WO2020166320A1 - 表示装置 - Google Patents
表示装置 Download PDFInfo
- Publication number
- WO2020166320A1 WO2020166320A1 PCT/JP2020/003032 JP2020003032W WO2020166320A1 WO 2020166320 A1 WO2020166320 A1 WO 2020166320A1 JP 2020003032 W JP2020003032 W JP 2020003032W WO 2020166320 A1 WO2020166320 A1 WO 2020166320A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- insulating film
- shielding portion
- pixel
- display device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136209—Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1334—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136222—Colour filters incorporated in the active matrix substrate
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136227—Through-hole connection of the pixel electrode to the active element through an insulation layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136259—Repairing; Defects
- G02F1/136268—Switch defects
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136286—Wiring, e.g. gate line, drain line
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
Definitions
- the embodiment of the present invention relates to a display device.
- a display device using a polymer dispersed liquid crystal capable of switching between a scattering state in which incident light is scattered and a transmissive state in which incident light is transmitted has been proposed.
- a display device in which a reflective layer formed of aluminum, silver, or the like covers the pixel switching circuit unit is disclosed.
- the purpose of this embodiment is to provide a display device capable of suppressing the deterioration of display quality.
- a first substrate having a first pixel and a second pixel; a second substrate; a liquid crystal layer located between the first substrate and the second substrate and containing a polymer and liquid crystal molecules;
- the second pixel is adjacent to the first pixel and is located between the light emitting element and the first pixel, and the first substrate is a semiconductor arranged in the first pixel.
- a switching element having a layer, a pixel electrode electrically connected to the switching element, and a first light-shielding portion arranged in the second pixel and adjacent to the semiconductor layer, wherein the first light-shielding portion is
- a display device is provided which is located between the semiconductor layer and the light emitting element in a plan view and is located closer to the first pixel than the center of the second pixel.
- the first substrate includes a first substrate, a second substrate, a liquid crystal layer that is located between the first substrate and the second substrate, and includes a polymer and liquid crystal molecules, and a light emitting element.
- a switching element having a semiconductor layer, a pixel electrode electrically connected to the switching element, and a first light-shielding portion adjacent to the semiconductor layer, the first light-shielding portion being the planar view.
- the first substrate is located between the semiconductor layer and the light emitting device, and the first substrate includes a transparent substrate, a first insulating film, and a second insulating film, which are sequentially stacked, and the semiconductor layer has a cross-sectional view.
- the display device is located between the first insulating film and the second insulating film, and the first light-shielding portion is provided in a through hole penetrating the first insulating film and the second insulating film. Will be provided.
- the present embodiment it is possible to provide a display device capable of suppressing deterioration in display quality.
- FIG. 1 is a plan view showing a display device DSP of this embodiment.
- FIG. 2 is a plan view showing a main part of the pixel PX on the first substrate SUB1 shown in FIG.
- FIG. 3 is an enlarged plan view of the periphery of the semiconductor layer SC shown in FIG.
- FIG. 4A is a cross-sectional view showing the display panel PNL taken along the line AB including the first to fourth light shielding portions LS1 to LS4 shown in FIG.
- FIG. 4B is an enlarged cross-sectional view of the main part of the first substrate shown in FIG. 4A.
- FIG. 5 is a cross-sectional view showing the display panel PNL along the line CD including the scanning line G2 and the connection portion DEA shown in FIG. FIG.
- FIG. 6 is a cross-sectional view showing the display panel PNL taken along the line EF including the signal line S1 shown in FIG.
- FIG. 7 is a cross-sectional view showing a configuration example of the display device DSP of this embodiment.
- FIG. 8 is a diagram showing a simulation result.
- FIG. 9 is a sectional view showing the display panel PNL in the second configuration example of the present embodiment.
- FIG. 10 is a cross-sectional view showing the display panel PNL in the third configuration example of the present embodiment.
- FIG. 11 is a sectional view showing the first substrate SUB1 in the fourth configuration example of the present embodiment.
- FIG. 12 is a cross-sectional view showing the first substrate SUB1 in the fifth configuration example of this embodiment.
- FIG. 13 is a plan view showing the first substrate SUB1 in the sixth configuration example of this embodiment.
- FIG. 14 is a plan view showing the first substrate SUB1 in the seventh configuration example of the present embodiment.
- FIG. 15 is a plan view showing the display device DSP of the eighth configuration example.
- FIG. 16 is a plan view showing an example of the layout of the switching element SW2 and its peripheral portion in the second pixel PX2.
- FIG. 17 is a plan view showing another example of the layout of the switching element SW2 and its peripheral portion in the second pixel PX2.
- FIG. 18 is a plan view showing an example of the layout of the switching element SW3 and its peripheral portion in the third pixel PX3.
- 19 is a cross-sectional view showing the first substrate SUB1 taken along the line GH shown in FIG.
- FIG. 20 is a plan view showing the display device DSP of the ninth configuration example.
- FIG. 1 is a plan view showing a display device DSP of this embodiment.
- the first direction X, the second direction Y, and the third direction Z are orthogonal to each other, but may intersect at an angle other than 90 degrees.
- the first direction X and the second direction Y correspond to the directions parallel to the main surface of the substrate forming the display device DSP
- the third direction Z corresponds to the thickness direction of the display device DSP.
- the direction from the first substrate SUB1 to the second substrate SUB2 is referred to as "upper side” (or simply upper side), and the direction from the second substrate SUB2 to the first substrate SUB1 is "lower side" (or Simply below).
- the second member When the “second member above the first member” and the “second member below the first member” are used, the second member may be in contact with the first member or may be separated from the first member. May be. Further, it is assumed that there is an observation position for observing the display device DSP on the tip side of the arrow indicating the third direction Z, and from this observation position, it is directed to the XY plane defined by the first direction X and the second direction Y. Seeing is called planar view.
- the display device DSP includes a display panel PNL, a wiring board 1, an IC chip 2, and a light emitting element LD.
- the display panel PNL includes a first substrate SUB1, a second substrate SUB2, a liquid crystal layer LC, and a seal SL.
- the first substrate SUB1 and the second substrate SUB2 are formed in a flat plate shape parallel to the XY plane.
- the first substrate SUB1 and the second substrate SUB2 overlap each other in plan view.
- the first substrate SUB1 and the second substrate SUB2 are adhered by a seal SL.
- the liquid crystal layer LC is held between the first substrate SUB1 and the second substrate SUB2 and is sealed by the seal SL.
- the liquid crystal layer LC and the seal SL are indicated by different diagonal lines.
- the liquid crystal layer LC includes polymer dispersed liquid crystal including a polymer 31 and liquid crystal molecules 32.
- the polymer 31 is a liquid crystalline polymer.
- the polymer 31 is formed in a streak shape extending along one direction.
- the extending direction D1 of the polymer 31 is a direction along the first direction X.
- the liquid crystal molecules 32 are dispersed in the gaps between the polymers 31 and are oriented so that their long axes are along the first direction X.
- Each of the polymer 31 and the liquid crystal molecule 32 has optical anisotropy or refractive index anisotropy.
- the response of the polymer 31 to the electric field is lower than the response of the liquid crystal molecules 32 to the electric field.
- the orientation direction of the polymer 31 hardly changes regardless of the presence or absence of an electric field.
- the alignment direction of the liquid crystal molecules 32 changes according to the electric field when a high voltage equal to or higher than the threshold is applied to the liquid crystal layer LC.
- a high voltage equal to or higher than the threshold is applied to the liquid crystal layer LC.
- the optical axes of the polymer 31 and the liquid crystal molecules 32 are parallel to each other, and the light incident on the liquid crystal layer LC is hardly scattered in the liquid crystal layer LC.
- Transparent transparent state.
- the optical axes of the polymer 31 and the liquid crystal molecules 32 intersect each other, and the light incident on the liquid crystal layer LC is scattered in the liquid crystal layer LC (scattering state).
- the display panel PNL includes a display unit DA that displays an image and a frame-shaped non-display unit NDA that surrounds the display unit DA.
- the seal SL is located in the non-display portion NDA.
- the display unit DA includes pixels PX arranged in a matrix in the first direction X and the second direction Y.
- each pixel PX includes a switching element SW, a pixel electrode PE, a common electrode CE, a liquid crystal layer LC, and the like.
- the switching element SW is composed of, for example, a thin film transistor (TFT), and is electrically connected to the scanning line G and the signal line S.
- the scanning line G is electrically connected to the switching element SW in each of the pixels PX arranged in the first direction X.
- the signal line S is electrically connected to the switching element SW in each of the pixels PX arranged in the second direction Y.
- the pixel electrode PE is electrically connected to the switching element SW.
- Each of the pixel electrodes PE faces the common electrode CE in the third direction Z, and drives the liquid crystal layer LC (particularly, the liquid crystal molecules 32) by the electric field generated between the pixel electrode PE and the common electrode CE.
- the capacitor CS is formed, for example, between the electrode having the same potential as the common electrode CE and the electrode having the same potential as the pixel electrode PE.
- the wiring board 1 is electrically connected to the extending portion Ex of the first board SUB1.
- the wiring board 1 is a foldable flexible printed circuit board.
- the IC chip 2 is electrically connected to the wiring board 1.
- the IC chip 2 incorporates, for example, a display driver that outputs a signal necessary for displaying an image.
- the IC chip 2 may be electrically connected to the extension part Ex.
- the wiring board 1 and the IC chip 2 may read a signal from the display panel PNL in some cases, but mainly function as a signal source that supplies a signal to the display panel PNL.
- the light emitting element LD is superimposed on the extension Ex.
- the plurality of light emitting elements LD are arranged at intervals along the first direction X. These light emitting elements LD are arranged along the end portion E21 of the second substrate SUB2 and emit light toward the end portion E21.
- FIG. 2 is a plan view showing a main part of the pixel PX on the first substrate SUB1 shown in FIG.
- the first substrate SUB1 includes a first pixel PX1 and a second pixel PX2 as the pixels PX.
- the second pixel PX2 is adjacent to the first pixel PX1 in the second direction Y and is located between the light emitting element LD and the first pixel PX1.
- the first substrate SUB1 includes the scanning lines G1 and G2, the semiconductor layer SC, the signal lines S1 and S2, the organic insulating film O, the metal wiring M, the first light shielding portion LS1, and the second light shielding portion LS2.
- the pixel electrodes PE1 and PE2 are provided.
- the organic insulating film O is shown by a one-dot chain line, and the pixel electrodes PE1 and PE2 are shown by two-dot chain lines.
- the pixel electrode PE1 is arranged in the first pixel PX1, and the pixel electrode PE2 is arranged in the second pixel PX2.
- the scanning lines G1 and G2 extend along the first direction X, and the signal lines S1 and S2 extend along the second direction Y.
- the pixel electrode PE1 arranged in the pixel PX is surrounded by two signal lines S1 and S2 arranged in the first direction X and two scanning lines G1 and G2 arranged in the second direction Y.
- the semiconductor layer SC of the switching element SW arranged in the first pixel PX1 is arranged near the intersection of the scanning line G2 and the signal line S1.
- the semiconductor layer SC extends in the first direction X.
- the semiconductor layer SC has a first end E1 adjacent to the signal line S1 and a second end E2 opposite to the first end E1.
- the semiconductor layer SC has a width W1.
- the width W1 corresponds to the distance from the first end E1 to the second end E2 in the first direction X (or the direction orthogonal to the arrangement direction of the first pixels and the second pixels (second direction Y)). .
- the semiconductor layer is formed of, for example, amorphous silicon, but may be formed of polycrystalline silicon or an oxide semiconductor.
- the organic insulating film O is patterned and is formed in a lattice shape in plan view.
- the organic insulating film O overlaps with the scanning lines G1 and G2, the semiconductor layer SC, and the signal lines S1 and S2, respectively. That is, the organic insulating film O includes the first portion OX and the second portion OY.
- the first part OX overlaps the scanning lines G1 and G2.
- the second portion OY is superposed on the signal lines S1 and S2.
- the first portion OX has a side surface E11 close to the light emitting element LD and a side surface E12 opposite to the side surface E11.
- the side surface E11 and the side surface E12 extend along the extending direction D1 (or the first direction X) of the polymer 31.
- the metal wiring M is arranged on the organic insulating film O, and is formed in a grid shape in a plan view.
- the metal wiring M overlaps with the scanning lines G1 and G2, the semiconductor layer SC, and the signal lines S1 and S2, respectively. That is, the metal wiring M includes the first wiring portion MX and the second wiring portion MY.
- the first wiring portion MX overlaps the scanning lines G1 and G2 and the first portion OX.
- the second wiring portion MY overlaps the signal lines S1 and S2 and the second portion OY.
- the first light shielding unit LS1 is located between the semiconductor layer SC and the light emitting element LD along the second direction Y and is adjacent to the semiconductor layer SC.
- the first light-shielding portion LS1 is separated from the signal lines S1 and S2, the metal wiring M, and the organic insulating film O in a plan view, and is formed in an island shape.
- the first light shield LS1 is arranged in the second pixel PX2 and overlaps the pixel electrode PE2 in plan view.
- the first light shielding portion LS1 is located closer to the first pixel PX1 (or the pixel electrode PE1) than the center O of the second pixel PX2 (or the center O of the pixel electrode PE2) in the second direction Y. ..
- the first light shield LS1 is located between the center O of the second pixel PX2 and the semiconductor layer SC of the first pixel PX1 on the side close to the semiconductor layer SC.
- the first light shield LS1 extends along the first direction X.
- the first light shield LS1 has a third end E3 adjacent to the signal line S1 and a fourth end E4 opposite to the third end E3.
- the first light shield LS1 has a width W2.
- the width W2 corresponds to the distance from the third end E3 to the fourth end E4 in the first direction X (or the direction orthogonal to the arrangement direction of the first pixels and the second pixels (second direction Y)). ..
- the width W2 is larger than the width W1 of the semiconductor layer SC.
- the semiconductor layer SC is provided such that the first end E1 and the second end E2 thereof are located between the third end E3 and the fourth end E4 in the first direction X.
- the first light shield LS1 is arranged in the same layer as the metal wiring M.
- the first member and the second member arranged in “the same layer” refer to those formed by the same material and the same process.
- the second light shielding portion LS2 is located between the semiconductor layer SC and the first light shielding portion LS1 along the second direction Y and overlaps the side surface E11 of the first portion OX.
- the second light shielding portion LS2 is formed integrally with the first wiring portion MX of the metal wiring M.
- the first wiring part MX has a part thereof extending to the side separated from the semiconductor layer SC (or to the light emitting element LD) and forming the second light shielding part LS2 overlapping the side face E11. There is.
- the spacer SP is provided at a position overlapping the semiconductor layer SC.
- the spacer SP forms a predetermined cell gap between the first substrate SUB1 and the second substrate SUB2 shown in FIG.
- the pixel electrodes PE1 and PE2 are arranged in the second direction Y. In the vicinity of the scanning line G2 in the example shown in FIG. 2, the pixel electrode PE1 overlaps the semiconductor layer SC, and the pixel electrode PE2 overlaps the first light shielding unit LS1.
- FIG. 3 is an enlarged plan view of the periphery of the semiconductor layer SC shown in FIG.
- the third light shield LS3 and the gate electrode GE of the switching element SW are formed integrally with the scanning line G2.
- the semiconductor layer SC overlaps with the gate electrode GE.
- the third light shield LS3 extends toward the first light shield LS1 on the side opposite to the gate electrode GE.
- the first light-shielding portion LS1 and the second light-shielding portion LS2 each overlap the third light-shielding portion LS3.
- the third light blocking portion LS3 is continuously formed between the first light blocking portion LS1 and the second light blocking portion LS2 without interruption.
- the fourth light blocking portion LS4 overlaps the first to third light blocking portions LS1 to LS3.
- the cross-sectional structures of the first to fourth light shielding portions LS1 to LS4 will be described in detail later.
- Each of the light shielding layers GS1 and GS2 extends in the second direction Y.
- the scanning line G2 is located between the light shielding layers GS1 and GS2 and is separated from the light shielding layers GS1 and GS2.
- the light shielding layers GS1 and GS2 are each formed in an island shape.
- the signal line S1 intersects the scanning line G2 and overlaps the light shielding layers GS1 and GS2.
- the source electrode SE of the switching element SW and the connection portion SJ are formed integrally with the signal line S1.
- the connection portion SJ connects the source electrode SE and the signal line S1 and overlaps the light shielding layer GS1.
- the source electrode SE is branched into two from the connection position with the connection portion SJ, extends in the first direction X, and overlaps with the semiconductor layer SC.
- the drain electrode DE of the switching element SW is located between the two source electrodes SE and overlaps the semiconductor layer SC.
- the drain electrode DE has a connection part DEA electrically connected to the pixel electrode PE1 shown in FIG.
- the connection portion DEA overlaps the light shielding layer GI.
- the metal wiring M overlaps with the source electrode SE and also overlaps with the drain electrode DE excluding the connection portion DEA.
- FIG. 4A is a cross-sectional view showing the display panel PNL taken along the line AB including the first to fourth light shielding portions LS1 to LS4 shown in FIG.
- the first substrate SUB1 further includes a transparent substrate 10, insulating films 11 to 13, a capacitor electrode C, and an alignment film AL1.
- the insulating film 11 corresponds to the first insulating film located on the transparent substrate 10
- the insulating film 12 corresponds to the second insulating film located on the insulating film 11
- the organic insulating film O is It corresponds to the third insulating film located on the insulating film 12.
- the gate electrode GE integrated with the scanning line G2 and the third light shielding portion LS3 are located between the transparent substrate 10 and the insulating film 11.
- the gate electrode GE and the third light shielding portion LS3 are in contact with the transparent substrate 10, but other insulation is provided between the gate electrode GE and the third light shielding portion LS3 and the transparent substrate 10.
- a membrane may be interposed.
- the semiconductor layer SC is located directly above the gate electrode GE and between the insulating film 11 and the insulating film 12.
- the lower surface SCA of the semiconductor layer SC is in contact with the insulating film 11.
- the two source electrodes SE integrated with the signal line S1 are in contact with the upper surface SCB of the semiconductor layer SC, and some of them are located on the insulating film 11.
- the drain electrode DE is in contact with the upper surface SCB of the semiconductor layer SC.
- the insulating film 12 covers the source electrode SE and the drain electrode DE and is in contact with the upper surface SCB of the semiconductor layer SC.
- the fourth light shielding portion LS4 is provided in a through hole CH1 penetrating the insulating film 11 to the third light shielding portion LS3, and is in contact with the third light shielding portion LS3.
- the fourth light shielding portion LS4 is separated from all of the signal line S1, the source electrode SE, and the drain electrode DE.
- the first light shield LS1 is provided in a through hole CH2 that penetrates the insulating film 12 to the fourth light shield LS4 and is in contact with the fourth light shield LS4.
- the through hole CH2 is provided so as to overlap the through hole CH1. Therefore, the first light shielding portion LS1 is provided so as to overlap the through holes CH1 and CH2.
- the third light shielding part LS3, the fourth light shielding part LS4, and the first light shielding part LS1 overlap in this order along the third direction Z. That is, the first light blocking portion LS1 is electrically connected to the third light blocking portion LS3 integrated with the scanning line G2 via the fourth light blocking portion LS4. Therefore, the potential of the first light shielding unit LS1 is the same as that of the scanning line G2.
- the fourth light shielding unit LS4 is arranged in the same layer as the signal line S1, the source electrode SE, and the drain electrode DE.
- the first part OX of the organic insulating film O is superposed on the switching element SW.
- the side surface E11 of the first portion OX is located between the through hole CH1 and the semiconductor layer SC along the second direction Y.
- the first wiring portion MX of the metal wiring M is superposed on the first portion OX.
- the second light shielding portion LS2 covers the side surface E11 and is in contact with the insulating film 12.
- the capacitance electrode C directly covers the first wiring portion MX and is electrically connected to the first wiring portion MX. Further, the capacitance electrode C directly covers the second light shielding portion LS2 and is electrically connected to the second light shielding portion LS2. Therefore, the potential of the second light shielding unit LS2 is the same as that of the capacitance electrode. Further, the capacitance electrode C covers the side surface E12 of the first portion OX. Further, the capacitor electrode C is in contact with the insulating film 12 in a region that does not overlap the organic insulating film O.
- the first light shield LS1 is provided in the opening CB of the capacitor electrode C. Therefore, the first light shield LS1 is electrically insulated from the capacitance electrode C. In addition, the first light shielding portion LS1 and the second light shielding portion LS2 are electrically insulated from each other.
- the insulating film 13 covers the capacitor electrode C and the first light shielding portion LS1.
- the insulating film 13 is in contact with the insulating film 12 between the capacitance electrode C and the first light shield LS1 in the opening CB.
- the pixel electrodes PE1 and PE2 are located on the insulating film 13.
- the pixel electrodes PE1 and PE2 face the capacitance electrode C via the insulating film 13 in the third direction Z, and form a storage capacitance required for pixel display in the pixel PX.
- the alignment film AL1 covers the insulating film 13 and the pixel electrodes PE1 and PE2.
- the alignment film AL1 is in contact with the insulating film 13 between the pixel electrode PE1 and the pixel electrode PE2.
- the second substrate SUB2 includes a transparent substrate 20, a light shielding layer BM, a common electrode CE, and an alignment film AL2.
- the light shielding layer BM is located immediately above each of the scanning line G2, the switching element SW, the first light shielding portion LS1 and the second light shielding portion LS2.
- the common electrode CE is located between the light shielding layer BM and the alignment film AL2.
- the potential of the common electrode CE is the same as that of the capacitance electrode C.
- the liquid crystal layer LC is located between the first substrate SUB1 and the second substrate SUB2 and is in contact with each of the alignment films AL1 and AL2.
- the transparent substrates 10 and 20 are insulating substrates such as glass substrates and plastic substrates.
- the insulating films 11 to 13 are formed of a transparent inorganic insulating material such as silicon nitride or silicon oxide.
- the organic insulating film O is formed of a transparent organic insulating material such as acrylic resin.
- the scanning line G, the signal line S, and the metal wiring M are formed of an opaque metal material such as molybdenum, aluminum, tungsten, titanium, or silver.
- the first light shielding portion LS1 and the second light shielding portion LS2 are formed of the same material as the metal wiring M.
- the third light blocking portion LS3 is made of the same material as the scanning line G.
- the fourth light blocking portion LS4 is made of the same material as the signal line S.
- the capacitor electrode C, the pixel electrode PE, and the common electrode CE are transparent electrodes made of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
- the light shielding layer BM may be an insulating layer or a conductive layer having a resistance lower than that of the common electrode CE.
- the common electrode CE is electrically connected to the light-shielding layer BM, so that the common electrode CE has a low resistance.
- the alignment films AL1 and AL2 are horizontal alignment films having an alignment regulating force substantially parallel to the XY plane. In one example, the alignment films AL1 and AL2 are alignment-processed along the first direction X.
- the alignment treatment may be a rubbing treatment or a photo-alignment treatment.
- the light emitting element LD faces the side surface 20C of the transparent substrate 20 in the second direction Y.
- the side surface 20C corresponds to the end portion E21 of the second substrate SUB2 shown in FIG.
- the light emitting element LD is electrically connected to the wiring board F.
- the light emitting element LD is, for example, a light emitting diode, and includes a red light emitting portion, a green light emitting portion, and a blue light emitting portion, which are not described in detail.
- a transparent light guide may be arranged between the light emitting element LD and the side surface 20C.
- the light emitting element LD emits the light L1 toward the side surface 20C.
- the light L1 emitted from the light emitting element LD travels along the direction of the arrow indicating the second direction Y and enters the transparent substrate 20 from the side surface 20C.
- the light L1 incident on the transparent substrate 20 travels inside the display panel PNL while being repeatedly reflected.
- the light L1 incident on the liquid crystal layer LC to which no voltage is applied passes through the liquid crystal layer LC with almost no scattering. Further, the light L1 incident on the liquid crystal layer LC to which a voltage is applied is scattered by the liquid crystal layer LC.
- the display device DSP can be observed not only from the first substrate SUB1 side but also from the second substrate SUB2 side. Further, the display device DSP can observe the background of the display device DSP via the display device DSP regardless of whether the display device DSP is observed from the first substrate SUB1 side or the second substrate SUB2 side. Is.
- the light L2 traveling toward the switching element SW will be examined.
- the semiconductor layer SC When light L2 that travels inside the display panel PNL and goes toward the switching element SW enters the semiconductor layer SC, carriers are generated by photoexcitation in the semiconductor layer SC, and the leak current in the switching element SW increases.
- the leak current increases, the potential held in the pixel PX changes significantly, which may cause deterioration in display quality.
- the light L21 propagating through the transparent substrate 10 is shielded by the third light shield LS3, the scanning line G2, and the gate electrode GE.
- the light L22 propagating through the insulating film 11 is shielded by the third light shielding unit LS3 and the fourth light shielding unit LS4.
- the light L23 propagating through the insulating film 12 is shielded by the first light shielding portion LS1 and the fourth light shielding portion LS4.
- the light L24 traveling toward the first portion OX of the organic insulating film O is shielded by the second light shielding portion LS2.
- the semiconductor layer SC is provided so as to be located between the third end portion E3 and the fourth end portion E4 of the first light shielding portion LS1, it is arranged along the second direction Y. Not only the light L25 that travels straight ahead, but also the lights L26 and L27 that travel in a direction inclined with respect to the second direction Y in plan view are blocked. Accordingly, it is possible to suppress the generation of the leak current in the semiconductor layer SC, and it is possible to suppress the deterioration of the display quality such as the deterioration of the brightness due to the change of the potential of the pixel PX.
- first to fourth light shielding portions LS1 to LS4 can be formed of a material having a higher reflectance than the light shielding layer formed of black resin. According to the first to fourth light shielding portions LS1 to LS4 formed of such a material having high reflectance, it is possible to suppress absorption of light traveling through the display panel, and use efficiency of light from the light emitting element LD. Can be suppressed.
- the light shielding layer BM of the second substrate SUB2 shields the scattered light. Therefore, deterioration of display quality can be suppressed.
- FIG. 5 is a cross-sectional view showing the display panel PNL along the line CD including the scanning line G2 and the connection portion DEA shown in FIG.
- the light shielding layer GI is arranged in the same layer as the scanning line G2, is located on the transparent substrate 10, and is formed of the same material as the scanning line G2.
- the scanning line G2 and the light shielding layer GI are covered with the insulating film 11.
- the connection portion DEA is located on the insulating film 11 immediately above the light shielding layer GI and is covered with the insulating film 12.
- the first portion OX of the organic insulating film O is located on the insulating film 12 immediately above the scanning line G2.
- the first wiring portion MX of the metal wiring M is located on the first portion OX immediately above the scanning line G2.
- the capacitance electrode C covers the side surfaces E11 and E12 of the first portion OX.
- the pixel electrode PE1 is provided in the through hole CH3 penetrating the insulating films 12 and 13 and the opening CA of the capacitor electrode C, and is in contact with the connection portion DEA.
- the light shielding layer BM is located directly above each of the first portion OX and the connection portion DEA.
- FIG. 6 is a cross-sectional view showing the display panel PNL taken along the line EF including the signal line S1 shown in FIG.
- the light shielding layer GS1 is located on the transparent substrate 10 and covered with the insulating film 11.
- the signal line S1 is located on the insulating film 11 directly above the light shielding layer GS1 and covered with the insulating film 12.
- the second portion OY of the organic insulating film O is located on the insulating film 12 immediately above the signal line S1.
- the second wiring portion MY of the metal wiring M is located immediately above the signal line S1 and above the second portion OY.
- the capacitance electrode C is in contact with the second wiring portion MY and covers the side surfaces E13 and E14 of the second portion OY.
- the light shielding layer BM is located immediately above the second portion OY.
- FIG. 8 is a diagram showing a simulation result. 8A shows a simulation result in the configuration of the comparative example, and FIG. 8B shows a simulation result in the configuration of the present embodiment.
- the display panel of the comparative example does not include the first to fourth light shielding parts shown in FIG. 4A.
- the display panel of the present embodiment includes the first to fourth light shielding parts shown in FIG. 4A.
- the luminance reduction rate was 1.34% in the comparative example, whereas the luminance reduction rate was 0.69% in the present embodiment.
- the luminance reduction rate was 10.7% in the comparative example, whereas the luminance reduction rate was 3.8% in the present embodiment.
- FIG. 9 is a sectional view showing the display panel PNL in the second configuration example of the present embodiment.
- the second configuration example shown in FIG. 9 is different from the first configuration example shown in FIG. 4A in that the first light shielding portion LS1 and the second light shielding portion LS2 are integrally formed, and the third light shielding portion LS3 is formed. The difference is that they are separated from the scanning line G2.
- the first light shielding portion LS1 and the second light shielding portion LS2 are formed integrally with the metal wiring M.
- the first to fourth light shielding portions LS1 to LS4 are electrically connected to the metal wiring M and the capacitance electrode C.
- the potentials of the first to fourth light-shielding portions LS1 to LS4 are equal to each other and the same potential as the metal wiring M and the capacitance electrode C. Also in such a second configuration example, the same effect as that of the above first configuration example can be obtained. Further, the light L28 traveling from the liquid crystal layer LC to the insulating film 12 can be blocked between the first light blocking section LS1 and the second light blocking section LS2.
- FIG. 10 is a cross-sectional view showing the display panel PNL in the third configuration example of the present embodiment.
- the third configuration example shown in FIG. 10 is different from the first configuration example shown in FIG. 4A in that the first light shielding portion LS1 and the second light shielding portion LS2 are integrally formed, and the second light shielding portion LS2 is formed. The difference is that they are separated from the metal wiring M.
- the capacitance electrode C is in contact with the second light shield LS2 and the metal wiring M.
- the first to fourth light shielding units LS1 to LS4 are electrically connected to the scanning line G2. Therefore, the potentials of the first to fourth light shielding units LS1 to LS4 are equal to each other, and are the same as that of the scanning line G2. Also in such a third configuration example, the same effect as that of the second configuration example can be obtained.
- FIG. 11 is a sectional view showing the first substrate SUB1 in the fourth configuration example of the present embodiment.
- the fourth configuration example shown in FIG. 11 is different from the first configuration example shown in FIG. 4A in that the fourth light shielding unit LS4 is omitted.
- the first light shield LS1 is provided in a through hole CH12 that penetrates the insulating films 11 and 12 to the third light shield LS3, and is in contact with the third light shield LS3.
- the light L21 propagating through the transparent substrate 10, the light L22 propagating through the insulating film 11, and the light L23 propagating through the insulating film 12 are the first light shielding portion LS1 and the third light shielding portion.
- FIG. 12 is a cross-sectional view showing the first substrate SUB1 in the fifth configuration example of this embodiment.
- the fifth configuration example shown in FIG. 12 is different from the first configuration example shown in FIG. 4A in that the third light shielding unit LS3 and the fourth light shielding unit LS4 are omitted.
- the first light shield LS1 is provided in a through hole CH12 that penetrates the insulating films 11 and 12 to the transparent substrate 10. Also in such a fifth configuration example, the light L21 propagating through the transparent substrate 10, the light L22 propagating through the insulating film 11, and the light L23 propagating through the insulating film 12 are shielded by the first light shielding portion LS1. Therefore, the same effect as that of the first configuration example can be obtained.
- the fifth configuration example in which the third light shielding unit LS3 and the fourth light shielding unit LS4 are omitted can be applied to each of the second configuration example illustrated in FIG. 9 and the third configuration example illustrated in FIG. 10. is there.
- FIG. 13 is a plan view showing the first substrate SUB1 in the sixth configuration example of this embodiment.
- the sixth configuration example shown in FIG. 13 is different from the first configuration example shown in FIG. 3 in that the semiconductor layer SC extends in the second direction Y.
- the scanning line G2, the signal line S2, the switching element SW, and the first light shielding unit LS1 are illustrated, and other configurations are omitted.
- the first light shield LS1 is separated from the signal line S1, the source electrode SE, and the drain electrode DE.
- the width W2 of the first light shield LS1 is larger than the width W1 of the semiconductor layer SC.
- the semiconductor layer SC is provided so that the first end E1 and the second end E2 thereof are located between the third end E3 and the fourth end E4 in the first direction X.
- the signal line S1 is bent so as to be separated from the third end E3 of the first light shielding unit LS1.
- At least one of the third light-shielding portion LS3 and the fourth light-shielding portion LS4 may be arranged in the portion that overlaps the first light-shielding portion LS1, as in the above configuration example.
- the second light shield LS2 may be disposed between the first light shield LS1 and the semiconductor layer SC. Also in such a sixth configuration example, the lights L21 to L27 can be shielded similarly to the above-described configuration examples.
- FIG. 14 is a plan view showing the first substrate SUB1 in the seventh configuration example of the present embodiment.
- the seventh configuration example shown in FIG. 14 is different from the first configuration example shown in FIG. 2 in that the capacitor electrode C includes an electrode portion EL and an opening OP. That is, the electrode portion EL is overlapped with the peripheral edge portion of the pixel electrode PE1 as indicated by the diagonal lines. Further, the opening OP is overlapped with the central portion of the pixel electrode PE1. That is, the capacitance electrode C is formed in a grid shape in a plan view.
- the first light shield LS1 is located in the opening OP.
- the capacitor electrode C overlaps the metal wiring M and is electrically connected to the metal wiring M. Also in such a seventh configuration example, the same effect as that of the first configuration example can be obtained.
- the installation area (or volume) of the capacitance electrode C is smaller than that when the capacitance electrode C does not have the opening OP. Therefore, it is possible to suppress the absorption of the light propagating through the first substrate SUB1 in the capacitive electrode C.
- an optimum capacitance can be formed between the pixel electrode PE1 and the capacitance electrode C. For example, in response to the demand for reducing the scale of the switching element SW, the area of the electrode portion EL that overlaps with the pixel electrode PE1 is reduced, whereby an optimum capacitance can be formed.
- FIG. 15 is a plan view showing the display device DSP of the eighth configuration example.
- the display device DSP includes a display panel PNL, a first light source unit LU1, and a second light source unit LU2.
- the display unit DA is provided between the first light source unit LU1 and the second light source unit LU2.
- the display part DA is formed in a rectangular shape extending in the first direction X.
- the display unit DA includes a first area DA1, a second area DA2, and a third area DA3.
- the first area DA1 is an area located near the end E21 of the second substrate SUB2 and includes the first pixel PX1.
- the second area DA2 is an area located near the end E22 of the second substrate SUB2 and includes the second pixel PX2.
- the third area DA3 is an area located between the first area DA1 and the second area DA2, and includes the third pixel PX3.
- the first light source unit LU1 includes a plurality of light emitting elements LD1 arranged in the first direction X. These light emitting elements LD1 are arranged along the end portion E21 and emit light toward the end portion E21.
- the second light source unit LU2 includes a plurality of light emitting elements LD2 arranged in the first direction X. These light emitting elements LD2 are arranged along the end E22 and emit light toward the end E22. That is, each of the light emitting elements LD1 and LD2 is provided along the long side of the display unit DA.
- the switching element SW in the first pixel PX1 includes the semiconductor layer SC shown in FIG.
- the first light shielding unit LS1, the second light shielding unit LS2, the third light shielding unit LS3, and the fourth light shielding unit LS4 illustrated in FIG. 3 are provided between the light emitting element LD1 and the semiconductor layer SC of the first pixel PX1. There is.
- Each switching element in the second pixel PX2 and the third pixel PX3 will be described below.
- FIG. 16 is a plan view showing an example of the layout of the switching element SW2 in the second pixel PX2 and its peripheral portion.
- the layout shown in FIG. 16 corresponds to the layout shown in FIG. 3 inverted upside down.
- FIG. 17 is a plan view showing another example of the layout of the switching element SW2 in the second pixel PX2 and its peripheral portion.
- FIG. 17 when the tip of the arrow indicating the second direction Y is up, the opposite is down, the tip of the arrow indicating the first direction X is right, and the opposite is left, the layout shown in FIG. This corresponds to the layout shown in FIG. 3 inverted vertically and horizontally.
- a cross section of the display panel PNL taken along the line AB shown in FIGS. 16 and 17 is as shown in FIG. 4, and a cross section of the display panel PNL taken at the line CD is shown in FIG.
- a cross section of the display panel PNL taken along the line EF is as shown in FIG.
- the first light blocking portion LS1, the second light blocking portion LS2, the third light blocking portion LS3, and the fourth light blocking portion LS4 are provided between the light emitting element LD2 and the semiconductor layer SC of the switching element SW2.
- the light traveling from the light emitting element LD2 to the switching element SW2 is blocked by the first light blocking section LS1, the second light blocking section LS2, the third light blocking section LS3, and the fourth light blocking section LS4. Therefore, also in the switching element SW2, it is possible to suppress the generation of the leak current in the semiconductor layer SC, and it is possible to suppress the deterioration of the display quality such as the deterioration of the brightness due to the change in the potential of the second pixel PX2.
- FIG. 18 is a plan view showing an example of the layout of the switching element SW3 in the third pixel PX3 and its peripheral portion.
- the switching element SW3 shown in FIG. 18 is different from the switching element SW in the first pixel PX1 shown in FIG. 3 in that the first light blocking section LS1, the second light blocking section LS2, the third light blocking section LS3, and the fourth light blocking section. The difference is that the LS4 is not provided.
- the cross section of the display panel PNL taken along the line CD shown in FIG. 18 is as shown in FIG. 5, and the cross section of the display panel PNL taken along the line EF is as shown in FIG.
- FIG. 19 is a cross-sectional view showing the first substrate SUB1 taken along the line GH shown in FIG. Compared to the first substrate SUB1 shown in FIG. 4B, the first substrate SUB1 shown in FIG. 19 has both a through hole CH1 penetrating the insulating film 11 and a through hole CH2 penetrating the insulating film 12. The difference is that there is no point.
- the aperture area (area contributing to display) per pixel can be increased.
- FIG. 20 is a plan view showing the display device DSP of the ninth configuration example.
- the display device DSP of the ninth configuration example shown in FIG. 20 is different from the display device DSP of the eighth configuration example shown in FIG. 15 in that the display section DA does not include the third display section. That is, the display unit DA includes the first area DA1 located near the end E21 and the second area DA2 located near the end E22, and the first area DA1 and the second area DA2 are the second areas. Adjacent to the direction Y.
- the switching element SW in the first pixel PX1 in the first area DA1 is as shown in FIG.
- the first light shielding unit LS1, the second light shielding unit LS2, the third light shielding unit LS3, and the fourth light shielding unit LS4 illustrated in FIG. 3 are provided between the light emitting element LD1 and the semiconductor layer SC of the first pixel PX1.
- the switching element SW2 in the second pixel PX2 in the second area DA2 is as shown in FIG. 16 or FIG.
- the first light blocking portion LS1, the second light blocking portion LS2, the third light blocking portion LS3, and the fourth light blocking portion LS4 are provided between the light emitting element LD2 and the semiconductor layer SC of the switching element SW2.
- the ninth configuration example as well, similar to the eighth configuration example, in the switching element SW of the first pixel PX1 and the switching element SW2 of the second pixel PX2, generation of leak current in the semiconductor layer SC is suppressed. be able to.
- DSP Display device PNL... Display panel LD... Light emitting element SUB1... First substrate SUB2... Second substrate LC... Liquid crystal layer LS1... First light-shielding portion LS2... Second light-shielding portion LS3... Third light-shielding portion LS4... Fourth light-shielding portion G... Scan line S... Signal line SW... Switching element SC... Semiconductor layer PE... Pixel electrode
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Dispersion Chemistry (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
本実施形態の目的は、表示品位の低下を抑制することができる表示装置を提供することにある。 本実施形態の表示装置は、第1画素及び第2画素を備えた第1基板と、第2基板と、前記第1基板と前記第2基板との間に位置し、ポリマーと、液晶分子とを含む液晶層と、発光素子と、を備え、前記第2画素は、前記第1画素に隣接するとともに、前記発光素子と前記第1画素との間に位置し、前記第1基板は、前記第1画素に配置された半導体層を備えたスイッチング素子と、前記スイッチング素子と電気的に接続された画素電極と、前記第2画素に配置され前記半導体層に隣接する第1遮光部と、を備え、前記第1遮光部は、平面視で前記半導体層と前記発光素子との間に位置し、前記第2画素の中心よりも前記第1画素に近接する側に位置している。
Description
本発明の実施形態は、表示装置に関する。
近年、入射光を散乱する散乱状態と入射光を透過する透過状態とを切り替え可能な高分子分散液晶を用いた表示装置が提案されている。一例では、アルミニウムや銀などによって形成された反射層が画素スイッチング回路部を覆っている表示装置が開示されている。
本実施形態の目的は、表示品位の低下を抑制することが可能な表示装置を提供することにある。
本実施形態によれば、
第1画素及び第2画素を備えた第1基板と、第2基板と、前記第1基板と前記第2基板との間に位置し、ポリマーと、液晶分子とを含む液晶層と、発光素子と、を備え、前記第2画素は、前記第1画素に隣接するとともに、前記発光素子と前記第1画素との間に位置し、前記第1基板は、前記第1画素に配置された半導体層を備えたスイッチング素子と、前記スイッチング素子と電気的に接続された画素電極と、前記第2画素に配置され前記半導体層に隣接する第1遮光部と、を備え、前記第1遮光部は、平面視で前記半導体層と前記発光素子との間に位置し、前記第2画素の中心よりも前記第1画素に近接する側に位置している、表示装置が提供される。
本実施形態によれば、
第1基板と、第2基板と、前記第1基板と前記第2基板との間に位置し、ポリマーと、液晶分子とを含む液晶層と、発光素子と、を備え、前記第1基板は、半導体層を備えたスイッチング素子と、前記スイッチング素子と電気的に接続された画素電極と、前記半導体層に隣接する第1遮光部と、を備え、前記第1遮光部は、平面視で前記半導体層と前記発光素子との間に位置し、前記第1基板は、順に積層された、透明基板と、第1絶縁膜と、第2絶縁膜と、を備え、前記半導体層は、断面視で前記第1絶縁膜と前記第2絶縁膜との間に位置し、前記第1遮光部は、前記第1絶縁膜及び前記第2絶縁膜を貫通する貫通孔に設けられている、表示装置が提供される。
第1画素及び第2画素を備えた第1基板と、第2基板と、前記第1基板と前記第2基板との間に位置し、ポリマーと、液晶分子とを含む液晶層と、発光素子と、を備え、前記第2画素は、前記第1画素に隣接するとともに、前記発光素子と前記第1画素との間に位置し、前記第1基板は、前記第1画素に配置された半導体層を備えたスイッチング素子と、前記スイッチング素子と電気的に接続された画素電極と、前記第2画素に配置され前記半導体層に隣接する第1遮光部と、を備え、前記第1遮光部は、平面視で前記半導体層と前記発光素子との間に位置し、前記第2画素の中心よりも前記第1画素に近接する側に位置している、表示装置が提供される。
本実施形態によれば、
第1基板と、第2基板と、前記第1基板と前記第2基板との間に位置し、ポリマーと、液晶分子とを含む液晶層と、発光素子と、を備え、前記第1基板は、半導体層を備えたスイッチング素子と、前記スイッチング素子と電気的に接続された画素電極と、前記半導体層に隣接する第1遮光部と、を備え、前記第1遮光部は、平面視で前記半導体層と前記発光素子との間に位置し、前記第1基板は、順に積層された、透明基板と、第1絶縁膜と、第2絶縁膜と、を備え、前記半導体層は、断面視で前記第1絶縁膜と前記第2絶縁膜との間に位置し、前記第1遮光部は、前記第1絶縁膜及び前記第2絶縁膜を貫通する貫通孔に設けられている、表示装置が提供される。
本実施形態によれば、表示品位の低下を抑制することが可能な表示装置を提供することができる。
以下、本実施形態について、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。
[第1構成例]
図1は、本実施形態の表示装置DSPを示す平面図である。一例では、第1方向X、第2方向Y、及び、第3方向Zは、互いに直交しているが、90度以外の角度で交差していてもよい。第1方向X及び第2方向Yは、表示装置DSPを構成する基板の主面と平行な方向に相当し、第3方向Zは、表示装置DSPの厚さ方向に相当する。本明細書において、第1基板SUB1から第2基板SUB2に向かう方向を「上側」(あるいは、単に上)と称し、第2基板SUB2から第1基板SUB1に向かう方向を「下側」(あるいは、単に下)と称する。「第1部材の上の第2部材」及び「第1部材の下の第2部材」とした場合、第2部材は、第1部材に接していてもよいし、第1部材から離間していてもよい。また、第3方向Zを示す矢印の先端側に表示装置DSPを観察する観察位置があるものとし、この観察位置から、第1方向X及び第2方向Yで規定されるX-Y平面に向かって見ることを平面視という。
図1は、本実施形態の表示装置DSPを示す平面図である。一例では、第1方向X、第2方向Y、及び、第3方向Zは、互いに直交しているが、90度以外の角度で交差していてもよい。第1方向X及び第2方向Yは、表示装置DSPを構成する基板の主面と平行な方向に相当し、第3方向Zは、表示装置DSPの厚さ方向に相当する。本明細書において、第1基板SUB1から第2基板SUB2に向かう方向を「上側」(あるいは、単に上)と称し、第2基板SUB2から第1基板SUB1に向かう方向を「下側」(あるいは、単に下)と称する。「第1部材の上の第2部材」及び「第1部材の下の第2部材」とした場合、第2部材は、第1部材に接していてもよいし、第1部材から離間していてもよい。また、第3方向Zを示す矢印の先端側に表示装置DSPを観察する観察位置があるものとし、この観察位置から、第1方向X及び第2方向Yで規定されるX-Y平面に向かって見ることを平面視という。
本実施形態においては、表示装置DSPの一例として、高分子分散型液晶を適用した液晶表示装置について説明する。表示装置DSPは、表示パネルPNLと、配線基板1と、ICチップ2と、発光素子LDと、を備えている。
表示パネルPNLは、第1基板SUB1と、第2基板SUB2と、液晶層LCと、シールSLと、を備えている。第1基板SUB1及び第2基板SUB2は、X-Y平面と平行な平板状に形成されている。第1基板SUB1及び第2基板SUB2は、平面視で、重畳している。第1基板SUB1及び第2基板SUB2は、シールSLによって接着されている。液晶層LCは、第1基板SUB1と第2基板SUB2との間に保持され、シールSLによって封止されている。図1において、液晶層LC及びシールSLは、異なる斜線で示している。
図1において拡大して模式的に示すように、液晶層LCは、ポリマー31と、液晶分子32と、を含む高分子分散型液晶を備えている。一例では、ポリマー31は、液晶性ポリマーである。ポリマー31は、一方向に沿って延出した筋状に形成されている。例えば、ポリマー31の延出方向D1は、第1方向Xに沿った方向である。液晶分子32は、ポリマー31の隙間に分散され、その長軸が第1方向Xに沿うように配向される。ポリマー31及び液晶分子32の各々は、光学異方性あるいは屈折率異方性を有している。ポリマー31の電界に対する応答性は、液晶分子32の電界に対する応答性より低い。
一例では、ポリマー31の配向方向は、電界の有無にかかわらずほとんど変化しない。一方、液晶分子32の配向方向は、液晶層LCにしきい値以上の高い電圧が印加された状態では、電界に応じて変化する。液晶層LCに電圧が印加されていない状態では、ポリマー31及び液晶分子32のそれぞれの光軸は互いに平行であり、液晶層LCに入射した光は、液晶層LC内でほとんど散乱されることなく透過する(透明状態)。液晶層LCに電圧が印加された状態では、ポリマー31及び液晶分子32のそれぞれの光軸は互いに交差し、液晶層LCに入射した光は、液晶層LC内で散乱される(散乱状態)。
表示パネルPNLは、画像を表示する表示部DAと、表示部DAを囲む額縁状の非表示部NDAと、を備えている。シールSLは、非表示部NDAに位置している。表示部DAは、第1方向X及び第2方向Yにマトリクス状に配列された画素PXを備えている。
図1において拡大して示すように、各画素PXは、スイッチング素子SW、画素電極PE、共通電極CE、液晶層LC等を備えている。スイッチング素子SWは、例えば薄膜トランジスタ(TFT)によって構成され、走査線G及び信号線Sと電気的に接続されている。走査線Gは、第1方向Xに並んだ画素PXの各々におけるスイッチング素子SWと電気的に接続されている。信号線Sは、第2方向Yに並んだ画素PXの各々におけるスイッチング素子SWと電気的に接続されている。画素電極PEは、スイッチング素子SWと電気的に接続されている。画素電極PEの各々は、第3方向Zにおいて共通電極CEと対向し、画素電極PEと共通電極CEとの間に生じる電界によって液晶層LC(特に、液晶分子32)を駆動している。容量CSは、例えば、共通電極CEと同電位の電極、及び、画素電極PEと同電位の電極の間に形成される。
配線基板1は、第1基板SUB1の延出部Exに電気的に接続されている。配線基板1は、折り曲げ可能なフレキシブルプリント回路基板である。ICチップ2は、配線基板1に電気的に接続されている。ICチップ2は、例えば、画像表示に必要な信号を出力するディスプレイドライバなどを内蔵している。なお、ICチップ2は、延出部Exに電気的に接続されていてもよい。配線基板1及びICチップ2は、表示パネルPNLからの信号を読み出す場合もあるが、主として表示パネルPNLに信号を供給する信号源として機能する。
発光素子LDは、延出部Exに重畳している。複数の発光素子LDは、第1方向Xに沿って間隔をおいて並んでいる。これらの発光素子LDは、第2基板SUB2の端部E21に沿って配置され、端部E21に向けて光を出射する。
図2は、図1に示した第1基板SUB1における画素PXの主要部を示す平面図である。第1基板SUB1は、画素PXとして、第1画素PX1及び第2画素PX2を備えている。第2画素PX2は、第2方向Yにおいて第1画素PX1に隣接し、発光素子LDと第1画素PX1との間に位置している。第1基板SUB1は、走査線G1及びG2と、半導体層SCと、信号線S1及びS2と、有機絶縁膜Oと、金属配線Mと、第1遮光部LS1と、第2遮光部LS2と、画素電極PE1及びPE2と、を備えている。有機絶縁膜Oは一点鎖線で示し、画素電極PE1及びPE2は二点鎖線で示している。画素電極PE1は第1画素PX1に配置され、画素電極PE2は第2画素PX2に配置されている。
走査線G1及びG2は第1方向Xに沿って延出し、信号線S1及びS2は第2方向Yに沿って延出している。画素PXに配置された画素電極PE1は、第1方向Xに並ぶ2本の信号線S1及びS2と、第2方向Yに並ぶ2本の走査線G1及びG2とで囲まれている。
第1画素PX1に配置されたスイッチング素子SWの半導体層SCは、走査線G2及び信号線S1の交差部の近傍に配置されている。図2に示した例において、半導体層SCは、第1方向Xに延出している。半導体層SCは、信号線S1に近接した第1端部E1と、第1端部E1の反対側の第2端部E2と、を有している。半導体層SCは、幅W1を有している。幅W1は、第1方向X(あるいは第1画素及び第2画素の配列方向(第2方向Y)に直交する方向)において、第1端部E1から第2端部E2までの距離に相当する。半導体層は、例えばアモルファスシリコンによって形成されるが、多結晶シリコンや酸化物半導体によって形成されてもよい。
有機絶縁膜Oは、パターン化されており、平面視において、格子状に形成されている。有機絶縁膜Oは、走査線G1及びG2、半導体層SC、信号線S1及びS2のそれぞれに重畳している。すなわち、有機絶縁膜Oは、第1部OXと、第2部OYと、を備えている。第1部OXは、走査線G1及びG2に重畳している。第2部OYと、信号線S1及びS2に重畳している。第1部OXは、発光素子LDに近接した側面E11と、側面E11の反対側の側面E12と、を有している。側面E11及び側面E12は、ポリマー31の延出方向D1(あるいは第1方向X)に沿って延出している。
金属配線Mは、有機絶縁膜Oに配置され、平面視において、格子状に形成されている。金属配線Mは、走査線G1及びG2、半導体層SC、信号線S1及びS2のそれぞれに重畳している。すなわち、金属配線Mは、第1配線部MXと、第2配線部MYと、を備えている。第1配線部MXは、走査線G1及びG2、及び、第1部OXに重畳している。第2配線部MYは、信号線S1及びS2、及び、第2部OYに重畳している。
第1遮光部LS1は、第2方向Yに沿って半導体層SCと発光素子LDとの間に位置し、半導体層SCに隣接している。第1遮光部LS1は、平面視において、信号線S1及びS2、金属配線M、及び、有機絶縁膜Oから離間し、島状に形成されている。また、第1遮光部LS1は、第2画素PX2に配置され、平面視において、画素電極PE2に重畳している。第1遮光部LS1は、第2方向Yにおいて、第2画素PX2の中心O(あるいは画素電極PE2の中心O)よりも第1画素PX1(あるいは画素電極PE1)に近接する側に位置している。あるいは、第1遮光部LS1は、第2画素PX2の中心Oと第1画素PX1の半導体層SCとの間において、半導体層SCに近接する側に位置している。
第1遮光部LS1は、第1方向Xに沿って延出している。第1遮光部LS1は、信号線S1に近接した第3端部E3と、第3端部E3の反対側の第4端部E4と、を有している。第1遮光部LS1は、幅W2を有している。幅W2は、第1方向X(あるいは第1画素及び第2画素の配列方向(第2方向Y)に直交する方向)において、第3端部E3から第4端部E4までの距離に相当する。幅W2は、半導体層SCの幅W1より大きい。また、第1方向Xにおいて、第1端部E1は第3端部E3より信号線S1から離間し、第2端部E2は第4端部E4より信号線S1に近接している。すなわち、半導体層SCは、その第1端部E1及び第2端部E2が第1方向Xにおいて第3端部E3と第4端部E4との間に位置するように設けられている。
第1遮光部LS1は、第1方向Xに沿って延出している。第1遮光部LS1は、信号線S1に近接した第3端部E3と、第3端部E3の反対側の第4端部E4と、を有している。第1遮光部LS1は、幅W2を有している。幅W2は、第1方向X(あるいは第1画素及び第2画素の配列方向(第2方向Y)に直交する方向)において、第3端部E3から第4端部E4までの距離に相当する。幅W2は、半導体層SCの幅W1より大きい。また、第1方向Xにおいて、第1端部E1は第3端部E3より信号線S1から離間し、第2端部E2は第4端部E4より信号線S1に近接している。すなわち、半導体層SCは、その第1端部E1及び第2端部E2が第1方向Xにおいて第3端部E3と第4端部E4との間に位置するように設けられている。
第1遮光部LS1は、金属配線Mと同層に配置されている。なお本明細書で、「同層」に配置された第1部材及び第2部材とは、同じ材料及び同じ工程で形成されたものをいう。
第2遮光部LS2は、第2方向Yに沿って、半導体層SCと第1遮光部LS1との間に位置し、第1部OXの側面E11に重畳している。図2に示した例では、第2遮光部LS2は、金属配線Mの第1配線部MXと一体的に形成されている。換言すると、第1配線部MXは、その一部が半導体層SCから離間する側に延出し(あるいは発光素子LDに向かって延出し)、側面E11に重畳する第2遮光部LS2を形成している。
スペーサSPは、半導体層SCに重畳する位置に設けられている。スペーサSPは、図1に示した第1基板SUB1と第2基板SUB2との間に所定のセルギャップを形成している。
画素電極PE1及びPE2は、第2方向Yに並んでいる。図2に示した例における走査線G2の近傍では、画素電極PE1は半導体層SCに重畳し、画素電極PE2は第1遮光部LS1に重畳している。
図3は、図2に示した半導体層SCの周辺を拡大した平面図である。第3遮光部LS3、及び、スイッチング素子SWのゲート電極GEは、走査線G2と一体的に形成されている。半導体層SCは、ゲート電極GEに重畳している。第3遮光部LS3は、ゲート電極GEの反対側において、第1遮光部LS1に向かって延出している。第1遮光部LS1及び第2遮光部LS2は、それぞれ第3遮光部LS3に重畳している。第3遮光部LS3は、第1遮光部LS1と第2遮光部LS2との間で途切れることなく連続的に形成されている。第4遮光部LS4は、第1乃至第3遮光部LS1乃至LS3に重畳している。これらの第1乃至第4遮光部LS1乃至LS4の断面構造については後に詳述する。
遮光層GS1及びGS2は、それぞれ第2方向Yに延出している。走査線G2は、遮光層GS1及びGS2の間に位置し、遮光層GS1及びGS2から離間している。遮光層GS1及びGS2は、それぞれ島状に形成されている。
信号線S1は、走査線G2と交差し、遮光層GS1及びGS2に重畳している。スイッチング素子SWのソース電極SE、及び、接続部SJは、信号線S1と一体的に形成されている。接続部SJは、ソース電極SEと信号線S1とを接続し、遮光層GS1に重畳している。ソース電極SEは、接続部SJとの接続位置から2つに分岐し、それぞれ第1方向Xに延出し、それぞれ半導体層SCに重畳している。
スイッチング素子SWのドレイン電極DEは、2つのソース電極SEの間に位置し、半導体層SCに重畳している。ドレイン電極DEは、図2に示した画素電極PE1と電気的に接続される接続部DEAを有している。接続部DEAは、遮光層GIに重畳している。
金属配線Mは、ソース電極SEに重畳するとともに、接続部DEAを除いたドレイン電極DEに重畳している。
金属配線Mは、ソース電極SEに重畳するとともに、接続部DEAを除いたドレイン電極DEに重畳している。
図4Aは、図3に示した第1乃至第4遮光部LS1乃至LS4を含むA-B線に沿った表示パネルPNLを示す断面図である。第1基板SUB1は、さらに、透明基板10と、絶縁膜11乃至13と、容量電極Cと、配向膜AL1と、を備えている。本実施形態において、絶縁膜11は透明基板10の上に位置する第1絶縁膜に相当し、絶縁膜12は絶縁膜11の上に位置する第2絶縁膜に相当し、有機絶縁膜Oは絶縁膜12の上に位置する第3絶縁膜に相当する。
走査線G2と一体のゲート電極GE及び第3遮光部LS3は、透明基板10と絶縁膜11との間に位置している。図4Aに示した例では、ゲート電極GE及び第3遮光部LS3は、透明基板10に接しているが、ゲート電極GE及び第3遮光部LS3と、透明基板10との間に、他の絶縁膜が介在していてもよい。
半導体層SCは、ゲート電極GEの直上において、絶縁膜11と絶縁膜12との間に位置している。半導体層SCの下面SCAは、絶縁膜11に接している。信号線S1と一体の2つのソース電極SEは、半導体層SCの上面SCBに接し、それらの一部が絶縁膜11の上に位置している。ドレイン電極DEは、半導体層SCの上面SCBに接している。絶縁膜12は、ソース電極SE及びドレイン電極DEを覆い、半導体層SCの上面SCBに接している。
第4遮光部LS4は、絶縁膜11を第3遮光部LS3まで貫通する貫通孔CH1に設けられ、第3遮光部LS3に接している。第4遮光部LS4は、信号線S1、ソース電極SE、及び、ドレイン電極DEのいずれからも離間している。
第1遮光部LS1は、絶縁膜12を第4遮光部LS4まで貫通する貫通孔CH2に設けられ、第4遮光部LS4に接している。貫通孔CH2は、貫通孔CH1に重畳するように設けられている。このため、第1遮光部LS1は、貫通孔CH1及びCH2に重畳するように設けられている。また、貫通孔CH1及びCH2が重畳する領域において、第3遮光部LS3、第4遮光部LS4、及び、第1遮光部LS1は、この順に第3方向Zに沿って重畳している。つまり、第1遮光部LS1は、走査線G2と一体の第3遮光部LS3と、第4遮光部LS4を介して電気的に接続されている。このため、第1遮光部LS1の電位は、走査線G2と同電位である。
第1遮光部LS1は、絶縁膜12を第4遮光部LS4まで貫通する貫通孔CH2に設けられ、第4遮光部LS4に接している。貫通孔CH2は、貫通孔CH1に重畳するように設けられている。このため、第1遮光部LS1は、貫通孔CH1及びCH2に重畳するように設けられている。また、貫通孔CH1及びCH2が重畳する領域において、第3遮光部LS3、第4遮光部LS4、及び、第1遮光部LS1は、この順に第3方向Zに沿って重畳している。つまり、第1遮光部LS1は、走査線G2と一体の第3遮光部LS3と、第4遮光部LS4を介して電気的に接続されている。このため、第1遮光部LS1の電位は、走査線G2と同電位である。
第4遮光部LS4は、信号線S1、ソース電極SE、及び、ドレイン電極DEと同層に配置される。
有機絶縁膜Oの第1部OXは、スイッチング素子SWの上に重畳している。第1部OXの側面E11は、第2方向Yに沿って貫通孔CH1と半導体層SCとの間に位置している。金属配線Mの第1配線部MXは、第1部OXの上に重畳している。第2遮光部LS2は、側面E11を覆い、絶縁膜12に接している。
容量電極Cは、第1配線部MXを直接覆って、第1配線部MXと電気的に接続されている。また、容量電極Cは、第2遮光部LS2を直接覆って、第2遮光部LS2と電気的に接続されている。このため、第2遮光部LS2の電位は、容量電極と同電位である。また、容量電極Cは、第1部OXの側面E12を覆っている。また、容量電極Cは、有機絶縁膜Oに重畳しない領域において、絶縁膜12に接している。第1遮光部LS1は、容量電極Cの開口部CBに設けられている。このため、第1遮光部LS1は、容量電極Cとは電気的に絶縁されている。また、第1遮光部LS1及び第2遮光部LS2は、互いに電気的に絶縁されている。
絶縁膜13は、容量電極C及び第1遮光部LS1を覆っている。絶縁膜13は、開口部CBにおいて、容量電極Cと第1遮光部LS1との間で、絶縁膜12と接している。画素電極PE1及びPE2は、絶縁膜13の上に位置している。画素電極PE1及びPE2は、第3方向Zにおいて、それぞれ絶縁膜13を介して容量電極Cに対向し、画素PXにおいて画素表示に必要な蓄積容量を形成する。配向膜AL1は、絶縁膜13、画素電極PE1及びPE2を覆っている。配向膜AL1は、画素電極PE1と画素電極PE2との間において、絶縁膜13に接している。
第2基板SUB2は、透明基板20と、遮光層BMと、共通電極CEと、配向膜AL2とを備えている。遮光層BMは、走査線G2、スイッチング素子SW、第1遮光部LS1及び第2遮光部LS2のそれぞれの直上に位置している。共通電極CEは、遮光層BMと配向膜AL2との間に位置している。共通電極CEの電位は、容量電極Cと同電位である。
液晶層LCは、第1基板SUB1と第2基板SUB2との間に位置し、配向膜AL1及びAL2のそれぞれに接している。
液晶層LCは、第1基板SUB1と第2基板SUB2との間に位置し、配向膜AL1及びAL2のそれぞれに接している。
透明基板10及び20は、ガラス基板やプラスチック基板などの絶縁基板である。絶縁膜11乃至13は、例えばシリコン窒化物やシリコン酸化物などの透明な無機絶縁材料によって形成されている。有機絶縁膜Oは、例えばアクリル樹脂などの透明な有機絶縁材料によって形成されている。
走査線G、信号線S、及び、金属配線Mは、モリブデン、アルミニウム、タングステン、チタン、銀などの不透明な金属材料によって形成されている。第1遮光部LS1及び第2遮光部LS2は、金属配線Mと同一材料によって形成されている。第3遮光部LS3は、走査線Gと同一材料によって形成されている。第4遮光部LS4は、信号線Sと同一材料によって形成されている。
走査線G、信号線S、及び、金属配線Mは、モリブデン、アルミニウム、タングステン、チタン、銀などの不透明な金属材料によって形成されている。第1遮光部LS1及び第2遮光部LS2は、金属配線Mと同一材料によって形成されている。第3遮光部LS3は、走査線Gと同一材料によって形成されている。第4遮光部LS4は、信号線Sと同一材料によって形成されている。
容量電極C、画素電極PE、及び、共通電極CEは、インジウム錫酸化物(ITO)やインジウム亜鉛酸化物(IZO)などの透明導電材料によって形成された透明電極である。遮光層BMは、絶縁層であってもよいし、共通電極CEよりも低抵抗な導電層であってもよい。遮光層BMが導電層である場合には、共通電極CEが遮光層BMと電気的に接続されることにより、共通電極CEが低抵抗化される。
配向膜AL1及びAL2は、X-Y平面に略平行な配向規制力を有する水平配向膜である。一例では、配向膜AL1及びAL2は、第1方向Xに沿って配向処理されている。なお、配向処理とは、ラビング処理であってもよいし、光配向処理であってもよい。
配向膜AL1及びAL2は、X-Y平面に略平行な配向規制力を有する水平配向膜である。一例では、配向膜AL1及びAL2は、第1方向Xに沿って配向処理されている。なお、配向処理とは、ラビング処理であってもよいし、光配向処理であってもよい。
ここで、図7を参照しながら、本実施形態の表示装置DSPの一構成例を示す断面図について説明する。なお、表示パネルPNLについては、主要部のみを図示している。
発光素子LDは、第2方向Yにおいて、透明基板20の側面20Cに対向している。側面20Cは、図1に示した第2基板SUB2の端部E21に相当する。発光素子LDは、配線基板Fに電気的に接続されている。発光素子LDは、例えば、発光ダイオードであり、詳述しないが、赤発光部、緑発光部、及び、青発光部を備えている。なお、発光素子LDと、側面20Cとの間に、透明な導光体が配置されてもよい。
発光素子LDは、第2方向Yにおいて、透明基板20の側面20Cに対向している。側面20Cは、図1に示した第2基板SUB2の端部E21に相当する。発光素子LDは、配線基板Fに電気的に接続されている。発光素子LDは、例えば、発光ダイオードであり、詳述しないが、赤発光部、緑発光部、及び、青発光部を備えている。なお、発光素子LDと、側面20Cとの間に、透明な導光体が配置されてもよい。
次に、図7を参照しながら、発光素子LDから出射される光L1について説明する。
発光素子LDは、側面20Cに向けて光L1を出射する。発光素子LDから出射された光L1は、第2方向Yを示す矢印の向きに沿って進行し、側面20Cから透明基板20に入射する。透明基板20に入射した光L1は、繰り返し反射されながら、表示パネルPNLの内部を進行する。
電圧が印加されていない液晶層LCに入射した光L1は、ほとんど散乱されることなく液晶層LCを透過する。また、電圧が印加された液晶層LCに入射した光L1は、液晶層LCで散乱される。表示装置DSPは、第1基板SUB1側から観察可能であるとともに、第2基板SUB2側からも観察可能である。また、表示装置DSPは、第1基板SUB1側から観察した場合であっても、第2基板SUB2側から観察した場合であっても、表示装置DSPを介して、表示装置DSPの背景を観察可能である。
発光素子LDは、側面20Cに向けて光L1を出射する。発光素子LDから出射された光L1は、第2方向Yを示す矢印の向きに沿って進行し、側面20Cから透明基板20に入射する。透明基板20に入射した光L1は、繰り返し反射されながら、表示パネルPNLの内部を進行する。
電圧が印加されていない液晶層LCに入射した光L1は、ほとんど散乱されることなく液晶層LCを透過する。また、電圧が印加された液晶層LCに入射した光L1は、液晶層LCで散乱される。表示装置DSPは、第1基板SUB1側から観察可能であるとともに、第2基板SUB2側からも観察可能である。また、表示装置DSPは、第1基板SUB1側から観察した場合であっても、第2基板SUB2側から観察した場合であっても、表示装置DSPを介して、表示装置DSPの背景を観察可能である。
ここで、発光素子LDから出射される光のうち、スイッチング素子SWに向かう光L2について検討する。表示パネルPNLの内部を進行する光のうち、スイッチング素子SWに向かう光L2が半導体層SCに入射すると、半導体層SCにおいて光励起によるキャリアが発生し、スイッチング素子SWにおけるリーク電流が増加する。リーク電流が増加すると、画素PXに保持されていた電位が大きく変化し、表示品位の低下を招くおそれがある。
本実施形態によれば、図4Bに示すように、スイッチング素子SWに向かう光のうち、透明基板10を伝播する光L21は、第3遮光部LS3、走査線G2、及び、ゲート電極GEによって遮光される。絶縁膜11を伝播する光L22は、第3遮光部LS3及び第4遮光部LS4によって遮光される。絶縁膜12を伝播する光L23は、第1遮光部LS1及び第4遮光部LS4によって遮光される。有機絶縁膜Oの第1部OXに向かう光L24は、第2遮光部LS2によって遮光される。したがって、半導体層SCの下面SCA及び上面SCBに光L2が到達しにくくなる。
また、図2に示すように、半導体層SCが第1遮光部LS1の第3端部E3と第4端部E4との間に位置するように設けられているため、第2方向Yに沿って直進する光L25のみならず、平面視で第2方向Yに対して傾いた方向に進行する光L26及びL27も遮光される。
これにより、半導体層SCにおけるリーク電流の発生を抑制することができ、画素PXの電位の変化に起因した輝度の低下等の表示品位の低下を抑制することができる。
また、図2に示すように、半導体層SCが第1遮光部LS1の第3端部E3と第4端部E4との間に位置するように設けられているため、第2方向Yに沿って直進する光L25のみならず、平面視で第2方向Yに対して傾いた方向に進行する光L26及びL27も遮光される。
これにより、半導体層SCにおけるリーク電流の発生を抑制することができ、画素PXの電位の変化に起因した輝度の低下等の表示品位の低下を抑制することができる。
また、第1乃至第4遮光部LS1乃至LS4は、黒色樹脂によって形成された遮光層と比較して、高い反射率を有する材料によって形成可能である。このような高反射率の材料によって形成された第1乃至第4遮光部LS1乃至LS4によれば、表示パネルを進行する光の吸収を抑制することができ、発光素子LDからの光の利用効率の低下を抑制することができる。
また、たとえ第1乃至第4遮光部LS1乃至LS4において不所望な散乱が生じたとしても、第2基板SUB2の遮光層BMによって散乱光が遮光される。このため、表示品位の劣化を抑制することができる。
図5は、図3に示した走査線G2及び接続部DEAを含むC-D線に沿った表示パネルPNLを示す断面図である。
第1基板SUB1において、遮光層GIは、走査線G2と同層に配置され、透明基板10の上に位置し、走査線G2と同一材料によって形成されている。走査線G2及び遮光層GIは、絶縁膜11によって覆われている。接続部DEAは、遮光層GIの直上において、絶縁膜11の上に位置し、絶縁膜12によって覆われている。有機絶縁膜Oの第1部OXは、走査線G2の直上において、絶縁膜12の上に位置している。金属配線Mの第1配線部MXは、走査線G2の直上において、第1部OXの上に位置している。容量電極Cは、第1部OXの側面E11及びE12を覆っている。画素電極PE1は、絶縁膜12及び13を貫通する貫通孔CH3、及び、容量電極Cの開口部CAに設けられ、接続部DEAに接している。
第2基板SUB2において、遮光層BMは、第1部OX、及び、接続部DEAのそれぞれの直上に位置している。
第1基板SUB1において、遮光層GIは、走査線G2と同層に配置され、透明基板10の上に位置し、走査線G2と同一材料によって形成されている。走査線G2及び遮光層GIは、絶縁膜11によって覆われている。接続部DEAは、遮光層GIの直上において、絶縁膜11の上に位置し、絶縁膜12によって覆われている。有機絶縁膜Oの第1部OXは、走査線G2の直上において、絶縁膜12の上に位置している。金属配線Mの第1配線部MXは、走査線G2の直上において、第1部OXの上に位置している。容量電極Cは、第1部OXの側面E11及びE12を覆っている。画素電極PE1は、絶縁膜12及び13を貫通する貫通孔CH3、及び、容量電極Cの開口部CAに設けられ、接続部DEAに接している。
第2基板SUB2において、遮光層BMは、第1部OX、及び、接続部DEAのそれぞれの直上に位置している。
図6は、図3に示した信号線S1を含むE-F線に沿った表示パネルPNLを示す断面図である。
第1基板SUB1において、遮光層GS1は、透明基板10の上に位置し、絶縁膜11によって覆われている。信号線S1は、遮光層GS1の直上において、絶縁膜11の上に位置し、絶縁膜12によって覆われている。有機絶縁膜Oの第2部OYは、信号線S1の直上において、絶縁膜12の上に位置している。金属配線Mの第2配線部MYは、信号線S1の直上において、第2部OYの上に位置している。容量電極Cは、第2配線部MYに接し、第2部OYの側面E13及びE14を覆っている。
第2基板SUB2において、遮光層BMは、第2部OYの直上に位置している。
第1基板SUB1において、遮光層GS1は、透明基板10の上に位置し、絶縁膜11によって覆われている。信号線S1は、遮光層GS1の直上において、絶縁膜11の上に位置し、絶縁膜12によって覆われている。有機絶縁膜Oの第2部OYは、信号線S1の直上において、絶縁膜12の上に位置している。金属配線Mの第2配線部MYは、信号線S1の直上において、第2部OYの上に位置している。容量電極Cは、第2配線部MYに接し、第2部OYの側面E13及びE14を覆っている。
第2基板SUB2において、遮光層BMは、第2部OYの直上に位置している。
ここで、本実施形態の効果を検証するためのシミュレーションについて説明する。このシミュレーションでは、共通電極CEの電位Vcomとは異なる電圧を画素電極PEに印加し、散乱状態となった画素PXでの輝度を算出する。算出した輝度において、立ち上がり直後の輝度をLaとし、立ち下がり直前の輝度をLbとしたとき、輝度低下率を{1-(La/Lb)}と定義する。
図8は、シミュレーション結果を示す図である。図8の(A)は比較例の構成におけるシミュレーション結果を示し、図8の(B)は本実施形態の構成におけるシミュレーション結果を示している。比較例の表示パネルは、図4Aに示した第1乃至第4遮光部を備えていない。本実施形態の表示パネルは、図4Aに示した第1乃至第4遮光部を備えている。
電位Vcomが基準電位Vrに対して正の期間T1において、比較例では輝度低下率が1.34%であったのに対して、本実施形態では輝度低下率が0.69%であった。電位Vcomが基準電位Vrに対して負の期間T2において、比較例では輝度低下率が10.7%であったのに対して、本実施形態では輝度低下率が3.8%であった。このように、本実施形態によれば、輝度の低下を抑制できることが確認された。
図8は、シミュレーション結果を示す図である。図8の(A)は比較例の構成におけるシミュレーション結果を示し、図8の(B)は本実施形態の構成におけるシミュレーション結果を示している。比較例の表示パネルは、図4Aに示した第1乃至第4遮光部を備えていない。本実施形態の表示パネルは、図4Aに示した第1乃至第4遮光部を備えている。
電位Vcomが基準電位Vrに対して正の期間T1において、比較例では輝度低下率が1.34%であったのに対して、本実施形態では輝度低下率が0.69%であった。電位Vcomが基準電位Vrに対して負の期間T2において、比較例では輝度低下率が10.7%であったのに対して、本実施形態では輝度低下率が3.8%であった。このように、本実施形態によれば、輝度の低下を抑制できることが確認された。
次に、他の構成例について説明する。
[第2構成例]
図9は、本実施形態の第2構成例における表示パネルPNLを示す断面図である。図9に示す第2構成例は、図4Aに示した第1構成例と比較して、第1遮光部LS1及び第2遮光部LS2が一体的に形成され、かつ、第3遮光部LS3が走査線G2から離間している点で相違している。また、第1遮光部LS1及び第2遮光部LS2は、金属配線Mと一体的に形成されている。このような第2構成例では、第1乃至第4遮光部LS1乃至LS4は、金属配線M及び容量電極Cと電気的に接続されている。このため、第1乃至第4遮光部LS1乃至LS4のそれぞれの電位は等しく、金属配線M及び容量電極Cと同電位である。
このような第2構成例においても、上記の第1構成例と同様の効果が得られる。また、第1遮光部LS1及び第2遮光部LS2の間において、液晶層LCから絶縁膜12に向かう光L28を遮光することができる。
[第2構成例]
図9は、本実施形態の第2構成例における表示パネルPNLを示す断面図である。図9に示す第2構成例は、図4Aに示した第1構成例と比較して、第1遮光部LS1及び第2遮光部LS2が一体的に形成され、かつ、第3遮光部LS3が走査線G2から離間している点で相違している。また、第1遮光部LS1及び第2遮光部LS2は、金属配線Mと一体的に形成されている。このような第2構成例では、第1乃至第4遮光部LS1乃至LS4は、金属配線M及び容量電極Cと電気的に接続されている。このため、第1乃至第4遮光部LS1乃至LS4のそれぞれの電位は等しく、金属配線M及び容量電極Cと同電位である。
このような第2構成例においても、上記の第1構成例と同様の効果が得られる。また、第1遮光部LS1及び第2遮光部LS2の間において、液晶層LCから絶縁膜12に向かう光L28を遮光することができる。
[第3構成例]
図10は、本実施形態の第3構成例における表示パネルPNLを示す断面図である。図10に示す第3構成例は、図4Aに示した第1構成例と比較して、第1遮光部LS1及び第2遮光部LS2が一体的に形成され、かつ、第2遮光部LS2が金属配線Mから離間している点で相違している。容量電極Cは、第2遮光部LS2及び金属配線Mに接触している。このような第3構成例では、第1乃至第4遮光部LS1乃至LS4は、走査線G2と電気的に接続されている。このため、第1乃至第4遮光部LS1乃至LS4のそれぞれの電位は等しく、走査線G2と同電位である。
このような第3構成例においても、上記の第2構成例と同様の効果が得られる。
図10は、本実施形態の第3構成例における表示パネルPNLを示す断面図である。図10に示す第3構成例は、図4Aに示した第1構成例と比較して、第1遮光部LS1及び第2遮光部LS2が一体的に形成され、かつ、第2遮光部LS2が金属配線Mから離間している点で相違している。容量電極Cは、第2遮光部LS2及び金属配線Mに接触している。このような第3構成例では、第1乃至第4遮光部LS1乃至LS4は、走査線G2と電気的に接続されている。このため、第1乃至第4遮光部LS1乃至LS4のそれぞれの電位は等しく、走査線G2と同電位である。
このような第3構成例においても、上記の第2構成例と同様の効果が得られる。
[第4構成例]
図11は、本実施形態の第4構成例における第1基板SUB1を示す断面図である。図11に示す第4構成例は、図4Aに示した第1構成例と比較して、第4遮光部LS4が省略された点で相違している。第1遮光部LS1は、絶縁膜11及び12を第3遮光部LS3まで貫通する貫通孔CH12に設けられ、第3遮光部LS3に接している。
このような第4構成例においても、透明基板10を伝播する光L21、絶縁膜11を伝播する光L22、及び、絶縁膜12を伝播する光L23は、第1遮光部LS1及び第3遮光部LS3によって遮光される。このため、上記の第1構成例と同様の効果が得られる。
なお、図9に示した第2構成例、及び、図10に示した第3構成例のそれぞれにおいても、第4遮光部LS4を省略する第4構成例が適用可能である。
図11は、本実施形態の第4構成例における第1基板SUB1を示す断面図である。図11に示す第4構成例は、図4Aに示した第1構成例と比較して、第4遮光部LS4が省略された点で相違している。第1遮光部LS1は、絶縁膜11及び12を第3遮光部LS3まで貫通する貫通孔CH12に設けられ、第3遮光部LS3に接している。
このような第4構成例においても、透明基板10を伝播する光L21、絶縁膜11を伝播する光L22、及び、絶縁膜12を伝播する光L23は、第1遮光部LS1及び第3遮光部LS3によって遮光される。このため、上記の第1構成例と同様の効果が得られる。
なお、図9に示した第2構成例、及び、図10に示した第3構成例のそれぞれにおいても、第4遮光部LS4を省略する第4構成例が適用可能である。
[第5構成例]
図12は、本実施形態の第5構成例における第1基板SUB1を示す断面図である。図12に示す第5構成例は、図4Aに示した第1構成例と比較して、第3遮光部LS3及び第4遮光部LS4が省略された点で相違している。第1遮光部LS1は、絶縁膜11及び12を透明基板10まで貫通する貫通孔CH12に設けられている。
このような第5構成例においても、透明基板10を伝播する光L21、絶縁膜11を伝播する光L22、及び、絶縁膜12を伝播する光L23は、第1遮光部LS1によって遮光される。このため、上記の第1構成例と同様の効果が得られる。
なお、図9に示した第2構成例、及び、図10に示した第3構成例のそれぞれにおいても、第3遮光部LS3及び第4遮光部LS4を省略する第5構成例が適用可能である。
図12は、本実施形態の第5構成例における第1基板SUB1を示す断面図である。図12に示す第5構成例は、図4Aに示した第1構成例と比較して、第3遮光部LS3及び第4遮光部LS4が省略された点で相違している。第1遮光部LS1は、絶縁膜11及び12を透明基板10まで貫通する貫通孔CH12に設けられている。
このような第5構成例においても、透明基板10を伝播する光L21、絶縁膜11を伝播する光L22、及び、絶縁膜12を伝播する光L23は、第1遮光部LS1によって遮光される。このため、上記の第1構成例と同様の効果が得られる。
なお、図9に示した第2構成例、及び、図10に示した第3構成例のそれぞれにおいても、第3遮光部LS3及び第4遮光部LS4を省略する第5構成例が適用可能である。
[第6構成例]
図13は、本実施形態の第6構成例における第1基板SUB1を示す平面図である。図13に示す第6構成例は、図3に示した第1構成例と比較して、半導体層SCが第2方向Yに延出している点で相違している。図13では、走査線G2、信号線S2、スイッチング素子SW、及び、第1遮光部LS1を図示し、その他の構成の図示を省略している。第1遮光部LS1は、信号線S1、ソース電極SE、及び、ドレイン電極DEから離間している。第1遮光部LS1の幅W2は、半導体層SCの幅W1より大きい。また、半導体層SCは、その第1端部E1及び第2端部E2が第1方向Xにおいて第3端部E3と第4端部E4との間に位置するように設けられている。信号線S1は、第1遮光部LS1の第3端部E3から離間するように屈曲している。なお、第1遮光部LS1に重畳する部分については、上記の構成例の如く、第3遮光部LS3及び第4遮光部LS4の少なくとも1つが配置されてもよい。また、第1遮光部LS1と半導体層SCとの間に第2遮光部LS2が配置されてもよい。
このような第6構成例においても、上記の各構成例と同様に、光L21乃至L27を遮光することができる。
図13は、本実施形態の第6構成例における第1基板SUB1を示す平面図である。図13に示す第6構成例は、図3に示した第1構成例と比較して、半導体層SCが第2方向Yに延出している点で相違している。図13では、走査線G2、信号線S2、スイッチング素子SW、及び、第1遮光部LS1を図示し、その他の構成の図示を省略している。第1遮光部LS1は、信号線S1、ソース電極SE、及び、ドレイン電極DEから離間している。第1遮光部LS1の幅W2は、半導体層SCの幅W1より大きい。また、半導体層SCは、その第1端部E1及び第2端部E2が第1方向Xにおいて第3端部E3と第4端部E4との間に位置するように設けられている。信号線S1は、第1遮光部LS1の第3端部E3から離間するように屈曲している。なお、第1遮光部LS1に重畳する部分については、上記の構成例の如く、第3遮光部LS3及び第4遮光部LS4の少なくとも1つが配置されてもよい。また、第1遮光部LS1と半導体層SCとの間に第2遮光部LS2が配置されてもよい。
このような第6構成例においても、上記の各構成例と同様に、光L21乃至L27を遮光することができる。
[第7構成例]
図14は、本実施形態の第7構成例における第1基板SUB1を示す平面図である。図14に示す第7構成例は、図2に示した第1構成例と比較して、容量電極Cが電極部EL及び開口部OPを備えた点で相違している。すなわち、電極部ELは、斜線で示すように、画素電極PE1の周縁部に重畳している。また、開口部OPは、画素電極PE1の中央部に重畳している。つまり、容量電極Cは、平面視において、格子状に形成されている。また、画素電極PE1と重畳する領域において、第1遮光部LS1は、開口部OPに位置している。容量電極Cは、金属配線Mに重畳し、金属配線Mと電気的に接続されている。
このような第7構成例においても、上記の第1構成例と同様の効果が得られる。加えて、容量電極Cの設置面積(あるいは体積)は、容量電極Cが開口部OPを有していない場合より小さい。このため、第1基板SUB1を伝播する光の容量電極Cでの光吸収を抑制することができる。
また、電極部ELの面積(あるいは、開口部OPの面積)を調整することによって、画素電極PE1と容量電極Cとの間で最適な容量を形成することができる。例えば、スイッチング素子SWの規模を縮小する要求に対して、画素電極PE1に重畳する電極部ELの面積を縮小することで、最適な容量を形成することができる。
図14は、本実施形態の第7構成例における第1基板SUB1を示す平面図である。図14に示す第7構成例は、図2に示した第1構成例と比較して、容量電極Cが電極部EL及び開口部OPを備えた点で相違している。すなわち、電極部ELは、斜線で示すように、画素電極PE1の周縁部に重畳している。また、開口部OPは、画素電極PE1の中央部に重畳している。つまり、容量電極Cは、平面視において、格子状に形成されている。また、画素電極PE1と重畳する領域において、第1遮光部LS1は、開口部OPに位置している。容量電極Cは、金属配線Mに重畳し、金属配線Mと電気的に接続されている。
このような第7構成例においても、上記の第1構成例と同様の効果が得られる。加えて、容量電極Cの設置面積(あるいは体積)は、容量電極Cが開口部OPを有していない場合より小さい。このため、第1基板SUB1を伝播する光の容量電極Cでの光吸収を抑制することができる。
また、電極部ELの面積(あるいは、開口部OPの面積)を調整することによって、画素電極PE1と容量電極Cとの間で最適な容量を形成することができる。例えば、スイッチング素子SWの規模を縮小する要求に対して、画素電極PE1に重畳する電極部ELの面積を縮小することで、最適な容量を形成することができる。
[第8構成例]
図15は、第8構成例の表示装置DSPを示す平面図である。
表示装置DSPは、表示パネルPNLと、第1光源部LU1と、第2光源部LU2とを備えている。表示部DAは、第1光源部LU1と第2光源部LU2との間に設けられている。図15に示す例では、表示部DAは、第1方向Xに延びた長方形状に形成されている。表示部DAは、第1領域DA1と、第2領域DA2と、第3領域DA3とを備えている。第1領域DA1は、第2基板SUB2の端部E21の近傍に位置する領域であり、第1画素PX1を含んでいる。第2領域DA2は、第2基板SUB2の端部E22の近傍に位置する領域であり、第2画素PX2を含んでいる。第3領域DA3は、第1領域DA1と第2領域DA2との間に位置する領域であり、第3画素PX3を含んでいる。
図15は、第8構成例の表示装置DSPを示す平面図である。
表示装置DSPは、表示パネルPNLと、第1光源部LU1と、第2光源部LU2とを備えている。表示部DAは、第1光源部LU1と第2光源部LU2との間に設けられている。図15に示す例では、表示部DAは、第1方向Xに延びた長方形状に形成されている。表示部DAは、第1領域DA1と、第2領域DA2と、第3領域DA3とを備えている。第1領域DA1は、第2基板SUB2の端部E21の近傍に位置する領域であり、第1画素PX1を含んでいる。第2領域DA2は、第2基板SUB2の端部E22の近傍に位置する領域であり、第2画素PX2を含んでいる。第3領域DA3は、第1領域DA1と第2領域DA2との間に位置する領域であり、第3画素PX3を含んでいる。
第1光源部LU1は、第1方向Xに並んだ複数の発光素子LD1を備えている。これらの発光素子LD1は、端部E21に沿って配置され、端部E21に向けて光を出射する。第2光源部LU2は、第1方向Xに並んだ複数の発光素子LD2を備えている。これらの発光素子LD2は、端部E22に沿って配置され、端部E22に向けて光を出射する。つまり、発光素子LD1及びLD2は、それぞれ表示部DAの長辺に沿って設けられている。
第1画素PX1におけるスイッチング素子SWは、図3に示す半導体層SCを備えている。図3に示す第1遮光部LS1、第2遮光部LS2、第3遮光部LS3、及び、第4遮光部LS4は、発光素子LD1と第1画素PX1の半導体層SCとの間に設けられている。
第2画素PX2及び第3画素PX3におけるそれぞれのスイッチング素子については以下に説明する。
第2画素PX2及び第3画素PX3におけるそれぞれのスイッチング素子については以下に説明する。
図16は、第2画素PX2におけるスイッチング素子SW2及びその周辺部のレイアウトの一例を示す平面図である。図16において第2方向Yを示す矢印の先端を上とし、その反対を下とする場合、図16に示すレイアウトは、図3に示すレイアウトを上下に反転したものに相当する。
図17は、第2画素PX2におけるスイッチング素子SW2及びその周辺部のレイアウトの他の例を示す平面図である。図17において第2方向Yを示す矢印の先端を上とし、その反対を下とし、第1方向Xを示す矢印の先端を右とし、その反対を左とする場合、図17に示すレイアウトは、図3に示すレイアウトを上下に反転し、且つ、左右に反転させたものに相当する。
図16及び図17にそれぞれ示すA-B線に沿った表示パネルPNLの断面は図4に示す通りであり、C-D線に沿った表示パネルPNLの断面は図5に示す通りであり、E-F線に沿った表示パネルPNLの断面は図6に示す通りである。
第1遮光部LS1、第2遮光部LS2、第3遮光部LS3、及び、第4遮光部LS4は、発光素子LD2とスイッチング素子SW2の半導体層SCとの間に設けられている。
第1遮光部LS1、第2遮光部LS2、第3遮光部LS3、及び、第4遮光部LS4は、発光素子LD2とスイッチング素子SW2の半導体層SCとの間に設けられている。
これにより、発光素子LD2からスイッチング素子SW2に向かう光が第1遮光部LS1、第2遮光部LS2、第3遮光部LS3、及び、第4遮光部LS4によって遮光される。したがって、スイッチング素子SW2においても、半導体層SCにおけるリーク電流の発生を抑制することができ、第2画素PX2の電位の変化に起因した輝度の低下等の表示品位の低下を抑制することができる。
図18は、第3画素PX3におけるスイッチング素子SW3及びその周辺部のレイアウトの一例を示す平面図である。図18に示すスイッチング素子SW3は、図3に示す第1画素PX1におけるスイッチング素子SWと比較して、第1遮光部LS1、第2遮光部LS2、第3遮光部LS3、及び、第4遮光部LS4が設けられていない点で相違している。図18に示すC-D線に沿った表示パネルPNLの断面は図5に示す通りであり、E-F線に沿った表示パネルPNLの断面は図6に示す通りである。
図19は、図18に示すG-H線に沿った第1基板SUB1を示す断面図である。図19に示す第1基板SUB1は、図4Bに示す第1基板SUB1と比較して、絶縁膜11を貫通する貫通孔CH1、及び、絶縁膜12を貫通する貫通孔CH2のいずれも設けられていない点で相違している。
図18及び図19に示すように、第3画素PX3では、第1遮光部LS1、第2遮光部LS2、第3遮光部LS3、及び、第4遮光部LS4が設けられていないため、第1画素PX1及び第2画素PX2と比較して、一画素当たりの開口面積(表示に寄与する面積)を拡大することができる。
[第9構成例]
図20は、第9構成例の表示装置DSPを示す平面図である。
図20に示す第9構成例の表示装置DSPは、図15に示す第8構成例の表示装置DSPと比較して、表示部DAが第3表示部を備えていない点で相違している。つまり、表示部DAは、端部E21の近傍に位置する第1領域DA1と、端部E22の近傍に位置する第2領域DA2とを備え、第1領域DA1と第2領域DA2とが第2方向Yに隣接している。
図20は、第9構成例の表示装置DSPを示す平面図である。
図20に示す第9構成例の表示装置DSPは、図15に示す第8構成例の表示装置DSPと比較して、表示部DAが第3表示部を備えていない点で相違している。つまり、表示部DAは、端部E21の近傍に位置する第1領域DA1と、端部E22の近傍に位置する第2領域DA2とを備え、第1領域DA1と第2領域DA2とが第2方向Yに隣接している。
第1領域DA1の第1画素PX1におけるスイッチング素子SWは、図3に示す通りである。図3に示す第1遮光部LS1、第2遮光部LS2、第3遮光部LS3、及び、第4遮光部LS4は、発光素子LD1と第1画素PX1の半導体層SCとの間に設けられている。
第2領域DA2の第2画素PX2におけるスイッチング素子SW2は、図16または図17に示す通りである。第1遮光部LS1、第2遮光部LS2、第3遮光部LS3、及び、第4遮光部LS4は、発光素子LD2とスイッチング素子SW2の半導体層SCとの間に設けられている。
このような第9構成例においても、第8構成例と同様に、第1画素PX1のスイッチング素子SW、及び、第2画素PX2のスイッチング素子SW2において、半導体層SCにおけるリーク電流の発生を抑制することができる。
第2領域DA2の第2画素PX2におけるスイッチング素子SW2は、図16または図17に示す通りである。第1遮光部LS1、第2遮光部LS2、第3遮光部LS3、及び、第4遮光部LS4は、発光素子LD2とスイッチング素子SW2の半導体層SCとの間に設けられている。
このような第9構成例においても、第8構成例と同様に、第1画素PX1のスイッチング素子SW、及び、第2画素PX2のスイッチング素子SW2において、半導体層SCにおけるリーク電流の発生を抑制することができる。
以上説明したように、本実施形態によれば、表示品位の低下を抑制することができる表示装置を提供することができる。
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
DSP…表示装置 PNL…表示パネル LD…発光素子
SUB1…第1基板 SUB2…第2基板 LC…液晶層
LS1…第1遮光部 LS2…第2遮光部 LS3…第3遮光部 LS4…第4遮光部
G…走査線 S…信号線 SW…スイッチング素子 SC…半導体層
PE…画素電極
SUB1…第1基板 SUB2…第2基板 LC…液晶層
LS1…第1遮光部 LS2…第2遮光部 LS3…第3遮光部 LS4…第4遮光部
G…走査線 S…信号線 SW…スイッチング素子 SC…半導体層
PE…画素電極
Claims (21)
- 第1画素及び第2画素を備えた第1基板と、
第2基板と、
前記第1基板と前記第2基板との間に位置し、ポリマーと、液晶分子とを含む液晶層と、
発光素子と、を備え、
前記第2画素は、前記第1画素に隣接するとともに、前記発光素子と前記第1画素との間に位置し、
前記第1基板は、前記第1画素に配置された半導体層を備えたスイッチング素子と、前記スイッチング素子と電気的に接続された画素電極と、前記第2画素に配置され前記半導体層に隣接する第1遮光部と、を備え、
前記第1遮光部は、平面視で前記半導体層と前記発光素子との間に位置し、前記第2画素の中心よりも前記第1画素に近接する側に位置している、表示装置。 - 前記第1画素及び前記第2画素の配列方向に直交する幅に関して、前記第1遮光部の幅は、前記半導体層の幅より大きい、請求項1に記載の表示装置。
- 前記第1基板は、信号線を備え、
前記半導体層は、前記信号線に近接した第1端部と、前記第1端部の反対側の第2端部を有し、
前記第1遮光部は、前記信号線に近接した第3端部と、前記第3端部の反対側の第4端部を有し、
前記第1端部は、前記第3端部より前記信号線から離間し、
前記第2端部は、前記第4端部より前記信号線に近接している、請求項1に記載の表示装置。 - 前記第1基板は、透明基板と、第1絶縁膜と、第2絶縁膜と、を備え、
前記半導体層は、断面視で前記第1絶縁膜と前記第2絶縁膜との間に位置し、
前記第1遮光部は、前記第1絶縁膜及び前記第2絶縁膜を貫通する貫通孔に設けられている、請求項1に記載の表示装置。 - 前記第1基板は、前記スイッチング素子に重畳する第3絶縁膜と、第2遮光部と、を備え、
前記第3絶縁膜は、前記半導体層と前記貫通孔との間に側面を備え、
前記第2遮光部は、前記側面を覆っている、請求項4に記載の表示装置。 - 前記第1基板は、前記透明基板と前記第1絶縁膜との間に位置する第3遮光部を備え、
前記第1遮光部は、前記貫通孔において前記第3遮光部に重畳している、請求項4に記載の表示装置。 - 前記第1基板は、前記透明基板と前記第1絶縁膜との間に位置する走査線を備え、
前記第3遮光部は、前記走査線と一体的に形成されている、請求項6に記載の表示装置。 - 前記第1基板は、第4遮光部を備え、
前記第4遮光部は、前記貫通孔において、前記第1遮光部と前記第3遮光部との間に位置している、請求項6に記載の表示装置。 - 前記第1遮光部及び前記第2遮光部は、一体的に形成されている、請求項5に記載の表示装置。
- 前記第1基板は、前記第3絶縁膜に重畳する金属配線を備え、
前記第1遮光部及び前記第2遮光部は、前記金属配線と一体的に形成されている、請求項9に記載の表示装置。 - 前記第1基板は、前記金属配線と電気的に接続された容量電極を備え、
前記容量電極は、前記画素電極の周縁部に重畳する電極部と、前記画素電極の中央部に重畳する開口部と、を備え、
前記第1遮光部は、前記開口部に位置している、請求項10に記載の表示装置。 - 前記第1基板は、前記第3絶縁膜に重畳する金属配線と、前記金属配線と電気的に接続された容量電極と、を備え、
前記第1遮光部及び前記第2遮光部は、前記金属配線から離間し、
前記容量電極は、前記第2遮光部及び前記金属配線に接触している、請求項9に記載の表示装置。 - 第1基板と、
第2基板と、
前記第1基板と前記第2基板との間に位置し、ポリマーと、液晶分子とを含む液晶層と、
発光素子と、を備え、
前記第1基板は、半導体層を備えたスイッチング素子と、前記スイッチング素子と電気的に接続された画素電極と、前記半導体層に隣接する第1遮光部と、を備え、
前記第1遮光部は、平面視で前記半導体層と前記発光素子との間に位置し、
前記第1基板は、順に積層された、透明基板と、第1絶縁膜と、第2絶縁膜と、を備え、
前記半導体層は、断面視で前記第1絶縁膜と前記第2絶縁膜との間に位置し、
前記第1遮光部は、前記第1絶縁膜及び前記第2絶縁膜を貫通する貫通孔に設けられている、表示装置。 - 前記第1基板は、前記スイッチング素子に重畳する第3絶縁膜と、第2遮光部と、を備え、
前記第3絶縁膜は、有機絶縁膜であり、前記半導体層と前記貫通孔との間に側面を備え、
前記第2遮光部は、前記側面を覆っている、請求項13に記載の表示装置。 - 前記第1基板は、前記透明基板と前記第1絶縁膜との間に位置する走査線及び第3遮光部を備え、
前記走査線は、ゲート電極を有し、
前記半導体層は、ゲート電極に重畳し、
前記第1遮光部は、前記貫通孔において前記第3遮光部に重畳している、請求項14に記載の表示装置。 - 前記第3遮光部は、前記走査線と一体的に形成されている、請求項15に記載の表示装置。
- 前記第1基板は、第4遮光部を備え、
前記第4遮光部は、前記貫通孔において、前記第1遮光部と前記第3遮光部との間に位置し、前記第1遮光部及び前記第3遮光部に接触している、請求項16に記載の表示装置。 - 前記第3遮光部は、前記走査線から離間している、請求項15に記載の表示装置。
- 前記第1基板は、第4遮光部を備え、
前記第4遮光部は、前記貫通孔において、前記第1遮光部と前記第3遮光部との間に位置し、前記第1遮光部及び前記第3遮光部に接触し、
前記第1遮光部及び前記第2遮光部は、一体的に形成されている、請求項18に記載の表示装置。 - 前記第1基板は、前記第3絶縁膜に重畳する金属配線を備え、
前記第2遮光部は、前記金属配線と一体的に形成されている、請求項14に記載の表示装置。 - 前記第1基板は、前記金属配線と電気的に接続された容量電極を備え、
前記容量電極は、前記画素電極の周縁部に重畳する電極部と、前記画素電極の中央部に重畳する開口部と、を備え、
前記第1遮光部は、前記開口部に位置している、請求項20に記載の表示装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080014301.3A CN113454527A (zh) | 2019-02-14 | 2020-01-28 | 显示装置 |
US17/402,792 US11846854B2 (en) | 2019-02-14 | 2021-08-16 | Display device |
US18/517,743 US20240094585A1 (en) | 2019-02-14 | 2023-11-22 | Display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-024586 | 2019-02-14 | ||
JP2019024586A JP7237633B2 (ja) | 2019-02-14 | 2019-02-14 | 表示装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/402,792 Continuation US11846854B2 (en) | 2019-02-14 | 2021-08-16 | Display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020166320A1 true WO2020166320A1 (ja) | 2020-08-20 |
Family
ID=72044857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/003032 WO2020166320A1 (ja) | 2019-02-14 | 2020-01-28 | 表示装置 |
Country Status (4)
Country | Link |
---|---|
US (2) | US11846854B2 (ja) |
JP (3) | JP7237633B2 (ja) |
CN (1) | CN113454527A (ja) |
WO (1) | WO2020166320A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115128873B (zh) * | 2021-03-29 | 2023-12-05 | 株式会社日本显示器 | 显示装置及显示装置的阵列基板 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01297623A (ja) * | 1988-05-25 | 1989-11-30 | Fuji Electric Co Ltd | アクティブマトリックス形表示パネル |
US20120168756A1 (en) * | 2010-12-31 | 2012-07-05 | Inha-Industry Partnership Institute | Transistor, Method Of Manufacturing The Same, And Electronic Device Including The Transistor |
WO2018149142A1 (zh) * | 2017-02-17 | 2018-08-23 | 京东方科技集团股份有限公司 | 薄膜晶体管及其制备方法、阵列基板、显示面板 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101216688B1 (ko) * | 2005-05-02 | 2012-12-31 | 삼성디스플레이 주식회사 | 박막 트랜지스터 기판 및 이를 포함하는 액정 표시 장치 |
TWI613489B (zh) * | 2008-12-03 | 2018-02-01 | 半導體能源研究所股份有限公司 | 液晶顯示裝置 |
JP5948025B2 (ja) * | 2010-08-06 | 2016-07-06 | 株式会社半導体エネルギー研究所 | 液晶表示装置 |
JP5417383B2 (ja) * | 2011-06-13 | 2014-02-12 | 株式会社ジャパンディスプレイ | 液晶表示装置及びその製造方法 |
TWI516836B (zh) * | 2013-03-07 | 2016-01-11 | 群創光電股份有限公司 | 液晶顯示面板及包含其之液晶顯示裝置 |
JP2017156718A (ja) * | 2016-03-04 | 2017-09-07 | 株式会社ジャパンディスプレイ | 表示装置 |
JP2017167214A (ja) * | 2016-03-14 | 2017-09-21 | 株式会社ジャパンディスプレイ | 表示装置 |
JP6779709B2 (ja) * | 2016-08-26 | 2020-11-04 | 株式会社ジャパンディスプレイ | 表示装置 |
JP6740108B2 (ja) * | 2016-11-30 | 2020-08-12 | 株式会社ジャパンディスプレイ | 表示装置 |
US20180157114A1 (en) * | 2016-12-01 | 2018-06-07 | Samsung Display Co., Ltd. | Reflective liquid crystal device |
JP7013164B2 (ja) * | 2017-08-07 | 2022-01-31 | 株式会社ジャパンディスプレイ | 表示装置 |
-
2019
- 2019-02-14 JP JP2019024586A patent/JP7237633B2/ja active Active
-
2020
- 2020-01-28 WO PCT/JP2020/003032 patent/WO2020166320A1/ja active Application Filing
- 2020-01-28 CN CN202080014301.3A patent/CN113454527A/zh active Pending
-
2021
- 2021-08-16 US US17/402,792 patent/US11846854B2/en active Active
-
2023
- 2023-02-24 JP JP2023027326A patent/JP7375238B2/ja active Active
- 2023-10-20 JP JP2023180909A patent/JP2023174931A/ja active Pending
- 2023-11-22 US US18/517,743 patent/US20240094585A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01297623A (ja) * | 1988-05-25 | 1989-11-30 | Fuji Electric Co Ltd | アクティブマトリックス形表示パネル |
US20120168756A1 (en) * | 2010-12-31 | 2012-07-05 | Inha-Industry Partnership Institute | Transistor, Method Of Manufacturing The Same, And Electronic Device Including The Transistor |
WO2018149142A1 (zh) * | 2017-02-17 | 2018-08-23 | 京东方科技集团股份有限公司 | 薄膜晶体管及其制备方法、阵列基板、显示面板 |
Also Published As
Publication number | Publication date |
---|---|
US20240094585A1 (en) | 2024-03-21 |
JP7237633B2 (ja) | 2023-03-13 |
JP7375238B2 (ja) | 2023-11-07 |
US11846854B2 (en) | 2023-12-19 |
CN113454527A (zh) | 2021-09-28 |
JP2020134583A (ja) | 2020-08-31 |
JP2023059972A (ja) | 2023-04-27 |
JP2023174931A (ja) | 2023-12-08 |
US20210373395A1 (en) | 2021-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021033428A1 (ja) | 表示装置 | |
CN111208686B (zh) | 显示装置 | |
JP2019053097A (ja) | 表示装置 | |
US11809049B2 (en) | Display device | |
US11614649B2 (en) | Display device | |
JP2020160322A (ja) | 表示装置 | |
US20240094585A1 (en) | Display device | |
JP2019174530A (ja) | 表示装置 | |
WO2020080086A1 (ja) | 表示装置 | |
JP2020160321A (ja) | 表示装置 | |
JP7083675B2 (ja) | 表示装置 | |
WO2020213253A1 (ja) | 表示装置 | |
JP7246888B2 (ja) | 表示装置及び照明装置 | |
JP7218467B2 (ja) | 表示装置 | |
JP7289675B2 (ja) | 表示装置 | |
WO2022158478A1 (ja) | 表示装置 | |
WO2022153664A1 (ja) | 表示装置 | |
US20240264499A1 (en) | Display device | |
US20240201549A1 (en) | Display device | |
JP2021148920A (ja) | 表示装置及び半導体基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20756033 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20756033 Country of ref document: EP Kind code of ref document: A1 |