and the first frequency band is 5.9 GHz.
  • the second frequency band is 2.45 GHz.
  • the radiator 20 preferably uses a monopole antenna, and the height of the radiator 20 is preferably 0.25 ⁇ 2 .
  • the ground plane 10 is circular, the radius R of 100mm, a monopole antenna radiator 20, a height H of 20mm, a first radius R1 is 20mm, The first electrical length is 40 mm, and the first width W1 is 2 mm.
  • the first filter 131 and the second filter 141 are band-pass filters having an inductance of 3.6 nH and a capacitance of 0.2 pF in series, and the antenna device is simulated. See the follow-up instructions for the simulation results.
  • the solid line in the figure is the S11 curve of the antenna when there is no gap
  • the dotted line is the curve of the antenna S11 after the slot is opened and the filter is added. It can be seen that after the slot is opened and the filter is added, the two generated The position of the resonance point is close to the expected first frequency band of 2.45 GHz and the second frequency band of 5.9 GHz, which achieves the purpose of setting the antenna device.
  • FIG. 4d Please refer to Figure 4d.
  • the left figure shows the current distribution of the 2.45GHz mode when there is no gap.
  • the right picture shows the 5.9GHz modal current distribution when there is no gap. It can be seen that when there is no gap, it is connected.
  • the current distribution on the floor 10 extends all the way to the edge of the board.
  • the left picture shows the current distribution of the 2.45GHz mode after the filter is opened and the filter is added.
  • the right picture shows the current distribution of the 5.9GHz mode after the filter is opened and the filter is added.
  • the left picture shows the top view of the simulation direction
  • the middle picture shows the side view of the simulation direction
  • the right picture shows the side view of the simulation direction (vertical to the middle view).
  • the left picture shows the top view of the simulation direction
  • the middle picture shows the side view of the simulation direction
  • the right picture shows the side view of the simulation direction (vertical to the middle view).
  • the left picture shows the top view of the simulation direction
  • the middle picture shows the side view of the simulation direction
  • the right picture shows the side view of the simulation direction (perpendicular to the middle view).
  • FIG. 4i The left figure is the top view of the simulation direction, the middle view is the side view of the simulation direction, and the right picture is the side view of the simulation direction (perpendicular to the middle view).
  • the 5.9 GHz modal pattern of the antenna changes, and the antenna pattern is pulled down, so that the maximum radiation direction of the antenna deviates from the horizontal plane, and the maximum radiation direction is closer.
  • the horizontal plane which increases the horizontal gain.
  • the inner circular dot line is the horizontal plane gain of the 2.45 GHz mode when the gap is not opened
  • the outer circular dot line is the horizontal plane gain of the 2.45 GHz mode after the slit is opened
  • the inner circle is The solid line of the shape is the horizontal plane gain of the 5.9 GHz mode when the gap is not opened
  • the outer circle of the dotted line is the horizontal plane gain of the 5.9 GHz mode after the slit is opened. It can be seen that the slit is opened and the 2.45 GHz modal level after the filter is added. The gain increase is about 1.3dB, and the 5.9GHz modal horizontal gain is about 0.5dB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供一种天线装置及终端,天线装置包括接地板、辐射体和信号源,辐射体设于接地板上,信号源用于向辐射体馈入第一频段的电磁波信号,接地板上开设第一缝隙和第二缝隙,第一缝隙和第二缝隙均为封闭的缝隙,且环绕在辐射体的周围,第一缝隙和第二缝隙用于遏制接地板上的电流分布,使得第一频段的电磁波信号产生的电流被束缚在第一缝隙和第二缝隙的内部及周围。通过设置环绕辐射体的第一缝隙和第二缝隙,遏制电流向接地板边缘流动,电流被束缚在第一缝隙和第二缝隙内部及周围,从而改变辐射体的方向图,使得辐射体的最大辐射方向向水平面移动,从而提升辐射体的水平面增益。

Description

天线装置和终端 技术领域
本发明属于通讯天线技术领域,尤其涉及一种天线装置和终端。
背景技术
相对于个人移动通讯终端,在车载通讯终端产品中,天线的水平面增益指标是衡量车载天线的主要指标。在已知的单极子天线方案中,当地板的尺寸无限大时,天线最大辐射方向在地板平面上(以下称水平面),实际应用时,地板尺寸不可能无限大,则天线的最大辐射方向会上翘,水平面上增益较无限大地板会有一定恶化。
发明内容
本申请实施例提供一种天线装置,能够改善天线的方向图,提升水平面上的增益。
第一方面,本申请实施例提供的天线装置包括接地板、辐射体和信号源,所述辐射体设于所述接地板上,所述信号源用于向所述辐射体馈入第一频段的电磁波信号,所述接地板上开设第一缝隙和第二缝隙,所述第一缝隙和所述第二缝隙均为封闭的缝隙,且环绕在所述辐射体的周围,所述第一缝隙和所述第二缝隙用于遏制所述接地板上的电流分布,使得所述第一频段的电磁波信号产生的电流被束缚在所述第一缝隙和所述第二缝隙的内部及周围。
通过设置环绕辐射体的第一缝隙和第二缝隙,遏制电流向接地板边缘流动,电流被束缚在第一缝隙和第二缝隙内部及周围,从而改变辐射体的方向图,使得辐射体的最大辐射方向向水平面移动,从而提升辐射体的水平面增益。
其中,所述第一缝隙和所述第二缝隙以所述辐射体和所述接地板的连接处为中心呈中心对称设置。呈中心对称的第一缝隙和第二缝隙可以使辐射体周围的接地板上产生几乎相同的电流分布,使得天线的方向图在辐射体周围的各个方向上的形状几乎相同。
其中,所述辐射体至所述第一缝隙的径向距离为:0.2-0.3λ 1,λ 1为所述第一频段的电磁波信号的波长。设置第一缝隙距离辐射体为0.2-0.3λ 1,电流从辐射体流向第一缝隙,在流经0.2-0.3λ 1的距离时,电流处于较弱状态,电场较强,产生谐振,电流就会被束缚在第一缝隙内及周围,使得第一频段的电磁波信号的电流流过该路径后在第一缝隙处产生谐振,进而使得电流在第一缝隙内部和周围被束缚。
其中,所述第一缝隙为圆弧形,所述第一缝隙的内侧至所述辐射体中心之间的距离为第一半径,所述第一半径为0.25λ 1。第一半径为0.25λ 1,可使得第一频段的电磁波信号的电流流过该路径后在第一缝隙处产生谐振,因为0.25λ 1处的电流最小的,电场最强,谐振效果最好,而使得电流在第一缝隙内部和周围被束缚。
其中,所述第一缝隙在圆周方向上延伸的尺寸为第一电长度,所述第一电长度为0.5λ 1。通过设置第一电长度为0.5λ 1,使得第一频段的电磁波信号的电流流动到第一缝隙11处时,在第一缝隙11处产生谐振。
其中,所述第一缝隙在径向上的尺寸为第一宽度,所述第一宽度为0.05λ 1,所述第一频段为5.9GHz。通过设置第一宽度为0.05λ 1,进而得到符合天线工作频段范围的第一频段5.9GHz。
一种实施例中,所述信号源还用于向所述辐射体馈入第二频段的电磁波信号,所述第二频段低于所述第一频段,所述天线装置还包括位于所述第一缝隙和所述第二缝隙的外围的第三缝隙和第四缝隙,所述第三缝隙和所述第四缝隙均为封闭的缝隙,所述第三缝隙和所述第四缝隙用于遏制所述接地板上的电流分布,使得所述第二频段的电磁波信号产生的电流被束缚在所述第三缝隙和所述第四缝隙的内部及周围。
通过信号源馈入第二频段的电磁波信号,使得天线装置还可用于辐射第二频段的电磁波信号,使得天线装置可用于多频终端,并且,第二频段的电磁波信号产生的电流被第三缝隙和第四缝隙束缚,同样可以提升第二频段的电磁波信号的水平面的增益。
其中,所述第三缝隙和所述第四缝隙以所述辐射体和所述接地板的连接处为中心呈中心对称设置。呈中心对称的第三缝隙和第四缝隙可以使辐射体周围的接地板上产生几乎相同的电流分布,使得天线的方向图在辐射体周围的各个方向上的形状几乎相同。
其中,所述辐射体至所述第三缝隙的径向距离为:所述辐射体至所述第三缝隙的径向距离为:0.2-0.3λ 2,λ 2为所述第二频段的电磁波信号的波长。设置第三缝隙距离辐射体为0.2-0.3λ 2,电流从辐射体流向第三缝隙,在流经0.2-0.3λ 2的距离时,电流处于较弱状态,电场较强,产生谐振,电流就会被束缚在第三缝隙内及周围,使得第二频段的电磁波信号的电流流过该路径后在第三缝隙处产生谐振,进而使得电流在第三缝隙内部和周围被束缚。
其中,所述第三缝隙为圆弧形,所述第三缝隙的内侧至所述辐射体中心之间的距离为第二半径,所述第二半径为0.25λ 2。第二半径为0.25λ 2,可使得第二频段的电磁波信号的电流流过该路径后在第三缝隙处产生谐振,因为0.25λ 2处的电流最小的,电场最强,谐振效果最好,而使得电流在第三缝隙内部和周围被束缚。
其中,所述第三缝隙在圆周方向上延伸的尺寸为第二电长度,所述第二电长度为0.5λ 2。通过设置第二电长度为0.5λ 2,使得第二频段的电磁波信号的电流流动到第三缝隙处时,在第三缝隙处产生谐振。
其中,所述第三缝隙在径向上的尺寸为第二宽度,所述第二宽度与所述第一宽度相等,所述第二频段为2.45GHz。通过设置第一宽度和第二宽度相同,进而得到符合天线工作频段范围的第二频段2.45GHz。
第二方面,本申请实施例提供的天线装置包括接地板、辐射体、信号源、第一滤波器和第二滤波器,所述辐射体设于所述接地板上,所述信号源用于向所述辐射体馈入第一频段和第二频段的电磁波信号,所述第二频段低于所述第一频段,所述接地板上开设第三缝隙和第四缝隙,所述第三缝隙和所述第四缝隙均为封闭的缝隙,且环绕在所述辐射体的周围,所述第一滤波器设于所述第三缝隙内,并将所述第三缝隙分隔为两段缝隙,所述第二滤波器设于所述第四缝隙内,并将所述第四缝隙分隔为两段缝隙,所述第一滤波器和所述第二滤波器使得所述第三缝隙和所述第四缝隙分别形成两种不同的电长度,使得所述第一频段和所述第二频段的电磁波信号所产生的电流均能被束缚在所述第三缝隙和所述第四缝隙的内部及周围。
通过设置环绕辐射体的第三缝隙和第四缝隙,遏制电流向接地板边缘流动,并通过设置第一滤波器和第二滤波器,使得第三缝隙上产生两种不同的电长度,第四缝隙上产生两种不同的电长度,从而使得辐射体产生第一频段和第二频段两种模态的谐振,满足多频通信需求,此外,由于第三缝隙和第四缝隙对电流的束缚作用,使得第一频段和第 二频段的电磁波信号在水平面上的增益提升。
其中,所述第一滤波器和所述第二滤波器均为电感和电容串联的带通滤波器,均用于使得所述第二频段的电磁波信号产生的电流通过,并阻挡所述第一频段的电磁波信号产生的电流,使得所述第二频段的电磁波信号的电长度大于所述第一频段的电磁波信号的电长度。通过设置第一滤波器和第二滤波器为带通滤波器,使得第三缝隙上产生两段电长度,第四缝隙上产生两段电长度,且第三缝隙整体为频率较低的第二频段的电长度,第三缝隙的一部分为频率较高的第一频段的电长度,另一段由于第一滤波器的阻挡作用而没有电流流过,不用于束缚第一频率的电磁波信号。
其中,所述第一滤波器在所述第三缝隙及所述第二滤波器在所述第四缝隙内设置的具体位置与所述第一频段的电磁波信号的波长λ 1相关,所述第一滤波器设置在距离所述第三缝隙的端点0.5λ 1处,所述第二滤波器设置在距离第四缝隙的端点0.5λ 1处。通过上述设置,使得第一频段的电磁波信号的第一电长度为0.5λ 1,第二频段的电磁波信号的第二电长度为0.5λ 2,其中,λ 1为第一频段的电磁波信号的波长,λ 2为第二频段的电磁波信号的波长。
其中,所述第三缝隙和所述第四缝隙以所述辐射体和所述接地板的连接处为中心呈中心对称设置。呈中心对称的第三缝隙和第四缝隙可以使辐射体周围的接地板上产生几乎相同的电流分布,使得天线的方向图在辐射体周围的各个方向上的形状几乎相同。
其中,所述辐射体至所述第三缝隙的径向距离为:0.2-0.3λ 2,λ 2为所述第二频段的电磁波信号的波长。设置第三缝隙距离辐射体为0.2-0.3λ 2,电流从辐射体流向第三缝隙,在流经0.2-0.3λ 2的距离时,电流处于较弱状态,电场较强,产生谐振,电流就会被束缚在第三缝隙内及周围,使得第一频段和第二频段的电磁波信号的电流流过该路径后在第三缝隙处产生谐振,进而使得电流在第三缝隙内部和周围被束缚。
其中,所述第三缝隙为圆弧形,所述第三缝隙的内侧至所述辐射体中心之间的距离为第一半径,所述第一半径为0.25λ 2。第一半径为0.5λ 1,可使得第一频段的电磁波信号的电流流过该路径后在第三缝隙处产生谐振,因为0.25λ 2处的电流最小的,电场最强,谐振效果最好,而使得电流在第三缝隙内部和周围被束缚。
其中,所述第三缝隙在圆周方向上延伸的尺寸为第一电长度,所述第一电长度为0.5λ 2。通过设置第一电长度为λ 1,使得第二频段的电磁波信号的电流流动到第三缝隙处时,在第三缝隙处产生谐振。
其中,所述第一缝隙在径向上的尺寸为第一宽度,所述第一宽度为0.05λ 1,λ 1为所述第一频段的电磁波信号的波长,所述第一频段为5.9GHz,所述第二频段为2.45GHz。通过设置第一宽度为0.05λ 1,进而得到符合天线工作频段范围的第一频段5.9GHz和第二频段2.45GHz。
第三方面,本申请实施例提供的终端包括PCB板和前述天线装置,所述天线装置的辐射体设在所述PCB板上,所述接地板为所述PCB板的一部分,所述PCB板上设有用于馈电的所述信号源,所述信号源向所述辐射体馈电。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本 发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是一种实施例的终端的结构示意图;
图1b是图1a的终端的天线装置的结构示意图;
图2a是一种实施例的天线装置的结构示意图;
图2b是图2a中A处的局部放大结构示意图;
图2c是一种实施例的天线装置的回波损耗(S11)仿真示意图;
图2d是一种实施例的未开缝隙和开缝隙后的接地板上的电流分布仿真示意图,图中左图为未开缝隙的仿真结果、右图为开缝隙后的仿真结果;
图2e是一种实施例的未开缝隙时的天线装置仿真方向图,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直);
图2f是一种实施例的开缝隙后的天线装置仿真方向图,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直);
图2g是一种实施例的天线装置未开缝隙和开缝隙后的水平面增益对比示意图;
图3a是另一种实施例的天线装置的结构示意图,图中省略了信号源和匹配电路;
图3b是图3a中A处的局部放大结构示意图;
图3c是一种实施例的天线装置的回波损耗(S11)仿真示意图;
图3d是一种实施例的未开缝隙的接地板上的电流分布仿真示意图,图中左图为2.45GHz模态的未开缝隙的仿真结果、右图为5.9GHz模态未开缝隙的仿真结果;
图3e是一种实施例的开缝隙后的接地板上的电流分布仿真示意图,图中左图为2.45GHz模态的开缝隙后的仿真结果、右图为5.9GHz模态开缝隙后的仿真结果;
图3f是一种实施例的2.45GHz模态未开缝隙时的天线装置仿真方向图,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直);
图3g是一种实施例的5.9GHz模态未开缝隙时的天线装置仿真方向图,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直);
图3h是一种实施例的2.45GHz模态开缝隙后的天线装置仿真方向图,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直);
图3i是一种实施例的5.9GHz模态开缝隙后的天线装置仿真方向图,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直);
图3j是一种实施例的天线装置的2.45GHz模态和5.9GHz模态的未开缝隙和开缝隙后的水平面增益对比示意图;
图4a是另一种实施例的天线装置的结构示意图;
图4b是图4a中A处的局部放大结构示意图;
图4c是一种实施例的天线装置的回波损耗(S11)仿真示意图;
图4d是一种实施例的未开缝隙的接地板上的电流分布仿真示意图,图中左图为2.45GHz模态的未开缝隙的仿真结果、右图为5.9GHz模态未开缝隙的仿真结果;
图4e是一种实施例的开缝隙后的接地板上的电流分布仿真示意图,图中左图为2.45GHz模态的开缝隙后的仿真结果、右图为5.9GHz模态开缝隙后的仿真结果;
图4f是一种实施例的2.45GHz模态未开缝隙时的天线装置仿真方向图,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直);
图4g是一种实施例的5.9GHz模态未开缝隙时的天线装置仿真方向图,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直);
图4h是一种实施例的2.45GHz模态开缝隙并加入滤波器后的天线装置仿真方向图,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直);
图4i是一种实施例的5.9GHz模态开缝隙并加入滤波器后的天线装置仿真方向图,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直);
图4j是一种实施例的天线装置的2.45GHz模态和5.9GHz模态的未开缝隙和开缝隙并加入滤波器后的水平面增益对比示意图。
具体实施方式
请参考图1a,本申请实施例提供一种终端,该终端可以为汽车、飞机等移动的运输工具,通过提升终端的天线装置的水平面增益,从而使得终端的无线通信效果更好。以终端为汽车为例,该终端的天线装置可以为车载外接天线或车载T-Box,该终端的天线装置可以设置在例如汽车车顶、发动机盖等位置。
请参考图1b,图中省略了外壳,该终端包括PCB板和本申请实施例所提供的天线装置,所述天线装置的辐射体20连接在所述PCB板上,所述接地板10为所述PCB板的一部分,所述PCB板上设有用于馈电的所述信号源,所述信号源向所述辐射体20馈电。
由于终端上的PCB板10不可能无限大,在PCB板10上的辐射体20的方向图会上翘,造成水平面增益减小,而通过在PCB板10上开设缝隙,可以将辐射体20的方向图下拉,使得辐射体20的最大辐射方向接近于水平面,从而增大天线的水平面增益,提升终端的无线通信效果。
请参考图2a和图2b,本申请实施例提供一种天线装置,包括接地板10、辐射体20和信号源30,所述辐射体20设于所述接地板10上,所述信号源30用于向所述辐射体20馈入第一频段的电磁波信号。所述天线装置还可包括匹配电路40,所述匹配电路40电连接在所述辐射体20和所述信号源30之间,用于调节所述辐射体20的谐振状态。所述接地板10上开设第一缝隙11和第二缝隙12,所述第一缝隙11和所述第二缝隙12均为封闭的缝隙,且环绕在所述辐射体20的周围,所述第一缝隙11和所述第二缝隙12用于遏制所述接地板10上的电流分布,使得所述第一频段的电磁波信号产生的电流被束缚在所述第一缝隙11和所述第二缝隙12的内部及周围。
通过设置环绕辐射体20的第一缝隙11和第二缝隙12,遏制电流向接地板10边缘流动,电流被束缚在第一缝隙11和第二缝隙11内部及周围,从而改变辐射体20的方向图, 使得辐射体20的最大辐射方向向水平面移动,从而提升辐射体20的水平面增益。
与图1所示终端类似,接地板10可为PCB板,PCB板上设有覆铜面,辐射体20连接在覆铜面上,从而实现接地,接地板10的尺寸可设置为远大于辐射体20本身的尺寸,使得接地板10尽量模拟无限大地面,利于参照无限大地面的天线辐射理论进行天线设计,其误差相对小。接地板10的形状可为圆形、方形、三角形等任意形状,只要能提供一大约为平面的导电表面作为接地板10的水平面即可。
在接地板10上开设的第一缝隙11和第二缝隙12均为封闭缝隙,即第一缝隙11和第二缝隙12之间不相交,且也不与接地板10的边缘连接,而是位于接地板10的中部,优选的,第一缝隙11和第二缝隙12均环绕接地板10的中心点设置。
具体而言,第一缝隙11和第二缝隙12在接地板10上环绕辐射体20设置的形式可以为第一缝隙11环绕在辐射体20其中一侧,第二缝隙12环绕在辐射体20之与第一缝隙11相对的另一侧,且连接第一缝隙11和第二缝隙12的两端与辐射体20之间的连线形成的角度均小于180°;另一种设置形式为第一缝隙11与第二缝隙12为嵌套结构,第一缝隙11位于第二缝隙12的内侧,即连接第一缝隙11的两端与辐射体20的连接的夹角大于180°,第二缝隙12位于第一缝隙11开口朝向的一侧,并且与第一缝隙11不重合,并在辐射体20的圆周范围内有至少部分区域重叠。不论是何种布置形式,均使得接地板10在开缝区域内和开缝区域外有至少部分连接的区域,以提供辐射体20的支撑结构,且辐射体20上的电流能从开缝区域内流动到第一缝隙11和第二缝隙12内部及开缝区域外的周围区域。
第一缝隙11和第二缝隙12的形状可为圆弧形、波浪形、矩形(即第一缝隙11和第二缝隙12各具有一直线段及一拐角,使得两者组合形成矩形)或锯齿形等均可,应当理解的,第一缝隙11和第二缝隙12需环绕天线12设置,故第一缝隙11和第二缝隙12的形状不能为两条直线。第一缝隙11和第二缝隙12的开设方式可以采用机械加工工艺,在接地板10上挖出贯穿接地板10上下表面的通槽,从而形成第一缝隙11和第二缝隙12。
辐射体20可以为单极天线、IFA(倒F)天线、LOOP(环形)天线等类型的天线结构,辐射体20可竖立于接地板10上,即辐射体20的主体结构呈站立状,而非主体贴合在接地板10表面,辐射体20的主体的延伸方向可以相对接地板10所在平面(即地面或水平面)垂直,也可以稍有一较小的倾斜角度,例如,辐射体20延伸方向与接地板10所在平面之间的夹角为45°~90°,如此,可以使得辐射体20与接地板10连接点所占用的面积最小,而辐射体20向远离接地板10的方向延伸出去,尽可能的模拟理想状态(即无限大地面)下的天线的辐射特性,得到近似的天线辐射方向图。
所述第一缝隙11和所述第二缝隙12以所述辐射体20和所述接地板10的连接处为中心呈中心对称设置。呈中心对称的第一缝隙11和第二缝隙12可以使辐射体20周围的接地板10上产生几乎相同的电流分布,使得天线的方向图在辐射体20周围的各个方向上的形状几乎相同。
所述辐射体20至所述第一缝隙11的径向距离为:0.2-0.3λ 1,λ 1为所述第一频段的电磁波信号的波长。设置第一缝隙11距离辐射体20为0.2-0.3λ 1,电流从辐射体20流向第一缝隙11,在流经0.2-0.3λ 1的距离时,电流处于较弱状态,电场较强,产生谐振,电流就会被束缚在第一缝隙11内及周围,使得第一频段的电磁波信号的电流流过该路径后在第一缝隙11处产生谐振,进而使得电流在第一缝隙11内部和周围被束缚。
所述第一缝隙11为圆弧形,所述第一缝隙11的内侧至所述辐射体20中心之间的距离为第一半径R1,所述第一半径R1为0.25λ 1。第一半径R1为0.25λ 1,可使得第一频段的电磁波信号的电流流过该路径后在第一缝隙11处产生谐振,因为0.25λ 1处的电流最小的,电场最强,谐振效果最好,而使得电流在第一缝隙11内部和周围被束缚。
所述第一缝隙11在圆周方向上延伸的尺寸为第一电长度,所述第一电长度为0.5λ 1。通过设置第一电长度为0.5λ 1,使得第一频段的电磁波信号的电流流动到第一缝隙11处时,在第一缝隙11处产生谐振。所述第一缝隙11在径向上的尺寸为第一宽度W1,所述第一宽度W1为0.05λ 1,所述第一频段为5.9GHz。通过设置第一宽度W1为0.05λ 1,进而得到符合天线工作频段范围的第一频段5.9GHz。
在天线通信领域中,各种应用场景下都具有优先使用的频段,这些频段有的被纳入标准中,强制使用,需有相关资质并申请才可获得相关频段的使用权,有的形成行业惯例,例如,智能手机所使用的频段为低频、中频和高频,且每个频段的上下限都有限制,智能手机的天线需在这些频段内工作;车载天线亦是如此,也有专属的天线工作频段。总而言之,设计天线装置的结构时,需满足天线在规定的频段范围内。本实施例中,第一频段位于该规定频段范围内,例如,在车载天线等终端领域,5.9GHz的频率是常用的通信频率,通过上述设置而得到的5.9GHz频率,位于车载天线的较优频段范围内,可实现较好的无线通信效果。而要得到第一频段,需要设置第一缝隙11和第二缝隙12的结构,更具体的,需限定第一缝隙11及第二缝隙12的尺寸,而设置上述尺寸与馈入辐射体20的第一频段的电磁波信号的波长λ 1相关,则使得在达到第一频段的谐振时,第一缝隙11和第二缝隙12可根据λ 1的不同得到不同的尺寸,满足各种终端的天线装置的布置的需要。
本实施例中,辐射体20优选使用单极天线,辐射体20的高度优选为0.25λ 1。单极天线具有对偶特性,理想状态下(即接地面为无限大平面)时其最大辐射方向为水平面,但在终端上应用时,接地板10的尺寸不可能无限大,故而设置第一缝隙11和第二缝隙12用于改变天线的方向图。具体的,天线10的高度为0.25λ 1,第一半径R1为0.2λ 1~0.3λ 1,优选为0.25λ 1,如此可使得电流在辐射体20和接地板10上流过的路径总长度为0.5λ 1,此时天线的辐射方向图最接近偶极子天线的辐射形态,此时获得的水平面增益最高。而设置第一缝隙11的第一电长度为0.5λ 1,信号源30给辐射体20馈电的同时也给第一缝隙11馈电,使得第一缝隙11上激发的谐振模态与辐射体20的谐振模态是同一模态,接地板10上的电流流到第一缝隙11处,就在第一缝隙11上形成谐振,而不再往更远处流动,相对于接地板10上没有设置缝隙的结构而言,改变了接地板10上的电流分布,使得天线的最大辐射方向向水平面移动,进而提升了水平面增益。
结合图2a和图2b,给出一种具体实施例:接地板10为圆形,其半径R 为65mm,辐射体20为单极天线,其高度H为10mm,第一半径R1为10mm,第一电长度为20mm,第一宽度W1为2mm,对此天线装置进行仿真,其仿真结果参见后续说明。
请参考图2c,天线的回波损耗S11图显示,在未开设缝隙时,天线的回波损耗曲线(虚线所示)中没有形成明显的谐振点,而开设第一缝隙11和第二缝隙12之后的天线回波损耗曲线(实线所示)中,明显可看到谐振频率在6GHz位置附近,而此谐振附近为本实施例中所要得到第一频段,仿真结果与5.9GHz的预期谐振点基本相同,达到了天线装置的设计目的。
请参考2d,图中左图为未开缝隙时的电流分布图,右图为开缝隙后电流分布图,在无缝隙时,接地板10上电流分布一直延伸到板边,在增加缝隙后,接地板上电流大部分被“束缚”在缝隙内部和周围,缝隙外部电流较弱,缝隙的存在改变了接地板10上电流的分布,进而改变了天线的方向图和水平面增益。
请参考图2e,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直),在未开缝隙时,天线的最大辐射方向上翘,致使最大辐射方向偏离水平面较远,水平面增益减小。
请参考图2f,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直),开缝隙后,由于接地板10上的电流分布的变化,使得天线的方向图产生了变化,天线的方向图被下拉,使得天线的最大辐射方向偏离水平面的程度减小,其最大辐射方向更靠近水平面,从而增大了水平面增益。
请参考图2g,图中内侧圆形的圆点连线为未开缝隙时的水平面增益,外侧圆形的圆点连线为开缝隙后的水平面增益,可以看到,开缝隙后水平面增益提升量在2dB以上。
一种实施例中,请参考图3a和图3b,图中省略了信号源30和匹配电路40,与前一实施例类似,不同的是,所述信号源30还用于向所述辐射体20馈入第二频段的电磁波信号,所述第二频段低于所述第一频段,所述天线装置还包括位于所述第一缝隙11和所述第二缝隙12的外围的第三缝隙13和第四缝隙14,所述第三缝隙13和所述第四缝隙14均为封闭的缝隙,所述第三缝隙13和所述第四缝隙14用于遏制所述接地板10上的电流分布,使得所述第二频段的电磁波信号产生的电流被束缚在所述第三缝隙13和所述第四缝隙14的内部及周围。
通过信号源30馈入第二频段的电磁波信号,使得天线装置还可用于辐射第二频段的电磁波信号,使得天线装置可用于多频终端,并且,第二频段的电磁波信号产生的电流被第三缝隙13和第四缝隙14束缚,同样可以提升第二频段的电磁波信号的水平面的增益。
本实施例中,第一频段和第二频段均位于规定频段范围内,且规定频段为两段不同的范围的频率范围,两者不重合。
所述第三缝隙13和所述第四缝隙14以所述辐射体20和所述接地板10的连接处为中心呈中心对称设置。呈中心对称的第三缝隙13和第四缝隙14可以使辐射体20周围的接地板10上产生几乎相同的电流分布,使得天线的方向图在辐射体20周围的各个方向上的形状几乎相同。
所述辐射体20至所述第三缝隙13的径向距离为:0.2-0.3λ 2,λ 2为所述第二频段的电磁波信号的波长。设置第三缝隙13距离辐射体20为0.2-0.3λ 2,电流从辐射体20流向第三缝隙13,在流经0.2-0.3λ 2的距离时,电流处于较弱状态,电场较强,产生谐振,电流就会被束缚在第三缝隙13内及周围,使得第二频段的电磁波信号的电流流过该路径后在第三缝隙13处产生谐振,进而使得电流在第三缝隙13内部和周围被束缚。
所述第三缝隙13为圆弧形,所述第三缝隙13的内侧至所述辐射体20中心之间的距离为第二半径R2,所述第二半径R2为0.25λ 2。第二半径R2为0.25λ 2,可使得第二频段的电磁波信号的电流流过该路径后在第三缝隙13处产生谐振,因为0.25λ 2处的电流最小的,电场最强,谐振效果最好,使得电流在第三缝隙13内部和周围被束缚。
所述第三缝隙13在圆周方向上延伸的尺寸为第二电长度,所述第二电长度为0.5λ 2。 通过设置第二电长度为0.5λ 2,使得第二频段的电磁波信号的电流流动到第三缝隙13处时,在第三缝隙13处产生谐振。
所述第三缝隙13在径向上的尺寸为第二宽度W2,所述第二宽度W2与所述第一宽度W1相等,所述第二频段为2.45GHz。通过设置第一宽度W1和第二宽度W2相同,进而得到符合天线工作频段范围的第二频段2.45GHz。在车载天线等终端领域,2.45GHz的频率也是常用的通信频率,通过上述设置而得到的2.45GHz频率,位于车载天线的较优频段范围内,可实现较好的无线通信效果。
本实施例中,辐射体20优选使用单极天线,辐射体20的高度优选为0.25λ 2。限定第一缝隙11、第二缝隙12、第三缝隙13和第四缝隙14的尺寸,且设置上述尺寸与馈入辐射体20的第一频段的电磁波信号的波长λ 1和第二频段的电磁波信号的波长λ 2相关,则使得第一缝隙11和第二缝隙12用于形成第一频段的电磁波信号的谐振,第三缝隙13和第四缝隙14用于形成第二频段的电磁波信号的谐振,辐射体20及第一缝隙11、第二缝隙12、第三缝隙13和第四缝隙14可根据λ的不同得到不同的尺寸,满足各种终端的天线装置的布置的需要。
结合图3a和图3b,给出一种具体实施例:接地板10为圆形,其半径R 为100mm,辐射体20为单极天线,其高度H为20mm,第一半径R1为8mm,第一电长度为20mm,第一宽度W1和第二宽度W2为2mm,第二半径R2为20mm,第二电长度为40mm,对此天线装置进行仿真,其仿真结果参见后续说明。
请参考图3c,天线的回波损耗S11图显示,在未开设缝隙时,天线的回波损耗曲线(实线所示)中的谐振点,而开设第一缝隙11、第二缝隙12、第三缝隙13和第四缝隙14之后的天线回波损耗曲线(虚线所示)中,明显可看到在2.5GHz和5.9GHz位置附近产生了2个谐振点,而2.5GHz附近的谐振点为本实施例中预期要得到的第一频段,5.9GHz附近的谐振点为本实施例中预期要得到的第二频段,仿真结果与2.45GHz和5.9GHz的预设谐振点基本相同,达到了天线装置的设计目的。需要说明的是,还产生了4.5GHz位置附近的谐振,这个谐振是由第一缝隙11和第二缝隙12自身的谐振所产生,其与本实施例的主旨不同,可以不予以关注。
请参考图3d,图中左图为未开缝隙时的2.45GHz模态的电流分布图,右图为未开缝隙时的5.9GHz模态的电流分布图,可以看到,在无缝隙时,接地板10上电流分布一直延伸到板边。
请参考图3e,图中左图为开缝隙后的2.45GHz模态的电流分布图,右图为开缝隙后的5.9GHz模态的电流分布图,可以看到,接地板10上电流大部分被“束缚”在缝隙内部和周围,缝隙外部电流较弱,缝隙的存在改变了接地板10上电流的分布,进而改变了天线的方向图和水平面增益。
请参考图3f,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直),在未开缝隙时,2.45GHz模态的最大辐射方向上翘,致使最大辐射方向偏离水平面较远,水平面增益减小。
请参考图3g,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直),在未开缝隙时,5.9GHz模态的最大辐射方向上翘,致使最大辐射方向偏离水平面较远,水平面增益减小。
请参考图3h,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右 图为仿真方向图侧视图(与中间图视角垂直),开缝隙后,由于接地板10上的电流分布的变化,使得天线的2.45GHz模态方向图产生了变化,天线的方向图被下拉,使得天线的最大辐射方向偏离水平面的程度减小,其最大辐射方向更靠近水平面,从而增大了水平面增益。
请参考图3i,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直),开缝隙后,由于接地板10上的电流分布的变化,使得天线的5.9GHz模态方向图产生了变化,天线的方向图被下拉,使得天线的最大辐射方向偏离水平面的程度减小,其最大辐射方向更靠近水平面,从而增大了水平面增益。
请参考图3j,图中内侧圆形的圆点连线为未开缝隙时2.45GHz模态的水平面增益,外侧圆形的圆点连线为开缝隙后2.45GHz模态的水平面增益,内侧圆形的实线为未开缝隙时5.9GHz模态的水平面增益,外侧圆形的虚线为开缝隙后5.9GHz模态的水平面增益,可以看到,开缝隙后两种模态的水平面增益提升量均在2dB以上。
请参考图4a和图4b,本发明另一实施例提供一种天线装置,包括接地板10、辐射体20和信号源30,所述辐射体20设于所述接地板10上。所述天线装置还可包括匹配电路40,所述匹配电路40电连接在所述辐射体20和所述信号源30之间,用于调节所述辐射体20的谐振状态。所述信号源30用于向所述辐射体20馈入第一频段和第二频段的电磁波信号,所述第二频段低于所述第一频段,所述接地板10上开设第三缝隙13和第四缝隙14,所述第三缝隙13和所述第四缝隙14均为封闭的缝隙,且环绕在所述辐射体20的周围,所述天线装置还包括第一滤波器131和第二滤波器141,所述第一滤波器131设于所述第三缝隙13内,并将所述第三缝隙13分隔为两段缝隙,所述第二滤波器141设于所述第四缝隙14内,并将所述第四缝隙14分隔为两段缝隙,所述第一滤波器131和所述第二滤波器141使得所述第三缝隙13和所述第四缝隙14分别形成两种不同的电长度,使得所述第一频段和所述第二频段的电磁波信号所产生的电流均能被束缚在所述第三缝隙13和所述第四缝隙14的内部及周围。
通过设置环绕辐射体20的第三缝隙13和第四缝隙14,遏制电流向接地板10边缘流动,并通过设置第一滤波器131和第二滤波器141,使得第三缝隙13上产生两种不同的电长度,第四缝隙14上产生两种不同的电长度,从而使得辐射体20产生第一频段和第二频段两种模态的谐振,满足多频通信需求,此外,由于第三缝隙13和第四缝隙14对电流的束缚作用,使得第一频段和第二频段的电磁波信号在水平面上的增益提升。其中,完整的第三缝隙13和第四缝隙14用于束缚第二频段的电磁波信号所产生的电流,而加入了第一滤波器131和第二滤波器141,使得天线装置可以同时对第一频段的电磁波信号所产生的电流形成遏制作用,使其被束缚在第三缝隙13的一部分和第四缝隙14的一部分内。
本实施例中的第三缝隙13和第四缝隙14与图3a和图3b所示实施例中的基本相同,相当于是取消图3a和图3b中的第一缝隙11和第二缝隙12,并在第三缝隙13和第四缝隙14中加入第一滤波器131和第二滤波器141。
所述第一滤波器131和所述第二滤波器141均为电感和电容串联的带通滤波器,均用于使得所述第二频段的电磁波信号产生的电流通过,并阻挡所述第一频段的电磁波信号产生的电流,使得所述第二频段的电磁波信号的电长度大于所述第一频段的电磁波信 号的电长度。通过设置第一滤波器131和第二滤波器141为带通滤波器,使得第三缝隙13上产生两段电长度,第四缝隙14上产生两段电长度,且第三缝隙13整体为频率较低的第二频段的电长度,第三缝隙13的一部分为频率较高的第一频段的电长度,另一段由于第一滤波器131的阻挡作用而没有电流流过,故不用于束缚第一频率的电磁波信号,第四缝隙14与此类似,不再赘述。
第一滤波器131在第三缝隙13及第二滤波器141在第四缝隙14内设置的具体位置与第一频段的电磁波信号的波长λ 1相关,具体为:第一滤波器131设置在距离第三缝隙13的端点0.5λ 1处,第二滤波器141设置在距离第四缝隙14的端点14的端点0.5λ 1处。通过上述设置,使得第一频段的电磁波信号的第一电长度为0.5λ 1,第二频段的电磁波信号的第二电长度为0.5λ 2,其中,λ 1为第一频段的电磁波信号的波长,λ 2为第二频段的电磁波信号的波长。
所述第三缝隙13和所述第四缝隙14以所述辐射体20和所述接地板10的连接处为中心呈中心对称设置。呈中心对称的第三缝隙13和第四缝隙14可以使辐射体20周围的接地板10上产生几乎相同的电流分布,使得天线的方向图在辐射体20周围的各个方向上的形状几乎相同。
所述辐射体20至所述第三缝隙13的径向距离为:0.2-0.3λ 2,λ 2为所述第二频段的电磁波信号的波长。设置第三缝隙13距离辐射体20为0.2-0.3λ 2,电流从辐射体20流向第三缝隙13,在流经0.2-0.3λ 2的距离时,电流处于较弱状态,电场较强,产生谐振,电流就会被束缚在第三缝隙13内及周围,使得第一频段和第二频段的电磁波信号的电流流过该路径后在第三缝隙13处产生谐振,进而使得电流在第三缝隙13内部和周围被束缚。
所述第三缝隙13为圆弧形,所述第三缝隙13的内侧至所述辐射体20中心之间的距离为第一半径R1,所述第一半径为0.25λ 2。第一半径R1为0.25λ 2,可使得第一频段的电磁波信号的电流流过该路径后在第三缝隙13处产生谐振,因为0.25λ 2处的电流最小的,电场最强,谐振效果最好,而使得电流在第三缝隙13内部和周围被束缚。
所述第三缝隙13在圆周方向上延伸的尺寸为第一电长度,所述第一电长度为0.5λ 2。通过设置第一电长度为0.5λ 2,使得第二频段的电磁波信号的电流流动到第三缝隙13处时,在第三缝隙13处产生谐振。
所述第三缝隙13在径向上的尺寸为第一宽度W1,所述第一宽度W1为0.05λ 1,λ 1为所述第一频段的电磁波信号的波长,所述第一频段为5.9GHz,所述第二频段为2.45GHz。通过设置第一宽度W1为0.05λ 1,进而得到符合天线工作频段范围的第一频段5.9GHz和第二频段2.45GHz。在车载天线等终端领域,2.45GHz和5.9GHz的频率均是常用的通信频率,通过上述设置而得到的2.45GHz和5.9GHz频率,均位于车载天线的较优频段范围内,可实现较好的无线通信效果。
本实施例中,辐射体20优选使用单极天线,辐射体20的高度优选为0.25λ 2
结合图4a和图4b,给出一种具体实施例:接地板10为圆形,其半径R 为100mm,辐射体20为单极天线,其高度H为20mm,第一半径R1为20mm,第一电长度为40mm,第一宽度W1为2mm,第一滤波器131和第二滤波器141均为电感为3.6nH、电容为0.2pF串联的带通滤波器,对此天线装置进行仿真,其仿真结果参见后续说明。
请参考图4c,图中实线为无缝隙时天线的S11曲线,虚线为开了缝隙后并加入滤波器的天线S11曲线,可以看到,开了缝隙并加入了滤波器后,产生的两个谐振点的位置 靠近预期的第一频段2.45GHz和第二频段5.9GHz,达到了天线装置的设置目的。
请参考图4d,图中左图为未开缝隙时2.45GHz模态的电流分布图,图中右图为未开缝隙时5.9GHz模态电流分布图,可以看到,在无缝隙时,接地板10上电流分布一直延伸到板边。
请参考图4e,图中左图为开缝隙并加入滤波器后的2.45GHz模态的电流分布图,右图为开缝隙并加入滤波器后的5.9GHz模态的电流分布图,可以看到,在增加缝隙并加入滤波器后,接地板10上电流一定程度上被“束缚”在缝隙内部和周围,缝隙外部电流变弱。其中缝隙自身可改善2.45GHz电流分布,而在缝隙特定位置上增加的滤波器使得5.9GHz的电流也在缝隙上产生谐振,即同一个缝隙在增加滤波器后使两种模态的电流在缝隙周围产生了谐振,从而改变了接地板10上电流的分布,进而改变了天线的方向图和水平面增益。
请参考图4f,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直),在未开缝隙时,2.45GHz模态的最大辐射方向上翘,致使最大辐射方向偏离水平面较远,水平面增益减小。
请参考图4g,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直),在未开缝隙时,5.9GHz模态的最大辐射方向上翘,致使最大辐射方向偏离水平面较远,水平面增益减小。
请参考图4h,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直),开缝隙并加入滤波器后,由于接地板10上的电流分布的变化,使得天线的2.45GHz模态方向图产生了变化,天线的方向图被下拉,使得天线的最大辐射方向偏离水平面的程度减小,其最大辐射方向更靠近水平面,从而增大了水平面增益。
请参考图4i,图中左图为仿真方向图的俯视图、中间图为仿真方向图的侧视图、右图为仿真方向图侧视图(与中间图视角垂直),开缝隙并加入滤波器后,由于接地板10上的电流分布的变化,使得天线的5.9GHz模态方向图产生了变化,天线的方向图被下拉,使得天线的最大辐射方向偏离水平面的程度减小,其最大辐射方向更靠近水平面,从而增大了水平面增益。
请参考图4j,图中内侧圆形的圆点连线为未开缝隙时2.45GHz模态的水平面增益,外侧圆形的圆点连线为开缝隙后2.45GHz模态的水平面增益,内侧圆形的实线为未开缝隙时5.9GHz模态的水平面增益,外侧圆形的虚线为开缝隙后5.9GHz模态的水平面增益,可以看到,开缝隙并增加滤波器后2.45GHz模态水平面增益提升量在1.3dB左右,5.9GHz模态水平面增益提升量在0.5dB左右。
以上所揭露的仅为本发明几种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (20)

  1. 一种天线装置,其特征在于,包括接地板、辐射体和信号源,所述辐射体设于所述接地板上,所述信号源用于向所述辐射体馈入第一频段的电磁波信号,所述接地板上开设第一缝隙和第二缝隙,所述第一缝隙和所述第二缝隙均为封闭的缝隙,且环绕在所述辐射体的周围,所述第一缝隙和所述第二缝隙用于遏制所述接地板上的电流分布,使得所述第一频段的电磁波信号产生的电流被束缚在所述第一缝隙和所述第二缝隙的内部及周围。
  2. 如权利要求1所述的天线装置,其特征在于,所述第一缝隙和所述第二缝隙以所述辐射体和所述接地板的连接处为中心呈中心对称设置。
  3. 如权利要求2所述的天线装置,其特征在于,所述辐射体至所述第一缝隙的径向距离为:0.2-0.3λ 1,λ 1为所述第一频段的电磁波信号的波长。
  4. 如权利要求3所述的天线装置,其特征在于,所述第一缝隙为圆弧形,所述第一缝隙的内侧至所述辐射体中心之间的距离为第一半径,所述第一半径为0.25λ 1
  5. 如权利要求4所述的天线装置,其特征在于,所述第一缝隙在圆周方向上延伸的尺寸为第一电长度,所述第一电长度为0.5λ 1
  6. 如权利要求5所述的天线装置,其特征在于,所述第一缝隙在径向上的尺寸为第一宽度,所述第一宽度为0.05λ 1,所述第一频段为5.9GHz。
  7. 如权利要求1-6任一项所述的天线装置,其特征在于,所述信号源还用于向所述辐射体馈入第二频段的电磁波信号,所述第二频段低于所述第一频段,所述天线装置还包括位于所述第一缝隙和所述第二缝隙的外围的第三缝隙和第四缝隙,所述第三缝隙和所述第四缝隙均为封闭的缝隙,所述第三缝隙和所述第四缝隙用于遏制所述接地板上的电流分布,使得所述第二频段的电磁波信号产生的电流被束缚在所述第三缝隙和所述第四缝隙的内部及周围。
  8. 如权利要求7所述的天线装置,其特征在于,所述第三缝隙和所述第四缝隙以所述辐射体和所述接地板的连接处为中心呈中心对称设置。
  9. 如权利要求8所述的天线装置,其特征在于,所述辐射体至所述第三缝隙的径向距离为:0.2-0.3λ 2,λ 2为所述第二频段的电磁波信号的波长。
  10. 如权利要求9所述的天线装置,其特征在于,所述第三缝隙为圆弧形,所述第三缝隙的内侧至所述辐射体中心之间的距离为第二半径,所述第二半径为0.25λ 2
  11. 如权利要求10所述的天线装置,其特征在于,所述第三缝隙在圆周方向上延伸的尺寸为第二电长度,所述第二电长度为0.5λ 2
  12. 如权利要求11所述的天线装置,其特征在于,所述第三缝隙在径向上的尺寸为第二宽度,所述第二宽度与所述第一宽度相等,所述第二频段为2.45GHz。
  13. 一种天线装置,其特征在于,包括接地板、辐射体、信号源、第一滤波器和第二滤波器,所述辐射体设于所述接地板上,所述信号源用于向所述辐射体馈入第一频段和第二频段的电磁波信号,所述第二频段低于所述第一频段,所述接地板上开设第三缝隙和第四缝隙,所述第三缝隙和所述第四缝隙均为封闭的缝隙,且环绕在所述辐射体的周围,所述第一滤波器设于所述第三缝隙内,并将所述第三缝隙分隔为两段缝隙,所述第二滤波器设于所述第四缝隙内,并将所述第四缝隙分隔为两段缝隙,所述第一滤波器和所述第二滤波器使得所述第三缝隙和所述第四缝隙分别形成两种不同的电长度,使得 所述第一频段和所述第二频段的电磁波信号所产生的电流均能被束缚在所述第三缝隙和所述第四缝隙的内部及周围。
  14. 如权利要求13所述的天线装置,其特征在于,所述第一滤波器和所述第二滤波器均为电感和电容串联的带通滤波器,均用于使得所述第二频段的电磁波信号产生的电流通过,并阻挡所述第一频段的电磁波信号产生的电流。
  15. 如权利要求14所述的天线装置,其特征在于,所述第三缝隙和所述第四缝隙以所述辐射体和所述接地板的连接处为中心呈中心对称设置。
  16. 如权利要求15所述的天线装置,其特征在于,所述辐射体至所述第三缝隙的径向距离为:0.2-0.3λ 2,λ 2为所述第二频段的电磁波信号的波长。
  17. 如权利要求16所述的天线装置,其特征在于,所述第三缝隙为圆弧形,所述第三缝隙的内侧至所述辐射体中心之间的距离为第一半径,所述第一半径为0.25λ 2
  18. 如权利要求17所述的天线装置,其特征在于,所述第三缝隙在圆周方向上延伸的尺寸为第一电长度,所述第一电长度为0.5λ 2
  19. 如权利要求18所述的天线装置,其特征在于,所述第三缝隙在径向上的尺寸为第一宽度,所述第一宽度为0.05λ 1,λ 1为所述第一频段的电磁波信号的波长,所述第一频段为5.9GHz,所述第二频段为2.45GHz。
  20. 一种终端,其特征在于,包括PCB板和如权利要求1至19任一项所述的天线装置,所述天线装置的辐射体设在所述PCB板上,所述接地板为所述PCB板的一部分,所述PCB板上设有用于馈电的所述信号源,所述信号源向所述辐射体馈电。
PCT/CN2019/086635 2018-05-18 2019-05-13 天线装置和终端 WO2019218966A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2019269823A AU2019269823B2 (en) 2018-05-18 2019-05-13 Antenna apparatus and terminal
KR1020207033304A KR102463269B1 (ko) 2018-05-18 2019-05-13 안테나 장치 및 단말기
CA3098970A CA3098970A1 (en) 2018-05-18 2019-05-13 Antenna apparatus and terminal
JP2020564519A JP7034335B2 (ja) 2018-05-18 2019-05-13 アンテナ装置及び端末
CN201980032882.0A CN112219313B (zh) 2018-05-18 2019-05-13 天线装置和终端
EP19804293.9A EP3780268B1 (en) 2018-05-18 2019-05-13 Antenna apparatus and terminal
US17/056,253 US11658401B2 (en) 2018-05-18 2019-05-13 Antenna apparatus and terminal
BR112020022178-3A BR112020022178A2 (pt) 2018-05-18 2019-05-13 dispositivo de antena e terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810481642.6A CN110504526B (zh) 2018-05-18 2018-05-18 天线装置和终端
CN201810481642.6 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019218966A1 true WO2019218966A1 (zh) 2019-11-21

Family

ID=68539479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086635 WO2019218966A1 (zh) 2018-05-18 2019-05-13 天线装置和终端

Country Status (9)

Country Link
US (1) US11658401B2 (zh)
EP (1) EP3780268B1 (zh)
JP (1) JP7034335B2 (zh)
KR (1) KR102463269B1 (zh)
CN (2) CN110504526B (zh)
AU (1) AU2019269823B2 (zh)
BR (1) BR112020022178A2 (zh)
CA (1) CA3098970A1 (zh)
WO (1) WO2019218966A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021104005A1 (zh) * 2019-11-26 2021-06-03 华为技术有限公司 电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116266669A (zh) * 2021-12-17 2023-06-20 华为技术有限公司 一种天线结构及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539420A (en) * 1989-09-11 1996-07-23 Alcatel Espace Multilayered, planar antenna with annular feed slot, passive resonator and spurious wave traps
CN103746177A (zh) * 2013-10-29 2014-04-23 广州杰赛科技股份有限公司 一种宽带全向天线
CN203674376U (zh) * 2013-10-29 2014-06-25 广州杰赛科技股份有限公司 一种宽带全向天线
WO2017206074A1 (zh) * 2016-05-31 2017-12-07 华为技术有限公司 一种天线和电子设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0963004B1 (en) * 1998-06-04 2004-02-04 Matsushita Electric Industrial Co., Ltd. Monopole antenna
JP2001053530A (ja) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd アンテナ装置
FR2834837A1 (fr) * 2002-01-14 2003-07-18 Thomson Licensing Sa Dispositif pour la reception et/ou l'emission d'ondes electromagnetiques a diversite de rayonnement
ITVI20030270A1 (it) * 2003-12-31 2005-07-01 Calearo Antenne Srl Antenna multibanda a fessure
KR20050078991A (ko) * 2004-02-03 2005-08-08 가부시키가이샤 고쿠사이 덴키 츠신 기소 기주츠 겐큐쇼 안테나 특성을 제어 가능한 어레이 안테나
JP4173453B2 (ja) * 2004-02-24 2008-10-29 株式会社国際電気通信基礎技術研究所 アンテナ装置
JP3810075B2 (ja) * 2004-02-06 2006-08-16 株式会社東芝 携帯無線通信装置
JP4280182B2 (ja) * 2004-03-09 2009-06-17 富士通コンポーネント株式会社 アンテナ装置
DE102005055345A1 (de) 2005-11-21 2007-05-24 Robert Bosch Gmbh Multiband-Rundstrahler
US7427957B2 (en) * 2007-02-23 2008-09-23 Mark Iv Ivhs, Inc. Patch antenna
JP2010183348A (ja) * 2009-02-05 2010-08-19 Nippon Antenna Co Ltd 阻止帯域を有する広帯域アンテナ
JP5733156B2 (ja) * 2011-11-01 2015-06-10 株式会社日本自動車部品総合研究所 アンテナ装置
US9570799B2 (en) * 2012-09-07 2017-02-14 Ruckus Wireless, Inc. Multiband monopole antenna apparatus with ground plane aperture
CN102956968A (zh) 2012-11-07 2013-03-06 山西大学 基于部分弧形地的宽带双频段微带天线
CN203134966U (zh) 2013-01-04 2013-08-14 咏业科技股份有限公司 微带天线
CN104134859B (zh) 2014-08-18 2016-05-04 重庆大学 一种宽带高效率高方向性电小天线
WO2016106612A1 (zh) 2014-12-30 2016-07-07 华为技术有限公司 一种天线设备及终端
CN106329087A (zh) 2015-06-17 2017-01-11 张家港贸安贸易有限公司 一种圆形贴片微带天线
AU2016367704A1 (en) * 2015-12-09 2018-04-19 Licensys Australasia Pty Ltd An antenna
CN106602230B (zh) * 2016-11-14 2019-06-18 广东通宇通讯股份有限公司 小型化增强型双极化全向吸顶天线
TWI679809B (zh) * 2018-10-18 2019-12-11 啓碁科技股份有限公司 天線結構和電子裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539420A (en) * 1989-09-11 1996-07-23 Alcatel Espace Multilayered, planar antenna with annular feed slot, passive resonator and spurious wave traps
CN103746177A (zh) * 2013-10-29 2014-04-23 广州杰赛科技股份有限公司 一种宽带全向天线
CN203674376U (zh) * 2013-10-29 2014-06-25 广州杰赛科技股份有限公司 一种宽带全向天线
WO2017206074A1 (zh) * 2016-05-31 2017-12-07 华为技术有限公司 一种天线和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780268A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021104005A1 (zh) * 2019-11-26 2021-06-03 华为技术有限公司 电子设备
CN112952361A (zh) * 2019-11-26 2021-06-11 华为技术有限公司 电子设备

Also Published As

Publication number Publication date
JP2021523648A (ja) 2021-09-02
AU2019269823B2 (en) 2022-03-17
EP3780268A1 (en) 2021-02-17
CN112219313A (zh) 2021-01-12
KR20210002569A (ko) 2021-01-08
US20210218133A1 (en) 2021-07-15
BR112020022178A2 (pt) 2021-02-02
EP3780268A4 (en) 2021-05-26
US11658401B2 (en) 2023-05-23
JP7034335B2 (ja) 2022-03-11
AU2019269823A1 (en) 2020-11-26
EP3780268B1 (en) 2023-08-02
KR102463269B1 (ko) 2022-11-03
CA3098970A1 (en) 2019-11-21
CN110504526A (zh) 2019-11-26
CN110504526B (zh) 2022-03-04
CN112219313B (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN103117452B (zh) 一种新型lte终端天线
CN110718761B (zh) 天线装置及移动终端
EP3035442B1 (en) Antenna and mobile terminal
US9825366B2 (en) Printed circuit board antenna and printed circuit board
US9859615B2 (en) Dual-band antenna
EP3487000B1 (en) Wireless transceiving apparatus, antenna unit and base station
CN103151601A (zh) 一种底边槽耦合天线
EP2071668A1 (en) Antenna and wireless communication apparatus
CN105449379A (zh) 一种能抑制高频谐波的滤波天线
WO2019218966A1 (zh) 天线装置和终端
TWI566474B (zh) 多頻天線
JP2007311935A (ja) 平面アンテナ
JP6624650B2 (ja) アンテナ
TW201417399A (zh) 寬頻天線及具有該寬頻天線的可攜帶型電子裝置
US20150097733A1 (en) Antenna
CN108432048B (zh) 一种缝隙天线和终端
TWI539667B (zh) 天線結構
WO2021070827A1 (ja) アンテナ装置およびIoT機器
TWI725642B (zh) 多頻天線
WO2022219900A1 (ja) アンテナ装置
FI126827B (fi) Dipoliantenni
JP2015088984A (ja) 広帯域アンテナ装置
JPWO2018180120A1 (ja) アンテナ及び窓ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3098970

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020022178

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019804293

Country of ref document: EP

Effective date: 20201104

ENP Entry into the national phase

Ref document number: 2020564519

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207033304

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019269823

Country of ref document: AU

Date of ref document: 20190513

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020022178

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201029