WO2020166433A1 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
WO2020166433A1
WO2020166433A1 PCT/JP2020/004133 JP2020004133W WO2020166433A1 WO 2020166433 A1 WO2020166433 A1 WO 2020166433A1 JP 2020004133 W JP2020004133 W JP 2020004133W WO 2020166433 A1 WO2020166433 A1 WO 2020166433A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
distance
inter
moving body
control unit
Prior art date
Application number
PCT/JP2020/004133
Other languages
English (en)
French (fr)
Inventor
笹井 裕之
弘幸 上松
健 安藤
ジュイヒン グエン
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US17/430,401 priority Critical patent/US12005899B2/en
Priority to CN202080014415.8A priority patent/CN113423625A/zh
Priority to EP20755046.8A priority patent/EP3925843A4/en
Priority to JP2020572192A priority patent/JP7530301B2/ja
Publication of WO2020166433A1 publication Critical patent/WO2020166433A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0025Planning or execution of driving tasks specially adapted for specific operations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance

Definitions

  • the present disclosure relates to a vehicle that automatically travels following a vehicle ahead.
  • Patent Document 1 discloses an automatic vehicle that travels in a row following a lead vehicle. This autonomous vehicle accelerates or decelerates according to the acceleration in the direction orthogonal to the traveling direction (in other words, the vehicle width direction of the autonomous vehicle). As a result, even if the vehicle types of the automatic traveling vehicle and the leading vehicle are different and the centrifugal force and the traveling locus of the curve are different, the automatic traveling vehicle can realize stable traveling.
  • Patent Document 1 stops traveling when another moving body (for example, a person) enters between the automatic traveling vehicle and the leading vehicle. Therefore, there is a problem that the platoon is divided and stable platooning cannot be realized.
  • An object of one aspect of the present disclosure is to provide a vehicle that can realize stable platooning.
  • a vehicle is a vehicle that automatically travels while following a vehicle in front while maintaining a predetermined inter-vehicle distance, and a detection unit that detects a moving body existing around the vehicle, and the detection unit.
  • a detection unit that detects a moving body existing around the vehicle, and the detection unit.
  • an approaching moving body that can enter the area between the preceding vehicle and the vehicle is determined, and the vehicle is determined based on the distance between the approaching moving body and the area.
  • a control unit for accelerating or decelerating is a control unit for accelerating or decelerating.
  • Block diagram showing an example of the configuration of a vehicle according to an embodiment of the present disclosure A schematic diagram showing an example of the 1st setting field and the 2nd setting field concerning an embodiment of this indication.
  • Schematic diagram showing an example of various inter-vehicle distances according to the embodiment of the present disclosure Flowchart showing an example of the operation of the vehicle according to the embodiment of the present disclosure
  • FIG. 1A is a schematic view showing the upper surface of the vehicle 100.
  • FIG. 1B is a schematic view showing the right side surface of the vehicle 100.
  • FIG. 2 is a block diagram showing an example of the configuration of vehicle 100.
  • the vehicle 100 is a vehicle capable of automatically traveling following a preceding vehicle (for example, the vehicle 200 shown in FIG. 4) while maintaining a predetermined inter-vehicle distance (for example, the inter-vehicle distance L shown in FIG. 4). is there.
  • the vehicle 100 is an electric vehicle.
  • the vehicle 100 has a wheelchair-type structure in which a person can board. Specifically, as shown in FIGS. 1A and 1B, the vehicle 100 includes a frame 101, a seating seat 102, a backrest 103, an armrest 104, and wheels 105.
  • the vehicle 100 includes a detection unit 110, a communication unit 120, a drive unit 130, an operation unit 140, a storage unit 150, and a control unit 160.
  • the detection unit 110 detects a moving body (for example, a person, another vehicle, etc.) existing around the vehicle 100 (for example, in the front-back, left-right direction).
  • the range in which the moving body can be detected is set in advance, and is, for example, a circular, semicircular, or rectangular area centered on the vehicle 100 (or a reference point set near the vehicle 100).
  • the detection unit 110 can detect a moving body when the vehicle is running in a row, when the vehicle 100 is automatically running, or when the vehicle is stopped.
  • the detection unit 110 also measures the distance between the moving body and the vehicle 100, and the angle indicating the direction in which the moving body exists with respect to the traveling direction of the vehicle 100.
  • the detection unit 110 for example, a device such as a laser sensor, an ultrasonic sensor, or a millimeter wave sensor can be used, but the detection unit 110 is not limited thereto.
  • the communication unit 120 communicates with an external device.
  • the external device may be, for example, a communication unit mounted on a front vehicle followed by the vehicle 100 during platooning, a communication unit mounted on a rear vehicle followed by the vehicle 100 during platooning, or position information of the front vehicle.
  • the information received by the communication unit 120 includes, for example, speed information and position information of each of the front vehicle and the rear vehicle.
  • examples of the information transmitted by the communication unit 120 include speed information and position information of the vehicle 100.
  • the communication unit 120 can communicate with an external device when the vehicle is running in a row, when the vehicle 100 is automatically running, or when the vehicle is stopped.
  • wireless communication such as Wi-Fi (registered trademark), Bluetooth (registered trademark), millimeter wave, optical communication such as infrared ray, or ultrasonic communication can be used. It is not limited to them.
  • the drive unit 130 causes the vehicle 100 to travel by rotating the wheels 105 and steering the wheels 105 under the control of the control unit 160.
  • the operation unit 140 receives user operations. Examples of this operation include an operation for instructing execution of platooning or autonomous traveling, an operation for setting presence/absence of a passenger in the vehicle 100, and the like.
  • the operation unit 140 is not an essential component of the vehicle 100.
  • the storage unit 150 stores, for example, information indicating various predetermined areas (see FIG. 3) and information indicating various predetermined inter-vehicle distances (see FIG. 4). Details of various areas and various vehicle-to-vehicle distances will be described later.
  • the control unit 160 appropriately reads information from the storage unit 150 according to the operation content received by the operation unit 140 and the detection result of the detection unit 110, performs processing based on the information, and controls the communication unit 120 and the drive unit 130. Control. Details of the operation of the control unit 160 will be described later.
  • control unit 160 includes, for example, a CPU (Central Processing Unit), a storage medium such as a ROM (Read Only Memory) storing a control program, It has working memory such as RAM (Random Access Memory) and hardware such as communication circuits.
  • CPU Central Processing Unit
  • storage medium such as a ROM (Read Only Memory) storing a control program
  • RAM Random Access Memory
  • control unit 160 described later is realized by, for example, the CPU reading and executing the control program stored in the memory.
  • FIG. 3 is a schematic diagram showing an example of the first setting area A1 and the second setting area A2.
  • FIG. 3 shows a state in which a vehicle 200 traveling in front of the vehicle 100 (an example of a front vehicle) and a vehicle 100 traveling in a row following the vehicle 200 are viewed from directly above. Further, FIG. 3 shows a case where the vehicle 200 and the vehicle 100 are traveling from left to right in the figure.
  • the first setting area A1 and the second setting area A2 are areas preset with the vehicle 100 as a reference.
  • the second setting area A2 is an area between the vehicle 200 and the vehicle 100.
  • the first setting area A1 is an area excluding the second setting area A2.
  • the control unit 160 determines, among the moving bodies (not shown) detected by the detecting unit 110 when the vehicle 100 follows the vehicle 200 in platooning, the moving body existing in the first setting area A1. , Decide to enter the moving body.
  • the approaching moving object is a moving object that may enter the second setting area A2.
  • the drive unit 130 is controlled so as to stop the traveling of 100.
  • the size and shape of the first setting area A1 and the second setting area A2 are not limited to the size and shape shown in FIG.
  • the first setting area A1 may be the same as or different from the range in which the detection unit 110 can detect the moving body.
  • the predetermined inter-vehicle distance L the first inter-vehicle distance L1, the second inter-vehicle distance L2, the third inter-vehicle distance L3, and the fourth inter-vehicle distance L4 will be described with reference to FIG.
  • FIG. 4 is a schematic diagram showing an example of inter-vehicle distance L, first inter-vehicle distance L1, second inter-vehicle distance L2, third inter-vehicle distance L3, and fourth inter-vehicle distance L4.
  • FIG. 4 shows a state in which the vehicle 200 and the vehicle 100 that is traveling in a row following the vehicle 200 are viewed from directly above. Further, FIG. 4 shows a case where the vehicle 200 and the vehicle 100 are traveling from left to right in the figure.
  • the inter-vehicle distance L is an inter-vehicle distance that is maintained when the vehicle 100 travels in a row following the vehicle 200.
  • the inter-vehicle distance L is, for example, the same as the length in the longitudinal direction of the second setting area A2 shown in FIG.
  • the first inter-vehicle distance L1 and the third inter-vehicle distance L3 are smaller (shorter) than the inter-vehicle distance L.
  • the third inter-vehicle distance L3 is smaller than the first inter-vehicle distance L1.
  • the first inter-vehicle distance L1 is, for example, a distance that does not cause an occupant of the vehicle 100 to feel anxiety that the vehicle 100 will collide with the vehicle 200.
  • the second inter-vehicle distance L2 and the fourth inter-vehicle distance L4 are larger (longer) than the inter-vehicle distance L.
  • the fourth inter-vehicle distance L4 is larger than the second inter-vehicle distance L2.
  • the second inter-vehicle distance L2 is, for example, a distance that does not cause a passenger of the vehicle 100 to worry that the vehicle 100 will be left behind without following the vehicle 200.
  • inter-vehicle distance L the first inter-vehicle distance L1, the second inter-vehicle distance L2, the third inter-vehicle distance L3, and the fourth inter-vehicle distance L4 have been described.
  • FIG. 5 is a flowchart showing an example of the operation of vehicle 100.
  • the operation unit 140 of the vehicle 100 performs an operation to instruct execution of platooning, and the vehicle 100 starts platooning following the vehicle 200 (see FIGS. 3 and 4 ). If started.
  • control unit 160 determines whether or not the moving body detected by the detecting unit 110 is present in the first setting area A1 (see FIG. 3) (step S1).
  • step S1: NO If there is no moving object in the first setting area A1 (step S1: NO), the flow returns to step S1.
  • step S2 determines the moving body in the first setting area A1 as the approaching moving body (step S2).
  • the approaching moving body is a moving body that may enter the second setting area A2 (see FIG. 3) as described above.
  • control unit 160 calculates the distance between the approaching moving body and the second setting area A2 (step S3).
  • FIG. 6 is a schematic diagram showing an example of the positional relationship between the vehicle 100 and the approaching moving body X.
  • FIG. 6 shows a state in which the vehicle 200, the vehicles 100 that are running in a row following the vehicle 200, and the approaching moving body X are viewed from directly above. Further, FIG. 6 shows a case where the vehicle 200 and the vehicle 100 are traveling from left to right in the figure.
  • the center point a is the center point of the vehicle 100 in the vehicle width direction (vertical direction in the figure).
  • the straight line b is a straight line that indicates the traveling direction of the vehicle 100 (rightward in the figure) with the center point a as the starting point.
  • the center point a and the straight line b are known to the control unit 160.
  • the distance c is the distance between the center point a and the approaching moving body X.
  • the angle ⁇ is an angle indicating the existing direction of the approaching moving body X with respect to the traveling direction (straight line b) of the vehicle 100. The distance c and the angle ⁇ are measured by the detection unit 110 and notified to the control unit 160.
  • the control unit 160 calculates the distance between the center point a and the intersection point d based on the center point a, the straight line b, the distance c, and the angle ⁇ described above.
  • the intersection point d is an intersection point of a straight line connecting the center point a and the approaching moving body X (a straight line indicating the distance c) and the outer edge portion of the second setting area A2.
  • the control unit 160 subtracts the distance between the center point a and the intersection point d from the distance c to calculate the distance between the approaching moving object X and the second setting area A2 (in other words, the intersection point d and the approach point d).
  • the distance to the moving body X) is calculated.
  • the distance between the approaching moving body X and the second setting area A2 calculated here is referred to as a “calculated distance”.
  • step S3 the calculation process of step S3 has been described. Hereinafter, the description returns to FIG.
  • control unit 160 determines whether the calculated distance is equal to or greater than the first threshold value (step S4).
  • step S4 determines whether or not there is a passenger in the vehicle 100 (step S5).
  • the presence/absence of passengers is set, for example, by a user operation before the start of platooning.
  • the user performs an operation of designating the presence/absence of a passenger on the operation unit 140 of the vehicle 100 before performing the operation of instructing the execution of platooning.
  • step S6 When there is a passenger in the vehicle 100 (step S5: YES), the control unit 160 executes the first acceleration control (step S6).
  • the first acceleration control is control to accelerate the vehicle 100 until the inter-vehicle distance L reaches the first inter-vehicle distance L1 (see FIG. 4).
  • the inter-vehicle distance between the vehicle 100 and the vehicle 200 can be shortened, and the approaching moving body can be prevented from entering between the vehicle 100 and the vehicle 200. Therefore, the platoon is not divided, and the vehicle 100 can perform stable platooning.
  • the first inter-vehicle distance L1 is used, when the first acceleration control is performed, the passenger of the vehicle 100 does not feel anxiety that the vehicle 100 may collide with the vehicle 200.
  • step S5 NO
  • the control unit 160 executes the second acceleration control (step S7).
  • the second acceleration control is control to accelerate the vehicle 100 until the inter-vehicle distance L reaches the third inter-vehicle distance L3 (see FIG. 4).
  • the inter-vehicle distance between the vehicle 100 and the vehicle 200 can be reduced, and the approaching moving body can be prevented from entering between the vehicle 100 and the vehicle 200. Therefore, the platoon is not divided, and the vehicle 100 can perform stable platooning.
  • the third inter-vehicle distance L3 that is smaller than the first inter-vehicle distance L1 is used, it is possible to more effectively prevent the approaching moving body from entering between the vehicle 100 and the vehicle 200.
  • step S4 NO
  • the control unit 160 determines whether the calculated distance is less than the second threshold that is smaller than the first threshold (step S8).
  • step S8 YES
  • the control unit 160 determines whether or not there is a passenger in the vehicle 100 (step S9).
  • step S9 If there is a passenger in the vehicle 100 (step S9: YES), the control unit 160 executes the second deceleration control (step S11).
  • the second deceleration control decelerates the vehicle 100 until the inter-vehicle distance L reaches the second inter-vehicle distance L2 (see FIG. 4).
  • the inter-vehicle distance between the vehicle 100 and the vehicle 200 is increased, and the approaching moving body can pass between the vehicle 100 and the vehicle 200 without colliding with the vehicle 100. Therefore, the platoon is not divided, and the vehicle 100 can perform stable platooning.
  • the second inter-vehicle distance L2 is used, when the second deceleration control is performed, the passenger of the vehicle 100 feels anxiety that the vehicle 100 may be left behind without following the vehicle 200. None.
  • step S9 NO
  • the control unit 160 executes the first deceleration control (step S10).
  • the first deceleration control decelerates the vehicle 100 until the inter-vehicle distance L reaches the fourth inter-vehicle distance L4 (see FIG. 4).
  • the inter-vehicle distance between the vehicle 100 and the vehicle 200 is increased, and the approaching moving body can pass between the vehicle 100 and the vehicle 200 without colliding with the vehicle 100. Therefore, the platoon is not divided, and the vehicle 100 can perform stable platooning.
  • the fourth inter-vehicle distance L4 which is larger than the second inter-vehicle distance L2, is used, the approaching moving body can be passed between the vehicle 100 and the vehicle 200 with more margin.
  • step S8 NO
  • the control unit 160 determines whether or not there is a passenger in the vehicle 100 (step S12).
  • step S12 When there is a passenger in the vehicle 100 (step S12: YES), the control unit 160 executes the above-described second deceleration control (step S11). Since the operation effect of the second deceleration control is as described above, the description thereof is omitted here.
  • step S7 the control unit 160 executes the above-described second acceleration control.
  • the function and effect of the second acceleration control are as described above, and thus the description thereof is omitted here.
  • the vehicle 100 of the present embodiment is a vehicle that automatically travels following the vehicle 200 while maintaining a predetermined inter-vehicle distance.
  • an approaching moving body that can enter the second setting area A2 between the vehicle 200 and the vehicle 100 is determined, and the vehicle 100 is accelerated based on the distance between the approaching moving body and the second setting area A2.
  • it is characterized by performing control for deceleration.
  • the control for accelerating the vehicle 100 it is possible to prevent the approaching moving body from entering between the vehicle 100 and the vehicle 200, and when the control for decelerating the vehicle 100 is performed, the approaching moving body is the vehicle 100. Since the vehicle can pass between the vehicle and the vehicle 200, the formation is not divided. As a result, the vehicle 100 can realize stable platooning.
  • vehicle 100 of the present embodiment when a passenger is present in vehicle 100 and control to accelerate vehicle 100 is performed, the passenger of vehicle 100 causes vehicle 100 to collide with vehicle 200. I don't feel uneasy.
  • vehicle 100 of the present embodiment when a vehicle 100 has an occupant, and when control for decelerating vehicle 100 is performed, the occupant of vehicle 100 does not follow vehicle 100 to vehicle 200. I don't feel uneasy about being left behind.
  • the first inter-vehicle distance L1, the second inter-vehicle distance L2, the third inter-vehicle distance L3, and the fourth inter-person distance L4 are, for example, the degree of congestion in the place where the vehicle 100 is traveling, and/or the position where the vehicle 100 is traveling.
  • a plurality of speeds may be prepared and selected according to the maximum speed allowed in. The selection may be performed by a user's operation or the control unit 160, for example. In the latter case, for example, the control unit 160 may make the selection based on the information indicating the degree of crowdedness received by the communication unit 120 and/or the information indicating the allowable maximum speed.
  • control unit 160 moves the moving body detected by the detection unit 110 (or the moving body in the first setting area A1) that is moving toward the second setting area A2 into the approach movement. You may decide on the body.
  • control unit 160 in the moving body detected by the detecting unit 110 (or moving body in the first setting area A1), the straight line b shown in FIG. Enter a moving body that has an angle formed with a line including a vector indicating a direction in which the moving body moves is equal to or greater than a predetermined angle, and a line including the vector intersects a straight line b shown in FIG. 6 in a predetermined unit time. You may decide to be a moving body.
  • the vehicle 100 may be equipped with a sensor (for example, a weight sensor, an infrared sensor, etc.) capable of detecting the presence or absence of a passenger in the vehicle 100. Then, the control unit 160 may determine whether there is an occupant in the vehicle 100 based on the detection result of the sensor (for example, steps S5, S9, S12 in FIG. 5).
  • a sensor for example, a weight sensor, an infrared sensor, etc.
  • the control unit 160 may determine whether there is an occupant in the vehicle 100 based on the detection result of the sensor (for example, steps S5, S9, S12 in FIG. 5).
  • the control unit 160 may control the communication unit 120 to transmit control information instructing the vehicle 200 to decelerate or stop when the inter-vehicle distance between the vehicle 100 and the vehicle 200 becomes a certain value or more. ..
  • the vehicle 200 that receives this control information decelerates or stops. Thereby, the formation of the vehicle 100 and the vehicle 200 can be maintained.
  • the control unit 160 may control the speed of the vehicle 100 based on the speed information of the vehicle 200 received by the communication unit 120 from the vehicle 200 in order to travel while maintaining the inter-vehicle distance L. As a result, the speed of the vehicle 100 can be accurately controlled, and stable platooning can be realized.
  • the controller 160 may control the speed of the vehicle 100 according to a predetermined speed at the position where the vehicle 100 travels. A specific example in this case will be described below.
  • the vehicle 100 includes a current position detection unit (not shown) that detects the current position of the vehicle 100.
  • the current position detection unit may be, for example, a GPS (Global Positioning System) receiver or a beacon receiver.
  • the storage unit 150 also stores map information in which the speed is determined for each place. In this map information, for example, a speed equal to or lower than the walking speed of a person is set for a place where many people are supposed to exist.
  • the control unit 160 identifies the position corresponding to the current position detected by the current position detection unit in the map information read from the storage unit 150, and drives the vehicle 100 to drive the vehicle 100 at the speed determined at the position. Control 130.
  • map information is stored in the storage unit 150
  • the communication unit 120 may receive the map information from an external device.
  • the control unit 160 may output a warning sound toward the approaching moving body from a speaker (not shown) mounted on the vehicle 100, or may turn on an indicator light (not shown) mounted on the vehicle 100. Good. As a result, it is possible to make the approaching moving body more aware of the presence of the vehicle 100. Therefore, the approaching moving body can easily avoid approaching the second inter-vehicle distance L2.
  • the vehicle 100 includes a speaker and/or an indicator light on both left and right sides of the vehicle 100. Thereby, not only the approaching moving body is made to recognize the existence of the vehicle 100, but also the passenger of the vehicle 100 can recognize the existence direction of the approaching moving body.
  • the operation unit 140 may receive an operation in which a passenger specifies a traveling direction and a speed of the vehicle 100.
  • the control unit 160 stops the following of the vehicle 200 when the operation unit receives the above-described operation during platooning, and drives the vehicle 100 in the designated traveling direction at the designated speed. Control 130.
  • control unit 160 may control the drive unit 130 again to return to the platoon traveling state based on the communication with the vehicle 200 by the communication unit 120.
  • control unit 160 may control acceleration or deceleration according to the degree of anxiety (tension) of the occupant.
  • control unit 160 determines the degree of anxiety of the occupant based on biometric information acquired from a predetermined sensor (for example, information indicating the occupant's pulse, the degree of pupil opening, or the amount of sweating). .. For example, if the value of biometric information is greater than a predetermined threshold value, it is determined that the degree of anxiety of the passenger is high, and if the value of biometric information is less than or equal to the predetermined threshold value, the degree of anxiety of the passenger is Judge as low.
  • biometric information acquired from a predetermined sensor for example, information indicating the occupant's pulse, the degree of pupil opening, or the amount of sweating.
  • control unit 160 When the degree of anxiety of the passenger is low, the control unit 160 performs the second acceleration control of step S7 instead of the first acceleration control in step S6 of FIG. That is, the control unit 160 accelerates the vehicle 100 until the inter-vehicle distance L becomes the third inter-vehicle distance L3 (see FIG. 4).
  • control unit 160 performs the first deceleration control in step S10 instead of the second deceleration control in step S11 in FIG. That is, the control unit 160 decelerates the vehicle 100 until the inter-vehicle distance L reaches the fourth inter-vehicle distance L4 (see FIG. 4).
  • the vehicle 100 may refer to the above-mentioned set value of the inter-vehicle distance in the formation of a train at the start of traveling.
  • the vehicle 100 determines the inter-vehicle distance L with respect to the vehicle 200 to be followed, based on the presence/absence of a passenger, and performs platoon formation.
  • the inter-vehicle distance L is preferably set to be larger than the first inter-vehicle distance L1 and smaller than the second inter-vehicle distance L2 when there is a passenger.
  • the inter-vehicle distance L is preferably set to be larger than the third inter-vehicle distance L3 and smaller than the second inter-vehicle distance L2 when there is no passenger.
  • the inter-vehicle distance L is set to be smaller when there is no passenger than when there is a passenger.
  • the vehicle of the present disclosure can be used in an environment in which a plurality of people move (for example, indoor and outdoor public spaces), and is useful in a care field or a welfare field where a wheelchair is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

安定した隊列走行を実現できる車両を提供すること。車両(100)は、所定の車間距離を維持しながら前方車両に追従して自動走行する車両であって、車両の周辺に存在する移動体を検出する検出部(110)と、検出部(110)によって検出された移動体のうち、前方車両と車両との間の領域へ進入しうる進入移動体を決定し、進入移動体と領域との間の距離に基づいて、車両を加速または減速させる制御部(160)と、を有する。

Description

車両
 本開示は、前方の車両に追従して自動走行する車両に関する。
 例えば特許文献1には、先導車両に追従して隊列走行する自動走行車両が開示されている。この自動走行車両は、走行方向に直交する方向(換言すれば、自動走行車両の車幅方向)の加速度に応じて加速または減速を行う。これにより、自動走行車両と先導車両との間で、車種が異なり、カーブにおける遠心力や走行軌跡に違いが生じる場合でも、自動走行車両は安定した走行を実現することができるとしている。
特許第5101133号公報
 しかしながら、特許文献1の自動走行車両は、その自動走行車両と先導車両との間に他の移動体(例えば、人間)が進入した場合、走行を停止する。そのため、隊列が分断され、安定した隊列走行が実現されないという問題がある。
 本開示の一態様の目的は、安定した隊列走行を実現できる車両を提供することである。
 本開示の一態様に係る車両は、所定の車間距離を維持しながら前方車両に追従して自動走行する車両であって、前記車両の周辺に存在する移動体を検出する検出部と、前記検出部によって検出された移動体のうち、前記前方車両と前記車両との間の領域へ進入しうる進入移動体を決定し、前記進入移動体と前記領域との間の距離に基づいて、前記車両を加速または減速させる制御部と、を有する。
 本開示によれば、安定した隊列走行を実現できる車両を提供できる。
本開示の実施の形態に係る車両の上面を示す模式図 本開示の実施の形態に係る車両の右側面を示す模式図 本開示の実施の形態に係る車両の構成の一例を示すブロック図 本開示の実施の形態に係る第1設定領域および第2設定領域の一例を示す模式図 本開示の実施の形態に係る各種車間距離の一例を示す模式図 本開示の実施の形態に係る車両の動作の一例を示すフローチャート 本開示の実施の形態に係る車両と進入移動体との位置関係の一例を示す模式図
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、各図において共通する構成要素については同一の符号を付し、それらの説明は適宜省略する。
 まず、本実施の形態に係る車両100の構成について、図1A、図1B、図2を用いて説明する。
 図1Aは、車両100の上面を示す模式図である。図1Bは、車両100の右側面を示す模式図である。図2は、車両100の構成の一例を示すブロック図である。
 車両100は、予め定められた車間距離(例えば、図4に示す車間距離L)を維持しながら前方車両(例えば、図4に示す車両200)に追従して自動走行することが可能な車両である。また、車両100は、電動式の車両である。
 車両100は、人が搭乗可能な車椅子型の構造を有する。具体的には、図1A、図1Bに示すように、車両100は、フレーム101、着座シート102、背もたれ部103、アームレスト104、および車輪105を備える。
 また、図1A、図1B、図2に示すように、車両100は、検出部110、通信部120、駆動部130、操作部140、記憶部150、および制御部160を備える。
 検出部110は、車両100の周辺(例えば、前後左右の方向)に存在する移動体(例えば、人、他車両等)を検出する。移動体を検出できる範囲は、予め設定されており、例えば、車両100(または、車両100近傍に設定された基準点でもよい)を中心とした円形、半円形、または矩形の領域である。なお、検知部110は、隊列走行時、車両100単独での自動走行時、および停車時のいずれの場合においても、移動体の検出を行うことができる。
 また、検出部110は、移動体と車両100との間の距離、および、車両100の進行方向に対する移動体の存在方向を示す角度を測定する。
 検出部110としては、例えば、レーザセンサ、超音波センサ、またはミリ波センサなどのデバイスを用いることができるが、それらに限定されない。
 通信部120は、外部の装置と通信を行う。外部の装置としては、例えば、隊列走行時に車両100が追従する前方車両に搭載された通信部、隊列走行時に車両100が追従される後方車両に搭載された通信部、または、前方車両の位置情報を送信する端末装置などが挙げられる。
 通信部120が受信する情報としては、例えば、前方車両および後方車両それぞれの速度情報や位置情報などが挙げられる。また、通信部120が送信する情報としては、例えば、車両100の速度情報や位置情報などが挙げられる。なお、通信部120は、隊列走行時、車両100単独での自動走行時、および停車時のいずれの場合においても、外部の装置と通信を行うことができる。
 通信部120による通信方法としては、例えば、Wi-Fi(登録商標)、Bluetooth(登録商標)、ミリ波などの無線通信、赤外線などの光通信、または超音波通信などを用いることができるが、それらに限定されない。
 駆動部130は、制御部160の制御により、車輪105を回転させたり、車輪105を転舵させたりして、車両100を走行させる。
 操作部140は、ユーザによる操作を受け付ける。この操作としては、例えば、隊列走行または自律走行の実行を指示する操作や、車両100における搭乗者の有無を設定する操作などが挙げられる。なお、操作部140は、車両100における必須の構成要素ではない。
 記憶部150は、例えば、予め定められた各種領域(図3参照)を示す情報、および、予め定められた各種車間距離(図4参照)を示す情報を記憶する。各種領域および各種車間距離の詳細については、後述する。
 制御部160は、操作部140が受け付けた操作内容や検出部110の検出結果に応じて、適宜記憶部150から情報を読み出し、その情報に基づいて処理を行い、通信部120や駆動部130を制御する。この制御部160の動作の詳細については、後述する。
 なお、図1A、図1B、および図2では図示を省略しているが、制御部160は、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路等のハードウェアを有する。後述する制御部160の各機能は、例えば、CPUが、メモリに格納された制御プログラムを読み出して実行することにより、実現される。
 以上、車両100の構成について説明した。
 次に、図3を用いて、予め定められた第1設定領域A1および第2設定領域A2について説明する。
 図3は、第1設定領域A1および第2設定領域A2の一例を示す模式図である。図3は、車両100の前方を走行する車両200(前方車両の一例)と、その車両200に追従して隊列走行している車両100とを真上から見た状態を示している。また、図3は、車両200および車両100が、図中の左から右へ走行している場合を示している。
 第1設定領域A1および第2設定領域A2は、車両100を基準として予め設定された領域である。第2設定領域A2は、車両200と車両100との間の領域である。第1設定領域A1は、第2設定領域A2を除いた領域である。
 制御部160は、車両100が車両200に追従して隊列走行しているときに、検出部110により検出された移動体(図示略)のうち、第1設定領域A1内に存在する移動体を、進入移動体に決定する。進入移動体とは、第2設定領域A2内へ進入するおそれがある移動体である。
 また、制御部160は、車両100が車両200に追従して隊列走行しているときに、検出部110により検出された移動体(図示略)が第2設定領域A2内に進入した場合、車両100の走行を停止するように駆動部130を制御する。
 なお、第1設定領域A1および第2設定領域A2の大きさおよび形状は、図3に示す大きさおよび形状に限定されない。また、第1設定領域A1は、検出部110が移動体を検出できる範囲と同じであってもよいし、異なっていてもよい。
 以上、第1設定領域A1および第2設定領域A2について説明した。
 次に、図4を用いて、予め定められた車間距離L、第1車間距離L1、第2車間距離L2、第3車間距離L3、および第4車間距離L4について説明する。
 図4は、車間距離L、第1車間距離L1、第2車間距離L2、第3車間距離L3、および第4車間距離L4の一例を示す模式図である。図4は、車両200と、その車両200に追従して隊列走行している車両100とを真上から見た状態を示している。また、図4は、車両200および車両100が、図中の左から右へ走行している場合を示している。
 車間距離Lは、車両100が車両200に追従して隊列走行する際に維持される車間距離である。
 第1車間距離L1、第2車間距離L2、第3車間距離L3、および第4車間距離L4は、車両100が車両200に追従して隊列走行しているときに、進入移動体が検出された場合に、車間距離Lから変更される車間距離である。車間距離Lは、例えば、図3に示した第2設定領域A2の長手方向の長さと同じである。
 第1車間距離L1および第3車間距離L3は、車間距離Lより小さい(短い)。また、第3車間距離L3は、第1車間距離L1より小さい。
 また、第1車間距離L1は、例えば、車両100の搭乗者に、車両100が車両200に追突するのではないかという不安を生じさせない距離である。
 第2車間距離L2および第4車間距離L4は、車間距離Lより大きい(長い)。また、第4車間距離L4は、第2車間距離L2より大きい。
 また、第2車間距離L2は、例えば、車両100の搭乗者に、車両100が車両200へ追従せずに取り残されるのではないかという不安を生じさせない距離である。
 以上、車間距離L、第1車間距離L1、第2車間距離L2、第3車間距離L3、および第4車間距離L4について説明した。
 次に、車両100の動作について、図5を用いて説明する。
 図5は、車両100の動作の一例を示すフローチャートである。図5に示す動作は、例えば、車両100の操作部140において隊列走行の実行を指示する操作が行われ、車両100が車両200(図3、図4参照)に追従して隊列走行を開始した場合に開始される。
 まず、制御部160は、検出部110により検出された移動体のうち、第1設定領域A1(図3参照)内に移動体が存在するか否かを判定する(ステップS1)。
 第1設定領域A1内に移動体が存在しない場合(ステップS1:NO)、フローはステップS1へ戻る。
 一方、第1設定領域A1内に移動体が存在する場合(ステップS1:YES)、制御部160は、第1設定領域A1内の移動体を、進入移動体に決定する(ステップS2)。進入移動体とは、上述したとおり、第2設定領域A2(図3参照)へ進入するおそれがある移動体である。
 次に、制御部160は、進入移動体と第2設定領域A2との間の距離を算出する(ステップS3)。
 ここで、ステップS3の算出処理について、図6を用いて説明する。図6は、車両100と進入移動体Xとの位置関係の一例を示す模式図である。図6は、車両200と、その車両200に追従して隊列走行している車両100と、進入移動体Xとを真上から見た状態を示している。また、図6は、車両200および車両100が、図中の左から右へ走行している場合を示している。
 図6において、中心点aは、車両100の車幅方向(図中の上下方向)の中心点である。また、直線bは、中心点aを起点として車両100の進行方向(図中の右方向)を示す直線である。中心点aおよび直線bは、制御部160にとって既知である。
 また、図6において、距離cは、中心点aと進入移動体Xとの間の距離である。角度θは、車両100の進行方向(直線b)に対する進入移動体Xの存在方向を示す角度である。距離cおよび角度θは、検出部110により測定され、制御部160へ通知される。
 制御部160は、上述した中心点a、直線b、距離c、および角度θに基づいて、中心点aと交点dとの間の距離を算出する。交点dは、中心点aと進入移動体Xとを結んだ直線(距離cを示す直線)と、第2設定領域A2の外縁部分との交点である。
 そして、制御部160は、距離cから、中心点aと交点dとの間の距離を差し引いて、進入移動体Xと第2設定領域A2との間の距離(換言すれば、交点dと進入移動体Xとの間の距離)を算出する。以下では、ここで算出された進入移動体Xと第2設定領域A2との間の距離を「算出距離」という。
 以上、ステップS3の算出処理について説明した。以下、図5の説明に戻る。
 次に、制御部160は、算出距離が第1閾値以上であるか否かを判定する(ステップS4)。
 算出距離が第1閾値以上である場合(ステップS4:YES)、制御部160は、車両100に搭乗者がいるか否かを判定する(ステップS5)。
 搭乗者の有無は、例えば、隊列走行の開始前にユーザの操作により設定される。例えば、ユーザは、隊列走行の実行を指示する操作を行う前に、車両100の操作部140において、搭乗者の有無を指定する操作を行う。
 車両100に搭乗者がいる場合(ステップS5:YES)、制御部160は、第1の加速制御を実行する(ステップS6)。
 第1の加速制御とは、車間距離Lが第1車間距離L1(図4参照)となるまで、車両100を加速させる制御である。これにより、車両100と車両200との間の車間距離を詰めることができ、進入移動体が車両100と車両200との間に進入することを防止できる。よって、隊列が分断されず、車両100は、安定した隊列走行を実行できる。また、第1車間距離L1を用いるため、第1の加速制御が行われた際に、車両100の搭乗者は、車両100が車両200に追突するのではないかという不安を感じることがない。
 車両100に搭乗者がいない場合(ステップS5:NO)、制御部160は、第2の加速制御を実行する(ステップS7)。
 第2の加速制御とは、車間距離Lが第3車間距離L3(図4参照)となるまで、車両100を加速させる制御である。これにより、車両100と車両200との間の車間距離を詰めることができ、進入移動体が車両100と車両200との間に進入することを阻害できる。よって、隊列が分断されず、車両100は、安定した隊列走行を実行できる。また、第1車間距離L1より小さい第3車間距離L3を用いるため、車両100と車両200との間への進入移動体の進入を、より効果的に阻害できる。
 一方、算出距離が第1閾値以上ではない場合(ステップS4:NO)、制御部160は、算出距離が第1閾値より小さい第2閾値未満であるか否かを判定する(ステップS8)。
 算出距離が第2閾値未満である場合(ステップS8:YES)、制御部160は、車両100に搭乗者がいるか否かを判定する(ステップS9)。
 車両100に搭乗者がいる場合(ステップS9:YES)、制御部160は、第2の減速制御を実行する(ステップS11)。
 第2の減速制御とは、車間距離Lが第2車間距離L2(図4参照)となるまで、車両100を減速させる。これにより、車両100と車両200との間の車間距離が開き、進入移動体が車両100に衝突することなく、車両100と車両200との間を通過することができる。よって、隊列が分断されず、車両100は、安定した隊列走行を実行できる。また、第2車間距離L2を用いるため、第2の減速制御が行われた際に、車両100の搭乗者は、車両100が車両200へ追従せずに取り残されるのではないかという不安を感じることがない。
 一方、車両100に搭乗者がいない場合(ステップS9:NO)、制御部160は、第1の減速制御を実行する(ステップS10)。
 第1の減速制御とは、車間距離Lが第4車間距離L4(図4参照)となるまで、車両100を減速させる。これにより、車両100と車両200との間の車間距離が開き、進入移動体が車両100に衝突することなく、車両100と車両200との間を通過することができる。よって、隊列が分断されず、車両100は、安定した隊列走行を実行できる。また、第2車間距離L2より大きい第4車間距離L4を用いるため、より余裕をもって進入移動体を車両100と車両200との間へ通過させることができる。
 算出距離が第2閾値未満ではない場合(ステップS8:NO)、制御部160は、車両100に搭乗者がいるか否かを判定する(ステップS12)。
 車両100に搭乗者がいる場合(ステップS12:YES)、制御部160は、上述した第2の減速制御を実行する(ステップS11)。第2の減速制御による作用効果は、上述したとおりであるので、ここでの説明は省略する。
 一方、車両100に搭乗者がいない場合(ステップS12:NO)、制御部160は、上述した第2の加速制御を実行する(ステップS7)。第2の加速制御による作用効果は、上述したとおりであるので、ここでの説明は省略する。
 以上、車両100の動作について説明した。
 ここまで詳述したように、本実施の形態の車両100は、所定の車間距離を維持しながら車両200に追従して自動走行する車両であって、車両100の周辺において検出された移動体のうち、車両200と車両100との間の第2設定領域A2内へ進入しうる進入移動体を決定し、進入移動体と第2設定領域A2との間の距離に基づいて、車両100を加速または減速させる制御を行うことを特徴とする。車両100を加速させる制御が行われた場合、進入移動体が車両100と車両200との間に進入することを阻害でき、車両100を減速させる制御が行われた場合、進入移動体が車両100と車両200との間を通過することができるので、隊列が分断されることがない。その結果、車両100は、安定した隊列走行を実現することができる。
 また、本実施の形態の車両100では、車両100に搭乗者がいる場合、かつ、車両100を加速させる制御が行われた場合、車両100の搭乗者は、車両100が車両200に追突するのではないかという不安を感じることがない。
 また、本実施の形態の車両100では、車両100に搭乗者がいる場合、かつ、車両100を減速させる制御が行われた場合、車両100の搭乗者は、車両100が車両200へ追従せずに取り残されるのではないかという不安を感じることがない。
 なお、本開示は、上記実施の形態の説明に限定されず、その趣旨を逸脱しない範囲において種々の変形が可能である。以下、変形例について説明する。
 [変形例1]
 第1車間距離L1、第2車間距離L2、第3車間距離L3、および第4者間距離L4は、例えば、車両100が走行する場所における人混みの度合い、および/または、車両100が走行する位置において許容されている最高速度に応じて、複数用意され、選択されてもよい。また、その選択は、例えば、ユーザの操作によって行われてもよいし、制御部160によって行われてもよい。後者の場合、例えば、制御部160は、通信部120が受信した人混みの度合いを示す情報および/または許容最高速度を示す情報に基づいて、選択を行ってもよい。
 [変形例2]
 実施の形態では、第1設定領域A1内に存在する移動体を進入移動体に決定する場合を例に挙げて説明したが、これに限定されない。
 例えば、制御部160は、検出部110によって検出された移動体(または、第1設定領域A1内の移動体)のうち、第2設定領域A2へ向かって移動している移動体を、進入移動体に決定してもよい。
 より具体的には、制御部160は、検出部110によって検出された移動体(または、第1設定領域A1内の移動体)のうち、図6に示した直線bと、所定の単位時間において移動体が移動する方向を示すベクトルを含む線との成す角度が所定角度以上であり、かつ、所定の単位時間において上記ベクトルを含む線が図6に示した直線bと交わる移動体を、進入移動体に決定してもよい。
 [変形例3]
 実施の形態では、ユーザにより車両100における搭乗者の有無が設定される場合を例に挙げて説明したが、これに限定されない。
 例えば、車両100は、車両100における搭乗者の有無を検知可能なセンサ(例えば、重量センサ、赤外線センサ等)を搭載してもよい。そして、制御部160は、そのセンサの検知結果に基づいて、車両100に搭乗者がいるか否かを判定してもよい(例えば、図5のステップS5、S9、S12)。
 [変形例4]
 制御部160は、車両100と車両200との車間距離が一定値以上となった場合、車両200に対して減速または停止を指示する制御情報を送信するように通信部120を制御してもよい。この制御情報を受信した車両200は、減速または停止を行う。これにより、車両100と車両200との隊列を維持することができる。
 [変形例5]
 制御部160は、車間距離Lを維持して走行するために、通信部120が車両200から受信した車両200の速度情報に基づいて、車両100の速度を制御してもよい。これにより、精度良く車両100の速度を制御でき、安定した隊列走行を実現できる。
 [変形例6]
 制御部160は、車両100が走行する位置において予め定められた速度に応じて、車両100の速度を制御してもよい。この場合の具体例を以下に説明する。
 車両100は、車両100の現在位置を検出する現在位置検出部(図示略)を備える。現在位置検出部は、例えば、GPS(Global Positioning System)受信機でもよいし、ビーコン受信機でもよい。また、記憶部150は、場所毎に速度が定められた地図情報を記憶する。この地図情報では、例えば、多くの人が存在することが想定される場所に対して、人の歩行速度以下の速度が定められている。
 制御部160は、記憶部150から読み出した地図情報において、現在位置検出部により検出された現在位置に該当する位置を特定し、その位置に定められた速度で車両100を走行させるように駆動部130を制御する。
 なお、上記説明では、地図情報が記憶部150に記憶されている場合を例に挙げて説明したが、地図情報は、外部の装置から通信部120が受信してもよい。
 [変形例7]
 制御部160は、進入移動体に向けて、車両100に搭載されたスピーカ(図示略)から警告音を出力したり、車両100に搭載された表示灯(図示略)を点灯させたりしてもよい。これにより、進入移動体に対して車両100の存在をより認識させることができる。よって、進入移動体は、第2車間距離L2への進入を容易に回避できる。
 なお、車両100は、スピーカおよび/または表示灯を、車両100の左右両側に備えることが好ましい。これにより、進入移動体に対して車両100の存在を認識させるのみならず、車両100の搭乗者が、進入移動体の存在方向を認識することができる。
 [変形例8]
 操作部140は、搭乗者が車両100の進行方向および速度を指定する操作を受け付けてもよい。例えば、制御部160は、隊列走行中に操作部が上記操作を受け付けた場合、車両200への追従を中止し、指定された速度で指定された進行方向へ車両100を走行させるように駆動部130を制御する。
 これにより、例えば隊列走行中に緊急自体が発生した場合に、搭乗者の意思を反映した走行を実現でき、安全性を確保することができる。なお、上記操作が終了した場合、制御部160は、通信部120による車両200との通信に基づいて、再度、隊列走行状態に復帰するように駆動部130を制御してもよい。
 [変形例9]
 制御部160は、隊列走行中の車両100に搭乗者がいる場合、その搭乗者の不安(緊張)の度合いに応じて、加速または減速の制御を行ってもよい。
 その場合、制御部160は、搭乗者の不安の度合いを、所定のセンサから取得した生体情報(例えば、搭乗者の脈拍、瞳孔の開き具合、または発汗量等を示す情報)に基づいて判定する。例えば、生体情報の値が予め定められた閾値より大きい場合、搭乗者の不安の度合いが高いと判定し、生体情報の値が予め定められた閾値以下である場合、搭乗者の不安の度合いが低いと判定する。
 搭乗者の不安の度合いが低い場合、制御部160は、図5のステップS6において、第1の加速制御ではなく、ステップS7の第2の加速制御を行う。すなわち、制御部160は、車間距離Lが第3車間距離L3(図4参照)となるまで、車両100を加速させる。
 また、搭乗者の不安の度合いが低い場合、制御部160は、図5のステップS11において、第2の減速制御ではなく、ステップS10の第1の減速制御を行う。すなわち、制御部160は、車間距離Lが第4車間距離L4(図4参照)となるまで、車両100を減速させる。
 [変形例10]
 車両100は、走行開始時の隊列編成において、上述した車間距離の設定値を参照してもよい。
 具体的には、車両100は、走行開始時、例えば操作部140によって、搭乗者の有無を設定される。そして、車両100は、追従対象である車両200との車間距離Lを、搭乗者の有無に基づいて決定し、隊列編成を行う。このとき、車間距離Lは、搭乗者がいる場合、第1車間距離L1より大きく、第2車間距離L2より小さく設定されることが好ましい。また、車間距離Lは、搭乗者がいない場合、第3車間距離L3より大きく、第2車間距離L2より小さく設定されることが好ましい。さらに、車間距離Lは、搭乗者がいない場合のほうが、搭乗者がいる場合よりも小さく設定されることがより好ましい。
 2019年2月14日出願の特願2019-024312の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の車両は、複数の人が移動する環境(例えば、屋内外の公共空間)で使用することができ、車椅子を利用する介護分野や福祉分野などにおいて有用である。
 100、200 車両
 101 フレーム
 102 着座シート
 103 背もたれ部
 104 アームレスト
 105 車輪
 110 検出部
 120 通信部
 130 駆動部
 140 操作部
 150 記憶部
 160 制御部
 

Claims (6)

  1.  所定の車間距離を維持しながら前方車両に追従して自動走行する車両であって、
     前記車両の周辺に存在する移動体を検出する検出部と、
     前記検出部によって検出された移動体のうち、前記前方車両と前記車両との間の領域へ進入しうる進入移動体を決定し、前記進入移動体と前記領域との間の距離に基づいて、前記車両を加速または減速させる制御部と、を有する、
     車両。
  2.  前記制御部は、
     前記距離が第1閾値以上である場合、前記所定の車間距離が、前記所定の車間距離よりも小さい車間距離となるまで、前記車両を加速させ、
     前記距離が前記第1閾値より小さい第2閾値未満である場合、前記所定の車間距離が、前記所定の車間距離よりも大きい車間距離となるまで、前記車両を減速させる、
     請求項1に記載の車両。
  3.  前記制御部は、
     前記距離が前記第1閾値以上であり、かつ、前記車両に搭乗者がいる場合、前記所定の車間距離が、前記所定の車間距離よりも小さい第1車間距離となるまで、前記車両を加速させ、
     前記距離が前記第1閾値以上であり、かつ、前記車両に搭乗者がいない場合、前記所定の車間距離が、前記第1車間距離よりも小さい第3車間距離となるまで、前記車両を加速させる、
     請求項2に記載の車両。
  4.  前記制御部は、
     前記距離が前記第2閾値未満であり、かつ、前記車両に搭乗者がいる場合、前記所定の車間距離が、前記所定の車間距離よりも大きい第2車間距離となるまで、前記車両を減速させ、
     前記距離が前記第2閾値未満であり、かつ、前記車両に搭乗者がいない場合、前記所定の車間距離が、前記第2車間距離よりも大きい第4車間距離となるまで、前記車両を減速させる、
     請求項2に記載の車両。
  5.  前記制御部は、
     前記距離が前記第1閾値未満、前記第2閾値以上であり、前記車両に搭乗者がいる場合、前記所定の車間距離が、前記所定の車間距離より大きい車間距離となるまで、前記車両を減速させ、
     前記距離が前記第1閾値未満、前記第2閾値以上であり、前記車両に搭乗者がいない場合、前記所定の車間距離が、前記所定の車間距離より小さい車間距離となるまで、前記車両を加速させる、
     請求項2に記載の車両。
  6.  前記制御部は、
     前記検出部によって検出された移動体のうち、前記領域へ向かって移動している移動体を、前記進入移動体に決定する、
     請求項1に記載の車両。
PCT/JP2020/004133 2019-02-14 2020-02-04 車両 WO2020166433A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/430,401 US12005899B2 (en) 2019-02-14 2020-02-04 Vehicle with inter-vehicular distance acceleration control
CN202080014415.8A CN113423625A (zh) 2019-02-14 2020-02-04 车辆
EP20755046.8A EP3925843A4 (en) 2019-02-14 2020-02-04 VEHICLE
JP2020572192A JP7530301B2 (ja) 2019-02-14 2020-02-04 車両

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019024312 2019-02-14
JP2019-024312 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020166433A1 true WO2020166433A1 (ja) 2020-08-20

Family

ID=72044674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004133 WO2020166433A1 (ja) 2019-02-14 2020-02-04 車両

Country Status (5)

Country Link
US (1) US12005899B2 (ja)
EP (1) EP3925843A4 (ja)
JP (1) JP7530301B2 (ja)
CN (1) CN113423625A (ja)
WO (1) WO2020166433A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019132944A1 (de) * 2019-12-04 2021-06-10 Wabco Europe Bvba Verfahren zum Koordinieren von Fahrzeugen eines Fahrzeugverbundes sowie Steuereinheit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511133B1 (ja) 1970-08-21 1976-01-14
JP2010158924A (ja) * 2009-01-06 2010-07-22 Toyota Motor Corp 車間距離制御装置
JP2016045709A (ja) * 2014-08-22 2016-04-04 株式会社アドヴィックス 車両制御装置
JP2017128178A (ja) * 2016-01-19 2017-07-27 トヨタ自動車株式会社 車両用走行制御装置
JP2017185855A (ja) * 2016-04-01 2017-10-12 株式会社Soken 車両制御装置、車両制御方法
JP2019024312A (ja) 2018-10-04 2019-02-14 株式会社デンソー 制御装置
JP2019191882A (ja) * 2018-04-24 2019-10-31 株式会社ジェイテクト 隊列走行制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5101133B2 (ja) 2007-02-27 2012-12-19 三菱重工業株式会社 自動走行車両および追尾システム
JP5326230B2 (ja) * 2007-06-19 2013-10-30 住友電気工業株式会社 車両運転支援システム、運転支援装置、車両及び車両運転支援方法
DE102007029483B4 (de) * 2007-06-26 2022-07-07 Robert Bosch Gmbh Abstandsregelvorrichtung für Kraftfahrzeuge, mit Erkennung von Einscherern
DE102010020047A1 (de) * 2010-05-11 2011-01-05 Daimler Ag Verfahren zur Anpassung eines für ein Abstandsregelsystem eines Fahrzeugs vorgegebenen Soll-Abstandes an eine momentane Verkehrssituation
CN104136282B (zh) * 2012-02-27 2016-07-27 日产自动车株式会社 行驶控制装置以及行驶控制方法
CN103465907B (zh) * 2013-08-27 2016-04-27 奇瑞汽车股份有限公司 一种汽车避撞装置及方法
DE102014209520B4 (de) 2014-05-20 2019-06-19 Volkswagen Aktiengesellschaft Automatisches Abstandsregelungssystem für ein Fahrzeug
JP6520177B2 (ja) 2015-02-10 2019-05-29 株式会社デンソー 運転制御装置、運転制御方法
JP6365481B2 (ja) * 2015-09-23 2018-08-01 トヨタ自動車株式会社 車両走行制御装置
US10807594B2 (en) * 2016-03-07 2020-10-20 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and vehicle control program
JP6380766B2 (ja) * 2016-03-14 2018-08-29 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
DE102016106983A1 (de) * 2016-04-15 2017-10-19 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen eines möglichen Spurwechselmanövers eines Zielfahrzeugs, Steuereinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
US10377377B2 (en) * 2017-06-08 2019-08-13 GM Global Technology Operations LLC Active lane positioning for blind zone mitigation
US11731614B2 (en) * 2017-07-25 2023-08-22 Hl Klemove Corp. Apparatus and method for controlling vehicle to avoid or mitigate collision
JP6907802B2 (ja) 2017-08-14 2021-07-21 日産自動車株式会社 運転支援方法及び運転支援装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511133B1 (ja) 1970-08-21 1976-01-14
JP2010158924A (ja) * 2009-01-06 2010-07-22 Toyota Motor Corp 車間距離制御装置
JP2016045709A (ja) * 2014-08-22 2016-04-04 株式会社アドヴィックス 車両制御装置
JP2017128178A (ja) * 2016-01-19 2017-07-27 トヨタ自動車株式会社 車両用走行制御装置
JP2017185855A (ja) * 2016-04-01 2017-10-12 株式会社Soken 車両制御装置、車両制御方法
JP2019191882A (ja) * 2018-04-24 2019-10-31 株式会社ジェイテクト 隊列走行制御装置
JP2019024312A (ja) 2018-10-04 2019-02-14 株式会社デンソー 制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3925843A4

Also Published As

Publication number Publication date
CN113423625A (zh) 2021-09-21
JPWO2020166433A1 (ja) 2021-12-23
US12005899B2 (en) 2024-06-11
EP3925843A4 (en) 2022-04-13
JP7530301B2 (ja) 2024-08-07
US20220105935A1 (en) 2022-04-07
EP3925843A1 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
US9902399B2 (en) Vehicle travelling control device for controlling a vehicle in traffic
JP6521803B2 (ja) 自動運転制御装置、フットレスト、自動運転制御方法、および運転情報出力方法
JP5977047B2 (ja) 車両走行制御装置
JP4104532B2 (ja) 車両制御装置
US11299176B2 (en) Vehicle control device
JP2020132143A (ja) 事故リスクを制限するための方法および制御機器
JP2020059389A (ja) 報知装置
WO2020166433A1 (ja) 車両
JP2021189653A (ja) 自動運転車両のクラスタ群形成による走行制御方法
JP2007299193A (ja) 交差点交通管制システム
US20230406355A1 (en) Processing method, processing system, and storage medium storing processing program
WO2021199508A1 (ja) 車両制御装置、車両用合流支援装置及び車両
JP3238496B2 (ja) 車両用衝突防止装置
JP2017121851A (ja) 車両の走行制御装置
JP2019123449A (ja) 走行制御装置、走行制御方法およびプログラム
EP3964414A1 (en) Apparatus and method for controlling driving of vehicle
JP2019148848A (ja) 車両制御装置
KR20230054459A (ko) 상이한 모드에서 운전 기능을 작동하기 위한 차량 가이드 시스템 및 방법
JP7271950B2 (ja) 車両の制御装置
JP2019006193A (ja) 運転支援方法及び運転支援装置
JP4525409B2 (ja) 車両用走行制御装置
JP2021076971A (ja) 車両および車両群
US20220266820A1 (en) Vehicle safety control system and vehicle safety
KR20240059809A (ko) 후방 위험 주행 차량 회피 방법 및 장치
JP2023137966A (ja) 運転支援装置、運転支援方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572192

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020755046

Country of ref document: EP

Effective date: 20210914